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ABSTRACT (ENGLISH) 
  

In the present work, a methodology is proposed for the synthesis of metal-based hydrogenation 

catalysts supported on hierarchically porous carbon pellets, which are suitable for industrial flow 

processes. For the preparation of the carbon support, durum semolina is used as the carbon source, 

in addition to ZnO nanopowder as the porogenic templating agent. Owing to their large surface 

area of 756 m2 g–1 and mesopore volume of 0.49 cm3 g–1 (QSDFT N2 adsorption), the extruded 

cylindrical pellets (2.4 × 3.5 mm) offer excellent properties as a support material for highly active 

catalyst pellets, tailored to the use in large packed bed reactors. 

The performance of the Ni/C and Pt/C catalysts, prepared with several metal loadings from the 

support pellets, is investigated in packed-bed flow reactors for two important applications of 

biomass valorization: the hydrogenation of the bioderived platform molecules 5-

hydroxymethylfurfural (HMF) and levulinic acid (LA) to the value-added chemicals 2,5-

dimethylfuran (DMF) and γ-valerolactone (GVL), respectively. Aiming at the development of 

sustainable processes, only water and ethanol are used as green solvents in these processes. 

In the selective hydrogenation of HMF in ethanol over the synthesized 21wt% Ni/C catalyst, a 

DMF yield of 80.5% (99.0% conversion) is obtained at 150 °C. High catalytic stability is 

observed during the whole operation period of 33 h. 

For the hydrogenation of LA to GVL in water at 160 °C, the prepared 2.7wt% Pt/C catalyst 

provides excellent GVL yield of 96.4% (98.9% conversion) and a Pt time yield of 54.7 molGVL h–1 

molPt
–1 (66.2% conversion). 

With formic acid (FA) as an alternative and renewable hydrogen source, the GVL selectivity 

was further enhanced to 98.7% (65.3% LA conversion) and a 92.6% GVL yield (97.7% LA 

conversion) was obtained, using the same type of 2.7wt% Pt/C catalyst at 220 °C. The high 

activity and remarkable selectivity of the FA-assisted hydrogenation demonstrates its potential for 

a sustainable and self-sufficient integrated refining strategy of sugars to GVL, in which in situ 

formed FA can be employed as a bioderived reducing agent. 
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ABSTRACT (DEUTSCH) 
  

In der vorliegenden Arbeit wird eine Synthesemethodik vorgestellt für metallbasierte, auf 

hierarchisch porösen Kohlenstoffpellets geträgerte Hydrierkatalysatoren, welche sich für die 

Anwendung in industriellen Flussprozessen eignen. Für die Synthese des Kohlenstoffträgers wird 

Hartweizengrieß als Kohlenstoffquelle sowie ZnO-Nanopulver als porenbildendes Template 

verwendet. Die extrudierten zylindrischen Pellets (2,4 × 3,5 mm) bieten mit ihrer großen 

Oberfläche von 756 m2 g–1 und ihrem großen Mesoporenvolumen von 0,49 cm3 g–1 (QSDFT für 

N2-Adsorption) ausgezeichnete Voraussetzungen als Trägermaterial für hochaktive Katalysatoren 

für die Nutzung in Festbett-Rohrreaktoren. 

Die synthetisierten Ni/C- und Pt/C-Katalysatoren, welche mit verschiedenen Metallbeladungen 

aus den Trägerpellets hergestellt wurden, werden hinsichtlich ihrer katalytischen Reaktivität in 

Festbettreaktoren anhand zweier bedeutender Anwendungen der Biomasseveredelung untersucht: 

Hydrierung der biobasierten Plattformchemikalien 5-Hydroxymethylfurfural (HMF) bzw. 

Lävulinsäure (LA) hin zu den veredelten Chemikalien 2,5-Dimethylfuran (DMF) bzw. γ-

Valerolacton (GVL). Um nachhaltige Prozesse im Sinne der grünen Chemie zu entwickeln, 

werden hierbei als grüne Lösungsmittel ausschließlich Wasser und Ethanol eingesetzt. 

Für die selektive HMF-Hydrierung in Ethanol über dem synthetisierten 21 gew.% Ni/C 

Katalysator wurde 80,5% DMF-Ausbeute (99,0% HMF-Umsatz) bei 150 °C erzielt. Während der 

gesamten Betriebszeit von 33 h konnte hohe katalytische Stabilität beobachtet werden. 

Für die LA-Hydrierung zu GVL in Wasser erreichte der synthetisierte 2,7 gew.% Pt/C 

Katalysator bei 160 °C exzellente GVL-Ausbeute von 96,4% (98,9% Umsatz) und Pt-

Zeitausbeute von 54,7 molGVL h–1 molPt
–1 (66,2% Umsatz). 

Mit Ameisensäure (FA) als alternativer und regenerativer Wasserstoffquelle wurden unter 

Verwendung des gleichen 2,7% Pt/C-Katalysators bei 220 °C zudem die GVL-Selektivität auf 

98,7% (65.3% LA-Umsatz) gesteigert und eine GVL-Ausbeute von 92,6% (97,7% LA-Umsatz) 

erzielt. Die hohe Aktivität und außerordentliche Selektivität bei der FA-vermittelten Hydrierung 

zeigt das Potenzial auf für eine nachhaltige und autarke Veredelungsstrategie von Zuckern zu 

GVL, wobei die in situ geformte FA als biobasiertes Reduktionsmittel dienen kann. 
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NOTATION 

Symbols 

Symbol Unit Description 

𝐴𝐴  L gM h–1 Pre-exponential factor (unit valid for first order reaction) 

𝐵𝐵𝐵𝐵 --- Bodenstein number 

𝐶𝐶𝑖𝑖  mol L–1 Concentration of component 𝑖𝑖 in solution 

𝐶𝐶𝑖𝑖  mol kg–1 Concentration of active sites 𝑖𝑖 on catalyst 

𝑑𝑑  nm; µm; mm Diameter 

𝑑𝑑𝑆𝑆  nm Equivalent spherical diameter (see section 4.2) 

𝐸𝐸𝑎𝑎  kJ mol–1 Activation energy 

𝑘𝑘  L gM h–1 Rate constant (unit valid for first order reaction) 

𝐿𝐿 mm Length 

𝑚𝑚𝑖𝑖  g Weight of catalyst, species, or element 𝑖𝑖 

𝑀𝑀𝑖𝑖  g mol–1 Molar mass of species 𝑖𝑖 

𝑛𝑛  --- Reaction order (partial or overall) 

𝑁𝑁𝑁𝑁𝑌𝑌𝑖𝑖  moli h–1 molNi
–1 Nickel time yield (molar) 

𝑁𝑁𝑁𝑁𝑌𝑌𝑖𝑖  gi h–1 gNi
–1 Nickel time yield (specific) 

𝑃𝑃  bar Total pressure  

𝑃𝑃𝑃𝑃𝑌𝑌𝑖𝑖  moli h–1 molPt
–1 Platinum time yield (molar) 

𝑃𝑃𝑃𝑃𝑌𝑌𝑖𝑖  gi h–1 gPt
–1 Platinum time yield (specific) 

𝑟𝑟  moli h–1 gM
–1 Reaction rate (commonly), 𝑟𝑟 ≔ 𝑚𝑚𝑀𝑀

−1 d𝑁𝑁𝑖𝑖/d𝑡𝑡 

𝑟𝑟  moli h–1 molM
–1 Reaction rate (molar), 𝑟𝑟 ≔ 𝑁𝑁𝑀𝑀−1 d𝑁𝑁𝑖𝑖/d𝑡𝑡 

𝑅𝑅  J mol–1 K–1 Universal gas constant, 𝑅𝑅 = 8.314 J mol−1 K−1 

𝑆𝑆𝑆𝑆𝑆𝑆  m2 g–1 Specific surface area of porous particle 

𝑆𝑆𝑖𝑖  % Overall selectivity towards component 𝑖𝑖 

𝑇𝑇  K; °C Reaction temperature 

𝑇𝑇𝑇𝑇𝑇𝑇  moli h–1 molM
–1 Turnover frequency of metal M (Ni or Pt) 

𝑇𝑇𝑇𝑇𝑇𝑇  h Time on stream 
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Symbol Unit Description 

𝑉𝑉𝑝𝑝  m3 g–1 Pore volume 

𝑉𝑉𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆  mLSTP mol–1 Molar volume of ideal gas at STP, 𝑉𝑉𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆 = 22 414 mLSTP mol−1 

𝑤𝑤𝑖𝑖  wt% Weight fraction of element 𝑖𝑖 

𝑋𝑋  % Conversion 

𝑌𝑌𝑖𝑖  % Yield towards species 𝑖𝑖 

𝜀𝜀𝑝𝑝  % Catalyst pellet porosity 

𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏  % Bed voidage (bed porosity) 

𝜌𝜌𝑚𝑚  mol m–3 Molar density 

𝜏𝜏  s gcat molreact
–1 Space time (commonly), 𝜏𝜏 ≔ 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐/𝑁̇𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0  

𝜏𝜏𝑤𝑤  s gcat gi
–1 Space time (weight specific), 𝜏𝜏𝑤𝑤 ≔ 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐/𝑚̇𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

0  

𝜏𝜏𝑁𝑁  s molcat molreact
–1 Space time (molar), 𝜏𝜏𝑁𝑁 ≔ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐/𝑁̇𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0  
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Indices 

Subscripts  

0 Initial (before reaction, dissociation etc.) 

𝑎𝑎𝑎𝑎𝑎𝑎 Analyte 

𝐶𝐶 Carbon support pellet 

𝑐𝑐𝑐𝑐𝑐𝑐  Catalyst pellet 

𝑔𝑔  Gas phase 

𝑙𝑙 Liquid phase 

𝑀𝑀 Metal (Ni, Pt, Ru) 

𝑝𝑝  Pore 

𝑅𝑅  Reactor 

𝑠𝑠  Solid phase (catalyst and dilution) 

𝑆𝑆𝑆𝑆 Solid acid catalyst 

𝑡𝑡𝑡𝑡𝑡𝑡 Titrant 

𝑡𝑡𝑡𝑡𝑡𝑡 Total (incl. all intermediates, products, and byproducts) 

𝑤𝑤  Reactor wall 

 

 

Superscripts  

𝑐𝑐𝑐𝑐 Cumulative 

𝑒𝑒𝑒𝑒 At equivalence point of titration 

ℎ  Hypothetical 
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Abbreviations 
Acronym Description 

2-MTHF 2-Methyltetrahydrofuran 

2-PEA 2-Pentenoic acid 

3-PEA 3-Pentenoic acid 

5-MF 5-Methylfurfural 

BET Brunauer-Emmett-Teller theory of gas physisorption 

BHMF 2,5-Bis(hydroxymethyl)furan 

BJH Barrett-Joyner-Halenda method for mesopore size analysis 

C, CZnO Carbon support pellet synthesized on the ZnO route (see section 3.1.3) 

CNaCl Carbon support pellet synthesized on the NaCl route (see section 3.1.2) 

CZnCl Carbon support pellet synthesized on the ZnCl2 route (see section 3.1.1) 

DMF 2,5-Dimethylfuran 

DMTHF 2,5-Dimethyltetrahydrofuran 

EMF 5-Ethoxymethylfurfural 

EMHMF 2-Ethoxy-5-hydroxymethylfuran 

EMMF 2-Ethoxymethyl-5-methylfuran 

FA Formic acid 

FID Flame ionization detector 

GC Gas chromatograph 

GVL γ-Valerolactone 

GHVA γ-Hydroxyvaleric acid 

HD 2,5-Hexanedione 

HDO Hydrodeoxygenation 

HMF 5-Hydroxymethylfurfural 

HMF-Ac “HMF acetal” [5-(diethoxymethylfuran-2-yl)methanol] 

HPLC High performance liquid chromatography 

ID Inner diameter 

IL Ionic liquid 

ICP Inductively coupled plasma 

IWI Incipient wetness impregnation 

LA Levulinic acid 

LCB Lignocellulosic biomass 
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OD Outer diameter 

OD×× Reactor with outer diameter of ×× mm (see section 4.1) 

MC microcrystalline 

MFA 5-Methylfurfuryl alcohol 

MS Mass spectrometry/spectrometer 

NTY Nickel time yield 

PFR Plug flow reactor 

PTY Platinum time yield 

QSDFT Quenched Solid State Functional Theory for pore size analysis 

PSS Crosslinked polystyrene sulfonate (= polystyrene-co-divinylbenzene) 

RDS Reaction determining step 

SEM Scanning electron microscopy/microscope 

SSA Specific surface area 

STP Standard temperature (0 °C) and pressure (1 atm) 

TEM Transmission electron microscopy/microscope 

TOS Time-on-stream 

VOC Volatile organic compounds 

XRD X-ray powder diffraction 

wt Weight fraction 
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1 
1 INTRODUCTION 

1.1 Motivation 
The extensive environmental and social impact of crude oil exploitation is a hot topic in science, 

technology, and society. Almost every aspect of our life is driven by the utilization of this raw 

material, which is the predominant resource for most chemicals, materials, consumables, and 

especially transportation fuels. However, the centralized crude oil exploitation creates strong 

economic and political dependencies on a handful of regions that comprise the most part of the 

earth’s oil occurrence. In addition, the global demand for energy and consumables is increasing 

each year. Considering the advancing depletion of crude oil reserves, the production and supply of 

energy and materials will be challenging in the future. The global crude oil exploitation is 

assumed to pass through a maximum – the so-called Hubbert’s peak – within the next 50 years, 

followed by a continuous decline1. Therefore, the accessibility of crude oil, on which our 

prosperity is established, can be more and more limited or uncertain in the future. 

Regarding this imbalance of rising demand of energy and petroleum-based products on the one 

hand versus the depletion of oil reserves on the other hand, it is paramount to focus on new 

strategies to ensure our standard of living for the future. Therefore, interest is rising in renewable 

and more sustainable alternatives for the energy supply and production of chemical building 

blocks2, based on the utilization of biomass. 

In addition, combustion of petrochemical products, such as fuels and unrecycled polymers, 

increases the CO2 emissions because the carbon cycle is not closed. By displacing such products 
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by bioderived products, the net CO2 emissions can be balanced through accelerated biomass 

regrowth3 and, therefore, the greenhouse effect can be mitigated. The effectiveness of the 

additional CO2 uptake and carbon sequestration, associated with the growth and harvest of 

biomass for biorefinery, depends on many factors, such as the type of biomass, the ecosystem 

aboveground and belowground, the conversion of land use, the diversion of the crop components, 

and the treatment and refining processes4. However, it is believed that the production and use of 

biofuels from lignocellulosic feedstocks grown on marginal lands offer almost carbon neutrality4. 

Among the several classes of biomass, the predominant type is lignocellulosic biomass (LCB), 

which comprises all terrestrial plants. It is categorized into virgin biomass and biomass waste. The 

first category includes naturally occurring plants such as trees, bushes, and small vegetation, 

whereas the latter accrues in large amounts in the agricultural industry (sugarcane bagasse, corn 

stover, straw), forestry-related industries (paper pulp, saw mill) and domestic organic waste. The 

high availability of low-value biomass emphasizes the importance of establishing industrial 

processes capable of converting the mentioned abundant feedstock into platform molecules that 

form the basis of a holistic biobased chemical industry. In this context, cellulose is of particular 

interest, as it is the major component of LCB (ca. 35-50%, depending on the type of plant) and, 

therefore, the most abundant natural carbon source on earth. Through diverse treatment 

technologies, this biopolymer can be cleaved into the repeating unit glucose and further 

isomerized towards fructose. 

 
Figure 1-1: Main components of lignocellulosic biomass  

To pave the way for a shift towards renewable resources, the U.S. Department of Energy 

published in 2004 a list of twelve top value-added chemicals that can be produced from biomass 
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and are considered the most important building blocks for establishing an extensive refining 

industry based on biomass5 (Table 1-1). 

Table 1-1: Twelve top value-added chemicals as building blocks for biorefinery, according to the U.S. Dept. of Energy5 

Succinic/fumaric/malic acid Aspartic acid Itaconic acid Glycerol 

2,5-Furandicarboxylic acid Glucaric acid Levulinic acid Sorbitol 

3-Hydroxypropionic acid Glutamic acid 3-Hydroxybutyrolactone Xylitol/arabinitol 
 

Among these molecules is levulinic acid (LA), which is produced from 5-hydroxymethylfurfural 

(HMF), the dehydration product of fructose and glucose. HMF is often referred to as the “sleeping 

giant”6, hinting at its large unexploited potential as a versatile building block for the production of 

various biofuels, chemicals, and polymers. LA is the starting point of several upgrading schemes 

towards value-added chemicals such as γ-valerolactone (GVL), 2-methyltetrahydrofuran, and 

valeric acid, which find application as precursors for products in various fields, such as fuels, fuel 

additives, polymers, resins, solvents, pharmaceuticals, and flavors. Apart from the conversion 

towards LA, HMF can be transformed into 2,5-dimethylfuran (DMF). Beyond the promising use 

as a high-quality biofuel, DMF is a precursor for the production of renewable p-xylene, which is 

of crucial importance for the chemical and polymer industry7. 

Despite the great potential of biorefinery, to date only few processes are implemented already 

in a mature stage and cost-efficient way, such as the production of bioethanol for the use as 

biofuel8. However, conventional bioethanol production is based on the use of food sources and 

entails diversion of food sources. The resulting increase in food prices is already placing millions 

of people at risk for going hungry (“food-vs.-fuel” dilemma)9. Therefore, efforts are being made 

in academia and industry to substitute gasoline and bioethanol by other biofuels that are produced 

in a more sustainable fashion and offer superior fuel properties. 

As an example, DMF exhibits promising fuel properties superior to those of bioethanol and 

even conventional gasoline, including a high research octane rating of 119, immiscibility with 

water, and lower volatility10,11. Furthermore, its energy density is 40% higher compared with 

bioethanol (30 vs. 21 MJ/L)  and the stoichiometric carbon efficiency of DMF production is 

100%, while in the case of bioethanol 33% of the carbon source is already emitted as CO2 during 

the fermentation process11. 
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Table 1-2: Fuel properties of bioethanol, DMF, and gasoline 

Property Bioethanol DMF Gasoline 

Energy density 21 MJ/L11 30 MJ/L11 32 MJ/L11 

Research octane number 11011 11911 95.811 

Boiling temperature 78 °C 94 °C 35–200 °C 

Hygroscopic Yes No No 

Carbon efficiency of production 67% 100% 100% 

1.2 Objective of the Present Work 
Due to the importance of the mentioned platform molecules fructose, HMF, and LA for 

biorefining schemes, the selective production and transformation of these compounds towards the 

value-added products DMF and GVL is the focus of the present work. 

For many catalytic applications, a necessary step for the scale-up of laboratory catalysis to a 

process of industrial extent is the implementation of a continuous-flow system rather than a batch 

process. Compared with batch systems, continuous-flow operation can offer a variety of 

advantages, e.g. in terms of cost efficiency and the potential to integrate sequential catalyzed 

reaction steps into a multiprocess system12,13. Since operation in continuous flow entails different 

technical requirements than batch processes, it is necessary to develop catalysts that are tailored to 

efficient continuous-flow processes. This includes the necessity for low pressure drop along the 

reactor axis, which requires the catalyst to be in macroscopic shapes (e.g. granules or pellets of 

uniform size) instead of polydisperse fine powders. However, most of the current research on the 

mentioned valorization schemes is dedicated to laboratory-scale catalysis in batch systems and 

neglects the question of industrial feasibility. 

Therefore, the objective of this work is to develop catalyzed processes for the conversion of 

sugars towards furanic platform molecules and consecutive value-added chemicals in continuous-

flow systems, bridging the gap to actual industrial conditions. To establish efficient hydrogenation 

applications for the production of the target molecules DMF and GVL, the present work provides 

a simple and cost-efficient synthesis methodology for high-performance hydrogenation catalysts. 

In this novel approach, active metal was incorporated on extruded carbon pellets with very high 

surface area and pore volume. In an iterative procedure, the methodology was enhanced by 

adjusting the composition of the precursor mixture with different carbon sources and porogenic 

templating agents. 
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The performance of the prepared hydrogenation catalysts was subsequently investigated in 

catalytic flow experiments. This joint interplay of catalyst synthesis and performance testing in 

packed-bed reactors is outlined in Figure 1-2. The direct performance feedback allows for 

immediate adjustments of the catalyst synthesis methodology towards better catalytic properties 

and, therefore, catalyst optimization oriented at large-scale applications. 
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Figure 1-2: Graphical outline of the present work. HMF: 5-hydroxymethylfurfural; LA: levulinic acid; DMF: 2,5-

dimethylfuran; GVL: γ-valerolactone 
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2 

2 STATE OF THE ART 

2.1 Biorefinery and the Principles of Green Chemistry 
The term biorefinery – in analogy to oil refinery – describes emerging concepts of integrated 

biomass conversion processes or facilities in which such processes are operated. The processes 

can be highly different, depending on the diverse biomass feedstocks and on the products, which 

can be classified into bioenergy (fuels, power, and heat) and biobased products (chemicals and 

materials)14. Among all renewable energy sources, biomass is the only source with a potential for 

such a dual application15. The valorization of the various types of biomass to biofuels and 

biobased products can be implemented through jointly applied process technologies2. 

To implement the biorefinery design in a sustainable way, the values of green chemistry have 

to be respected and integrated into the processes. The area of green chemistry is based upon a set 

of 12 principles, shown in Figure 2-1, which serve as guidelines for the development of chemical 

products and processes in a way that protects and benefits the economy, people, and the planet16. 

Among others, these principles include the prevention of waste (rather than treating or cleaning up 

created waste), maximizing the incorporation of all materials used in the process, using and 

producing safer and non-toxic substances (rather than chemicals and solvents that are hazardous 

to humans or the environment), minimizing energy consumption, and, wherever practical, the use 

of renewable feedstock16. 
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Figure 2-1: The 12 principles of green chemistry, according to the ACS Green Chemistry Pocket Guide16 

The integration of the green chemistry principles into the biorefinery design aims at establishing 

sustainable technologies for the production of value-added chemicals which have the potential to 

be competitive with petrochemical processes in the future2,17. The evaluation of sustainability of 

biorefinery processes is very complex and has to be considered under various aspects. Each 

process must be evaluated individually in terms of its various ecological, social, and economic 

consequences. For that reason, biorefinery processes are more and more controlled and assessed 

through certification schemes that monitor the impacts of biorefinery processes and multiprocess 

systems18. 

As promising the potential for various application fields of biorefinery appears, as demanding 

are the challenges for catalysis engineering to implement economic and sustainable solutions of 

large-scale selective conversion towards value-added products. This does not only apply to the 

development of suitable catalytic materials, but also to the design of the reactor and a suitable 

multiprocess environment with integrated pre- and post-treatment, in order to maximize product 

yields, minimize waste streams, and optimize cost-efficiency19. 
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2.2 Lignocellulosic Biomass 
Lignocellulosic biomass (LCB) is the most abundant type of renewable resources. It consists of 

the three biopolymers cellulose, hemicellulose, and lignin, with low amounts of additional 

components such as minerals, acetyl groups, and phenolic substituents8, as presented in Figure 

2-2. These polymers are arranged into interconnected non-uniform structures, which can be very 

different for different types of lignocellulosic biomass. The encapsulation of crystalline cellulose 

by the hydrophobic lignin-hemicellulose matrix lends the biological material its strength and 

robustness20. 

 
Figure 2-2: Structure and constituents of LCB. Adapted from Isikgor and Becer8 and edited. 

Cellulose, the major constituent of most types of LCB and most abundant biopolymer on earth, is 

composed of linear chains of thousands of glucose units, linked via β(1,4)-glycosidic bonds. 
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Extensive intra- and intermolecular hydrogen bonding networks are responsible for the high 

strength of the crystalline material, which makes it difficult to be hydrolyzed. 

Contrary to cellulose, hemicellulose is a heteropolymer, consisting of several different 

polysaccharides such as xylan and glucuronoxylan, which are composed of several different 

pentose (xylose, arabinose) and hexose (glucose, mannose, rhamnose, galactose) as well as 

acetylated sugar units8. Hemicellulose has a random, amorphous structure and exhibits lower 

mechanical and chemical strength than the crystalline cellulose due to a weaker hydrogen bonding 

network. 

Lignin is a cross-linked phenolic polymer composed of phenylpropanoid units21. In its function 

as the cellular glue, it lends tensile strength to the plant tissue8. Its structure is based on oxidative 

coupling of the three building blocks p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol22. 

Due to the heterogeneity and chemical and mechanical stability of LCB, sustainable and efficient 

treatment and valorization of this feedstock is a challenging, but promising task8. To make 

biorefinery processes competitive with the petrochemical industry, which had been established 

and improved over many decades, strong efforts are currently made in industry and academia on 

chemistry and engineering issues related to biorefinery fields17. 

The compositional variety and the higher oxygen content23, compared with crude oil, allows 

for the versatile production of a wider range of products. For the production of biofuels, on the 

other hand, the high oxygen content of LCB must be decreased in further reaction steps, in order 

to increase the energy density, decrease the boiling point to a level suitable for liquid fuels, and 

decrease the solubility with water24. The difference in oxygen content of LCB-based products, 

compared with petroleum and petroleum-based products is illustrated in Figure 2-3. 
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Figure 2-3: O/C and H/C molar ratio for biobased and petroleum-based products. Adapted from Rinaldi and Schüth23 

2.3 Pretreatment of Lignocellulosic Biomass 
The crucial first step for the valorization of LCB is the separation into the three major components 

lignin, cellulose, and hemicellulose8. Single-step biomass processing methods, such as pyrolysis, 

are not desirable as they commonly entail partial deconstruction of the biomass due to the high 

operation temperature8. Instead, pretreatment processes are necessary that are able to crack the 

supramolecular structure of the lignin-cellulose-hemicellulose matrix and facilitate the isolation of 

the cellulosic material25. Pretreatment of the LCB can involve chemical, mechanical, physical, or 

biological processes20. Amongst other techniques, the biopolymers can be separated by thermal 

and mechanical fractionation, solubilization, or hydrolysis, with each of these methods providing 

highly different pretreatment products and offering distinct advantages and disadvantages26, while 

combinations of different pretreatment procedures can be beneficial for the overall efficacy20. 

Chemical pretreatment techniques for example generally aim at disrupting the LCB matrix by 

partially hydrolyzing the carbohydrate fractions or by breaking the lignin seal, thus increasing the 

accessibility of the carbohydrate polymers27. Basic pretreatment, e.g. with metal hydroxides or 

ammonia, induces swelling of the LCB, which leads to an increased internal surface area of the 

material and a decreased degree of polymerization20. By disrupting the structure of lignin, the 

linkage of the lignin with the cellulose and hemicellulose is broken. Alternatively, acidic 

treatment in dilute sulfuric, hydrochloric, and phosphoric acid selectively depolymerizes the 

hemicellulose up to its monomer units, which makes the cellulose more accessible20. 
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The complexity of the raw material itself, the different pretreatment techniques, as well as the 

various possibilities for the combination and integration of subsequent valorization steps still pose 

great challenges, but also provide a large potential for developing efficient and cheap pretreatment 

technologies27. 

2.4 Solid Acid Catalysts for Cellulose Upgrading 

2.4.1 Cellulose Depolymerization 

With an approximate fraction of ca. 55-85% of the matter, C5 and C6 sugars comprise the major 

part of the dried LCB8, chemically linked via glycosidic bonds into the biopolymers cellulose and 

hemicellulose. Complete hydrolysis of these bonds towards the monosaccharides constitutes the 

starting point for the various valorization pathways. Due to the highly interconnected crystalline 

network of cellulose and high stability of its β-1,4-glycosidic bonds that link the glucose units, the 

depolymerization of cellulose is particularly challenging. The most efficient industrial 

saccharification processes involves the use of concentrated hydrochloric acid and sulfuric acid8,28. 

However, such homogeneously catalyzed processes entail additional separation steps of the liquid 

mineral acids from the product stream. 

In search for more sustainable processes that do not entail the issue of catalyst separation, 

several Lewis and Brønsted acid catalysts have been proposed in science and academia for the 

hydrolysis29; however the key issue remains the very limited solubility of poly- and oligomers in 

most solvents and, therefore, limited accessibility of solid acid functionalities. Generally, the 

presence of Cl¯ appears to be beneficial for the hydrolysis of the polysaccharides, as it helps 

dissolving and adsorbing the carbohydrates30. The use of chloric solvents, mainly ionic liquids 

such as 1-butyl-3-methylimidazolium chloride ([BMIm]Cl), can increase the solubility of the 

polymers and facilitate solid acid catalysis. Rinaldi et al.31 investigated the performance of 

cellulose depolymerization in [BMIm]Cl over Amberlyst-15, a commercially available variant of 

an ion-exchange resin consisting of highly sulfonated polystyrene crosslinked with 

divinylbenzene units. This macroporous material contains a high density of sulfo groups and is 

one of the most common representative of polymer-based materials with acidic functional sites32. 

Within 3 hours of reaction time, Rinaldi et al.31 obtained glucose yields of up to 28.8% from 

cellulose over a high amount of catalyst. In order to intensify the interaction between the cellulose 

and the solid acid sites, the work of Shuai and Pan33 proposed the use of a cellulose-mimetic 

catalyst, a sulfonated chloromethyl polystyrene resin, containing cellulose-binding sites (–Cl) in 
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vicinity to the catalytic sulfo groups, reportedly obtaining a surprising glucose yield of 93% 

within 10 h at 120 °C from a small cellulose amount of 100 mg. With the objective of preventing 

the use of liquid acids, enzymatic processes have been proposed, using a combination of 

cellulases for the coupled hydrolysis steps of cellulose34. The enzymatic treatment of cellulose 

with endo- and exocellulase yields the soluble di-, tri- and tetrasaccharides35, which could be 

further processed over solid acid catalysts without the use of harsh mineral acids and solvents. For 

the hydrolysis of the disaccharide intermediate cellobiose in water, Foo et al.36 proposed the use 

of sulfonated carbon sheets in a fixed-bed reactor at 200 °C, obtaining a cellobiose conversion of 

up to 50% and glucose yield of up to 26%. 

2.4.2 Production of 5-Hydroxymethylfurfural and Levulinic Acid 

2.4.2.1 Fructose as feedstock 

HMF is widely obtained by dehydration of fructose. It can be further hydrolyzed and decomposed 

to levulinic acid (LA) and formic acid (FA), as presented in Figure 2-4. 

 
Figure 2-4: Scheme of acid-catalyzed fructose dehydration to HMF with consecutive hydrolysis and decomposition to 

levulinic acid and formic acid. Adapted from Qi et al.37 and edited. 

Several Brønsted acids have been identified as efficient homogeneous catalysts – with high or 

complete conversion for sulfuric acid, phosphoric acid, and hydrochloric acid30,38. Since the 

homogeneous catalysis entails the issue of difficult downstream separation of the catalyst and is 

therefore not preferable in terms of green chemistry and sustainability, the following section 

focuses on heterogeneously catalyzed processes that facilitate easy catalyst recovery and 

recyclability39. As the cleaner alternatives to the harsh mineral acids, a variety of solid Brønsted 

acids has been proposed for the fructose dehydration. In view of the principles of green chemistry, 

the following paragraph focuses on those works that use greener solvents that are either non-

hazardous and bioderived or completely separated and recycled downstream, such as water, 

isopropanol, 2-butanol, instead of undesirable hazards, such as volatile organic compounds. 

Using Amberlyst-70 together with microwave heating for the fructose dehydration in water at 

150 °C, Antonetti et al.40 obtained HMF yield of up to 46% and an additional 2% of the 
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consecutive product LA. Watanabe et al.41 proposed the use of Dowex 50wx8-100, a similar 

sulfonated polystyrene-divinylbenzene material, which provided 73.4% HMF and ca. 6% LA 

yield in water-acetone at 150 °C. 

Apart from polymers with acid functionalities, zeolites have been successfully employed for 

the fructose dehydration to HMF. Moreau et al.42 reported the use of H-mordenites, while Nijhuis 

et al.43 tested H-ZSM-5 and β-zeolite (BEA), obtaining HMF yields of 74, 45, and 32%, for H-

mordenites, H-ZSM-5 and β-zeolite, respectively, with all their experiments being conducted in 

water-methyl isobutyl ketone at 165 °C. 

Furthermore, metal oxides with acid sites exhibited catalytic activity for the HMF synthesis 

from fructose. Qi et al.44 tested TiO2 and ZrO2 in water under microwave irradiation at 200 °C, 

reaching 38.1% and 30.5% HMF yield, respectively. 

Despite decent results for several reported HMF production processes via acid-catalyzed 

fructose dehydration, the limited availability and high costs of fructose still pose a challenge for 

economically competitive large-scale valorization processes. As an example, in an in-depth 

techno-economic analysis of an simulated industrial catalytic process for the HMF and DMF 

production from fructose, Kazi et al.45 calculated in 2011 a minimum selling price of HMF and 

DMF of 1.33 USD/L and 2.02 USD/L, respectively. In this calculation, which is based on 

published laboratory catalytic results, they identified as the bottleneck the feedstock cost of 

fructose, which amounts to almost half of the total costs, as can be seen in Figure 2-5. The need 

for cheaper feedstock in order to decrease the overall costs of the production of HMF and 

consecutive products is addressed in the following subchapter. 

 
Figure 2-5: Major contributors to DMF price. Adapted from Kazi et al.45 
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2.4.2.2 Glucose as feedstock 

Due to the high cost and low abundance of fructose in nature, cost-efficient and sustainable HMF 

production methods are needed which are based on the consumption of the isomer glucose, the 

most abundant monomer in nature. As proposed by Hu et al.30, the dehydration reaction towards 

HMF can occur on two pathways, illustrated in Figure 2-6: a direct acyclic pathway and the more 

dominant cyclic pathway, involving the isomerization to fructose on the 1,2-enediol or 1,2-

hydride shift mechanism. 

 
Figure 2-6: Proposed pathways for HMF production from fructose and glucose. Adapted from Lin et al.30 and edited. 
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The implementation of an efficient glucose conversion process proves to be more difficult and 

challenging, compared with fructose. First of all, due to the stable pyranoside ring structure of 

glucose, both isomerization mechanisms proceed very slowly and, therefore, constitute the rate 

determining steps for the HMF production, whereas the as-formed fructose is rapidly dehydrated. 

Furthermore, glucose tends to form oligosaccharides with reactive reducing groups and, therefore, 

higher risk of cross-polymerization with reactive intermediates and HMF, while fructose only 

reversibly transforms in low amounts to the equilibrium species difructose and dianhydrides46. For 

these reasons, many catalytic systems with decent performance for the fructose dehydration are 

ineffective for glucose. 

Similarly to the hydrolysis reaction of polysaccharides, the presence of Cl¯ seems to be highly 

beneficial for the adsorption, solubility, and isomerization reaction of glucose, as well as for the 

subsequent dehydration of fructose30. Although good catalytic performance for the glucose 

conversion has been reported in various studies using several metal chlorides such as AlCl3, 

CrCl3, and SnCl4
30, which act as Lewis acids, their downstream separation and recyclability is 

problematic. However, replacement of these liquid acids by heterogeneous catalysts still poses a 

big challenge to academia and industry. Since Brønsted acids such as Amberlyst-15, efficient for 

the fructose dehydration, exhibit very low catalytic activity for the isomerization reaction, they 

need to be complemented by solid Lewis acid or, alternatively, solid Lewis base catalysts30. 

In view of better catalyst separation and recyclability, several types of heterogeneous catalysts 

have been proposed in the literature for the isomerization and dehydration of glucose. Among 

those are TiO2 and ZrO2 materials that do not only exhibit acidic properties, effective for the 

dehydration of fructose, but also basic properties, which promote the isomerization of glucose into 

fructose47. Qi et al.44 reported high activity for the microwave-assisted acid-catalyzed dehydration 

of glucose over anatase (TiO2) at 200 °C, reaching yields of 17.4% for fructose and 7.7% for 

HMF with a total glucose conversion of 41.6%. Under the same conditions, ZrO2 exhibited lower 

activity for the acid-catalyzed dehydration of fructose, but higher activity for the base-catalyzed 

isomerization of glucose, providing yields of 25.5% for fructose and 4.6% for HMF with a total 

conversion of 48.4%44. The HMF yield could be greatly increased by changing the solvent to a 

50:50 water/[HMIM]Cl mixture, obtaining a 53% HMF yield and 4% fructose yield with glucose 

conversion of 92%48. Using mesoporous TiO2 nanoparticles in a microwave-assisted process, 

Dutta et al.49 obtained HMF in a yield of 24.8% in water at 120 °C, which was only slightly 

enhanced to 25.9% by temperature increase to 130 °C and change of solvent to water/ methyl 

isobutyl ketone. Although the use of hazardous solvents is not desirable for sustainable 
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biorefinery processes50, the use of N-methyl-2-pyrrolidone and dimethyl sulfoxide at 140 °C 

provided increased HMF yields of 29.6 and 37.2%, respectively49. Aiming at increasing the 

acidity of the catalyst by sulfonation, Zhang et al.51 prepared a SO4
2–/ZrO2-TiO2 catalyst, which 

yielded up to 26.0% HMF with a total glucose conversion of 96.5% at 170 °C. 

Furthermore, hydrotalcites have been reported to catalyze the glucose isomerization due to 

their basic sites. In combination with Amberlyst-15, an HMF yield of 42.3% was obtained in 

dimethylformamide at 80 and 100 °C, respectively52,53. However, the use of toxic solvents such as 

dimethylformamide should be avoided for the sake of sustainability50 and water does not seem to 

be an option due to considerable leaching of the hydrotalcite, which was observed in the presence 

of water54. 

On the other hand, Sn-containing β-zeolites appear to be stable under hydrothermal conditions 

and provided up to 32% fructose yield with 9% mannose and a total glucose conversion of 55% at 

110 °C in water, as reported by Moliner et al.55. The performance could even be strongly 

enhanced by Gallo et al.54, using a bicatalytic system of Sn-β with a molar ratio of Si:Sn = 400 

and the solid Brønsted acid Amberlyst-70. At 130 °C, they obtained up to 63% HMF yield with 

90% of glucose conversion in tetrahydrofuran-water (9:1), with similar results for GVL-water 

(9:1) and methyltetrahydrofuran-tetrahydrofuran-water (4.5:4.5:1)54. Replacing Sn-β by Sn-SBA-

15 with a molar ratio of Si:Sn = 40 provided 46% HMF yield with 90% glucose conversion in 

GVL, while the exclusive use of Brønsted acid Amberlyst-70 without Sn-doped catalyst delivered 

29% HMF yield with 92% glucose conversion in GVL54. 

2.5 Hydrogenation over Metal-based Catalysts 

2.5.1 Production of 2,5-Dimethylfuran from 5-Hydroxymethylfurfural 
HMF is a versatile platform molecule that can be upgraded towards numerous chemicals and 

materials30. One of the major conversion routes involves the selective hydrogenation to form 2,5-

dimethylfuran (DMF), as shown on the right side of the simplified reaction scheme in Figure 2-7. 
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Figure 2-7: Simplified reaction scheme of hexose conversion towards DMF 

Supported noble transition metals including Ru, Pt, and Pd have been proposed in the literature as 

highly active metal species that facilitate the hydrodeoxygenation of the formylmethyl and the 

hydroxymethyl group towards methyl groups without attacking the structure of the aromatic 

ring56–58. As a cheaper alternative, more abundant transition metals such as Cu and Ni have also 

successfully been employed56,59. A main challenge remains establishing a transition towards cost-

efficient and sustainable large-scale processes. Regarding the costly purification of the 

intermediate HMF from the product of the acid-catalyzed sugar dehydration, it is desirable to 

hydrogenate the synthesized HMF without an intermediate purification step. A pioneering work 

for the selective production of DMF from HMF and fructose was published by Román-Leshkov et 

al.24, who prepared and tested a bimetallic Cu-Ru/C catalyst in n-butanol at 220 °C and 6.8 bar of 

H2, obtaining yields of 71% DMF and 16% other furanic molecules. According to their 

hypothesis, this catalyst combined the selective hydrogenolysis behavior of Cu (rather than the 

preferential saturation of the double bonds exhibited by Ru) with the chloride-resistance of Ru24. 

As NaCl can contribute both to the conversion of carbohydrates as well as to the extraction of as-

formed HMF from the aqueous into the organic phase, when applying a biphasic solvent system 

such as water/n-butanol, Román-Leshkov et al.24 were testing the stability of their Cu-Ru/C 

catalyst in the presence of NaCl. The HMF hydrogenolysis activity dropped only slightly in the 

presence of 1.6 mM NaCl, providing yields of 61% DMF and 24% other furanic molecules, which 

hints at high chloride-resistance of the Cu-Ru/C catalyst and, therefore, compatibility with a 

preceding Cl– promoted sugar dehydration step24. In an integrated process involving the acid-

catalyzed conversion of corn stover to intermediate HMF in ionic liquids, similar DMF yields 

referring to intermediate HMF were obtained for the same catalyst at the same temperature and 

pressure, but resulting in overall DMF yields of only 9% referring to the cellulose feedstock, 

which is due to incomplete and unselective saccharification and dehydration of the 

carbohydrates60. To compare the reactivity of noble metals, Bell and Chidambaram conducted a 

mechanistic study of Pd, Ru, Pt, and Rh catalysts supported on carbon59. Among the tested metal 

catalysts, Pd/C in [EMIN]Cl/acetonitrile at 120 °C and 60 bar of H2 provided the highest activity 
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for the hydrodeoxygenation of HMF, reaching 47% of HMF conversion with yields of 16% DMF, 

21% to furanic hydrogenation intermediates and – surprisingly – only 2.4% to tetrahydrofuranic 

compounds59, which is in contrast to the findings of Román-Leshkov et al.24, who reported 

selective hydrogenation of the furanic double bonds over their monometallic Pd/C catalyst 

towards hydrogenation. 

Despite the excellent performance of several noble metal-based catalysts for the 

hydrodeoxygenation of HMF, cheaper catalytic materials based on more abundant sources are 

needed to pave the way for a cost-efficient DMF production. Among abundant non-noble metals, 

Ni provides decent hydrogenation reactivity. To combine high reactivity of Ni for the 

hydrogenation steps with an increased reactivity for the deoxygenation step, Huang et al.56 

proposed the use of Ni-based bifunctional catalysts with another metal that exhibits Lewis acid 

sites, promoting the deoxygenation of the hydroxy groups. In their work on several nickel-

tungsten carbide based catalysts on carbon supports, Huang et al.56 obtained DMF yield of up to 

96% over a carbon-supported 7wt%Ni-30wt%W2C catalyst at 180 °C and 40 bar of H2
56. 

Hereupon, Braun and Antonietti61 proposed an integrated continuous flow process with two serial 

packed-bed reactors for the acid-catalyzed dehydration of fructose, using Amberlyst-15, and the 

subsequent hydrodeoxygenation of HMF, using a 10wt% Ni/WC catalyst. At 30 bar of H2 with 

ethanol as the solvent and operation of the acid-catalyzed reactor at 110 °C and the metal-

catalyzed reactor at 150 °C, they obtained 38.5% DMF yield and 47.0% yield for ethyl levulinate, 

the ethanol ester of LA, which is readily formed at elevated temperature in the presence of 

ethanol61. As mentioned in section 2.4.2.1, LA is the consecutive acid-catalyzed product of HMF. 

Both LA and its ester ethyl levulinate are also valuable molecules which offer a parallel reaction 

branch for the valorization of hexoses towards value-added chemicals. 

2.5.2 Production of γ-Valerolactone from Levulinic Acid 

As mentioned in section 1.1, LA is regarded by the U.S. Department of Energy as one of twelve 

top value-added bioderived chemicals that are essential building blocks, which allow for the 

conversion towards numerous high-value products, owing to their multiple functional groups5. 

One of the most important pathways involves the hydrogenation of LA towards γ-valerolactone 

(GVL), which requires the use of a hydrogen source such as external molecular hydrogen or other 

chemical hydrogen donors mentioned in section 2.5.2.2. In analogy to the hydrogenation of HMF 

presented in the previous subchapter, the reaction relies on the use of transition metals, such as Ru 

and Pt62,63. 
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The formation of GVL from LA can proceed via two parallel pathways. On the first pathway, 

LA is dehydrated to angelica lactone in α-position, which can undergo isomerization to β-

position64. Both isomers possess a double bond that can be further saturated towards GVL. This 

pathway of primary dehydration of LA is promoted by acid functionalities and usually entails 

coke formation and, therefore, can decrease product yields and accelerate catalyst deactivation65. 

The second pathway includes hydrogenation of levulinic acid towards γ-hydroxyvaleric acid 

(GHVA), an unstable intermediate that is instantly dehydrated to GVL over the acid sites64. In 

alcohols as solvents, the unreacted LA undergoes esterification at high temperatures. The resulting 

levulinic esters, such as ethyl levulinate, undergo hydrogenation towards hydroxylevulinic esters, 

followed by intramolecular transesterification and ring closing, eventually also forming GVL and 

releasing the solvent molecule. The suggested pathways are summarized in Figure 2-8. 

 
Figure 2-8: Reaction pathways for the production of GVL from LA, adapted from Alonso et al.64 

2.5.2.1 External molecular hydrogen 

In the literature, the platinum group metals Ru, Pd, and Pt are reported to exhibit excellent 

catalytic performance in terms of activity, selectivity, and stability, which explains why GVL 

production still strongly relies on the noble metal catalysis62,63. 

Due to the high costs of such noble metals, efforts have been stepped up to decrease the 

necessary amount of active metal by increasing the catalytic activity in the LA hydrogenation, e.g. 

by employing bifunctional catalysts with additional acid sites. Acid sites on the catalyst can be 

obtained either by using an acidic support material or by functionalizing the support with acidic 
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moieties66,67. Sudhakar et al.68 suggested the use of porous acidic hydroxyapatite as support with 

Pt, Pd, Ru, Ni, and Cu for the hydrogenation of LA, reaching up to 94% of LA conversion and 

80% of GVL selectivity for the Ru-based catalyst at very high temperatures of up to 425 °C. 

Christian et al.69 have proposed the use of Raney nickel for the hydrogenation of LA, obtaining a 

GVL yield of 94% for solvent-free LA hydrogenation. 

In recent years, research has been intensified and diversified on the hydrogenation catalysis of 

LA. The investigated active metals Ru, Pd, Pt, Rh, Re, Ni, and Cu have been supported on various 

materials such as γ-Al2O3, SiO2, TiO2, ZrO2, zeolites, porous carbon, and composite materials66. 

In the work of Manzer63, 90% of LA conversion with a selectivity of 80% towards GVL have 

been obtained, using a Ru/C catalyst with 5.0wt% Ru loading at 150 °C and 55 bar of H2. Also 

using a Ru/C catalyst with 5.0wt% Ru, Yan et al.70 obtained 90% of LA conversion and 86% 

GVL selectivity at 130 °C and 12 bar of H2, while all other tested catalysts 5.0wt% Pd/C, Raney 

nickel, and Urushibara nickel, exhibited surprisingly low activity with GVL yields of ≤6%70. To 

examine the influence of the catalyst support on the catalytic performance, several catalysts with 

5.0wt% Ru have been tested by Al-Shaal et al.71, using TiO2, C, Al2O3, and SiO2 as supports at 

the same process conditions (ethanol/water solution, 130 °C, 12 bar of H2). The highest GVL 

yield (89%) was reached using carbon as support, followed by Al2O3 and SiO2 with 76% and 

75%, respectively. In a similar manner, Luo et al.39 investigated the influence of several acid 

functionalities of the support by comparing 1.0wt% Ru catalysts supported on Nb2O5, TiO2, H-β, 

and H-ZSM-5 in the solvents dioxane, 2-ethylhexanoic acid, and pure LA. They obtained the 

highest GVL yield of 97.5% for the 1.0wt% Ru/TiO2 catalyst (200 °C, 40 bar), compared with the 

support materials Al2O3 and SiO2. The above mentioned 5.0wt% Ru/TiO2 catalyst by Al-Shaal et 

al.71 provided catalytic activity on considerably lower level of 81% of LA conversion with 71% 

GVL yield, which can be attributed to the 70 K lower temperature that was used for this catalyst. 

Also using Ru/TiO2 catalysts in experiments combined with DFT calculations, Michel et al.72 

reported that the presence of water strongly enhances the catalytic reactivity of Ru by decreasing 

the activation barrier due to H-bonded water molecules. According to their prediction, this 

catalytic promotion can be generalized for other oxophilic metals such as Co and Ni, while the 

activity of Pt and Pd is expected not to be influenced by the presence of water72. The participation 

of water molecules in the hydrogenation reaction of LA was confirmed by Tan et al.73, using 

isotope-labeling with D2O. With a 1.0wt% Ru/TiO2 catalyst in water, they obtained a 100% GVL 

yield at mild conditions of 70 °C and 40 bar of H2
73. Beside the promotion effect of water, this 

excellent catalytic performance is attributed to the high dispersion of Ru nanoparticles with an 
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average size of 2.0 nm, facilitated by the strong interaction between the metal and the TiO2 

support73. Even at room temperature, a surprising 100% of GVL yield was also reported by Xiao 

et al.74, who used a 2.0% Ru catalyst supported on few-layer graphene. Xiao et al. attribute this 

remarkable activity to the high metal dispersion with an average of 1.1 nm in particle size, 

facilitated by the strong interaction between the dsp states of the Ru nanoparticles with the sp2 

dangling bonds at the defect sites of graphene, which prevents the migration and aggregation of 

the nanoparticles74. 

Despite the high performance of catalysts based on Ru, Pt, and Pd, the use of noble metals 

should be avoided in large-scale biorefinery applications. In search for alternative catalysts that 

are based on cheap and abundant metals, but still facilitate substantial GVL production, Hengne et 

al.75 have reported the use of Cu-ZrO2 and Cu-Al2O3 nanocomposites in water and methanol, 

yielding up to 90% of GVL with 100% selectivity at 200 °C and 34 bar of H2. However, 

considerable catalyst deactivation by metal leaching and metal sintering has been observed for 

this catalyst75. 

2.5.2.2 Alternative hydrogen sources 

The conventional production of molecular hydrogen involves either steam reforming of fossil 

energy carriers or water splitting76. Therefore, alternative hydrogen sources, obtained from 

biomass, have been proposed for hydrogenation processes in biorefinery. The use of liquid 

reducing reagents is simple and safe, compared with high-pressure molecular hydrogen, which is 

more difficult to handle safely77. Furthermore, the use of alternative hydrogen sources is reported 

to result in a higher atom efficiency66. Among other biobased compounds such as secondary 

alcohols, tetrahydroquinoline, methylpyrrolidine, and cyclohexene, particularly FA offers a great 

potential as a hydrogen source due to the low costs and generation as a byproduct in several 

biomass processing applications. This includes the preceding reaction step of HMF hydrolysis66,77 

towards LA, as presented in Figure 2-4. 

The use of FA as a hydrogen reagent involves either in situ decomposition on metal sites to 

adsorbed hydrogen and released CO2, in which FA acts as a hydrogen precursor, or transfer 

hydrogenation, in which FA acts as a reducing agent. In the first case, the adsorbed hydrogen 

resides on the metal surface and engages in hydrogenation of LA66. In the second case, the 

hydroxy group of FA is adsorbed onto the catalyst surface, facilitating a transition-state bond with 

LA adsorbed to a neighboring metal site, followed by a hydride shift of the C-bonded H to the 

carbonyl-C of LA and release of the dehydrogenated FA as CO2
66. 
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Son et al.78 examined several supported metal catalysts in water. At a molar ratio of 3:1 for 

FA:LA and 150 °C, the 5.0wt% Ru/C and 5.0wt% Au/ZrO2 catalysts provided complete 

conversion of LA with a selectivity towards GVL of 90% and 97%, respectively78. In contrast, 

under the same reaction conditions, 5wt% Ru catalysts with different supports (C, SBA-15, Al2O3, 

TiO2, and ZrO2) provided considerably lower LA conversion (29%, 31%, 16%, 10%, and 11%, 

respectively) and GVL selectivity (73%, 71%, 17%, 20%, and 18%, respectively)78. Similarly, the 

activity of a 5wt% Pt/C catalyst was on a surprisingly low level, with 13% LA conversion and 

13% GVL selectivity78. Braden et al.79 observed in experiments with equimolar LA:FA ratio in 

water that the activity of a Ru/C monometallic catalyst for the simultaneous decomposition of FA 

and reduction of LA could be strongly increased by additional incorporation of Re. Over a 20wt% 

Cu/ZrO2, Yuan et al.80 reported a GVL yield of 100% for combined in situ generation of hydrogen 

from FA and hydrogenation of LA at 200 °C and 10 bar of N2.  

Al-Naji et al.81 proposed a combination of noble and non-noble metals for the LA 

hydrogenation. Ni-Pt and Ni-Ru supported on ZrO2 and γ-Al2O3 were tested in solvent-free LA 

hydrogenation with FA, using a microwave batch reactor. While all tested combinations provided 

100% GVL selectivity, the highest LA conversion (71%) was reached with the catalyst of 0.6wt% 

Ni combined with 1.9wt% Ru on γ-Al2O3 support81. In a further work of Al-Naji et al.82 tested a 

1.6% Pt/ZrO2 catalyst in aqueous solution of FA and LA in the molar ratio of 3.1:1, yielding 90% 

GVL with an LA conversion of 97% after 24 h of reaction at 240 °C. Increasing the reaction 

temperature facilitated the subsequent conversion of GVL to valeric acid, obtaining a yield of 

22%, compared to the initial amount of LA. In addition, Al-Naji et al.83 reported the use of 

bifunctional Pt catalysts supported on different zeolites with high density of acidic sites for the 

combined reaction chain of LA hydrogenation to GVL, followed by acid-promoted ring opening 

and subsequent hydrogenation of 2-pentenoic acid to valeric acid in aqueous solution. They found 

out that the ZSM-5(11) support provided the highest activity, compared with USY(30), USY(6), 

and Beta(12). Using a 2.0wt% Pt/ZSM-5(11) catalyst at 270 °C with a FA:LA molar ratio of 2.7:1 

of the reactant solution, equilibrium of yields between valeric acid (75%) and GVL (23%) was 

reached and remained stable over time-on-stream. Besides the effect of acid functionality, this 

remarkable catalytic activity is attributed to the high metal dispersion (31%) with a very low 

average particle size of 0.7 nm83. 
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3 

3 CATALYST DESIGN AND CHARACTERIZATION 

3.1 Synthesis of Pelletized Carbon Supports 

As described in section 2.5, hydrogenation reactions of bioderived building blocks are catalyzed 

by certain transition metals. In order to enhance the accessible surface area of the active metal 

species, high dispersion of the metal on a porous catalyst support is desirable. Owing to their 

highly tunable morphology and pore structure, activated carbons represent a class of porous 

materials that are excellent candidates as supports for metal-based catalyst84,85. In addition, the 

carbon support can enhance the performance and stability of the active metal by electron transfer 

from the metal particles to the support84. 

Activated porous carbon materials with high surface area are already widely used in several 

applications such as gas storage and filtration, energy storage, water purification, and catalysis86. 

Synthesis methods based on physical activation, using CO2 or steam, or chemical activation, using 

templating agents such as ZnCl2 or KOH, yield primarily microporous structures87. However, 

catalytic conversion of larger molecules require a hierarchical pore network, in which the 

presence of the larger meso- or macropores provides rapid transport to and from the active sites in 

the smaller pores84. In search for novel carbon materials as supports for high-performance 

catalysts, efforts have been stepped up in academia to synthesize porous materials with increased 

surface area, which, in turn, provide higher accessibility of the active sites. 

As mentioned in section 1.2, the present work aims at developing catalysts suitable for large-

scale industrial applications in continuous flow systems. Since catalytic advancements in industry 
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are usually not achieved with catalyst powders, the catalysts were synthesized in pellet shapes 

instead of fine powders. The latter can cause a large pressure drop ∆𝑃𝑃  in long packed-bed 

reactors, whereas pellets of uniform size provide the necessary bed porosity 𝜀𝜀 for a continuous 

flow through the packed-bed reactor, according to the Ergun equation88: 

∆𝑃𝑃
𝐿𝐿𝑅𝑅

= 150 ∙
(1 − 𝜀𝜀)2

𝜀𝜀3 ∙
𝜂𝜂𝐿𝐿 𝑢𝑢𝐿𝐿
𝑑𝑑𝑆𝑆2

+ 1.75 ∙
1 − 𝜀𝜀
𝜀𝜀3 ∙

𝜇𝜇𝐿𝐿 𝑢𝑢𝐿𝐿2

𝑑𝑑𝑆𝑆2
 (3.1) 

where 𝐿𝐿𝑅𝑅 is the length of the packed bed, 𝑑𝑑𝑆𝑆 is the equivalent spherical diameter of the particles 

(see section 4.2), and 𝜂𝜂𝐿𝐿 and 𝜇𝜇𝐿𝐿 are the dynamic and kinematic viscosity of the liquid solution that 

flows through the reactor with the superficial velocity 𝑢𝑢𝐿𝐿. 

While commercial catalyst pellets are usually prepared with expensive technical extruders, this 

work employs an unconventional, but cheap, simple, and highly efficient methodology, 

combining food technology with scientific pore templating techniques: Pasta-shaped pellets are 

extruded in a common pasta machine, using altered compositions of the semolina-based dough to 

subtly tune the structural and morphological properties of the final porous carbon supports, such 

as surface area, pore size distribution, and mechanical cohesion. 

    
Figure 3-1: Extrusion of the carbon support precursor through pasta machine. left: extrusion of uncut spaghetti shape; right: 

automatic pellet cutting during extrusion by rotating cutting knife 

In order to develop a synthesis strategy of carbon supports aiming at optimal structural properties 

for the specific catalytic applications, three different templating approaches for the preparation of 

extruded pellets are developed, each of them aiming at different pore size distributions. The 
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support materials are compared in terms of the structural and morphological characteristics as 

well as performance of the final catalysts. To make the precursor dough extrudable, it requires a 

very specific consistency within a narrow window of the right viscoelasticity, moisture, and 

hardness of the dough. In addition to the processability of the precursor dough, specific properties 

are required for the final catalyst pellets produced from the support. Therefore, to evaluate and 

optimize the procedure for the development of each templating method, many parameters such as 

composition, heat pretreatment, mixing routine, and extrusion speed, have been adjusted 

iteratively with simultaneous catalytic experiments of the final catalysts produced from each step 

of the carbon support preparation. 

As a proof of concept of the versatile catalyst shaping options, the pasta doughs have been 

extruded into several different shapes commonly used in industrial packed-bed reactors, including 

hollow cylinders with grooved shell (“penne”), wagon wheels (“rotelle”), and twisted trilobes 

(“fusilli”). However, for the sake of better comparability of the different templating techniques 

and due to the fact that some of the shapes are too large for proper catalytic performance testing in 

the available medium-sized (7.8 – 28.5 mm ID) packed-bed reactors, the catalyst synthesis is 

focused on solid cylindrical pellets with a diameter of 3 mm (“spaghetti”) and 5 mm (“bigoli”), 

which upon carbonization shrink to ca. 2.4 and 4 mm, respectively. 

3.1.1 Salt-melt Templating with ZnCl2 Solution 

A recent approach by Rothe et al.89 for the synthesis of highly porous carbon from a liquid-

viscous precursor is based on the porogenic effect of salt melts and the eutectic system of glucose-

urea. This methodology yields predominantly microporous materials with very high surface area. 

As Rothe et al.89 synthesized the material as large, flat chunks of undefined shape (“cookies”), 

inapt for applications in packed-bed reactors, the present work revisits the proposed route, but 

aims at the synthesis of extruded support pellets of uniform shape and size, suitable for the use in 

a packed-bed reactor. For this reason, the preparation method and composition of the precursor 

mixture is adjusted to obtain extrudable dough. First, a mixture of glucose and urea with a molar 

ratio of 1:1.5 (mass ratio of 2:1) is heated to 90 °C (above the glass transition point of 74.3 °C) 

and stirred for 1 h, producing a homogeneous and highly viscous liquid89. To prevent 

recrystallization of the urea from the mixture in the following synthesis steps, a small amount of 

water is added to the mixture. In a second mixture, the porogenic salt melt is prepared at 90 °C, 

consisting of ZnCl2 · 1 H2O, together with additional urea to reach urea concentrations above the 

eutectic point, as described by Rothe et al.89. After mixing the two highly viscous mixtures 

together, glucose and microcrystalline cellulose powder (20 µm) are employed as the carbon 
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sources and stirred into the dough. In addition, the cellulose acts as filler which lends mechanical 

cohesion to the extruded pellet shape. Although this dough exhibits the right viscosity to be 

pressed through the extrusion screw, its elasticity is not high enough to retain its shape after 

extrusion and be sliced by the automatic cutting knife. Therefore, additional gluten is added to the 

dough to mimic the consistency of common pasta dough based on durum semolina, which is very 

rich in gluten and, thus, provides the typical viscoelastic consistency necessary for the extrusion 

step of pasta dough. The optimum composition of the precursor dough is found to be based on a 

1:1.1 weight ratio of the porogenic agent ZnCl2 to the main carbon sources glucose and cellulose, 

as shown in Table 3-1. 

Table 3-1: Composition of precursor dough for the ZnCl2 approach. MC: microcrystalline 

 Component Weight fraction Weight (abs.) 

Mixture 1 Glucose 16.4 wt% 200 g 

 Urea 8.2 wt% 100 g 

 Water 0.3 wt% 4 g 

Mixture 2 ZnCl2 32.9 wt% 400 g 

 Water 4.3 wt% 53 g 

 Urea 8.2 wt% 100 g 

Additives Cellulose (MC) 19.7 wt% 240 g 

 Gluten 9.9 wt% 120 g 

 Total 100.0 wt% 1 217 g 

The extruded pellets are preheated at 100 °C overnight for drying and reactions between the 

monomer components of the precursor89. During this preheating phase, a complex browning 

process, known in food science as Maillard reaction, turns the viscous dough into a hardened 

crosslinked polymer89. The crosslinking reactions are assumed to occur mainly between the 

carbonyl group of glucose in the reducing form and the amino groups of urea. Afterwards, the 

pretreated precursor pellets were carbonized at 500 to 800 °C (2.5 K min–1 heating rate; 1 h on 

final temperature) under N2 atmosphere. Subsequent washing in 1M HCl (2 × 30 min) and 

purging with water (30 min) removes the homogeneously distributed salt from the carbonized 

material and creates a highly microporous structure. The complete procedure of the carbon pellet 

synthesis on the ZnCl2 route is illustrated in the scheme of Figure 3-2. 
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Figure 3-2: Scheme for the synthesis of porous carbon pellets on the ZnCl2 route 

The precursor pellets in the several stages of the synthesis procedure of the carbon supports are 

shown in the first three pictures of Figure 3-3. The appearance of the final support is remarkably 

similar to the commercial Ni/C-Al2O3 catalyst on the very right of Figure 3-3. 

  
Figure 3-3: Precursor pellets of the carbon support prepared on the ZnCl2–urea–glucose route after extrusion (left), after 

preheating at 100 °C (second from left), and final carbon support pellets after carbonization and washing (third from left), 
compared with commercial Ni/C-Al2O3 catalyst extrudates (right) 

From inductively coupled plasma (ICP) measurement, it can be seen that the applied washing 

procedure of the carbonized pellets considerably decreases the Zn content in the material, but is 

not capable of removing the Zn residue completely, as shown in Table 3-2. This is attributed to 

limited accessibility due to intercalation of Zn species within the carbon structure. Owing to the 

high amount of urea in the precursor mixture, high N-doping with a weight fraction of 13.0wt% is 

obtained on this route, as measured by combustion elemental analysis of the material after 

washing. The high N content in the carbon is expected to further increase the overall electron 

density at the Fermi level90, providing improved electronic conductivity and oxidation resistance, 

which can be beneficial for both catalytic activity and stability of the active metal. 
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Table 3-2: Elemental composition of pellets prepared on the ZnCl2 route, before (CZnCl-500) and after (CZnCl-500L) washing. a: 
measured by combustion elemental analysis; b: measured by inductively coupled plasma (ICP) 

Sample Procedure Weight fraction [wt%] 

  Ca Na Ha Znb 

CZnCl-500 Carbonized (500 °C) 48.1 ±2 8.3 ±1 2.6 ±1 24.0 ±2 

CZnCl-500L Carbonized (500 °C) + washed (HCl) 60.3 ±2 13.0 ±1 3.9 ±2 2.8 ±0.2 

The porosity of the washed sample is investigated by nitrogen physisorption. The resulting 

isotherm, as well as the pore size distribution determined from the adsorption branch by the 

QSDFT model, is displayed in Figure 3-4. 

  
Figure 3-4: N2 physisorption isotherms (left) and pore size distribution (right) of carbon support pellets (2.4 × 3.5 mm) 

prepared on the ZnCl2 route after washing. Measurement conducted at 77.3 K. Calculation of pore size distribution based on 
QSDFT adsorption method on carbon with slit, cylindrical, and spherical pores. 

The isotherm exhibits a typical Type I trend, according to the IUPAC classification of isotherms, 

with nearly complete pore filling at low relative pressure, which indicates adsorption on 

micropores91. The low slope of the adsorption and the desorption branch, together with minor 

hysteresis behavior in the medium pressure range, hints at a narrow pore network with a low 

contribution of small mesopores to the total pore volume (0.03 cm³/g of mesoporous volume, as 

compared to a total volume of 0.27 cm³/g, according to QSDFT analysis). As can be seen from the 

pore size distribution in Figure 3-4 (right), practically no pores larger than 8 nm are present. The 

complete results of micro- and mesoporous volume, surface area, and average pore diameter, 

determined by the QSDFT, BET, and BJH methods, are summarized in Table 3-3. 
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Table 3-3: Nitrogen physisorption data of carbon support pellets (2.4 × 3.5 mm) prepared on the ZnCl2 route after washing. 

Sample Pore volume [cm³/g] Specific surface area [m²/g] Average 

 QSDFT adsorption BJH ads. QSDFT adsorption BET pore size 

 Micro Meso Total Total Micro Meso Total Total [nm] 
 < 2 nm 2-50nm ≤ 50nm ≲ 500nm < 2 nm 2-50nm ≤ 50nm  ≲ 500nm 

CZnCl-500L 0.23 0.03 0.27 0.29 594 29 623 663 1.8 

3.1.2 Hard Templating with NaCl Crystals 

To complement the inherent microporosity of the carbonized material by additional large pores, 

NaCl powder, sieved to a particle size of < 250 µm, is employed as a hard templating agent in this 

section. As the carbon source, durum semolina was used, a coarse-grained durum wheat flour, 

which is the standard material for Italian pasta extrusion because it offers excellent extrusion 

properties due to the high content of gluten of >13wt%, acting as a glue which lends 

viscoelasticity to the precursor dough. The optimum weight ratio of porogen to carbon source, that 

provides high surface area while retaining most of the cohesion in the final support material, was 

found to be 8:3, as shown in Table 3-4. 

Table 3-4: Composition of precursor dough for the NaCl approach with a weight ratio of 8:3 for NaCl:semolina 

Ingredient Weight fraction Weight (abs.) 

Durum semolina 24.9 wt% 360 g 

NaCl 66.4 wt% 960 g 

Water 8.7 wt% 125 g 

Total 100.0 wt% 1 445 g 
 

After extrusion and drying overnight, the precursor pellets were carbonized at 500 °C (3 K min–1 

heating rate; 1 h at 500 °C) under N2 atmosphere. Subsequent washing in 1M HCl (2 × 30 min) 

and purging with water (30 min) removes the salt crystals from the carbonized material, leaving 

behind large macropores to micron-sized voids. 
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Figure 3-5: Scheme for the synthesis of porous carbon pellets on the NaCl route 

ICP measurement proves that the washing step removes the salt crystals almost completely, 

leaving behind only 0.2wt% of Na. The elemental composition of the pellets before and after 

washing is summarized in Table 3-5. 

Table 3-5: Elemental composition of pellets prepared on the NaCl route, before (CNaCl-500) and after (CNaCl-500L) washing. a: 
measured by combustion elemental analysis; b: measured by IR elemental oxygen analysis; c: measured by inductively 

coupled plasma (ICP) 

Sample Procedure Weight fraction [wt%] 

  Ca Na Ha Nac 

CNaCl-500 Carbonized (500 °C) 49.3 ±2 3.5 ±0.5 2.9 ±1 17.1 ±2 

CNaCl-500L Carbonized (500 °C) + washed (HCl) 65.3 ±2 4.1 ±0.5 3.3 ±1 0.2 ±0.1 

    
Figure 3-6: Carbon precursor pellets synthesized on the NaCl route. left: placed in crucibles, ready for carbonization; right: 

after carbonization 

The isotherm and pore size distribution (QSDFT), obtained from nitrogen physisorption 

measurement, is presented in Figure 3-7. 
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Figure 3-7: N2 physisorption isotherms (left) and pore size distribution (right) of carbon support pellets (2.4 × 3.5 mm) 

prepared on the NaCl route after washing. Measurement conducted at 77.3 K. Calculation of pore size distribution based on 
QSDFT adsorption method on carbon with slit, cylindrical, and spherical pores. 

In addition to an inherent microporous fraction of the carbon, indicated by the initial adsorption at 

low relative pressure, the uptake of nitrogen strongly increases at high relative pressure. Due to 

the absence of a saturation plateau, it can be assumed that nitrogen condenses into the large 

macropores. Furthermore, the delayed desorption branch is attributed to limited pore evaporation 

due to pore blocking or cavitation, which is likely to be caused by ink-bottle pores91. Compared 

with the micro- and macroporous share, the mesoporous contribution to the porosity is very low. 

The complete results of pore volume, surface area, and average pore diameter, determined by the 

QSDFT, BET, and BJH methods, are summarized for the washed sample in Table 3-6. 

Table 3-6: Nitrogen physisorption data of carbon support pellets (2.4 × 3.5 mm) prepared on the NaCl route after washing. 

Sample Pore volume [cm³/g] Specific surface area [m²/g] Average 

 QSDFT adsorption BJH ads. QSDFT adsorption BET pore size 

 Micro Meso Total Total Micro Meso Total Total [nm] 
 < 2 nm 2-50nm ≤ 50nm ≲ 500nm < 2 nm 2-50nm ≤ 50nm  ≲ 500nm 

CNaCl-500L 0.15 0.07 0.22 0.35 420 28 448 432 3.2 

3.1.3 Hard Templating and Activation with ZnO Nanopowder 

The two templating methods described in the previous subchapters either create predominantly 

large macropores and micron-sized voids (derived from the < 250 µm NaCl crystals) or additional 

microporosity (derived from the dissolved ZnCl2). To increase the diffusivity of reactants in 
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liquid-phase catalytic applications, a third approach is developed, which yields a larger mesopore 

fraction. 

Mesoporous carbon is commonly synthesized via nanocasting with mesoporous SiO2 as a hard 

template. This procedure entails the use of concentrated HCl for the SiO2 etching process92. As a 

more sustainable alternative based on only cheap, abundant, and non-hazardous substances, 

Strubel et al.92 proposed a templating strategy for the synthesis of hierarchically porous carbon 

powder from glucose, using ZnO nanopowder as the porogenic templating agent. This templating 

strategy, which was originally developed for energy storage applications, is customized in this 

work for the preparation of precursor dough that is extrudable through the pasta machine. The 

optimum composition of the precursor dough for the developed synthesis methodology is based 

on a 1:2 weight ratio of porogen to carbon source listed in Table 3-7. 

Table 3-7: Composition of precursor dough for the ZnO approach 

Ingredient Weight fraction Weight (abs.) 

Durum semolina 46.6 wt% 1 440 g 

ZnO nanopowder 23.3 wt% 720 g 

Urea 3.9 wt% 120 g 

Glucose 3.9 wt% 120 g 

Water 22.3 wt% 690 g 

Total 100.0 wt% 3 090 g 

To obtain a high viscoelasticity of the dough necessary for extrusion through the pasta machine, 

durum semolina is utilized as the carbon source because of its high gluten content of 13%. First, 

the semolina and ZnO nanopowder are mixed to create a homogeneous powder mixture. To retain 

the extrudability of the semolina dough, the decreased viscoelasticity of the dough, caused by the 

high amount of ZnO nanopowder, must be balanced. This is achieved by preparing a small 

amount of a highly viscous and adhesive mixture, consisting of urea, glucose, and 20% of the total 

water amount, which together is heated to 100 °C for 1 h. After mixing with the residual 80% 

water, the liquid mixture is stirred into the powder mixture at ca. 50 °C to create crumbly dough 

dry enough for the extrusion step. 

After extrusion and drying overnight, the precursor pellets were exposed to high temperature 

(3 K min–1 heating rate; 5 h at final temperature) under N2 atmosphere, causing carbonization of 

the semolina and glucose, followed by carbothermal reduction of the ZnO to Zn0 at ca. 800 °C92. 

The residual Zn can be removed from the carbon support after the heat treatment by leaching in 
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acidic solution. For this, the pellets are washed twice in 1M HCl solution and purged with water. 

Alternatively, heat treatment at 950 °C (above the boiling temperature of Zn at 907 °C) causes 

vaporization of the metal92. 

ZnO (𝑠𝑠) + C (𝑠𝑠)  
≈800 °C
�⎯⎯⎯⎯�  Zn (𝑙𝑙) + CO (𝑔𝑔)  

907 °C
�⎯⎯�  Zn (𝑔𝑔) + CO (𝑔𝑔) (3.2) 

The exact mechanisms involved in this chemical activation process are still up for debate, though 

it can be assumed that the carbon consumption by carbothermal reduction of ZnO at 800 °C leads 

to pore widening and opening, whereas the in situ formed liquid Zn can be intercalated between 

sheets of the carbon structure, leaving behind micropores upon vaporization above 907 °C. 

 
Figure 3-8: Scheme for the synthesis of porous carbon pellets on the ZnO route 

Owing to the complete in situ template removal, a subsequent leaching step is not necessary, 

which is a unique feature, compared with other hard templating strategies. However, additional 

washing in HCl can still have a beneficial effect on the porosity of the material, as discussed in 

the following paragraph. As can be seen in Table 3-14, the major part of Zn is removed even 

during heat treatment at 800 °C, which leads to the conclusion that Zn slowly evaporates below 

the vapor pressure and diffuses through the pores. For heat treatment at an increased temperature 

of 950 °C, practically complete removal of Zn is obtained by vaporization, whereas washing of 

the pellets prepared at 800 °C did not facilitate complete removal, leaving behind 1.1wt% of Zn in 

the material. 
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Table 3-8: Elemental composition of pellets (2.4 × 3.5 mm) prepared on the ZnO route. a: measured by combustion 
elemental analysis; b: measured by elemental oxygen analysis; c: measured by inductively coupled plasma (ICP) 

Sample Procedure  Weight fraction [wt%] 

  Ca Na Ha Ob Znc 

CZnO-800 Carbonized (800 °C) 76.3 ±5 4.8 ±1 1.3 ±0.5 12.5 ±1 1.6 ±0.2 

CZnO-800L Carb. (800 °C) + leached (HCl) 81.4 ±5 5.0 ±1 1.3 ±0.5 9.8 ±1 1.1 ±0.2 

CZnO-950 Carbonized (950 °C) 85.4 ±5 2.0 ±0.5 1.0 ±0.5 11.1 ±1 < 0.1 

CZnO-950L Carb. (950 °C) + leached (HCl) 85.0 ±5 1.9 ±0.5 1.2 ±0.5 10.1 ±1 < 0.1 

The porosity of the prepared samples is investigated by nitrogen physisorption measurements, as 

can be seen by the isotherms and pore size distribution diagrams of Figure 3-9. The obtained type 

IV isotherms exhibit hysteresis behavior between the adsorption and desorption branch due to 

capillary condensation in the mesopores. Furthermore, an extension of the hysteresis towards high 

relative pressure is observed with a late plateau, indicating complete filling of the mesopores91. 

This suggests the presence of additional large mesopores, which are considered beneficial for the 

mass transport in liquid-phase catalysis, especially within pellets in the size of several mm, as a 

narrow pore network without hierarchical interconnection can entail strong diffusion limitation 

within such large catalyst particles. 
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Figure 3-9: N2 physisorption isotherms (top) and pore size distribution over volume (middle) and surface area (bottom) of 

carbon support pellets (2.4 × 3.5 mm) prepared on the ZnO route at 800 °C (left) and 950 °C (right), before and after 
leaching. Measurements conducted at 77.3 K. Calculation of pore size distribution based on QSDFT adsorption method on 

carbon with slit, cylindrical, and spherical pores. 
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Very large surface area is obtained for all specimens, with the CZnO-950L exhibiting the highest 

value of 756, calculated by QSDFT on the adsorption branch. Furthermore, all samples exhibit 

pore size distribution with a large fraction of mesopores between 20 and 45 nm in diameter. 

Above 45 nm, the cumulative pore volume is increasing progressively with increasing pore size – 

a trend that presumably continues through the macroporous range. In particular, the CZnO-950L 

pellets provide a very high contribution of mesopores (0.49 cm³/g) to the total (micro- + meso-) 

pore volume (0.74 cm³/g), which turns them into a promising support material for liquid-phase 

catalytic applications. The complete results of pore volume, surface area, and average pore 

diameter, determined by the QSDFT, BET, and BJH methods, are summarized in Table 3-9. 

Table 3-9: Nitrogen physisorption data of carbon support pellets (2.4 × 3.5 mm) prepared on the ZnO route at 800 and 950 
°C, before and after leaching.  

Sample Pore volume [cm³/g] Specific surface area [m²/g] Average 

 QSDFT adsorption BJH ads. QSDFT adsorption BET pore size 

 Micro Meso Total Total Micro Meso Total Total [nm] 

 < 2 nm 2-50nm ≤ 50nm ≲ 500nm < 2 nm 2-50nm ≤ 50nm  ≲ 500nm 

CZnO-800 0.20 0.39 0.59 0.70 544 99 643 627 4.5 

CZnO-800L 0.24 0.38 0.62 0.77 643 102 746 734 4.2 

CZnO-950 0.21 0.41 0.61 0.78 547 114 662 663 4.7 

CZnO-950L 0.24 0.49 0.74 0.91 627 129 756 769 4.7 

 
Figure 3-10: Precursor pellets prepared on the ZnO route before and after carbonization 
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3.2 Incorporation of Metal Nanoparticles 
In order to disperse the catalytically active metal nanoparticles on the surface of the porous 

support pellets, incipient wetness impregnation of the pellets with aqueous metal salt solutions is 

conducted. As the CZnO-950L carbon pellets, presented in the previous subchapter, exhibit the best 

porosity-related properties of all synthesized catalyst pellets, they are used for most of the catalyst 

synthesis procedures presented in the following. Unless specified otherwise, “C” represents the 

CZnO-950L pellets. To obtain the desired metal loading (metal weight fraction)  

𝑤𝑤𝑀𝑀 = 𝑚𝑚𝑀𝑀

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐
= 𝑚𝑚𝑀𝑀

𝑚𝑚𝐶𝐶 + 𝑚𝑚𝑀𝑀
  (3.3) 

on the carbon support with the weight 𝑚𝑚𝐶𝐶, the weight of salt 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in the solution with a volume 

equivalent to the total pore volume of the support is set according to 

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑀𝑀 · 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑀𝑀𝑀𝑀
= 𝑚𝑚𝐶𝐶

1/𝑤𝑤𝑀𝑀 − 1
· 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑀𝑀𝑀𝑀
  (3.4) 

with 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑀𝑀𝑀𝑀 being the molar mass of the salt and the metal, respectively. This calculation 

presumes that the carbon support would not engage in chemical reactions during the nanoparticle 

synthesis steps, which, however, is not exactly the case, as is discussed later in this subchapter. 

After the solution had been drawn into the pores by capillary action, the pellets were dried at 60 

°C overnight and subsequently exposed to heat treatment. 

3.2.1 Nickel 

For the synthesis of Ni nanoparticles on the surface of the porous carbon, Ni(NO3)2(H2O)6 is 

applied as the precursor salt. According to Brockner et al.93, the thermal decomposition of pure 

Ni(NO3)2(H2O)6 in N2 atmosphere without the presence of a reducing agent proceeds via various 

partial decomposition steps, forming several intermediate hydroxide-oxide phases, which 

eventually transform into NiO at temperatures above 320 °C, accompanied by the release of gas: 

Ni(NO3)2(H2O)6  
   ∆T   
�⎯⎯� … 

> 320 °C 
�⎯⎯⎯⎯�  NiO + 𝑎𝑎 H2O + 𝑏𝑏 NO2 + 𝑐𝑐 HNO3 + 𝑑𝑑 O2 (3.5) 

To ensure complete decomposition of the salt on the carbon support, the impregnated pellets are 

exposed to a calcination temperature of 500 °C in N2 atmosphere, which is maintained for 5 h. 

Finally, the pellets are reduced in a tubular oven under forming gas atmosphere (H2:N2 5:95) to 

obtain elemental metal nanoparticles. According to the literature, reduction of NiO is observed to 

start occurring at around 262 °C in 10% H2 atmosphere93. To achieve complete reduction of the 
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NiO particles even in 5% H2 atmosphere, the reduction temperature is set in the present synthesis 

for 5 h to 450 °C, depending on the batch. The complete procedure of Ni nanoparticle synthesis is 

summarized in the scheme of Figure 3-11. The respective metal loadings of the final catalysts 

obtained from different concentrations of the solutions, are determined by inductively coupled 

plasma (ICP) and listed in Table 3-10. 

 
Figure 3-11: Scheme for the Ni nanoparticle incorporation on the support pellets 

Table 3-10: Elemental composition of carbon support pellets (2.4 × 3.5 mm) prepared on the ZnO route (CZnO-950L) and 
catalysts supported on the pellets with different Ni loadings (Ni/CZnO-950L, abbreviated by Ni/C). a: measured by combustion 

elemental analysis; b: measured by inductively coupled plasma (ICP) 

Sample Weight fraction [wt%] 

 Ca Na Ha Znb Nib 

CZnO-950L 85.0 ±5 1.9 ±0.5 1.2 ±0.5 < 0.1 – 

5wt% Ni/C 78.2 ±5 2.0 ±0.5 1.2 ±0.5 < 0.1 5.0 ±0.5 

21wt% Ni/C 71.1 ±5 2.1 ±0.5 1.1 ±0.5 < 0.1 21.3 ±1 

29wt% Ni/C 72.6 ±5 2.3 ±0.5 1.1 ±0.5 < 0.1 29.1 ±1 

From the N2 physisorption results presented in Figure 3-12 it can be seen that the loadings of 

5wt% and 21wt% of Ni do not significantly diminish the porous properties. On the contrary, the 

total specific surface area even increased, according to the numbers given in Table 3-11. 

Considering the weight increase of the pellets by addition of Ni, it can be concluded that the 

absolute pore volume of the 21wt% Ni/C pellets remained on the same level or even slightly 

increased, compared with the support pellets. In contrast, the 29wt% specimen exhibits strongly 

reduced adsorption capacity, leading to the assumption that the high amount of Ni fills the pore 

volume to a considerable extent and possibly blocks the access to sections of the pore network. 
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Figure 3-12: N2 physisorption isotherms (top) and pore size distribution over volume (bottom left) and surface area (bottom 
right) of the CZnO-950L carbon support pellets (2.4 × 3.5 mm), compared to catalyst pellets based on the CZnO-950L support with 
incorporated Ni nanoparticles of different loading. Measurements conducted at 77.3 K. Calculation of pore size distribution 

based on QSDFT adsorption method on carbon with slit, cylindrical, and spherical pores. 

Table 3-11: Nitrogen physisorption data of the CZnO-950L carbon support pellets (2.4 × 3.5 mm) compared to catalyst pellets 
based on the CZnO-950L support with incorporated Ni nanoparticles of different loading 

Sample Pore volume [cm³/g] Specific surface area [m²/g] Average 

 QSDFT adsorption BJH ads. QSDFT adsorption BET pore size 

 Micro Meso Total Total Micro Meso Total Total [nm] 
 < 2 nm 2-50nm ≤ 50nm ≲ 500nm < 2 nm 2-50nm ≤ 50nm  ≲ 500nm 

CZnO-950L 0.24 0.49 0.74 0.91 627 129 756 769 4.7 

5wt% Ni/C 0.26 0.40 0.67 0.84 725 109 835 818 4.1 

21wt% Ni/C 0.26 0.38 0.64 0.82 697 108 805 804 4.1 

29wt% Ni/C 0.24 0.37 0.62 0.74 644 101 745 750 4.0 
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As the increase in pore volume and surface area of the 21wt% pellets occurs primarily in the 

microporous range, it is concluded that additional micropores are formed in the carbon structure 

to a large extent during the nanoparticle synthesis procedure. Such an activation process of the 

carbon is most likely induced by the presence of an oxidant. Here, the highly oxidative Ni(NO3)2 

as well as intermediate oxide phases such as Ni2O3 presumably play a major part. Under the 

assumption that, per 1 mol of Ni(NO3)2, 1 mol of C engages in carbothermal reduction towards 

NiO, a carbon loss of 4.3wt% (relating to the total weight of the final 21wt% Ni/C catalyst) is 

expected, according to equation (3.5). In addition, a large part of the as-formed NiO undergoes 

carbothermal reduction, as can be concluded by the distinct Ni0 peaks in the XRD diffraction 

pattern of the 21wt% Ni/C precursor before the H2–assisted reduction step, presented in Figure 

3-13. According to the relative peak areas, it is expected that ca. 30% of the total NiO are 

transformed into metallic Ni0, inducing another 1.2wt% of carbon loss. Therefore, a total carbon 

loss of 5.5wt% is observed, relating to the total weight of the final 21wt% Ni/C material, which is 

equivalent to a total carbon loss of 6.5wt%, relating to the total weight of the CZnO-950L precursor. 

 
Figure 3-13: XRD diffractograms of the CZnO-950L carbon support, the “21wt% Ni/C” precursor before reduction, and the 

final 21wt% Ni/C catalyst 

The mean crystallite sizes 𝑑̅𝑑𝑁𝑁𝑁𝑁𝑁𝑁  and 𝑑̅𝑑𝑁𝑁𝑁𝑁  of the 21wt% Ni/C precursor before reduction was 

calculated according to the Scherrer equation: 

𝑑̅𝑑 =
𝐾𝐾 𝜆𝜆

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 cos (𝜃𝜃) (3.6) 
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where 𝐾𝐾 = 0.88 is the spherical shape factor, 𝜆𝜆 = 1.54 Å is the Kα wavelength of Cu produced by 

the X-ray source, 𝜃𝜃 is the Bragg angle, and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the angular line broadening (“full width at 

half maximum”) of the peaks. The mean size was found to be 13 nm and 30 nm for the crystalline 

domains of NiO and Ni0, respectively, which has been calculated by the average of the three mean 

crystallite sizes calculated at the peak positions [44.50°; 51.85°; 76.40°] and [37.30°; 43.35°; 

62.90°] for Ni0 and NiO, respectively. In analogy, for the final 21wt% Ni/C catalyst (after H2-

assisted reduction), an average Ni0 crystallite size of 29 nm has been determined. 

                     

  
Figure 3-14: TEM images (top) and particle size distribution (bottom) of the 21wt% Ni/C pellets before (left) and after 

(right) reduction. 

The size distribution of the Ni0 and NiO particles on the precursor (before H2-assisted reduction) 

as well as the catalyst (after H2-assisted reduction) is determined from a number of 𝑛𝑛 > 100 

particles detected on several TEM images of each specimen, as shown in Figure 3-14. Since in 

terms of catalytic activity, the crucial geometric dimension of the active metal particles is their 

surface area, the mean particle size is determined based on the mean surface area. The surface-

weighted (SW) mean particle size 

𝑑̅𝑑𝑆𝑆𝑆𝑆 = �𝑆𝑆̅𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝜋𝜋

= �∑ 𝑑𝑑𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

  (3.7) 

   21wt% Ni/C precursor       50 nm                         21wt% Ni/C          50 nm 
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of the final 21wt% Ni/C catalyst (after reduction) is calculated to 27 nm, which is close to the 

value of 29 nm that has been determined for the Ni0 crystallites from the peak shapes in Figure 

3-13. The surface-weighted mean particle size in the precursor before reduction is calculated to 11 

nm, while for the crystallite size of the predominant NiO phase, a value of 13 nm was determined. 

Accordingly, the reduction of the NiO entails recrystallization with strong particle growth. The 

numbers are summarized in Table 3-12. For transformation between volume and surface area, the 

Sauter mean diameter (SMD) is included as well: 

𝑑̅𝑑𝑆𝑆𝑆𝑆𝑆𝑆 = 6 ∑𝑉𝑉
∑𝑆𝑆

= ∑ 𝑑𝑑𝑖𝑖
3𝑛𝑛

𝑖𝑖=1
∑ 𝑑𝑑𝑖𝑖

2𝑛𝑛
𝑖𝑖=1

≡ 𝑑𝑑�𝑉𝑉𝑉𝑉
3

𝑑𝑑�𝑆𝑆𝑆𝑆
2   (3.8) 

Table 3-12: Analysis of Ni and NiO nanoparticle and crystallite size of the reduced 21wt% Ni/C catalyst and of its precursor 
before reduction; a: determined from particle size distribution on TEM images; b: determined as average value of three mean 

crystallite sizes calculated from the three main peaks in the XRD diffractogram 

Sample Mean particle sizea  [nm] Crystallite sizeb  [nm] 

 Surface-weighted Sauter  

21wt% Ni/C    

   precursor (bef. red.) 11 15 13 (NiO); 30 (Ni0) 

   catalyst (after red.) 27 38 29 (Ni0) 

As can be seen from the TEM images in Figure 3-15, the high Ni loadings of 21 and 29wt% entail 

metal nanoparticles of increased size, compared with the low loading of 5wt% Ni. For the 5wt% 

Ni/C sample, well-dispersed nanoparticles with a mean (surface-weighted) size of 12 nm are 

observed on the TEM images. As a large fraction of the particles is present in the low nm range 

(Figure 3-15 bottom left), they cannot be properly identified by XRD due to indistinctive peak 

broadening, which leads to a presumably overestimated mean crystallite size of 22 nm. For the 

29wt% sample, most particles do not considerably change in size, as compared to the 21wt% 

catalyst. However, a few large insular particles of > 100 nm are observed, which account for a 

large part of the total Ni amount and, therefore, considerably increase the mean (surface-

weighted) size to 34 nm and decrease the dispersion and active surface area. In Table 3-13, the 

numbers are summarized and compared to the crystallite sizes determined from XRD. 
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Table 3-13: Analysis of Ni nanoparticle and crystallite size of catalyst pellets with different Ni loadings (Ni/CZnO-950L, 
abbreviated by Ni/C); a: determined from particle size distribution on TEM images; b: determined as average value of three 

mean crystallite sizes calculated from the three main peaks in the XRD diffractogram 

Sample Mean particle sizea  [nm] Crystallite sizeb  [nm] 

 Surface-weighted Sauter  

5wt% Ni/C 12 21 22 (Ni0) 

21wt% Ni/C 27 38 29 (Ni0) 

29wt% Ni/C 34 66 43 (Ni0) 

   

   

   
Figure 3-15: TEM images in low (top) and high (middle) magnification and particle size distribution (bottom) of the 5wt%, 

21wt%, and 29wt% Ni/C catalyst. 

                   5wt% Ni/C          100 nm                      21wt% Ni/C          100 nm                    29wt% Ni/C        100 nm 

                 5wt% Ni/C             20 nm                    21wt% Ni/C        20 nm                    29wt% Ni/C          20 nm 
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The SEM images of the cross section of the 21% Ni/C pellets prove the homogeneous distribution 

of Ni nanoparticles along the inner surface of the catalyst pellets, as shown in Figure 3-16. 

  
Figure 3-16: SEM images of the cross-section surface of the 21wt% Ni/C catalyst pellet 

3.2.2 Platinum 

Pt nanoparticles have been synthesized in an analogous manner to the presented methodology for 

Ni nanoparticle incorporation. The parameters of the applied heating programs are summarized in 

Table 3-14. 

Table 3-14: Ni and Pt salt, used for incipient wetness impregnation, and applied heat treatment programs for metal 
nanoparticle synthesis on the supports. The heat treatment of each calcination and reduction step was preceded by 0:30 

waiting time and 1:00 preheating at 90 °C (3 K min–1) 

Metal Metal salt 
Calcination (N2) Reduction (H2:N2 5:95) 

Heating rate 
[K min–1] 

Final temp. 
[° C] 

Hold 
[h:mm] 

Heating rate 
[K min–1] 

Final temp. 
[° C] 

Hold 
[h:mm] 

Ni Ni(NO3)2(H2O)6 3 500 5:00 3 450 5:00 

Pt Pt(NH3)4(NO3)2 3 350 4:00 3 350 4:00 

For all prepared Pt loadings (0.5, 0.8, and 2.7wt%), slightly diminished porosity is observed in N2 

physisorption measurements, as can be seen from the lower adsorbed N2 amount and the lower 

cumulative pore volume in Figure 3-17. In particular, a continuous decrease of microporous 

volume and surface area with increasing loading is observed, according to the physisorption data 

provided in Table 3-15. 

                           21wt% Ni/C                     200 nm                            21wt% Ni/C                     1000 nm 
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Figure 3-17: N2 physisorption isotherms (left) and pore size distribution (right) of the CZnO-950L carbon support pellets (2.4 × 
3.5 mm), compared to catalyst pellets based on the CZnO-950L support with incorporated Pt nanoparticles of different loading. 

Measurements conducted at 77.3 K. Calculation of pore size distribution based on QSDFT adsorption method on carbon with 
slit, cylindrical, and spherical pores. 

Table 3-15: Nitrogen physisorption data of the CZnO-950L carbon support pellets (2.4 × 3.5 mm) compared to catalyst pellets 
based on the CZnO-950L support with incorporated Pt nanoparticles of different loading 

Sample Pore volume [cm³/g] Specific surface area [m²/g] Average 

 QSDFT adsorption BJH ads. QSDFT adsorption BET pore size 

 Micro Meso Total Total Micro Meso Total Total [nm] 
 < 2 nm 2-50nm ≤ 50nm ≲ 500nm < 2 nm 2-50nm ≤ 50nm  ≲ 500nm 

CZnO-950L 0.24 0.49 0.74 0.91 627 129 756 769 4.7 

0.5wt% Pt/C 0.22 0.42 0.65 0.87 594 118 711 708 4.9 

0.8wt% Pt/C 0.21 0.44 0.65 0.82 557 116 673 673 4.9 

2.7wt% Pt/C 0.19 0.46 0.65 0.81 492 118 610 611 5.3 

Table 3-16: Analysis of Pt nanoparticle size distribution of catalyst pellets with different Pt loadings (Pt/CZnO-950L, 
abbreviated by Pt/C), determined from particle size distribution on TEM images 

Sample Mean particle size  [nm] 

 Surface-weighted Sauter 

0.5wt% Pt/C 4.9 7.0 

0.8wt% Pt/C 5.2 6.8 

2.7wt% Pt/C 4.9 8.6 

From the TEM images and the particle size distribution shown in Figure 3-18, it can be seen that 

the procedure of all three loadings (0.5, 0.8, and 2.7wt%) yield dispersed Pt particles with a mean 

(surface-weighted) size of 5.2 to 5.6 nm. However, it should be noted that due to the resolution 

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600
 CZnO-950L

 0.5wt% Pt/C
 0.8wt% Pt/C
 2.7wt% Pt/C

Relative pressure (P / P0)

Vo
lu

m
e 

N
2 a

ds
or

be
d 

(S
TP

) (
cm

3  g
-1
)

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
   V    dV / ddp

      CZnO-950L

      0.5wt% Pt/C
      0.8wt% Pt/C
      2.7wt% Pt/C

Pore diameter dp (nm)

C
um

ul
at

iv
e 

po
re

 v
ol

um
e 

V
 (c

m
3  g

-1
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

dV
 / 

dd
p (

cm
3  g

-1
 n

m
-1
)



CHAPTER 3:  CATALYST DESIGN AND CHARACTERIZATION  

 
48 

 

limitation of the device, particles in the size of < 1 nm remain undetected. The numbers are 

summarized in Table 3-16. 

   

   

   
Figure 3-18: TEM images in low (top) and high (middle) magnification and particle size distribution (bottom) of the 

0.5wt%, 0.8wt%, and 2.7wt% Pt/C catalyst.  

3.3 Solid Acid Catalyst 

3.3.1 Characterization 

3.3.1.1 Surface Acidity 

To investigate the surface acidity on the granular crosslinked polystyrene sulfonate (PSS) 

acquired from AppliChrom, Böhm titration was performed. In this back titration technique, the 

                  0.5wt% Pt/C         20 nm                   0.8wt% Pt/C           20 nm                   2.7wt% Pt/C        20 nm 

                 0.5wt% Pt/C          10 nm                   0.8wt% Pt/C        10 nm                   2.7wt% Pt/C         10 nm 
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density of acidic sites is indirectly determined by measuring the basicity of the analyte solution 

that contains an excess of base95,96. Due to the strong dilute base (NaOH), this technique is able to 

determine the total amount of acid sites, including those of weak acidity. The density of acid sites 

is calculated to a value of 3.22 eq kg–1. The exact procedure and calculation is provided in 

Appendix A.2.2.8. 

3.3.1.2 Porosity 

To examine the porosity of the polystyrene sulfonate material, N2 physisorption has been 

conducted. However, due to the high density of sulfo groups, the sulfonated polystyrene does not 

allow for proper N2 physisorption results. Therefore, the neutral form of the crosslinked 

polystyrene granules (PS) has been investigated before the sulfonation step instead. As can be 

seen from the isotherm and pore size distribution (QSDFT adsorption) in Figure 3-19, it exhibits a 

very large mesoporous fraction, which facilitates a very large total pore volume of 0.90 cm³/g, as 

summarized in Table 3-17. 

 
Figure 3-19: N2 physisorption isotherms (left) and pore size distribution (right) of granular (1-5mm) polystyrene (“PS”) 
before sulfonation  (“neutral”). Measurement conducted at 77.3 K. Calculation of pore size distribution based on QSDFT 

adsorption method on carbon with slit, cylindrical, and spherical pores. 

However, due to strong swelling of the resin in presence of water and other solvents, it is possible 

that the porosity during liquid-phase catalytic operation differs strongly from the porosity 

observed during nitrogen physisorption. 
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Table 3-17: Nitrogen physisorption data of granular (1-5mm) polystyrene before sulfonation (“neutral”). 

Sample Pore volume [cm³/g] Specific surface area [m²/g] Average 

 QSDFT adsorption BJH ads. QSDFT adsorption BET pore size 

 Micro Meso Total Total Micro Meso Total Total [nm] 
 < 2 nm 2-50nm ≤ 50nm ≲ 500nm < 2 nm 2-50nm ≤ 50nm  ≲ 500nm 

PS (neutral) 0.09 0.81 0.90 0.94 147 467 614 767 4.9 
 

3.4 Solid Base Catalyst 
In the present work, an Al2O3-type material with 10wt% ZrO2 is used as a base catalyst for the 

conversion of glucose, as presented in chapter 5.1.2. The morphology of the material, which is 

present as extruded cylindrical shapes of 1.6 mm diameter and average length of 3 mm, is 

examined in the following subchapter. 

3.4.1 Characterization 

3.4.1.1 Porosity 

N2 physisorption has been performed on the 10wt% ZrO2-Al2O3 material. As can be seen from the 

isotherm and pore size distribution (NLDFT adsorption) in Figure 3-20, the material exhibits a 

purely mesoporous morphology with no contribution from the mesoporous range and 

(presumably) the macroporous range. From the NLDFT model, a narrow pore size range of 7 to 

30 nm is determined.  

 
Figure 3-20: N2 physisorption isotherms (left) and pore size distribution (right) of 10wt% ZrO2-Al2O3 (1.6 × 3 mm). 

Measurement conducted at 77.3 K. Calculation of pore size distribution based on NLDFT adsorption method on “zeolite” 
with cylindrical and spherical pores. 
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Furthermore, a total, i.e. meso-, pore volume of 0.41 cm³/g and total surface area of 201 m²/g has 

been determined, as summarized in Table 3-18. 

Table 3-18: Nitrogen physisorption data of 10wt% ZrO2-Al2O3 (1.6 × 3 mm). 

Sample Pore volume [cm³/g] Specific surface area [m²/g] Average  

 NLDFT adsorption BJH ads. NLDFT adsorption BET pore size 

 Micro Meso Total Total Micro Meso Total Total [nm] 
 < 2 nm 2-32nm ≤ 32nm ≲ 500nm < 2 nm 2-32nm ≤ 32nm  ≲ 500nm 

PS (neutral) 0.00 0.41 0.41 0.44 0 201 201 194 4.5 
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4 

4 REACTOR DESIGN 

4.1 Continuous Flow Set-up 
In order to investigate the catalytic performance of the prepared materials in flow experiments 

under varied conditions, a continuous flow set-up has been planned and built. It can accommodate 

several interchangeable packed-bed reactors of different sizes, thus allowing for operation from 

small lab size to scaled-up experiments in the liter scale. 

As shown on the pictures of Figure 4-1, constant volumetric flow of reactant solution (1) is 

provided by an HPLC pump (2) (Knauer Azura P 4.1S pump with 50 mL/min ceramic piston 

pump head). Hydrogen gas from the high pressure line is throttled by a forward pressure regulator 

to an intermediary pressure of ca. 90 bar and introduced into a mass flow controller (Brooks 

Instruments SLA5850), which is calibrated to a hydrogen flow of up to 60 mL/min (STP) and 

controlled by a computer interface. A check valve (3) prevents backflow of the reactant solution 

through the hydrogen feed line and, therefore, potential damage of the sensitive controlling unit. 

To maximize the dissolution of hydrogen in the liquid, the gas flow is injected and dispersed 

into the liquid by a nozzle (4) consisting of a Tee piece with a 0.3 mm orifice. A preheating unit 

(5) heats the feed to the desired reaction temperature. Owing to the two individually controlled 

heating sections consisting of heating bands and thermocouples winded around the reactor, 

isothermal conditions inside the reactor can be ensured. Three additional thermocouples, attached 

along the outer wall of the reactor (6), facilitate precise monitoring of the temperature 

development. 
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Figure 4-1: Implemented continuous flow set-up with large packed-bed reactor (OD1.5inch) 
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Furthermore, to check for potential radial temperature gradients inside the large reactors, the 

temperature is constantly monitored in situ in the middle of the catalyst bed by a temperature 

probe that is connected through a Tee piece at the outlet (7). The outlet flow is cooled by a 

cooling coil which is immersed into a reservoir of cooling water (8). Depending on the necessary 

cooling capacity, determined by the heat capacity rate of the outlet flow and the volatility of the 

product compounds, the cooling water is either stagnant or connected to the water tap and drain to 

provide a steady flow of cooling agent. 

The desired system pressure is manually set by a back pressure regulator. A potential pressure 

drop in the system is noticeable as the difference of pressure indicated by the HPLC pump and 

pressure indicated by the manometer (9) prior to the back pressure regulator (10). After release to 

atmospheric pressure, the product solution is collected in a bottle (11). 

A safety manifold (12) prior to the reactor inlet ensures safe operation. It connects the system 

to a safety relief valve (13) and a rupture disk (14) that bursts at 130 bar. 

The reactors, the high pressure piping, and most of the equipment units are made from stainless 

steel 316L. The pressure-resistant connections between the equipment units and the piping are 

established by Swagelok® tube fittings, American National Pipe Thread (NPT) connections, and 

HPLC fittings. Even though the operation conditions of the experiments usually do not exceed 80 

bar and 260 °C, the set-up could be operated at up to 95 bar, limited by the mass flow controller 

of the hydrogen feed. For reactions without hydrogen feed, the set-up is capable of safe operation 

at up to 290 bar (at room temperature) and up to 450 °C (at 225 bar), according to the pressure 

and temperature ratings provided by the manufacturer of the tubing and instrumentation98,99. 

The main equipment units as well as instrumentation and controlling devices are presented in 

the piping and instrumentation diagram of Figure 4-2. 
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Figure 4-2: Piping and instrumentation diagram (P&ID) of the continuous flow set-up. FC: flow control; PI: pressure 

indication; TI/TC: temperature indication/control 

The present flow setup is designed to provide optimal performance for the investigated three-

phase (G-L-S) hydrogenation reactions. For this, the operation mode of the catalytic reactor is of 

particular importance. Due to the greater distance of the actual concentrations in the solution from 

the chemical equilibrium, tubular packed-bed reactors provide kinetic advantages, such as 

accelerated reaction rates, shorter reaction time, and higher selectivity, compared with gradient-

free continuously stirred reactors such as bubble columns. To cover several stages of the 

development of catalyzed processes, starting from preliminary lab scale to scaled-up experiments, 

several packed-bed reactors of different sizes are built and employed for the catalytic experiments. 

Their dimensions are listed in Table 4-1.  

Table 4-1: Dimensions of packed-bed reactors used with the flow set-up, compared with the particle size of the synthesized 
2.4 × 3.5 mm catalyst pellets 

Reactor Outer diameter Inner diameter Length Volume dR/dS LR/dS 

 [mm] [mm] [mm] [mL]   

OD11mm 11.0 7.8 300 14.3 2.4 91 

OD1inch_1 25.4 21.2 80 28.2 6.4 24 

OD1inch_2 25.4 21.2 400 141.0 6.4 121 

OD1.5inch 38.1 28.5 800 512.1 8.7 242 
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The set-up has been further adjusted over time to fit the current requirements of the specific 

catalytic process. To provide a very large cooling capacity in case of high reactant flow rates of up 

to 50 mL/min through the large reactor (OD1.5inch), an additional heat exchanger has been built, 

consisting of 10 windings of the cooling coil, immersed into flowing cooling water, as shown in 

Figure 4-3 (left). On the other hand, when using the small OD11mm reactor with flow rates of < 

10 mL/min, the large cooling coil and the large outlet tubing are oversized and would cause strong 

dispersion of the flow. Therefore, to minimize the dead volume downstream of the reactor, a 

separate, downsized outlet incl. cooling coil has been built from 1/16” tubing, presented in Figure 

4-3 (right). 

   
Figure 4-3: Size adjustments of the continuous flow set-up. left: heating coil with high cooling capacity. right: Downsized 

set-up with OD11mm reactor and decreased dead volume in the outlet 

4.2 Flow Dispersion 

In order to facilitate catalytic performance that is not diminished by dispersion of the flow inside 

the packed-bed reactor, it is desirable to obtain plug flow behavior. This can be assumed if the 

following two criteria are fulfilled. 

According to Mears, radial dispersion is negligible if the catalyst particles are sufficiently 

small, compared with the inner reactor diameter 𝑑𝑑𝑅𝑅100: 

𝑑𝑑𝑅𝑅
𝑑𝑑𝑆𝑆

> 8 (4.1) 
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with the equivalent spherical diameter of the 2.4 × 3.5 mm cylindrical pellets: 

𝑑𝑑𝑆𝑆 = �𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐  𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐2 /2 = 3.3 mm (4.2) 

Furthermore, according to Gierman, axial dispersion inside the reactor bed will not occur if the 

following criterion is satisfied, based on the Bodenstein number 𝐵𝐵𝐵𝐵 and the reaction order 𝑛𝑛 in 

reactant101: 

𝐿𝐿𝑅𝑅
𝑑𝑑𝑆𝑆

>
8
𝐵𝐵𝐵𝐵 𝑛𝑛 ln

1
1 − 𝑋𝑋 (4.3) 

with common values for the right side of the inequality ranging between 25 and 100 in liquid-

solid packed-bed reactions102. 

As can be seen from the two columns on the right of Table 4-1, the criteria are fulfilled for the 

largest reactor, but not for the small ones, suggesting concentration gradients for the latter inside 

the catalyst bed due to large void channels, on which the liquid can bypass the catalyst. However, 

conducting experiments in an early stage of the catalyst development on a scale that fulfills the 

criteria would consume a lot of material and is therefore not practical. On the other hand, crushing 

the pellets into powder is not considered a desirable solution for the catalyst screening either, as 

this procedure could disguise potential influence of mass transfer limitations inside the pellets 

and, therefore, change the nature of the catalytic behavior. 

As the criterion by Mears describes the effect of the preferential trickle flow through the voids 

close to the reactor wall rather than in the middle of the reactor due to the high bed porosity near 

the reactor wall100, it is assumed that this effect can be reduced to a minimum when filling the 

voids between the pellets with non-porous inert material of smaller particle size that fulfills the 

criterion. To estimate how well the voids can be filled, three transparent quartz tubes with an ID 

of 7 mm were filled with the 2.4 × 3.5 mm catalyst pellets. Subsequently, one of the tubes was 

filled on top with SiC (840-1190 µm), while the second was filled with pure HCl-washed sea sand 

(100-315 µm). After softly shaking and tapping on the tubes, the sand easily trickled down the 

tube, filling the large voids entirely without accumulating at the bottom or displacing the pellets 

from the bottom towards the top of the tube, as can be seen in Figure 4-4. In contrast, the SiC did 

not decently fill the empty spaces, but settled at the bottom of the tube, pushing the pellets 

upwards without efficiently decreasing the bed porosity. 
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Figure 4-4: Three quartz tubes (ID 7 mm) filled with 2.4 × 3.5 mm catalyst pellets. middle: subsequently filled with SiC 

(840-1190 µm); bottom: subsequently filled with pure HCl-washed sea sand (100-315 µm) 

The result of this test suggests that the insertion of sand into the reactor, subsequent to the filling 

with catalyst pellets, could be highly beneficial for preventing or reducing radial dispersion of the 

flow even in the ID7.8mm reactors (OD11mm and OD12mm). As the length of the OD11mm 

reactor is greater by a factor of 91 than the equivalent spherical diameter of the pellets, the reactor 

is expected to fulfill the criterion for negligible axial dispersion under most catalytic conditions 

and hydrodynamic states that occur inside the reactor. Based on these assumptions, it can be 

concluded that the reaction in the OD11mm reactor, filled with catalyst pellets plus sea sand, 

proceeds under quasi plug-flow for most operation conditions. This hypothesis is strongly 

supported by the catalytic results presented in section 5.2. 
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5 

5 CATALYST PERFORMANCE 

In order to obtain a good understanding of the catalyst behavior for the several steps of a 

valorization chain, it is necessary to map the catalytic performance of the several reaction steps 

individually under ideal reaction conditions before determining suitable parameters for the 

process integration. As outlined in Figure 5-1, the present work comprises all reaction steps 

involved in the valorization of the hexoses glucose and fructose towards the platform molecules 

2,5-dimethylfuran (DMF) and γ-valerolactone (GVL). For the conversion of the sugars towards 5-

hydroxymethylfurfural (HMF) and levulinic acid (LA), highlighted in grey color, catalysts with 

solid acid and base sites are applied, while for the hydrogenation reactions of the intermediates, 

highlighted in green color, the prepared metal-based carbon-supported catalysts are employed. 

 
Figure 5-1: Reaction scheme of catalyzed processes presented in this section 
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In analogy to the catalyst design in chapter 3 with the focus on a new synthesis methodology of 

highly active Ni/C and Pt/C hydrogenation catalyst pellets, the catalytic results presented in this 

chapter set the focus on the performance of the prepared catalysts in the hydrogenation reactions 

of HMF and LA, presented in subchapter 5.2 and 5.3, respectively.  

As the carbon pellets prepared on the ZnO route (CZnO) exhibit the best properties as a catalyst 

support, the major part of the hydrogenation experiments is conducted over catalysts supported on 

CZnO. Therefore, these catalysts are denominated in the following by Ni/C and Pt/C instead of the 

long names Ni/CZnO and Pt/CZnO, whereas the Ni-based catalysts supported on the other two routes 

presented in chapter 3 are denominated by their complete names Ni/CZnCl and Ni/CNaCl, 

respectively. 

In the spirit of green chemistry, the catalytic experiments in this research focus on the use of 

non-hazardous and cheap solvents that are bioderived or widely available in nature. As water and 

ethanol – without doubt two of the greenest solvents available50 – complement one another in 

their solubility of the different classes of molecules involved in the presented valorization scheme 

(carbohydrates, polar organic molecules, nonpolar organic molecules), they are chosen as solvents 

for the flow chemistry experiments in the following sections. 

Throughout all experiments, the conversion 𝑋𝑋  of reactant is determined by the ratio of 

consumed reactant to total introduced reactant: 

𝑋𝑋 =
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0 − 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0   (product sample) ;    𝑋𝑋 =
𝑁̇𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0 − 𝑁̇𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑁̇𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0    (flow) (5.1) 

The space time, a common measure for the contact time of the reactant with the catalyst, is 

defined in this section as the ratio 𝜏𝜏𝑤𝑤 of total catalyst weight to reactant mass flow rate, according 

to the following equation: 

𝜏𝜏𝑤𝑤 =
𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐

𝑚̇𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
0     �

gcat h
greact

� (5.2) 

The yield of a product 𝑖𝑖 describes the fraction of reactant that has been transformed into that 

specific molecule. For reaction networks that involve C-C bond cleavage (or linkage), it is 

practical to define the yield 𝑌𝑌𝑖𝑖 with respect to the C equivalents of the substances: 

𝑌𝑌𝑖𝑖 =
𝜈𝜈𝑖𝑖  𝑁𝑁𝑖𝑖

𝜈𝜈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0   (product sample) ;    𝑌𝑌𝑖𝑖 =
𝜈𝜈𝑖𝑖  𝑁̇𝑁𝑖𝑖

𝜈𝜈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑁̇𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0    (flow) (5.3) 
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where 𝜈𝜈𝑖𝑖  represents the number of C atoms per molecule 𝑖𝑖. In analogy, the selectivity 𝑆𝑆𝑖𝑖  of a 

product 𝑖𝑖 is defined as the C-based product fraction that is present in this specific molecule 𝑖𝑖: 

𝑆𝑆𝑖𝑖 =
𝜈𝜈𝑖𝑖  𝑁𝑁𝑖𝑖
∑ 𝜈𝜈𝑗𝑗 𝑁𝑁𝑗𝑗𝑗𝑗

=
𝜈𝜈𝑖𝑖  𝑁𝑁𝑖𝑖

𝜈𝜈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0 − 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
=
𝑌𝑌𝑖𝑖
𝑋𝑋    (product sample) (5.4) 

5.1 Valorization of Sugars 
In order to cover the whole upgrading scheme of the cellulose-derived monosaccharides glucose 

and fructose towards the value-added DMF and GVL, presented in Figure 5-1, this section is 

dedicated to preliminary results on the catalytic performance of fructose and glucose conversion 

towards HMF and LA, the reactant molecules of the hydrogenation processes that are presented in 

the subchapters 5.2 and 5.3 and form the core of the catalysis part of this work. 

5.1.1 Dehydration of Fructose 

In this section, the results of the acid-catalyzed fructose dehydration experiment are presented. As 

presented in subchapter 2.4.2.1, solid Brønsted acids, in particular sulfonated polystyrene 

materials, have been identified in the literature as suitable catalysts for the selective conversion of 

fructose towards HMF. The present work aims at providing a basis for an integrated valorization 

process of sugar dehydration towards HMF, followed by immediate hydrogenation towards DMF, 

preferably in a single bicatalytic reactor with mixed bed of solid acid and metal-based catalysts. 

Since the prepared Ni/C catalysts exhibit low activity for the HMF hydrogenation process at 

temperatures below 130 °C, presented in section 5.2, Amberlyst-15 is not considered a suitable 

option due to its temperature instability above 130 °C. Instead, a highly crosslinked granular (1-

5mm) sulfonated polystyrene resin is used for the fructose dehydration, as its strong 

divinylbenzene crosslinking allows for operation at higher temperature. As presented in 

subchapter 3.3.1.2., this predominantly mesoporous material exhibits a surface area of 614 m²/g 

and a pore volume of 0.90 cm³/g, determined from N2 physisorption measurement and QSDFT 

analysis on the adsorption branch. 

For a 0.1M fructose in H2O reactant solution, HMF yield of 21.4% and 13.0% has been 

obtained at 150 °C (space time of 3.5 gcat h gfru
–1) and 130 °C (space time of 7.1 gcat h gfru

–1), 

respectively, as can be seen in Figure 5-2. In addition to the HMF yield, a large part of the as-

formed HMF is consumed in the subsequent formation of LA, which is strongly increased at 

longer space times. At comparable conversion range, operation at 150 °C provides higher yield of 
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HMF over LA. The highest HMF selectivity (50.4%) was obtained at 150 °C in the medium 

conversion range (42.3%). Including the valuable consecutive products LA (20.7%) and formic 

acid (13.4%), a total carbon-based product selectivity of 84.5% was reached at this point. 

   
Figure 5-2: Product yields for the conversion of fructose over granular (1-5mm) sulfonated polystyrene-divinylbenzene, as a 

function of space time. Conditions: 0.1M fructose in H2O reactant solution, 150 °C (left) and 130 °C (right) 

Even though higher total product yields could be reached by increasing the space time to values 

beyond those presented in Figure 5-2, it is not very suitable when aiming at the selective 

production of HMF, as longer exposure to the catalyst strongly favor the conversion of HMF 

towards LA and, therefore, decrease the HMF selectivity. This kinetic behavior points out the 

potential for an integrated process with short distances between the acid and metal sites, thus 

facilitating the immediate hydrogenation of the produced HMF and kinetically hindering the 

reaction towards LA29. 

5.1.2 Conversion of Glucose 

5.1.2.1 Solid base catalysis 

As mentioned in section 2.4.2.2, efficient conversion of the stable pyranoside ring structure of 

glucose over heterogeneous catalysts still poses a big challenge. Since for Brønsted solid acids 

very low activity is observed for both of the two possible isomerization pathways30, an alumina 

material with 10wt% ZrO2 is used in this section, as its basicity, combined with additional Lewis 

acid sites, promises higher catalytic activity for the isomerization44. The purely mesoporous 

catalyst exhibits a surface area of 201 m²/g and mesopore volume of 0.41 cm³/g, determined from 

N2 physisorption measurement and NLDFT (adsorption) analysis, as presented in subchapter 
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3.4.1.1. It is present in extruded cylindrical shapes of 1.6 mm diameter and average length of 3 

mm and is used in this section for continuous flow operation a packed-bed reactor. 

Due to the high solubility of the sugars in water (in contrast to ethanol) and the hydrothermal 

stability of the ZrO2-Al2O3 material, water is a suitable green solvent for the glucose 

isomerization and is therefore used in this section. 

As can be seen from Figure 5-3 (left), the observed conversion of glucose is highly dependent on 

the operation temperature, increasing from 35.8% at 125 °C to nearly complete conversion 

(99.2%) at 170 °C, using a 0.1M glucose reactant solution and space time of 3.3 h gZrO2 ggluc
–1. 

High selectivity (49.0%) towards a mixture of (predominantly) fructose and (minor fractions of) 

mannose is observed at 125 °C, as shown in Figure 5-3 (right).  

 
Figure 5-3: Product yields (left) and selectivities (right) for the conversion of glucose over 10wt% ZrO2-Al2O3 (1.6 × 3 

mm), as a function of temperature. Conditions: 0.1M glucose in H2O reactant solution, space time of 3.3 h gZrO2 ggluc–1, 25 bar 

The obtained fructose + mannose yield of 17.5% with a glucose conversion of 35.8% is on a 

similar level as reported by Qi et al.44 for a comparable catalytic system with glucose in water 

solutions over ZrO2, which provided yields of 17.4% for fructose, no specification for mannose, 

and 7.7% for HMF, with a total glucose conversion of 41.6%. However, Qi et al.44 were 

employing much higher temperature of 200 °C with additional microwave irradiation. Compared 

with the ZrO2 catalyst used by Qi et al.44, the present 10wt% ZrO2-Al2O3 catalyst exhibits 

relatively low activity in the acid-catalyzed dehydration of fructose to HMF, providing HMF yield 

of only up to 4.4% at the highest operation condition of 170 °C, as presented Figure 5-3 (left). 

At temperature higher than 125 °C, all three sugar isomers appear to be very prone to 

competing decomposition reactions towards a variety of low molecular compound, with highest 
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yield for lactic and acetic acid and low yields of < 5% for hydroxyacetone and glyceraldehyde. 

Due to the high yield of C3 products, it is assumed that the present base sites hydrolyze the C3-C4 

bond of the C6 sugars. While base sites are known to promote the isomerization reaction between 

glucose, fructose, and mannose via the 1,2-enediol mechanism shown previously in Figure 2-6, 

they can also facilitate aldol condensation as well as the inverse reaction, the retro-aldol reaction 

of the transient C6 enediol towards the transient propenetriol, which is isomerized towards the 

aldose glyceraldehyde or the ketose dihydroxyacetone, in analogy to the glucose-fructose 

isomerization103, as presented in Figure 5-4. 

 
Figure 5-4: Decomposition of glucose and fructose by base-catalyzed retro-aldol reaction. Adapted from Onda et al.103. 

Further base-catalyzed dehydration and hydration reactions produce the observed high yields of 

lactic acid of up to 30.3% at 170 °C in the presented temperature study of Figure 5-3 (left). Even 

though lactic acid is a valuable commodity chemical with high demand in the food, 

pharmaceuticals, and polymer industry103, the retro-aldol reaction is detrimental to high yields for 

the HMF production scheme presented in Figure 5-1. The trend of product composition over 

space time, shown in Figure 5-5, confirms the high instability of the as-formed fructose and 

mannose for longer exposure to the catalyst at the high temperature of 150 °C. 
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Figure 5-5: Product yields for the catalytic conversion of glucose over 10wt% ZrO2-Al2O3 (1.6 × 3 mm), as a function of 

space time. Conditions: 0.1M glucose in H2O reactant solution, 150 °C, 25 bar. 

Although the activity and yield of fructose production and subsequent HMF production would 

presumably be strongly enhanced by the addition of Cl¯, e.g. a water/[HMIM]Cl mixture, as 

reported in the literature48, the use of salts and ionic liquids does not comply with the spirit of the 

present approach, which prioritizes on the development of sustainable processes with greener 

solvents. 

5.1.2.2 Combined solid base and acid catalysis 

The previously presented catalytic system still offers potential for enhancement of the reactivity 

without employing less green approaches. Since the 10wt% ZrO2-Al2O3 catalyst exhibits very low 

activity for the subsequent dehydration of fructose to HMF, it was complemented by the 

polystyrene sulfonate (PSS) material, in order to shift the chemical equilibrium of the isomers 

towards the production of fructose and prevent re-isomerization of the fructose. 

From the previous experiments in the sections 5.1.1 and 5.1.2.1, it was estimated that for the 

10wt% ZrO2-Al2O3 ca. three times the volume is needed for the 10wt% ZrO2-Al2O3, compared 

with the PSS. To obtain a 75:25 vol.% catalyst packing, the reactor was filled with the two 

catalysts gradually along the reactor axis according to Figure 5-6, starting from 100% of the ZrO2-

Al2O3 material at the inlet to 0% at the outlet. 
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Figure 5-6: Bed packing of bicatalytic reactor with 10wt% ZrO2-Al2O3 (1.6×3 mm) and granular (1-5mm) polystyrene 

sulfonate (“PSS”). Packed bed consists of 75vol.% ZrO2-Al2O3 and 25vol.% PSS. Dimensions of “OD1inch_1” reactor (see 
section 4.1): 21×80 mm (ID×L), cross-sectional (“QS”) area of bed 352 mm². left: profile of relative QS areas of the catalysts 
along reactor axis; middle: photos of several cross-sections, taken during bed packing; right: scheme of catalyst distribution.  

To favor the isomerization of glucose over the hydrolysis, which was observed in section 5.1.2 

especially at high temperatures, the reaction was operated at lower temperatures in this section. At 

130 °C, C-based yields were obtained of 14.8% for fructose (with traces of mannose), 1.7% for 

HMF, and 0.9% for LA, along with the hydrolysis byproducts glyceraldehyde, hydroxyacetone, 

and lactic acid, as can be seen in Figure 5-7 at space time of 1.6 h gZrO2 ggluc
–1 for the base catalyst 

and 2.4 h gPSS ggluc
–1 for the acid catalyst. Due to the low concentration of the intermediate 

fructose, product yields of HMF and LA were not achieved above this level. Instead, longer space 

times favor the base-catalyzed hydrolysis of the as-formed fructose and, therefore, entail even 

lower yields of HMF and LA. 

The extent of sugar hydrolysis was strongly reduced at 110 °C, facilitating 15.1% yield of for 

fructose (with traces of mannose) in the experiment presented in Figure 5-8 (space time of 3.3 h 

gZrO2 ggluc
–1 and 4.9 h gPSS ggluc

–1). However, due to the low temperature, hardly any activity is 

observed for the fructose dehydration, resulting in HMF and LA yields of below 1%. 
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Figure 5-7: Product yields for the catalytic conversion of glucose in a bicatalytic reactor with 10wt% ZrO2-Al2O3 (1.6 × 3 

mm) and granular (1-5mm) sulfonated polystyrene-divinylbenzene, as a function of space time. Conditions: 0.1M glucose in 
H2O reactant solution, 130 °C, 20 bar. 

 
Figure 5-8: Product yields for the catalytic conversion of glucose in a bicatalytic reactor with 10wt% ZrO2-Al2O3 (1.6 × 3 

mm) and granular (1-5mm) sulfonated polystyrene-divinylbenzene, as a function of space time. Conditions: 0.1M glucose in 
H2O reactant solution, 110 °C, 20 bar.  
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5.2 Hydrodeoxygenation of 5-Hydroxymethylfurfural 
In this section, the selective hydrogenation of HMF to DMF over the prepared metal-based 

catalysts supported on porous carbon is presented. As mentioned in the introduction of chapter 5, 

this section focuses on the experiments with the Ni/CZnO catalysts, which are abbreviated in the 

following by Ni/C. 

In addition to the definitions of conversion, selectivity, and yield in section 5.1.2, the following 

quantities are used in this section and the following section 5.3: 

The space time 𝜏𝜏𝑤𝑤 is defined for the metal-based catalysts (Ni/C and Pt/C) as the ratio of metal 

weight 𝑚𝑚𝑁𝑁𝑁𝑁 to the reactant mass flow rate, according to the following equation: 

𝜏𝜏𝑤𝑤 =
𝑚𝑚𝑁𝑁𝑁𝑁

𝑚̇𝑚𝐻𝐻𝐻𝐻𝐻𝐻
0 =

𝑤𝑤𝑁𝑁𝑁𝑁 𝑚𝑚𝑁𝑁𝑁𝑁/𝐶𝐶

𝑚̇𝑚𝐻𝐻𝐻𝐻𝐻𝐻
0        �

g𝑁𝑁𝑁𝑁 h
g𝐻𝐻𝐻𝐻𝐻𝐻

� (5.5) 

Furthermore, the Ni time yield 𝑁𝑁𝑁𝑁𝑌𝑌𝑖𝑖 (and Pt time yield 𝑃𝑃𝑃𝑃𝑌𝑌𝑖𝑖) is a measure to describe how much 

product 𝑖𝑖 is formed per time unit and catalyst weight, while the total Ni time yield 𝑁𝑁𝑁𝑁𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 (and 

total Pt time yield 𝑃𝑃𝑃𝑃𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡) describes the conversion of reactant per time unit and metal amount: 

𝑁𝑁𝑁𝑁𝑌𝑌𝑖𝑖 =
𝑌𝑌𝑖𝑖
𝜏𝜏𝑁𝑁

  ;   𝑁𝑁𝑁𝑁𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑋𝑋
𝜏𝜏𝑁𝑁

        �
mol𝑖𝑖

mol𝑁𝑁𝑁𝑁 h
� (5.6) 

where the space time 𝜏𝜏𝑁𝑁 is used in its molar definition: 

𝜏𝜏𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁
𝑁̇𝑁𝐻𝐻𝐻𝐻𝐻𝐻0 =

𝑤𝑤𝑁𝑁𝑁𝑁 𝑚𝑚𝑁𝑁𝑁𝑁/𝐶𝐶

𝑁̇𝑁𝐻𝐻𝐻𝐻𝐻𝐻0  𝑀𝑀𝑁𝑁𝑁𝑁
       �

mol𝑁𝑁𝑁𝑁  h
mol𝐻𝐻𝐻𝐻𝐻𝐻

� (5.7) 

According to GC analysis of the HMF hydrodeoxygenation product solutions, the reaction 

proceeds via two parallel reaction pathways. Primary hydrodeoxygenation of the hydroxy group 

of HMF yields the intermediate 5-methylfurfural (5-MF), whereas primary carbonyl reduction of 

HMF produces 2,5-bis(hydroxymethyl)furan (BHMF), as summarized in Figure 5-9. 
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Figure 5-9: Reductive steps of HMF deoxygenation to DMF and consecutive reactions 

The subsequent reduction step provides 5-methylfurfuryl alcohol (MFA), which is eventually 

deoxygenated to DMF. Depending on the catalytic system, subsequent saturation of the furanic 

ring towards 2,5-dimethyltetrahydrofuran (DMTHF) and hydrolysis towards hexane-2,5-dione 

(HD) can occur, which will be discussed in the following. 

Due to the insolubility of the nonpolar DMF in water, water is not a suitable option as a solvent 

for a kinetic investigation of this reaction. Although DMF was obtained in a preliminary 

experiment using water as the solvent, DMF accumulates inside the catalytic bed for a long time 

before being flushed out of the system as droplets, making a steady state kinetic analysis 

practically impossible. 

Therefore, ethanol is used as the solvent, which readily dissolves all involved species. 

However, as has been observed, ethanol chemically engages in several steps of the reaction, 

forming additional intermediates on parallel pathways by reacting with the oxygen-containing 

groups of the reactant and of the intermediates. In particular, the formyl groups of the furanic 

aldehydes appear to be very prone to acetalization in the presence of ethanol. Furthermore, the 

hydroxymethyl groups of the furanic alcohols can readily undergo etherification towards the 

concentration equilibrium with the ethoxymethyl group. As a result, the two parallel 

hydrogenation pathways of HMF towards DMF, observed for reactions in non-reactive solvents, 

are complemented by several side reactions, constituting a complex reaction network that involves 

formation and conversion of acetals and ethers. 

 The observed molecules are summarized and arranged into a proposed reaction scheme in 

Figure 5-10, based on GC-MS analysis of the obtained product solutions. For the sake of clarity, 



CHAPTER 5:  CATALYST PERFORMANCE  

 
72 

 

in this work the acetals of HMF, 5-MF (5-methylfurfural), and EMF (5-ethoxymethylfurfural) are 

denoted as HMF-Ac, 5-MF-Ac, and EMF-Ac, respectively. Their correct IUPAC nomenclature is 

included in Figure 5-10. 
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Figure 5-10: Proposed reaction scheme for HMF hydrodeoxygenation in ethanol, including the main hydrogenation steps 
(highlighted in grey), parallel side reactions with the solvent, and consecutive reactions of DMF. This scheme is deduced 

from GC-MS analysis. 
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In addition to the two parallel reduction pathways of HMF, highlighted by the grey diamond in 

Figure 5-10, the HMF derivatives EMF, HMF-Ac, and EMF-Ac now offer additional pathways 

for the reductive steps. The distribution of the products and intermediates is presented over space 

time in Figure 5-11 for the pelletized 21wt% Ni/CZnO catalyst (2.4 × 3.5 mm), which was 

synthesized as described in section 3. According to the procedure described in the end of section 

4.2, the high voidage between the catalyst pellets in the reactor bed was filled with ultrapure sea 

sand to prevent trickle flow of the liquid reactant solution. Despite the variety of additional 

parallel reactions, a DMF yield of 80.5% (99.0% HMF conversion) is obtained at a space time of 

2.66 h gNi gHMF
–1. 

It is noteworthy that the intermediates are present primarily as ethers and acetals (represented 

as triangles and stars in the diagrams), with only minor quantities of alcohol and aldehyde 

intermediates (represented as dots). Particularly, an initial increase of HMF-Ac is observed at 

around 0.1 h gNi gHMF
–1, followed by a prominent peak concentration of EMHMF at 0.33 h gNi 

gHMF
–1. The total mole balance of all quantified components, represented by the grey line in Figure 

5-11 (left), adds up to 96-99% of the HMF concentration in the reactant. As traces of furanic 

dimers were observed in several product samples, the missing 1-4% yield is attributed to the 

formation of humins, i.e. oligo- or polymerized furanic monomers. 

    
Figure 5-11: Effect of space time on yield in HMF hydrogenation over 21wt% Ni/C (2.4 × 3.5mm). Conditions: 0.1M HMF 

in EtOH reactant solution, 150 °C, 20 bar H2 pressure, H2:HMF 7.5:1; left: whole range of investigated space time; right: 
enlarged section for low space time 

To understand on which routes of the complex reaction network the molecules are preferentially 

formed and converted, a solution of 25 mmol L–1 HMF, 5-MF, BHMF, and MFA has been 

prepared and heated to 150 °C for 1 h without exposure to H2, both in an empty reactor and filled 

with the 21wt% Ni/C catalyst to compare the influence of the catalyst to the purely thermal effect. 
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The reason for this is that, by eliminating the possible reduction steps, the influence of 

etherification and acetalization can be investigated more clearly. 

In contrast to all catalytic reduction experiments, this screening has been conducted in batch 

mode inside a closed vessel, as in the absence of H2 polymerization was expected to occur and, 

therefore, clogging and damage of the continuous flow system would have been possible. Indeed, 

a high loss of monomers is observed in this experiment. As can be seen in Figure 5-12, the four 

reactants exhibit a loss of 2-10% and 5-40% in the blank reactor without catalyst and in the 

catalyzed system, respectively. The formed humins settled as yellowish insoluble powder on the 

catalyst surface and the reactor wall. 

 
Figure 5-12: Reaction of HMF, 5-MF, BHMF, and MFA in ethanol solution and absence of H2. Initial concentration 14 mL 

reactant solution: 25 mmol L–1 in HMF, 5-MF, BHMF, and MFA in ethanol. Conditions: 1.12 gcat (0.23 gNi), 1 h reaction 
time at 150 °C (equivalent to space time of 1.33 h gNi gHMF–1 in continuous flow hydrogenation) 

As shown in Figure 5-12 (left), a considerable fraction of HMF is converted to HMF-Ac in the 

uncatalyzed system and – to a much higher extent – in the presence of the Ni/C catalyst, whereas 

the formation of EMF and EMF-Ac remain on negligible level. This trend is in accordance with 

the observed initial increase of HMF-Ac in the hydrogenation experiment presented in Figure 

5-11, which indicates that a large fraction of HMF undergoes primary acetalization. To estimate 

the contributions of the parallel HMF conversion routes, the yields of the four possible 

consecutive intermediates 5-MF, BHMF, HMF-Ac, and EMF are compared at the lowest space 
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time measured (0.11 h gNi gHMF
–1). At low conversion, their yields 𝑌𝑌𝑖𝑖(𝜏𝜏)  are approximately 

proportional to their formation rates 𝑟𝑟𝑖𝑖
𝑓𝑓, according to the following equation: 

𝑌𝑌𝑖𝑖 = �𝑟𝑟𝑖𝑖
𝑓𝑓 d𝜏𝜏 ≈

 𝑋𝑋0≈0 
𝑟𝑟𝑖𝑖
𝑓𝑓(𝜏𝜏0) 𝜏𝜏0 ,   𝜏𝜏0 = 0.11 h gNi gHMF–1  (5.8) 

The high yield of HMF-Ac (6.5%), in comparison to the other three intermediates (2.8% total) 

listed in Table 5-1, confirms that the HMF conversion proceeds in major part via acetalization of 

HMF. It proves the dominance of the acetal formation with subsequent hydrogenolysis over initial 

reductive steps and ether formation. 

Table 5-1: Yields of four intermediates of HMF conversion over 21wt% Ni/C (2.4 × 3.5mm) at lowest space time (0.11 h gNi 
gHMF–1). Conditions: 0.1M HMF in EtOH reactant solution, 150 °C, 20 bar H2 pressure, H2:HMF 7.5:1. 

 5-MF BHMF HMF-Ac EMF 

Initial yield [%] 0.8 1.9 6.5 0.1 

According to the third diagram from the left in Figure 5-12, BHMF is inert to etherification 

towards EMHMF and BEMF. However, EMHMF exhibits a high transient yield of up to 21% in 

the hydrogenation experiment of Figure 5-11, which is therefore likely to be the result of 

hydrogenolysis of the as-formed HMF-Ac. This hypothesis is supported by the space time shift of 

the concentration maxima of the two compounds. Although traces of BEMF are observed in the 

catalytic system, it only reaches yields of ≪1% and is therefore not expected to be a major 

product of EMHMF conversion. Instead, a small share of EMHMF undergoes hydrolysis towards 

BHMF, which would explain the late increase of BHMF concentration despite the low HMF 

concentration – in addition to the initial increase due to primary carbonyl reduction of the HMF. 

Subsequent deoxygenation of the two hydroxymethyl groups of BHMF yields the product 

DMF. Alternatively, the hydroxymethyl group of EMHMF can be deoxygenated, producing 

EMMF, which is in accordance with its concentration maximum over space time slightly after 

EMHMF. In addition, EMMF can also be produced via hydrogenolysis of 5-MF-Ac, which, in 

turn, derives from HMF by acetalization of the formyl group and deoxygenation of the hydroxy 

group, passing either through 5-MF or HMF-Ac as intermediates. Subsequently, EMMF is likely 

to undergo direct hydrogenolysis towards DMF. 

To set the focus on the reductive steps of the reaction network, the derivatives of the furanic 

aldehydes and alcohols are grouped together, i.e. “HMF derivatives” (HMF-Ac, EMF, and EMF-

Ac), “5-MF + derivatives” (5-MF and 5-MF-Ac), “BHMF + derivatives” (BHMF, EMHMF, and 
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BEMF), and “MFA + derivatives” (MFA and EMMF). In Figure 5-13, the DMF selectivity and 

Ni time yield (NTY) are plotted over space time. Furthermore, the selectivity and Ni time yield of 

the intermediates as well as the two observed consecutive products DMTHF – produced by 

overhydrogenation – and hexanedione (HD) – produced by DMF hydrolysis – are included in this 

figure. 

  
Figure 5-13: Effect of space time on selectivity (left) and Ni time yield (right) in HMF hydrogenation. Conditions: 0.1M 

HMF in EtOH reactant solution, 21wt% Ni/C (2.4 × 3.5 mm), 150 °C, 20 bar H2, H2:HMF 7.5:1 

Regarding the DMF selectivity of 81.3% (99.0% HMF conversion), achieved for a long exposure 

to the catalyst of 2.66 h gNi gHMF
–1, in contrast to 2.0% selectivity for the subsequent saturation of 

the furanic ring towards DMTHF, the 21% Ni/C pellets exhibit excellent catalytic properties for 

the selective hydrodeoxygenation of HMF. Longer space times would not be beneficial as they 

favor the undesired consecutive reactions towards DMTHF and HD (5.1% at 2.66 h gNi gHMF
–1), 

which proceed slowly, but are gradually increasing over space time. The maximum Ni time yield 

obtained for DMF production is 0.51 molDMF h–1 molNi
–1 (≙0.84 gDMF h–1 gNi

–1) with 59.9% HMF 

conversion, whereas at a higher space time of 1.8 h gNi gHMF
–1, a Ni time yield of 0.21 molDMF h–1 

molNi
–1 (≙0.35 gDMF h–1 gNi

–1) is achieved with 98.2% HMF conversion and 79.4% DMF 

selectivity. 

After an induction period of ca. 5 h, the catalyst exhibits high stability in terms of HMF 

conversion within the complete operation period of 35 h time on stream (thereof 33 h monitored 

in Figure 5-14). At 150 °C, 20 bar H2 pressure, and space time of 1.33 h gNi gHMF
–1, HMF 

conversion remains relatively stable, reaching values between 95.5% and 97.3%. However, the 

DMF selectivity of 78.0% (95.9% HMF conversion) at 5 h time on stream, providing a Ni time 

yield of 0.26 molDMF h–1 molNi
–1, drops down to 66.7% (96.3% HMF conversion) within a period 

of 12 h due to inhibited conversion of BHMF and EMHMF. 
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Regarding the subsequent stabilization of the product distribution until termination of the 

experiment, the preceding decrease in conversion of “BHMF + derivative” is not attributed to a 

gradual deactivation of the active metal species, which would likely cause gradual drop in activity 

over the whole range of operation time. In fact, the trend of BHMF and EMHMF yield over time 

on stream proceeds inversely to the trend of HD yield, as can be seen in Figure 5-14 (right). As 

discussed in detail in the following paragraph, the hydrolysis of DMF to HD, on the other hand, is 

catalyzed by acids104, suggesting initial presence of acid sites on the carbon support and gradual 

deactivation of the active sites within the first 17 h of operation. 

Confirming the hypothesis of decreasing acidic properties of the catalyst surface over time on 

stream, Böhm titration reveals a loss of acid sites of the 21wt% Ni/C from 0.48 eq kg–1 to 0.43 eq 

kg–1 over 35 h of operation, as calculated and described in detail in Appendix A.2.2.8. Regarding 

the oxygen content of 10wt% that has been measured for the carbon support, the material is likely 

to possess oxygen-containing acid surface sites which are commonly found on activated 

carbon105. However, the effect of acidity is also attributed to the presence of traces of Lewis-acidic 

Zn species as residues from the preparation step of the support, in which ZnO was employed as 

the porogenic templating agent. Even though the catalyst only lost 8% of its initial acidity during 

the catalytic operation according to the Böhm titration in Appendix A.2.2.8, it is presumed that 

predominantly the more accessible Zn species underwent leaching, which led to deactivation of 

the catalyst’s acidity within the first 15 h time on stream. 

  
Figure 5-14: Time-on-stream evolution of yield and Ni space time in HMF hydrogenation. left: intermediate derivatives of 
same reduction level grouped together; right: derivatives displayed separately in enlarged diagram. Conditions: 0.1M HMF 
in EtOH reactant solution, 21wt% Ni/C (2.4 × 3.5mm), space time of 1.33 h gNi gHMF–1, 150 °C, 20 bar H2 pressure, H2:HMF 

7.5:1 

The acid sites on the surface of the carbon pellets are capable of adsorbing the furanic oxygen and 

hydrolyzing the ring via dissociative proton transfer106. This acid-catalyzed ring scission primarily 

occurs on the furanic ring of DMF where no oxygen-containing side groups are present, which 
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would preferably be adsorbed106. On this pathway, the high observed yield of hexane-2,5-dione 

(HD; up to 5.0%) is produced. However, also BHMF can undergo acid-catalyzed ring opening to 

a low extent, yielding 1-hydroxy-2,5-hexanedione107. Both hydrolysates can undergo further 

hydrogenation steps towards several C6 compounds, of which several compounds were detected in 

traces. As their formation appears only within the first few hours of time on stream and is 

therefore of little importance for the catalytic system after the initial period, those products are not 

quantified in this work, which is the reason for the incomplete mole balance during the first few 

hours, calculated by the sum of all quantified compounds (incl. the reactant) and represented by 

the grey line in Figure 5-14 (left). As for all further measurements the mole balance closes to 96-

100%, it is not shown in all other diagrams for the sake of clarity. 

In several studies on the HMF hydrodeoxygenation over several metal-based catalysts (in non-

alcoholic solvents that do not engage in parallel condensation reactions with the reactant), the 

deoxygenation of BHMF is identified as the rate determining step since the deoxygenation of the 

formyl group generally proceeds slowly, favoring the hydrogenation of HMF towards BHMF over 

the parallel branch of deoxygenation towards 5-MF. 

However, the deoxygenation of BHMF and its ethers is known to be promoted by the presence 

of acidic sites on bifunctional catalysts106,108, which explains the very low initial yield of the diol 

and its ether, as shown in Figure 5-14 (right), followed by a steady increase along advancing 

deactivation of acid sites over time on stream, and finally resulting in a period of stabilized 

concentration after the catalyst has lost its bifunctional character. As has been stated in the 

literature, Zn2+ species on the surface of activated carbon are capable of adsorbing ether and 

hydroxy groups and inducing deoxygenation reactions via hydrogen spillover in cooperation with 

adjacent metal sites, such as Pd, Ru, and Ni108,109. 

The increased conversion of the furanic alcohols and ethers with concurrent increased DMF 

yield observed in Figure 5-14 during the acidic operation period strongly support the assumption 

of acid-promoted deoxygenation of the hydroxy groups. Interestingly, the gradual decrease of 

initial acidity of the catalyst leads to a temporary maximum in DMF selectivity of 73.3% at 5-8 h 

TOS. Prior to the maximum, the acidity, which promotes the cleavage of the furanic ring of DMF 

towards HD, appears to be too strong. On the other hand, after the DMF maximum, the acidity 

drops to a level that does not effectively promote the rate determining steps of BHMF and 

EMHMF conversion anymore. This instance gives an indication that mild acidity of the catalyst 

on a controlled level can be very favorable to the reaction, while still not substantially affecting 
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the product selectivity through catalyzed consecutive hydrolysis reactions, facilitated by in situ 

formed water, according to equation (5.9). 

Furthermore, by promoting the deoxygenation of the hydroxy groups of HMF and BHMF, the 

acidic properties of the catalyst effectively turn the hydrogenation of 5-MF into the kinetically 

slower step, albeit for a very temporary period of only a few hours before the extensive 

deactivation of the acid sites. This causes an increased 5-MF yield of up to 5.8% (7.5% incl. 5-

MF-Ac) with concurrent low BHMF yield of 2.0% (4.1% incl. EMHMF), which is only 

encountered at the very beginning of the catalyst’s lifetime. 

According to the overall stoichiometric equation of HMF hydrodeoxygenation to DMF: 

HMF + 3 H2  →  DMF + 2 H2O (5.9) 

a minimum factor of 3 is needed for the molar hydrogen gas feed under stoichiometric conversion 

of HMF. However, when setting the feed stream to a H2:HMF molar ratio of only 3:1, not enough 

hydrogen is provided and the hydrogenation reaction is strongly inhibited, as can be seen in 

Figure 5-15 (right). As in the outlet of the set-up a hydrogen flow rate of almost 50%, compared 

with the inlet hydrogen flow rate, was measured, the introduced hydrogen is certainly not 

completely consumed. Accordingly, the decrease in hydrogenation activity is caused by 

insufficient chemisorption onto the active metal surface. 

Furthermore, a slightly increased concentration of acetaldehyde acetal (5.1 mmol L–1, which is 

equivalent to 5.1% of the introduced HMF concentration of 100 mmol L–1), denoted as “acetal” in 

Figure 5-15 (right), is observed in the product stream. As acetal is produced via oxidation of 

ethanol towards the aldehyde and subsequent acetalization, this indicates that, to a low extent, the 

shortage of available hydrogen triggers transfer hydrogenation with the solvent acting as a 

reducing agent. The increased 5-MF concentration and concurrent decreased BHMF concentration 

suggest that the hydrogenation of the formyl group is particularly sensitive to limited hydrogen 

supply, indicating a higher partial order in hydrogen for the carbonyl reduction. 

When increasing the hydrogen supply towards an excess factor of 1.5 (H2:HMF molar ratio of 

4.5:1) at constant space time, the reactivity is slightly improved, whereas an excess factor of at 

least 2.5 (H2:HMF = 7.5:1) is necessary for maximum activity. Regarding the constant low acetal 

concentration of 3.4 mmol L–1 under hydrogen-saturated conditions, transfer hydrogenation is not 

expected to have a strong influence on the reduction of the reactant. Since chemisorbed hydrogen 
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is sufficiently available at this point, further increase of the hydrogen flow hardly improves the 

reactivity and is therefore not necessary. 

  
Figure 5-15: Effect of H2 pressure (left) and H2:HMF molar ratio (right) on yield and Ni time yield in HMF hydrogenation. 
Conditions: 0.1M HMF in EtOH reactant solution, 21wt% Ni/C pellets (2.4 × 3.5mm), 150 °C, space time of 2.66 (left) and 

1.33 (right) h gNi gHMF–1, H2:HMF 7.5:1 (left), 20 bar H2 (right)  

Interestingly, at H2:HMF = 7.5:1, H2 pressure higher than 20 bar did not increase the reactivity, as 

shown in Figure 5-15 (left), indicating that the reaction proceeds in a partial order of 0 in 

hydrogen. Quite on the contrary, operation at 20 bar provides the highest DMF yield of 80.5% 

(99.0% HMF conversion), while operation in the range from 30 to 80 bar delivers yields on a 

stable level between 67.2% and 71.9%. It is hypothesized that this trend is caused by the increased 

hydrogen adsorption onto the metal surface at high pressure to such an extent that it is displacing 

the adsorption and reaction of the reactant and intermediates, especially of BHMF and EMHMF, 

which are more abundant at the higher pressure range. 

According to Figure 5-16, a decrease of reaction temperature inhibits the hydrogenolysis of 

HMF-Ac as well as the conversion of BHMF and EMHMF, leading to very low DMF yield of 

down to 25.6% at 110 °C for a space time of 1.33 h gNi gHMF
–1, while HMF conversion remains on 

a high level of 93.7%. 
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Figure 5-16: Effect of temperature on yield and Ni time yield in HMF hydrogenation. left: derivatives of same reduction 
level grouped together; right: derivatives displayed separately in enlarged scale of low yield. Conditions: 0.1M HMF in 
EtOH reactant solution, 21wt% Ni/C pellets (2.4 × 3.5mm), space time of 1.33 h gNi gHMF–1, 20 bar H2, H2:HMF 7.5:1 

Due to the complex reaction network and the fact that differential kinetic behavior cannot be 

observed at such high conversions, exact calculation of the intrinsic activation energy is not 

possible based on the produced results. However, a calculation of an approximate value for the 

activation energy based on an integral approach is presented in the following. This model uses the 

following simplifications: Due to the fast and almost complete consumption of HMF and HMF-

Ac, their further conversion is neglected. In addition, all side reactions apart from the two main 

branches are neglected, resulting in two separate unbranched reaction pathways of BHMF ⟶ 

MFA ⟶ DMF ⟶ DMTHF/HD on the one hand and EMHMF ⟶ EMMF ⟶ DMF ⟶ 

DMTHF/HD on the other hand, in which the consumption of BHMF and EMHMF are assumed to 

be the respective rate determining steps. To estimate the conversion of the two compounds BHMF 

and EMHMF, their yields are transformed into a model system for conversions 𝑋𝑋𝑖𝑖ℎ  of these 

compounds as “hypothetical” reactants, according to the following equations: 

𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ = 1 −
𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐   ,    𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 1 −

𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐  (5.10) 

in which the 𝑌𝑌𝑖𝑖𝑐𝑐𝑐𝑐 represent “cumulative” yields, including all intermediates and products that have 

been produced in the HMF hydrogenation experiment on either of the pathways, passing through 

BHMF or EMHMF. They can be regarded as integrated formation rates and are connected to their 

differential terms by: 

d𝑌𝑌𝑖𝑖𝑐𝑐𝑐𝑐 = 𝑟𝑟𝑖𝑖
𝑓𝑓  d𝜏𝜏 (5.11) 

The cumulative yields can be calculated by: 
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𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐 = 𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑧𝑧 ∙ (𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑌𝑌𝐻𝐻𝐻𝐻) (5.12) 

𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐 = 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + (1 − 𝑧𝑧) ∙ (𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑌𝑌𝐻𝐻𝐻𝐻) (5.13) 

where 𝑧𝑧 represents the fraction of products that have been formed on the BHMF branch. This 

factor is estimated by the ratio of present intermediates of the two pathways: 

𝑧𝑧 =
𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀

𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 (5.14) 

The transformed hypothetical conversions, shown versus temperature in Figure 5-17 (left), are 

remarkably similar for BHMF and EMHMF, suggesting that their consumption via 

hydrogenolysis involves very comparable kinetics. In order to estimate the apparent activation 

energy of the hydrogenolysis reaction, first, Arrhenius behavior of the rate coefficient is assumed: 

𝑘𝑘(𝑇𝑇) = 𝐴𝐴 𝑒𝑒−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅  (5.15) 

Rearrangement into point-slope form yields the following term for the activation energy: 

𝐸𝐸𝑎𝑎 = −𝑅𝑅
∆ ln 𝑘𝑘(𝑇𝑇)
∆(𝑇𝑇−1)  (5.16) 

As this temperature study is not conducted in the low conversion range, proportionality between 

space time and conversion cannot be implied. Instead, when assuming a partial order of 0 in 

hydrogen and 1 in the concentration of BHMF and EMHMF, respectively, the consumption rate 

can be expressed by: 

𝑟𝑟𝑖𝑖 = 𝑘𝑘𝑖𝑖(𝑇𝑇) 𝐶𝐶𝑖𝑖 = 𝑘𝑘𝑖𝑖(𝑇𝑇) 𝐶𝐶𝑖𝑖0 �1 − 𝑋𝑋𝑖𝑖ℎ� , 𝑖𝑖 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (5.17) 

in which “0” constitutes the hypothetical start of the reaction. The rate expression leads to the 

differential balance of the molar flow: 

d𝑋𝑋𝑖𝑖ℎ = 𝑘𝑘𝑖𝑖(𝑇𝑇) 𝐶𝐶𝑖𝑖0 �1 − 𝑋𝑋𝑖𝑖ℎ�
d𝑚𝑚𝑁𝑁𝑁𝑁

𝑁̇𝑁𝑖𝑖0 
 (5.18) 

Integration over space time in its common definition 𝜏𝜏 = 𝑚𝑚𝑁𝑁𝑁𝑁/𝑁̇𝑁𝑖𝑖0  along the reactor axis provides 

the following solution for the hypothetical conversion: 
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ln�
1

1 − 𝑋𝑋𝑖𝑖ℎ
� = 𝑘𝑘𝑖𝑖(𝑇𝑇) 𝐶𝐶𝑖𝑖0 𝜏𝜏 (5.19) 

Accordingly, the activation energy can be calculated from the conversion in the temperature range 

of 110 to 150 °C by linear regression from the following expression, as shown in Figure 5-17 

(right): 

𝐸𝐸𝑎𝑎,𝑖𝑖 = −𝑅𝑅 
∆ ln 𝑘𝑘𝑖𝑖(𝑇𝑇)
∆(𝑇𝑇−1) = −𝑅𝑅

∆ ln�ln� 1
1 − 𝑋𝑋𝑖𝑖ℎ

��

∆(𝑇𝑇−1)  
(5.20) 

 
Figure 5-17: Yield, cumulative yield, and hypothetical conversion of BHMF and EMHMF over temperature. Conditions 

according to Figure 5-16 

Eventually, from the linear regression, the apparent activation energy for the hydrogenolysis of 

BHMF and of EMHMF is calculated to 36.0 and 35.7 kJ mol–1, respectively. 

As has been shown, the predominant hydrogenation routes involve chemical reactions with 

ethanol, influencing the activity of the overall reaction in several ways. On the one hand, ethanol 

as a reactive solvent accelerates the consumption of HMF via acetal formation at the carbonyl 

group, while on the other hand, the ethoxy groups seem to act as protecting groups at least to 

some extent, slightly inhibiting the further reduction step. However, both the hydrogenolysis of 

the ethoxymethyl group and the deoxygenation of the hydroxymethyl group proceed slowly on a 

similar level in absence of an acid catalyst and constitute the rate determining step for the 

respective pathway. 

Interestingly, the formation of the cis isomer of DMTHF is very dominant (>95%) over the 

production of the trans isomer. This stereoselective reaction is attributed to the fact that after 
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adsorption of the planar furanic species to the metal surface and the subsequent hydrogenation 

step, the as-formed dihydrofuran ring is reactive on such a high level that the residual double bond 

residing at the metal surface is likewise saturated before the molecule can desorb and re-adsorb 

from the other side110,111. 

Although some studies suggest the possibility of an alternative pathway to the formation of 

DMTHF, involving hydrogenation of HD to hexane-2,5-diol (HDL) and further intramolecular 

condensation to DMTHF112,113, as illustrated in Figure 5-18, it is not believed to be the main cause 

of DMTHF formation in this work due to the assumed low acidity in the present catalyzed system 

after several hours of time on stream. Moreover, even though this alternative route can also 

proceed stereoselectively towards cis-DMTHF, which can cause a preferential orientation of the 

chiral centers at the hydroxy groups of HDL, the cis selectivity remains below 90%113. The extent 

of cis selectivity depends on the type of acid catalyst113, but is in any case lower than the nearly 

complete cis selectivity (<95%) observed in the present work and other works in which direct 

furanic ring saturation of DMF is reported110. 
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Figure 5-18: Possible pathways for the formation of DMTHF and hexane-2,5-diol from DMF 

According to N2 physisorption analysis, the 21wt% Ni/C catalyst exhibits hardly any change of 

the porous structure over the whole operation period of 35 h time on stream. As can be seen from 

Figure 5-19, the N2 adsorption behavior and, accordingly, the pore size distribution determined 

from QSDFT on the adsorption branch, are very congruent.  
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Figure 5-19: N2 physisorption isotherms (left) and pore size distribution (right) of the 21wt% Ni/C catalyst before reaction 

and after 35 h time on stream. Measurements conducted at 77.3 K. Calculation of pore size distribution based on QSDFT 
adsorption method on carbon with slit, cylindrical, and spherical pores. 

Furthermore, the total pore volume and surface area in the micro- to mesoporous range remained 

nearly constant, exhibiting very little decrease from 0.64 to 0.62 cm³/g and 805 to 758 m²/g, 

respectively, as summarized in Table 5-2. This is in accordance with the stable catalytic activity 

that has been observed within the whole window of operation time, as previously presented in 

Figure 5-15 (right). 

It should be mentioned that the 35 h TOS specimen for the N2 physisorption measurement 

consisted of a mixture of pellets that had previously been randomly distributed along the reactor 

axis during catalytic operation and, therefore, represent average characteristics of the used catalyst 

pellets that might exhibit gradients in their properties, as the involvement in catalytic reactions - 

and therefore the influence on potential erosion - of the material is dependent on the location 

inside the reactor. However, the unaltered porosity of the average specimen indicates that erosion 

doesn't occur anywhere in the reactor to a considerable degree. 
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Table 5-2: Nitrogen physisorption data of the 21wt% Ni/C catalyst before reaction and after 35 h time on stream of HMF 
hydrodeoxygenation reaction in EtOH.  

Sample Pore volume [cm³/g] Specific surface area [m²/g] Average 

 QSDFT adsorption BJH ads. QSDFT adsorption BET pore size 

 Micro Meso Total Total Micro Meso Total Total [nm] 

 < 2 nm 2-50nm ≤ 50nm ≲ 500nm < 2 nm 2-50nm ≤ 50nm  ≲ 500nm 

21wt% Ni/C          
   fresh 0.26 0.38 0.64 0.82 697 108 805 804 4.1 
   35 h TOS 0.24 0.38 0.62 0.76 651 107 758 757 4.0 

To examine the effect of Ni loading on the catalytic activity, in a further experiment, both Ni 

loading of the catalyst and HMF concentration of the reactant solution is reduced, compared with 

the previous experiment, to facilitate operation with similar volumetric flow rates of the reactant 

inside the reactor. In Figure 5-20, the product composition from a 0.05M HMF reactant solution is 

shown versus space time (left) and temperature (right), using a 16wt% Ni loading on the 

pelletized carbon support. Trends similar to the results over the previously presented 21wt% Ni/C 

catalyst with a 0.1M HMF solution (previously presented in Figure 5-11 for space time and Figure 

5-16 for temperature) are observed. However, particularly at lower space time, the catalytic 

system with the 21wt% Ni/C performs better in terms of product yield, whereas the results seem 

to align for high space time. 

Several aspects are assumed to contribute to the observed difference in activity, all connected 

to the dispersion of the flow of reactant solution inside the reactor. First, the voids between the 

catalyst pellets of the 21wt% Ni/C reactor were filled with sea sand (as presented in section 4.2), 

which has not been done for the 16wt% Ni/C reactor. Second, the lower reactant concentration in 

the experiment with the 16wt% Ni/C reactor (0.05 mol L–1, compared with 0.1 mol L–1 in the 

21wt% Ni/C experiment) reduces the residence time of the solution inside the reactor at the same 

space time (referring to the weight of Ni), which is assumed to amplify the effect of unreacted 

solution bypassing the catalyst pores through the void channels. In addition, it is assumed that the 

higher hydrogen gas feed in the 16wt% Ni/C experiment (H2:HMF molar ratio of 15:1, compared 

with 7.5:1 in the 21wt% Ni/C experiment) intensifies this effect by increasingly displacing the 

liquid solution and, therefore, rapidly pushing the unreacted solution through the reactor without 

providing intensive contact with the catalyst. 

In contrast, for the 21wt% Ni/C experiment, increase of the hydrogen gas feed to a H2:HMF 

molar ratio of 15:1 did not affect the product composition, compared to 7.5:1, as shown earlier in 
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Figure 5-15 (right). This instance proves the effective prevention of a trickle flow and reduction of 

axial dispersion of the solution inside the reactor by closing the large void channels of the catalyst 

bed with sand. 

 
Figure 5-20: Effect of space time (left) and temperature (right) on conversion and yield in HMF hydrogenation over 16wt% 
Ni/C catalyst pellets (2.4 × 3.5mm). Conditions: 0.05M HMF in EtOH reactant solution, 20 bar H2, H2:HMF 15:1; left: 150 
°C, compared to DMF yield over 21wt% Ni/C from 0.1M HMF solution with H2:HMF 7.5:1; right: space time of 0.77 h gNi 

gHMF–1  

The 16wt% Ni/C catalyst exhibits very high sensitivity to temperature in the conducted 

temperature study presented in Figure 5-20 (right).  Increase in temperature from 110 to 150 °C 

enhances the DMF yield from 5.0% to 54.3%, using a low space time of 0.77 h gNi gHMF
–1 and 20 

bar H2 pressure. The high concentration of the intermediate BHMF and its ether derivative 

EMHMF along with very low concentrations of 5-MF and 5-MF-Ac reveal the conversion of 

BHMF and its derivate as the kinetically limiting steps and confirm the trend previously observed 

for the 21wt% Ni/C catalyst. 

After 35 h of time on stream, the Ni loading of the catalyst with an initial loading of 21wt% Ni 

decreased to 17wt%. The 16wt% Ni/C variant undergoes a decrease in Ni loading to a similar 

degree, exhibiting 13wt% after 30 h time on stream. Accordingly, leaching of the metal particles 

is a main cause of the observed mild deactivation, provoked by the fact that Ni is slightly above 

hydrogen in the activity series of metals and is therefore prone to leaching under acidic 

conditions114. 
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Table 5-3: Ni loading of 21 and 16wt% Ni/C before and after HMF hydrogenation reaction in EtOH. a: measured by 
inductively coupled plasma (ICP) 

Sample Ni weight fractiona [wt%] 

 fresh used 

21wt% Ni/C 21.3 ±1 17.2 ±1  (35 h TOS) 

16wt% Ni/C 16.4 ±1 13.4 ±1  (30 h TOS) 

In addition, for the 21wt% Ni/C catalyst, an increase in average crystallite and particle size due to 

Ostwald ripening can be observed. With the mean crystallite size increasing from 29 to 35 nm 

over 35 h TOS of HMF hydrogenation in EtOH, as calculated from the XRD diffractogram and 

presented in Table 5-4, the diminishing metal dispersion is assumed to also contribute to the 

catalyst deactivation, albeit not to a large extent since only low decrease in activity was observed 

over the whole operation period, as previously presented in Figure 5-14. 

Table 5-4: Ni crystallite size of the 21wt% Ni/C catalyst before and after 35 h TOS of HMF hydrogenation in EtOH; a: 
determined as average value of three mean crystallite sizes calculated from the three main peaks in the XRD diffractogram 

Sample Crystallite sizea  [nm] 

21wt% Ni/C  

     fresh 29 (Ni0) 

     35 h TOS 35 (Ni0) 
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5.3 Hydrogenation of Levulinic Acid 
In this subchapter, the prepared Ni/CZnO and Pt/CZnO catalyst pellets are employed for the 

hydrogenation of LA. As the hydrogen source, both molecular hydrogen and formic acid are used. 

5.3.1 External Molecular Hydrogen 

For the direct hydrogenation of LA, hydrogen is continuously introduced into the reactant solution 

of 0.1M LA in water, providing a H2:LA molar ratio of 5:1, i.e. 5× the amount necessary for 

stoichiometric conversion of LA to GVL. To investigate the influence of temperature, the reaction 

is performed over a 2.7% Pt/C catalyst within a temperature range from 100 to 260 °C. LA 

conversion and yield and selectivity of products and intermediates are shown in Figure 5-21. 
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Figure 5-21: Effect of temperature on conversion, yield, and Pt time yield (left) as well as selectivity (right) in LA 

hydrogenation over 2.7wt% Pt/C (2.4 × 3.5mm). Conditions: 0.1M LA in H2O, space time of 0.079 h gPt gLA–1, 50 bar H2, 
H2:LA 5:1 

Excellent GVL selectivity of >94% is observed in the range of 100 to 180 °C, with a maximum of 

97.8% (95.2% LA conversion) at 160 °C, while LA conversion gradually increases from 56.6% at 

100 °C towards complete conversion (>99.9%) at 180 °C. In the regime between 140 and 180 °C, 

a plateau of both high activity and high product stability is obtained, which offers optimum 

conditions for selective GVL production in high yield. As temperatures higher than 180 °C 

facilitate consecutive reactions of the product, further increase of reaction temperature decreases 

the GVL yield. At 240 and 260 °C, the gap in the total mole balance of quantified components 

suggests that low molecular gases are formed as a result of overhydrogenation of the C5 

species115. 

The small fraction of 3-pentenoic acid (3-PEA) detected in the low temperature range of 100 to 

120 °C with lower LA conversion indicates that the formation of GVL from LA passes through γ-

hydroxyvaleric acid (GHVA) with subsequent dehydration to 3-PEA as intermediates, which is in 
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agreement to the findings of Al-Naji et al.81. As they were using supports with acid sitese (ZrO2 

and γ-Al2O3), the dehydration step was promoted81, causing concentrations of 3-PEA higher than 

it is observed in the present work over the Pt/C catalyst with very low acidity. Owing to the fact 

that throughout all experiments 3-PEA was only detected at temperatures below 120 °C, the 

assumed ring closing mechanism subsequent to the dehydration step appears to proceed promptly 

at 120 °C and higher, thus 3-PEA is a transient state of direct ring condensation of GHVA 

towards GVL rather than a stable intermediate. 

Since no traces of angelica lactones are detected at any point of the LA hydrogenation 

experiments in this work, a second possible pathway reported in the literature67 for the GVL 

formation from LA via primary ring condensation to α-angelica lactone (AAL) is expected to play 

a minor role. This is in agreement with the work of Abdelrahman et al.116, who reported that the 

presence of H2 strongly promotes the route of primary hydrogenation towards GHVA. However, 

it is hypothesized that the introduction of acid sites into the carbon support could strengthen the 

importance of this pathway by promoting the ring condensation step. Based on the obtained 

results in the present LA hydrogenation experiment, a reaction scheme is proposed in Figure 5-22, 

including the assumed consecutive reactions towards the observed byproducts that are discussed 

in the following. 
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Figure 5-22: Suggested reaction scheme of LA hydrogenation, including parallel and consecutive reactions to byproducts 
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At high temperatures, valeric acid is identified as the main consecutive product, reaching a 

selectivity of up to 30.8% at 260 °C. It is likely to be formed via hydrogenation of 2-pentenoic 

acid (2-PEA), an open-ring isomer of GVL. The presence of 2-methyltetrahydrofuran (2-MTHF) 

at 180 °C and higher suggests hydrogenation of GVL towards 1,4-pentanediol (1,4-PDO), which 

undergoes intramolecular ring condensation to 2-MTHF, as reported by Al-Shaal et al.117. These 

intermediates can be further hydrogenated to 2-pentanol, which is also observed in high 

temperatures. On the other hand, 1,4-PDO can also be reduced to 4-hydroxypentanal (4-HP), 

which undergoes decarbonylation towards 2-butanol117, observed at 240 to 260 °C. Butanone, 

which is detected in low amounts at 220 °C and above, is assumed to be formed via 

hydrodecarboxylation of levulinic acid, as formation from the GVL is unlikely due to its keto 

group. 

Since the highest GVL selectivity was observed at 160 °C, with only traces of the mentioned 

side products, the reaction at this temperature has been investigated over space time, as shown in 

Figure 5-23. With an observed maximum GVL yield of 96.4% (98.9% LA conversion), the 

optimum condition for this process is identified at a space time of 0.079 h gPt gLA
–1. 

 
Figure 5-23: Effect of space time on conversion, yield, and Pt time yield of GVL (left) as well as selectivity (right) in LA 

hydrogenation over 2.7wt% Pt/C (2.4 × 3.5mm). Conditions: 0.1M LA in H2O, 160 °C, 50 bar H2, H2:LA 5:1 

Due to the high GVL selectivity of the reaction below 180 °C, the kinetic parameters of the 

overall rate of GVL formation can be determined from the observed kinetics of LA conversion, 

with the first step of hydrogenation towards GHVA being the rate determining step. In analogy to 

the approach for the HMF hydrogenation in the previous subchapter, the activation energy is 

calculated under integral conditions from the LA conversion in the temperature range of 100 to 

170 °C by linear regression. 
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The overall rate constant is calculated by linear regression of the first 4 points over space time, 

derived from the integrated mole balance over LA: 

𝑘𝑘𝐿𝐿𝐿𝐿(160 °C) =
1

𝐶𝐶𝐿𝐿𝐿𝐿,0

∆ ln � 1
1 − 𝑋𝑋𝐿𝐿𝐿𝐿

�

∆𝜏𝜏  (5.21) 

The fitted kinetic parameters of LA consumption are summarized in Table 5-5, including the pre-

exponential factor 𝐴𝐴𝐿𝐿𝐿𝐿 that is determined from 𝑘𝑘𝐿𝐿𝐿𝐿(160 °C) and 𝐸𝐸𝑎𝑎,𝐿𝐿𝐿𝐿 by substitution. 

Table 5-5: Arrhenius parameters fitted to the observed kinetics of LA consumption. Conditions as specified in Figure 5-23. 

𝒌𝒌𝑳𝑳𝑳𝑳(𝟏𝟏𝟏𝟏𝟏𝟏 °𝐂𝐂) 𝑬𝑬𝒂𝒂,𝑳𝑳𝑳𝑳 𝑨𝑨𝑳𝑳𝑳𝑳 

4.797
L

h gPt
 36.95

kJ
mol

 1.37 ∙ 10−5
L

h gPt
 

The determined value of the apparent activation energy for the rate determining step is consistent 

with values reported in the literature. An activation energy of 39 kJ mol–1 has been reported by 

Likozar and Grilc for the rate determining step of LA HDO over NiMoSx/Al2O3
118. For the 

competitive primary conversion of LA via decarboxylation towards butanone, a value several 

times higher (134 kJ mol–1) has been determined by Likozar and Grilc118. The high activation 

energy causes the high acceleration of LA decarboxylation over temperature and the sharp drop in 

GVL selectivity in the high temperature regime above 220 °C, presented in Figure 5-21 (left), 

which is highly consistent to the trends reported Likozar and Grilc118. 

Based on these parameters, LA conversion can be determined from the integrated mole 

balance, while the total Pt time yield can be considered the integral (“mean”) LA consumption 

rate: 

𝑃𝑃𝑃𝑃𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡(𝜏𝜏) =
1
𝜏𝜏𝑁𝑁
� 𝑟𝑟𝐿𝐿𝐿𝐿𝑐𝑐
𝜏𝜏

0
 d𝜏𝜏𝑁𝑁 =

𝑋𝑋
𝜏𝜏𝑁𝑁

 (5.22) 

Here, the molar definitions of 𝑃𝑃𝑃𝑃𝑃𝑃  and 𝑟𝑟  are used for LA consumption and GVL formation, 

instead of weight-specific definitions, in order to be able to plot them in the same graph without 

“stretching” distortion due to the different molar masses of LA and GVL. As can be seen from 

Figure 5-24, the fitted kinetic model well describes the observed trend of LA consumption and 

GVL production. 
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Figure 5-24: Measurements and fitted kinetic model for conversion, GVL yield, and Pt time yield in the LA hydrogenation 
over 2.7wt% Pt/C (2.4 × 3.5mm). Effect of temperature (left) and space time (right). Conditions: 0.1M LA in H2O, 50 bar 

H2, H2:LA 5:1, space time of 0.079 h gPt gLA–1 (left), 160 °C (right)  

5.3.2 Formic Acid as Hydrogen Source 

As an alternative to molecular external hydrogen, formic acid (FA) is used in the following as the 

reducing agent under conditions equivalent to those in the previous subchapter, using the same 

type of catalyst (2.7wt% Pt/C). As can be seen in Figure 5-25 (right), excellent GVL selectivity of 

>96% is obtained in the temperature range from 180 to 240 °C, with a maximum of 99.0% (48.6% 

LA conversion) at 210 °C and a similar value of 98.7% (65.3% LA conversion) at 220 °C. This 

even outperforms the H2-assisted LA hydrogenation process (97.9% GVL selectivity, as reported 

in section 5.3.1). 
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Figure 5-25: Effect of temperature on conversion, yield, and Pt time yield of main products (left) as well as selectivity 

(right) in LA hydrogenation over 2.7wt% Pt/C (2.4 × 3.5mm). Conditions: 50 bar, 0.1M LA and 0.5M FA in H2O reactant 
solution (FA:LA 5:1), space time of 0.079 h gPt gLA–1; left: compared with H2-assisted hydrogenation conducted under the 

same conditions (50 bar H2; H2:LA 5:1) 

Despite the outstanding selectivity, the overall activity is decreased, as compared to the H2 

system. To reach similar levels of activity at equal space time, temperature increase of ca. +110 
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°C would be necessary. In the very high temperature regime above 240 °C, consecutive reduction 

steps – predominantly towards valeric acid – diminish the GVL yield. 

Therefore, the GVL yield can be enhanced by increasing the space time at lower temperature 

of 220 °C, where GVL is still highly resistant to consecutive hydrogenation. As can be seen from 

Figure 5-26, even very long contact times with the catalyst hardly increase the formation of 

byproducts at 220 °C. Maximum GVL yield of 92.6% (97.7% LA conversion) was provided at a 

high space time of 0.158 h gPt gLA
–1. This is identified as the optimum condition for this catalytic 

system, albeit the maximum Pt time yield of 16.9 molGVL h–1 molPt
–1 (≙8.7 gGVL h–1 gPt

–1) is 

obtained in the low conversion regime, as shown in Figure 5-26 (left). 

 
Figure 5-26: Effect of space time on conversion, yield, and Pt time yield of main products (left) and selectivity (right) in LA 
hydrogenation over 2.7wt% Pt/C (2.4 × 3.5mm). Conditions: 220 °C, 50 bar, 0.1M LA and 0.5M FA in H2O reactant solution 

(FA:LA 5:1) 

Despite the lower GVL selectivity, the activity of the rate limiting step is strongly enhanced when 

increasing the temperature by 40 K to 260 °C. However, low space times provide high Pt time 

yield of up to 54.2 molGVL h–1 molPt
–1 (≙27.8 gGVL h–1 gPt

–1) with excellent selectivity of 97.8% 

due to the short exposure of the as-formed GVL to the catalyst, as can be seen in Figure 5-27. 

Increase of space time towards higher LA conversion strengthens the gradually increasing 

formation of valeric acid at 260 °C, which diminishes the GVL yield to a maximum of 85.9% 

(92.1% LA conversion), obtained for a space time of 0.039 h gPt gLA
–1. 
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Figure 5-27: Effect of space time on conversion, yield, and Pt time yield of main products (left) and selectivity (right) in LA 
hydrogenation over 2.7wt% Pt/C (2.4 × 3.5mm). Conditions: 260 °C, 50 bar, 0.1M LA and 0.5M FA in H2O reactant solution 

(FA:LA 5:1) 

Despite the efforts to maximize the selectivity towards GVL by inhibiting consecutive reactions, 

valeric acid could be a valuable product, with possible application of its methyl and ethyl esters as 

flavors in the food industry or as high quality biofuels119. As shown in Figure 5-27 (left and right), 

high yield (42.6%) and selectivity (43.2%) of valeric acid is obtained even at the highest space 

time of 0.158 h gPt gLA
–1, with side products amounting to only 1.0%. Further increase of 

temperature or space time is expected to further enhance the obtained yield of valeric acid, which 

would be interesting for future investigation targeted at the selective hydrogenation of LA towards 

valeric acid. 

Increase in valeric acid yield has also been observed at operation pressures below the vapor 

pressure of the solvent. As can be seen in Figure 5-28 (left), lowering the pressure from 30 to 10 

bar increases the valeric acid yield from 0.4% to 13.2% for the 2.7wt% Pt/C, which therefore 

results in diminished GVL yield. 

Partly, this trend can be attributed to the fact that, due to vaporization of H2O in the preheating 

unit and the reactor, the high boiling point components reside in the system for a longer time in a 

concentrated liquid phase. This hypothesis is supported by the fact that LA conversion is slightly 

increased as well. However, extended residence time alone would not explain the promotion of 

the consecutive hydrogenation to such an extent, since increase of space time towards almost full 

LA conversion hardly promotes the formation of valeric acid at 220 °C, as has been shown earlier 

in Figure 5-26. 

Therefore, it is hypothesized that the accumulation of GVL could exceed the saturation in the 

liquid phase, which consists of primarily H2O and LA. This phenomenon might cause dissolution 
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of GVL into a second, less volatile liquid phase that resides on the catalyst surface, intensifying 

the contact of GVL with the active sites, while displacing the LA-rich aqueous phase from the 

catalyst surface. However, to prove this hypothesis by evidence, further investigation is necessary. 

At the same temperature of 220 °C, the catalyst with a lower Pt loading of 0.8wt% exhibits 

higher selectivity towards valeric acid than the 2.7wt% catalyst. It is assumed that the observed 

difference in terms of selectivity towards valeric acid is mainly due to temperature fluctuations 

inside the reactor. As can be seen on the right side of Figure 5-28, the formation of valeric acid 

over 0.8wt% Pt/C is highly sensitive to temperature in the range of 210 and 220 °C. Due to the 

lower loading with active metal, lower reactant flow rates are used in order to facilitate space 

times comparable to those over the catalyst with the higher loading of 2.7wt%. This could 

possibly cause local temperature gradients of a few K inside the reactor, allowing for the 

formation of valeric acid in thermal “hot spots” of the catalytic bed, which could lead to a higher 

yield, compared with true isothermal conditions. Operation at around or above the boiling point of 

the solvent could amplify such gradients as the axial thermal conductivity inside the reactor bed is 

diminished. 
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Figure 5-28: Effect of pressure (left) and temperature (right) on conversion, yield, and Pt time yield of main products in LA 
hydrogenation over 0.8wt% Pt/C (space time of 0.048 h gPt gLA–1). left: compared with 2.7wt% Pt/C (space time of 0.079 h 

gPt gLA–1). Conditions: 0.1M LA and 0.5M FA in H2O reactant solution (FA:LA 5:1), 220 °C (left), 20 bar (right)  

Due to the higher tendency to form valeric acid, lower maximum yields of GVL are achieved with 

the 0.8wt% Pt pellets (75.3% at 30 bar, 220 °C), as compared to the previously reported 92.6% for 

the 2.7wt% Pt catalyst. However, the overall activity with respect to the weight of active metal is 

strongly increased, as can be seen by the higher slope of LA conversion vs. space time (with 

respect to the Pt weight) on the left side of Figure 5-29. This effect is likely to be caused by the 

higher dispersion of Pt on the support for lower loadings and – therefore higher surface area of the 

active metal, relative to its weight. Thus for the GVL production, increased time yield (with 
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respect to the total Pt weight) is obtained, reaching up to 51.6 molGVL molPt
–1 h–1 (26.5 gGVL gPt

–1 

h–1) at 220 °C and 20 bar with GVL selectivity of up to 97.9% in the low conversion regime, as 

compared to the previously reported 16.9 molGVL h–1 molPt
–1 for 2.7wt% Pt/C at 220 °C and 50 

bar. 

  
Figure 5-29: Effect of space time on conversion and yield (left) as well as selectivity and Pt time yield (right) of main 

products in LA hydrogenation over 0.8wt% Pt/C. left: compared with 2.7wt% Pt/C. Conditions: 0.1M LA and 0.5M FA in 
H2O reactant solution (FA:LA 5:1), 220 °C, 20 bar 

Similar influence of Pt particle size on the catalytic performance is observed for the Pt/C variant 

with only 0.5wt% Pt. Comparison with the 2.7wt% catalyst at 260 °C and 50 bar over space time 

(with respect to the total weight of Pt) shows improved activity due to the higher Pt dispersion, 

reaching an Pt time yield of up to 113.7 molGVL molPt
–1 h–1 (≙58.3 gGVL gPt

–1 h–1), as shown in 

Figure 5-30 (right). Furthermore, the formation of valeric acid is highly favored over the 0.5wt% 

catalyst. 

  
Figure 5-30: Effect of space time on conversion and yield (left) as well as selectivity and Pt time yield (right) of main 

products in LA hydrogenation over 0.5wt% Pt/C. left: compared with 2.7wt% Pt/C. Conditions: 0.1M LA and 0.5M FA in 
H2O reactant solution (FA:LA 5:1), 260 °C, 50 bar 
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The prepared and tested Pt/C materials prove to be highly stable in the FA-assisted LA 

hydrogenation, despite the harsh reaction conditions of temperatures up to 260 and 280 °C in 

acidic medium. As can be seen in Figure 5-31, the 2.7wt% Pt/C provides decent stability over 23 

h of time on stream, with stable high LA conversion at 260 °C, dropping from 97.2% at 3 h TOS 

to 96.6% at 22 h TOS. 
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Figure 5-31: Time on stream evolution for conversion, yield, and Pt time yield for main products in LA hydrogenation over 

2.7wt% Pt/C (2.4 × 3.5mm). Conditions, 0.1M LA and 0.5M FA in H2O reactant solution (FA:LA 5:1), space time of 0.079 h 
gPt gLA–1, 50 bar 

The consecutive hydrogenation towards valeric acid at 260 °C, as well as the LA conversion at 

220 °C, exhibit a distinct drop in activity in a window between ca. 14 h and 19 h time on stream, 

whereas before and after this period of increased deactivation the catalyst provides higher 

stability. As during the intermediate phase of deactivation, the pressure was varied between 10 

and 80 bar, it is concluded that extremely high and low pressures are detrimental to the stability 

and should be avoided for the sake of a longer lifetime of the Pt/C catalysts. 

In addition to the prepared Pt/C catalysts, several pelletized Ni/C variants are tested in the FA-

assisted hydrogenation of LA in aqueous reactant solution. In Figure 5-32, LA conversion and 

GVL yield are plotted against space time (with respect to the total weight of Ni) for the three 

different metal loadings 5, 21, and 29wt%. 



 5.3  HYDROGENATION OF LEVULINIC ACID     

 
99 

 

 
Figure 5-32: Effect of space time on conversion and yield (left) as well as Ni time yield (right) of main products in LA 

hydrogenation over 5wt%, 21wt%, and 29wt% Ni/C. Conditions: 0.1M LA and 0.5M FA in H2O reactant solution (FA:LA 
5:1), 220 °C, 20 bar 

Interestingly, of the three materials, the 21wt% Ni/C provides the highest level of activity with 

respect to the Ni weight. At 220 °C, a maximum Ni time yield of 0.35 molGVL molNi
–1 h–1 (≙0.21 

gGVL gNi
–1 h–1) was obtained for the 21wt% Ni/C, whereas the 29wt% Ni/C only provides a level 

of up to 0.13 molGVL molNi
–1 h–1 (≙0.08 gGVL gNi

–1 h–1). This can be attributed to the higher 

dispersion of the metal, compared with the 29wt% catalyst. Furthermore, in view of the decreased 

pore volume of the 29wt% catalyst of 0.55 cm³/g, compared to 0.74 cm³/g for the support, as 

presented in section 3.2, it is hypothesized that the high amount of Ni blocks the entrances of 

pores, thus making sections of the porous network inaccessible for the reactant or limiting the 

diffusion through the pores to a considerable extent. The 5wt% catalyst, however, which is 

assumed to exhibit the highest Ni dispersion, provides activity on such a low level that it becomes 

unfeasible for the catalytic application because the retention time of the liquid inside the catalytic 

bed (and the preheating system) needs to be increased to more than 1 h. Due to the long exposure 

to high temperature, competing thermal decomposition of the reactant diminishes the GVL 

selectivity to only ca. 50%. 

At 260 °C, no significant change of activity is observed apart from the additional formation of 

a low amount of valeric acid, compared with 220 °C, as can be seen in Figure 5-33. However, 

especially at high temperature, exposure of the Ni/C catalysts to acidic aqueous solution causes 

fast deactivation. 
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Figure 5-33: Effect of space time (left) and temperature (right) on conversion and yield of main products in LA 

hydrogenation over 21wt% Ni/C. right: compared with 29wt% Ni/C. Conditions: 0.1M LA and 0.5M FA in H2O reactant 
solution (FA:LA 5:1), 260 °C, 50 (left) and 40 (right) bar; right: space time of 1.21 (1.67) h gNi gLA–1 for 21wt% (29wt%) 

Ni/C 

This deactivation process is even strongly accelerated at constant operation temperature of 260 

°C, as can be seen from Figure 5-34 (right), compared with 220 °C (Figure 5-34 left and middle). 

Although in this work, promising catalytic behavior in the LA hydrogenation reaction has been 

observed for the 21wt% Ni/C catalyst, its use in a continuous flow system with aqueous reactant 

solution is not recommended due to the fast deactivation process even at the milder condition of 

220 °C. However, as the 21wt% Ni/C showed decent reactivity and stability in the HMF 

hydrogenation, using ethanol as the solvent, its performance in the LA hydrogenation reaction 

will be studied in further investigations, using ethanol and other non-hazardous bioderived 

solvents instead of water. 

       
Figure 5-34: Time on stream evolution of conversion and GVL yield in LA hydrogenation over 21wt% and 29wt% Ni/C at 
220 and 260 °C. Conditions: 0.1M LA and 0.5M FA in H2O reactant solution (FA:LA 5:1), space time of 1.21 (left, right) 

and 1.67 (middle) h gNi gLA–1, 40 bar (left, middle) and 50 bar (right) 
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As can be seen in Figure 5-35 from the TEM images and particle size distribution of the used 

21wt% Ni/C, the catalyst pellets exhibit no considerable change of Ni nanoparticles size over 15 h 

time on stream of LA hydrogenation in water. 

    
Figure 5-35: TEM images (left, middle) and Ni particle size distribution (right) of the (originally) 21wt% Ni/C pellets after 

15 h time on stream of LA hydrogenation in water; right: compared with fresh catalyst before reaction  

Ostwald ripening is not observed, as can be inferred from the constant mean particle size (26 – 27 

nm) and nearly constant crystallite size (28 – 29 nm), measured by TEM and XRD (Figure 5-36), 

respectively, and summarized in Table 5-6. Therefore, the main deactivation processes are 

expected to be the leaching and fouling of the nanoparticles. Indeed, the Ni loading decreased 

considerably from the original 21wt% to 16wt%, as measured by ICP. 

Table 5-6: Analysis of Ni nanoparticle and crystallite size of the 21wt% Ni/C catalyst before and after 15 h time on stream of 
LA hydrogenation in water; a: determined from particle size distribution on TEM images; b: determined as average value of 

three mean crystallite sizes calculated from the three main peaks in the XRD diffractogram; c: measured by inductively 
coupled plasma (ICP) 

Sample Mean particle sizea  [nm] Crystallite sizeb [nm] Ni loadingc [wt%] 

 Surface-weighted Sauter   

21wt% Ni/C     

    fresh 27 38 29 (Ni0) 21.3 ±1 

    15 h TOS 26 39 28 (Ni0) 16.4 ±1 

    “21wt%” Ni/C (15h TOS)       50 nm “21wt%” Ni/C (15h TOS)       20 nm 
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Figure 5-36: XRD diffractograms of the 21wt% Ni/C catalyst before and after 15 h time on stream of LA hydrogenation in 

water 
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6 
6 CONCLUSION AND OUTLOOK 

Upgrading of bioderived carbohydrates towards valuable chemicals, fuels, and polymers is one of 

the most promising fields of biorefinery. It will play an essential part in the shift from the 

conventional industry, which is entirely dependent on the use of fossil resources, towards a more 

sustainable industry that utilizes abundant renewable resources and provides products with a 

closed carbon cycle and – ideally – carbon neutrality. 

Despite the bright opportunities, the implementation of efficient valorization schemes remains 

a big challenge. Only extensive research will facilitate high product yields at low economic and 

environmental costs. One of the most important aspects is to develop suitable catalytic processes 

and multiprocess systems that allow for continuous large-scale production of biobased products. 

This includes the development of suitable catalysts and suitable reaction systems, as well as the 

effectiveness of the combination of these two aspects, since the performance of a catalyst also 

depends on the process environment. 

 The present research ties in with this concept by developing a novel synthesis procedure of 

pelletized, highly active hydrogenation catalysts, aimed at the utilization at industrial scale. The 

methodology was developed in an iterative procedure of material synthesis and simultaneous 

performance tests in the two applications for the production of valuable platform molecules: The 

hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) and the 

hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL). 
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Owing to this direct performance feedback, the synthesis of the extruded porous carbon 

support pellets was enhanced in many cycles for the use in continuous flow reactors. The final 

synthesis procedure is simple and capable of scaled-up catalyst production with only basic and 

cheap technical equipment, using durum semolina as the carbon source and ZnO nanopowder as 

the porogenic templating agent. The prepared carbon support extrudates exhibit a hierarchical 

pore structure with very high surface area of 756 m2 g–1 and very large mesopore volume of 0.49 

cm3 g–1 (QSDFT N2 adsorption). This is a major advancement for the research on carbon-

supported catalysts, as usually carbon supports with such a high porosity are developed as 

powders instead of firm pellets. Employing these high-performance materials in packed-bed 

reactors for continuous-flow operation opens a new window of engineering possibilities, such as 

process integration of several valorization steps. 

To facilitate precise catalytic performance tests for the synthesized catalysts under varied 

conditions and different reactor dimensions, a tunable continuous-flow set-up has been built, 

which can accommodate flow reactors in the milliliter to liter scale and can be operated safely at 

up to 290 bar or up to 450 °C. Owing to several individually controlled heating sections, 

isothermal conditions inside the reactor can be ensured.  

For the HMF hydrodeoxygenation in EtOH, the synthesized 21wt% Ni/C catalyst provided a 

DMF yield of up to 80.5% (99.0% HMF conversion) at 150 °C, 20 bar of H2, H2:HMF ratio of 

7.5:1 and space time of 2.66  h gNi gHMF
–1. The catalyst exhibited high stability during the total 

operation period, with a slight drop of DMF yield from 67.3% at 2 h to 63.7% at 33 h time on 

stream (space time of 1.33 h gNi gHMF
–1). 

Using a 2.7wt% Pt/C catalyst for the LA hydrogenation in water, extraordinary GVL 

selectivity of up to 97.9% (95.2% LA conversion) was obtained (160 °C, 50 bar of H2, H2:LA 

ratio of 5:1, space time of 0.053 h gPt gLA
–1). By extending the space time to 0.079 h gPt gLA

–1, the 

GVL yield was enhanced to 96.4% (98.9% LA conversion) with a Pt time yield of 20.5 molGVL h–1 

molPt
–1. At lower space time of 0.020 h gPt gLA

–1, Pt time yield of 54.7 molGVL h–1 molPt
–1 (66.2% 

LA conversion) was obtained. 

In order to establish a process that is based on 100% bioderived feedstock, formic acid (FA) 

has been employed as an alternative, renewable hydrogen source instead of molecular hydrogen. 

Using the same type of 2.7wt% Pt/C catalyst as for the H2-assisted process, a GVL yield of 92.6% 

(97.7% LA conversion) was achieved at a high space time of 0.158 h gPt gLA
–1 (220 °C, 50 bar, 

FA:LA ratio of 5:1). Although FA naturally exhibits lower reactivity than molecular H2, similar 
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trends of activity and selectivity were observed at temperatures 110 K higher than the reference 

points of the H2-assisted process. In terms of GVL selectivity, the FA-assisted process even 

outperformed the H2-assisted process with up to 99.0% (51.4% LA conversion) at 210 °C, 50 bar, 

FA:LA ratio of 5:1, and space time of 0.079 h gPt gLA
–1. 

To cover the entire valorization scheme from sugars towards the desired hydrogenation 

products DMF and GVL, preliminary results on the catalytic performance of glucose and fructose 

conversion towards HMF and LA have been conducted. For the base-catalyzed isomerization of 

0.1M glucose in water, 49.0% fructose selectivity with traces of mannose (35.8% glucose 

conversion) was obtained over 10ZrO2-90Al2O3 pellets at 125 °C. The acid-catalyzed dehydration 

of 0.1M fructose in water at 150 °C provided HMF selectivity of 50.4% (42.3% fructose 

conversion). Including the valuable consecutive products LA (20.7%) and FA (13.4%), a total 

carbon-based product selectivity of 84.5% was reached at this point. 

In addition to the remarkable GVL selectivity in the presented LA hydrogenation processes, 

the fact that LA itself is produced via hydrolysis of HMF towards LA and FA demonstrates the 

potential of a process that integrates the acid-catalyzed hydrolysis of HMF into the subsequent 

metal-catalyzed hydrogenation of LA and employs in situ produced FA as the hydrogen source. 

Since this process integration prevents the necessity for a separation step of the equimolar product 

mixture of the two acids and, in addition, is a self-sufficient process without external hydrogen 

feed, it is assumed to have a high impact on the cost-efficiency and sustainability of the overall 

process. Therefore, it is recommended to investigate such a bicatalytic process as a future work 

based on the results of this research. 

In conclusion, the present work developed a methodology for the synthesis of hydrogenation 

catalysts in a mature stage, combined with a broad screening of their catalytic performance in the 

hydrogenation of HMF and LA within a wide condition matrix. The high activity and selectivity 

of the catalysts observed for the two hydrogenation processes show great promise for future 

application at industrial scale. Nevertheless, in order to establish a complete mapping of the 

catalytic behavior, it is recommended to complement the present results with further investigation, 

particularly on the catalyst stability, deactivation mechanisms, and recyclability. In addition, 

further investigation is recommended into strategies of heteroatom-doping, such as nitrogen-

doping, and their effect on the interactions of the support with the metal. 

For many other biorefining schemes, hydrodeoxygenation steps also play a crucial role to 

reduce the high oxygen content of lignocellulosic and other types of biomass. For this reason, the 
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utilization of the synthesized catalysts will be expanded in future work to other hydrogenation 

applications. In particular, the catalysts have been tested in lignin depolymerization applications, 

which will be intensified in further investigation. To fit larger molecules such as lignin, the 

methodology can be easily tuned towards larger pores, just by varying the size distribution of the 

ZnO particles that are used as the templating agent. Furthermore, the prepared Ni/C catalysts have 

been tested in the hydrogenation of glucose towards sorbitol, which is, along with LA, ranked one 

of the twelve top value-added biobased chemicals that – according to the U.S. Department of 

Energy – constitute the most important building blocks for an extensive biorefining industry5. 

  



 

 
107 

 

A 
A MATERIALS AND METHODS 

A.1 Chemicals and Materials 
The following chemicals and materials were acquired from Sigma-Aldrich/Merck: Zinc chloride 

(ACS, 98%), tetraamineplatinum(II) nitrate (99.995% trace metal basis), hexaamineruthenium(III) 

chloride (98%), urea (99%), D-glucose (99%), D-fructose (99%), D-mannose (99%), D-

galactonse (99%), glycolic acid (99%), levoglucosan (99%), D-sorbitol (98%), δ-gluconolactone 

(99%), levulinic acid (98%), formic acid (98%), microcrystalline cellulose (20 µm, 99%), γ-

valerolactone (98%, FCC, FG) α-angelica lactone (98%), 2,5-hexanedione (98%), 3-pentenoic 

acid (95%; 90% in trans-form), trans-2-pentenoic acid (98%), 5-methylfurfuryl alcohol (98%), 5-

ethoxymethylfurfural (97%), 2,5-dimethyltetrahydrofuran (mixture of cis and trans, 96%), 2,5-

dimethylfuran (99%), ethyl levulinate (99%), acetaldehyde diethyl acetal (99%), DL-

glyceraldehyde (90%), ethyl valerate (99%), Amberlyst-15 (hydrogen form, dry), sea sand (extra 

pure). 

Zinc oxide powder (99.5%) with 20 nm average particle size was purchased from 

Nanostructured & Amorphous Materials, Inc. (USA). Ethanol (absolute, ACS, AnaloR 

NORMAPUR), hydrochloric acid (1M in water) and sodium hydroxide (1M in water) was 

provided by VWR BDH Chemicals. 5-Hydroxymethylfurfural was provided by AVA Biochem 

BSL AG (Switzerland; 99%) and Toronto Research Chemicals (Canada; 99%). Valeric acid 

(99%) and lactic acid (ACS, 85.0-90.0% aq. soln.) was purchased from Alfa-Aesar. Nickel(II) 

nitrate hexahydrate (99%), urea (99.5%) and acetic acid (ROTIPURAN 100%) was provided by 
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Roth. Butanone (99.7%, for HPLC) and another bottle of 2,5-dimethylfuran (99%) was bought 

from Acros Organics. The silica-alumina extrudates SIRALOX 20 HPV (20% Al2O3, 80% SiO2, 

1.7 mm diameter) and the alumina-zirconia extrudates PURALOX Zr10 (90% Al2O3, 10% ZrO2, 

1.6 mm diameter) were bought from Sasol. D-Cellobiose (95%) was acquired from Apollo 

Scientific. Polystyrene sulfonate (“PSS”, 1-5mm) was provided by AppliChrom. Ultrapure Milli-

Q water was used as solvent. Red sea salt was acquired as an aquarium accessory from Amazon. 

Italian durum semolina (Divella semola di grano duro, rimacinata) was obtained from Il Tortellino 

d’Oro, an Italian restaurant in Berlin. Gluten has been purchased from L-carb-Shop 

(“Weizenkleber”, < 8% moisture, mesh +50). 

A.2 Applied Methods 

A.2.1 Product Analysis Methods 

A.2.1.1 Gas Chromatography (GC) 

The liquid product samples were examined, using an Agilent Technologies 5975 gas 

chromatograph, equipped with a flame ionization detector (FID) and connected to mass 

spectrometry (MS) detector (Agilent Technologies MSD 5975). The MS is connected to a USP 

phase G27 column (Agilent Technologies J&W HP-5MS ultra inert column with 30 m length, 

0.250 mm diameter, 0.25µm film, consisting of (5%-phenyl)-methylpolysiloxane), while the FID 

is connected to a wax phase column (Restek Stabilwax-MS column with 30 m length, 0.250 mm 

diameter, 0.25µm film). For both operation modes, the following heating programs was applied: 

isothermal phase of 2 min at 50 °C, heating phase with 30 K/min heating rate to 250 °C, 

isothermal phase at 250 °C of variable duration (depending on the retention time of the of the 

substrates in the respective column). The injection volume was varied between 0.2 and 5 µL and 

the split ratio was set to values between 1:10 and 1:250. The product composition has been 

identified by MS and quantified by FID, using calibration curves obtained from prepared 

reference solutions. Even though at first, external and internal standards (such as dioctyl ether) 

were used for the quantification, they were not used in the final experiments, as the variance of 

concentrations determined without external standards was constantly below 1% of the total 

concentration and could not be enhanced by the use of standards. 

A.2.1.2 High Performance Liquid Chromatography (HPLC) 

Sugar-containing product samples were analyzed by an HPLC system (Agilent Technologies 1200 

series) equipped with a Rezex ROA-Organic Acid H+ column (8% crosslinked sulfonated styrene-
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divinylbenzene, 300 mm length, 7.8 mm diameter) and connected to a refractive index detector 

(RID) and diode array detector (DAD). As the mobile phase, isocratic 0.1vol.% formic acid in 

water was used with a flow of 0.35 to 0.5 mL/min, depending on the necessary separation 

performance of the substrates. The analysis was conducted at 75 °C, using injection volumes 

between 2 and 10 µL, depending on the necessary separation performance and resolution. For the 

DAD, both the UV lamp and visible light lamp are used and the spectrum is recorded in the range 

of 190 to 400 nm. 

A.2.2 Characterization Methods 

A.2.2.1 Nitrogen Physisorption 

Nitrogen physisorption of the degassed (150 °C for 20 h) samples was conducted on a 

Quantachrome Autosorb-1 at 77 K. The recorded data was analyzed with the QuantaChrome 

QuadraWin software, using the following theories: BET (Brunauer–Emmett–Teller), BJH 

(Barrett–Joyner–Halenda), QSDFT (Quenched Solid Density Functional Theory), and NLDFT 

(Non-linear Density Functional Theory). For the QSDFT analysis of the carbon supports and 

carbon-supported catalysts analysis, a model with mixed slit, cylindrical, and spherical pores has 

been applied on the adsorption branch, using a moving point average of 5. 

A.2.2.2 X-Ray Powder Diffraction (XRD) 

XRD measurements were conducted on a Bruker D8 diffractometer with the characteristic Kα 

radiation of Cu (1.54 Å). The reference patterns are acquired from the ICDD PDF-4+ database 

(2017 and 2018 edition). 

A.2.2.3 Scanning Electron Microscopy (SEM) 

After Au/Pd sputtering of the non-conductive samples, SEM images were taken using a LEO 

1550-Gemini system with an electron acceleration voltage of 3.00 kV. 

A.2.2.4 Transmission Electron Microscopy (TEM) 

TEM images were obtained using a Zeiss EM 912 Ω microscope with an acceleration voltage of 

120 kV. The electron beam is produced from a tungsten filament. The particle size of the observed 

metal nanoparticles are measured manually, using Fiji ImageJ. 

A.2.2.5 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

For the detection and quantification of metals and phosphorus content, ICP-OES is applied. For 

this, a ground specimen of ca. 10-20 mg is added to 500 µL of aqua regia (333 µL fuming HCl + 
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167 µL fuming HNO3) and left overnight for digestion, followed by dilution of factor 8. The 

plasma is generated by argon heated by a Tesla coil to 7000 K. 

A.2.2.6 Combustion Elemental Analysis (EA) 

For the determination of C, H, and N content of the materials, combustion elemental analysis was 

performed on a Vario Micro setup.  

A.2.2.7 Thermogravimetric Analysis (TGA) 

TGA was carried out using a Netzsch TG209-F1 Libra with a heating rate of 10 K min–1 in N2. 

A.2.2.8 Böhm Titration 

The density of acid sites on the surface of the solid acid materials was determined by Böhm 

titration. For this, 50-200 mg (depending on the expected acidity) of material has been added to 

10mL of 0.05M NaOH solution. After stirring overnight, the suspension was filtered through a 0.2 

µm PP syringe filter to retain the solid material. 8 mL of the clear solution with excess of basic 

sites has been used as the analyte. A 0.05M HCl titrant has been added stepwise to the solution, 

while monitoring the pH with a WTW SenTix 61 KCl electrode connected to a WTW MultiLab 

540 device. 

On the crosslinked polystyrene sulfonate acquired from AppliChrom, Böhm titration was 

performed after washing the material for 2 h in H2O and drying at 60 °C overnight. The resulting 

curve is shown in the following Figure. 

 
Figure A-1: Böhm titration of the polystyrene sulfonate (PSS). Analyte: 51.62 mg of material in 10mL 0.05M NaOH 

solution, stirred overnight, thereof 8 mL filtered through 0.2 µm PP syringe filter. Equivalence point reached at 5.338 mL of 
0.05M HCl titrated. 
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According to the following equation, the concentration of solid acid functionalities on the catalyst 

𝐶𝐶𝑆𝑆𝑆𝑆 can be measured at this point, which is reached after adding 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡
𝑒𝑒𝑒𝑒 = 5.338 mL of titrant to the 

solution. 

𝐶𝐶𝑆𝑆𝑆𝑆 =
𝑁𝑁𝑆𝑆𝑆𝑆

𝑚𝑚cat
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
𝑉𝑉NaOH

=
[NaOH]0 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 − [HCl] 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

𝑒𝑒𝑒𝑒

𝑚𝑚cat
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
𝑉𝑉NaOH

=
[NaOH]0 − [HCl]�

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡
𝑒𝑒𝑒𝑒

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
�

𝑚𝑚Ni/C
𝑉𝑉NaOH

= 3.22
eq
kg

 (6.1) 

in which 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 8 mL is the analyte volume filtered from the prepared suspension with 𝑉𝑉NaOH =

10 mL of 0.05M NaOH and 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 = 51.62 mg of washed and dried PSS material. 

Böhm titration was also carried out for the 21wt% Ni/C pellets used for the HMF 

hydrogenation in section 5.2. From the equivalence point of the titration curves presented in the 

following Figure, the density of solid acid sites is calculated, both for the fresh catalyst and the 

catalyst after 35 h of TOS in HMF hydrogenation. In Figure A-2, the Böhm titration curves are 

shown for both samples. 

  
Figure A-2: left: Böhm titration of the 21wt% Ni/C catalyst. Analyte: 252.40 (251.75) mg of pellets before (after) 35 h TOS 
(HMF hydrogenation in EtOH). Preparation of analyte: 10mL 0.05M NaOH solution, stirred overnight, thereof 8 mL filtered 

through 0.2 µm PP syringe filter; right: T and molar fractions of the associated species of Zn2+ and OH– over pH in 
equilibrium at 25 °C (right), adapted from Reichle et al.97 

The shoulder that both samples exhibit at a pH between ca. 5 to 6 in the titration diagram of 

Figure A-2 (left) suggests the presence of a dissolved weak acid that has passed through the 

filtration of the analyte before titration. The most probably cause of present acid is residues of Zn 

and ZnO in the material which have not been removed entirely during the catalyst preparation that 

involved the use of ZnO nanopowder as the porogen. Upon exposure to the strong dilute base 
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(0.05M NaOH), the ZnO residue in the material is expected to yield sodium zincate in NaOH 

solution: 

ZnO (𝑠𝑠) + 2 NaOH (𝑎𝑎𝑎𝑎) + H2O →  Na2Zn(OH)4 (𝑎𝑎𝑎𝑎) (6.2) 

Likewise, the elemental Zn that has been formed in the preceding heat treatment and reduction 

steps, readily reacts by displacing the hydrogen, which is lower than Zn in the activity series of 

metals. In this way, sodium zincate is formed: 

Zn (𝑠𝑠) + 2 NaOH (𝑎𝑎𝑎𝑎) + 2 H2O →  Na2Zn(OH)4 (𝑎𝑎𝑎𝑎) + H2 (𝑔𝑔) (6.3) 

Due to the amphoteric character of zinc hydroxide, titration of 0.05M HCl solution into the 

analyte leads to gradual release of OH– from the associated complexes97: 

Zn(OH)4   (𝑎𝑎𝑎𝑎)
2−  

⤵ OH−
�⎯⎯⎯�
𝑝𝑝𝑝𝑝<14

 Zn(OH)3  (𝑎𝑎𝑎𝑎)
−  

⤵ OH−
�⎯⎯⎯�
𝑝𝑝𝑝𝑝↓

 Zn(OH)2  
⤵ OH−
�⎯⎯⎯�
𝑝𝑝𝑝𝑝↓

 Zn(OH)   (𝑎𝑎𝑎𝑎)
+  

⤵ OH−
�⎯⎯⎯�
𝑝𝑝𝑝𝑝↓

 Zn     (𝑎𝑎𝑎𝑎)
2+  (6.4) 

At the equivalence point of pH 5.5, the zinc hydroxide species are completely dissociated. As 

presented in the Appendix A.2.2.8, a concentration of 0.48 eq kg–1 is calculated for the fresh 

catalyst, whereas after 35 h TOS the value decreases to a value of 0.43 eq kg–1. This might include 

acidity from oxygen-containing groups on the surface of the porous carbon. However, at the pH of 

12.29 (and 12.34), measured for the analytes produced from the 21wt% Ni/C before (and after) 

reaction, only 50% is present as the zincate species  Zn(OH)4 (𝑎𝑎𝑎𝑎)
2− , with 46% as Zn(OH)3 (𝑎𝑎𝑎𝑎)

−  and 

4% as Zn(OH)2 at equilibrium97, as can be seen in Figure A-2 (right). The associated species of 

Zn(OH)2 is practically insoluble in water, as can be deduced from the low solubility of 3.1⋅10–6 

mol L–1 at the half equivalence point (pH10.14), at which Zn(OH)2 is present primarily in the 

associated form97. 

With the equivalence point obtained for a titrant volume of 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡
𝑒𝑒𝑒𝑒 = 6.05 (6.25) mL added to the 

solution for the 21wt% Ni/C catalyst before (after) 35 h TOS, the concentration of solid acid 

functionalities on the catalyst 𝐶𝐶𝑆𝑆𝑆𝑆 can be calculated by: 

𝐶𝐶𝑆𝑆𝑆𝑆 =
𝑁𝑁𝑆𝑆𝑆𝑆

𝑚𝑚Ni/C
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
𝑉𝑉NaOH

=
[NaOH]0 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 − [HCl] 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

𝑒𝑒𝑒𝑒

𝑚𝑚Ni/C
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
𝑉𝑉NaOH

=
[NaOH]0 − [HCl]�

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡
𝑒𝑒𝑒𝑒

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
�

𝑚𝑚Ni/C
𝑉𝑉NaOH

 (6.5) 

in which 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 8 mL is the analyte volume filtered from the prepared suspension with 𝑉𝑉NaOH =

10 mL of 0.05M NaOH and 𝑚𝑚𝑁𝑁𝑁𝑁/𝐶𝐶 = 252.40 (251.75) mg of catalyst pellets before (after) the 



 A.2  APPLIED METHODS 

 
113 

 

catalytic experiment. For the fresh catalyst, a concentration of 0.48 eq kg–1 is calculated, whereas 

after 35 h TOS the value decreases to 0.43 eq kg–1. 
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