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Abstract
Matrix equations are omnipresent in (numerical) linear algebra and systems theory. Especially in model

order reduction (MOR) they play a key role in many balancing based reduction methods for linear dynamical
systems. When these systems arise from spatial discretizations of evolutionary partial differential equations,
their coefficient matrices are typically becoming large and sparse. Moreover, the numbers of inputs and
outputs of these systems are typically far smaller than the number of spatial degrees of freedom. Then, in
many situations the solutions of the corresponding large-scale matrix equations are observed to have low
(numerical) rank. This feature is exploited by M-M.E.S.S. to find successively larger low-rank factorizations
approximating the solutions. This contribution describes the basic philosophy behind the implementation
and the features of the package, as well as its application in the model order reduction of large-scale linear
time-invariant (LTI) systems and parametric LTI systems.

1 Introduction
The M-M.E.S.S. toolbox [51] for MATLAB® (or package for GNU Octave) in version 2.0.1 focuses on the
solution of large-scale symmetric algebraic and differential matrix equations and their application in model
order reduction (MOR) and linear-quadratic regulator (LQR) problems. The basis for all considerations and
problem formulations are linear dynamical systems of the form

E Ûx(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (Σ)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and x(t) ∈ Rn, for all time instances t ∈ [0,T]. We
assume that E is invertible, and often in addition that (Σ) is asymptotically stable.

Someof the supportedmatrix equations have applications inH∞-control, where the slightlymore structured
system

E Ûx(t) = Ax(t) + B1u(t) + B2w(t),
y(t) = C1x(t) + D11u(t) + D12w(t),
z(t) = C2x(t) + D21u(t) + D22w(t),

(Σ∞)

is considered.
M-M.E.S.S. aims at systems, where n ∈ N is to too large to store an n×n matrix in the computer’s memory.

This will usually be accounted for by the facts, that p,m � n and E , A are sparse, or have a sparse realization
that we can exploit in computations. We present more details about the exploitable structures in Section 2.

Similarly, for systems (Σ∞) the matrices B1, B2, C1, C2 are considered thin and rectangular and the parts
Di j , i, j ∈ {1, 2} correspondingly small.
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The contribution of this document is two-fold. On the one hand, we give the first concise introduction to
M-M.E.S.S., its general philosophy and current features. On the other hand, we show how the software, that
is in core intended for the solution of large-scale matrix equations, can be employed in the implementation of
basic parameteric model order reduction (PMOR) methods for systems of the form (Σ).

Before moving on to the historical evolution of the package, we state the equations that can currently be
solved by M-M.E.S.S.. The following is a list of all equations for which at least one solver function exists:

Algebraic Lyapunov equations

0 = APET + EPAT + BBT

0 = ATQE + ETQA + CTC
(CALE)

Algebraic Riccati equations

0 = APET + EPAT + BBT − EPCTCPET

0 = ATQE + ETQA + CTC − ETQBBTQE
(CARE)

0 = ÃPET + EPÃT + B̃1 B̃T
1 − EP

(
C̃T

1C̃1 − C̃T
2C̃2

)
PET

0 = ÃTQE + ETQÃ + C̃T
1C̃1 − ETQ

(
B̃1 B̃T

1 − B̃2 B̃T
2

)
QE

(H∞ − ARE)

In the last pair of equations, the matrix Ã is sparse plus low-rank (splr), i.e. Ã = A + UVT, where U, V are
tall and skinny. Moreover the matrices B̃1, B̃2, C̃1, C̃2 are derived from the given system data by scaling and
potentially rotation of the matrices B1, B2, C1, C2.

For finite time horizon linear-quadratic control problems, one needs to solve differential Riccati equations.
We restrict to providing only the controller equations here, while the dual “filter-type” equations are supported
as well.

Autonomous differential Riccati equations

−ET ÛQ(t)E = ATQ(t)E + ETQ(t)A + CTC − ETQ(t)BBTQ(t)E (ADRE)

Non-autonomous differential Riccati equations

−E(t)T ÛQ(t)E(t) = (
A(t) + ÛE(t))TQ(t)E(t) + E(t)TQ(t) (A(t) + ÛE(t)) (NDRE)

+ C(t)TC(t) − E(t)TQ(t)B(t)B(t)TQ(t)E(t)
The last equations are formulated for the time-varying counterpart of (Σ), i.e. the systemwhere all matrices are
allowed to depend on time as well. Both DREs contain the case of differential Lyapunov equations. Optimized
solvers for those are still work in progress and must at the moment be implemented by setting either B, orC (in
the dual equation) to zero and thus eliminating the quadratic term. Available solution methods in M-M.E.S.S.
are described in Section 2.

Classic Lyapunov equation based balanced truncation is known to preserve asymptotic stability of the
original system in the reduced-order model. Other balancing-based methods have been developed to preserve
other properties like passivity or contractivity. For these special balancing-type MOR methods, other matrix
equations need to be solved that do not have a tailored solver in M-M.E.S.S., yet. Still, they can be reformulated
into one of the types above. In order to have a more complete picture, what equations can be solved with the
current M-M.E.S.S., we list them here, but get back to them in Section 3 and describe their reformulations into
the special cases above and why they can still be solved using M-M.E.S.S..

Positive real balancing

0 = APET + EPAT + (EPCT − B)(D + DT)−1(EPCT − B)T

0 = ATQE + ETQA + (ETQB − CT)(D + DT)−1(ETQB − CT)T
(PRARE)
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Bounded real balancing

0 = APET + EPAT + BBT + (EPCT + BDT)(I − DDT)−1(EPCT + BDT)T

0 = ATQE + ETQA + CTC + (ETQB + CTD)(I − DTD)−1(ETQB + CTD)T
(BRARE)

Linear-quadratic Gaussian balancing

0 = APET + EPAT + BBT − (EPCT + BDT)(I + DDT)−1(EPCT + BDT)T

0 = ATQE + ETQA + CTC − (ETQB + CTD)(I + DTD)−1(ETQB + CTD)T
(LQGARE)

1.1 A brief history of M-M.E.S.S.
Early days, the LyaPack years The package M-M.E.S.S. originates in the work of Penzl [14, 44, 45]
around the year 2000. More precisely, we understand M-M.E.S.S. as a continuation and successor of Penzl’s
LyaPack-toolbox [46] for MATLAB. While most of the basic ideas from the original package have been
preserved, some features have been abandoned and some have been altered to improve efficiency and reliability.

The treatment of generalized state-space systems, i.e. systems (Σ) with nontrivial, i.e. non-identity, E-
matrices have been added first. These changes still happened under the LyaPack-label in versions 1.1–1.8
until about 2007.

Transition to M-M.E.S.S. and present The transition to the relabeled M-M.E.S.S.-1.0 package included
a complete reorganization of the process data. Also, LyaPack used string manipulations and eval-calls to
mimicked function pointers, whichwe replaced by proper function handles supported inmodernMATLABand
GNU Octave. Moreover, the formulation of the low-rank alternating directions implicit (LR-ADI) iteration,
which always was the heart and soul of LyaPack, was greatly updated to allow for cheaper evaluation of
stopping criteria and an iteration inherent generation of real solution factors, which could only be achieved
through post-processing in LyaPack.

The necessity for an a priori selection of shift parameters for convergence acceleration used to be a major
point of criticism regarding the ADI based solvers. The selection of shift generation methods was extended in
M-M.E.S.S. and especially a new method that automatically generates the shifts during the iteration [32] was
added, which makes the solvers accessible also to non-experts.

Other than that version 1.0 saw general code modernization to support optimized features in MATLAB
and to be 100% GNU Octave compatible.

The two major contributions of version 2.0 were the inclusion of the RADI iteration[7] for (CARE) and
several solvers for differential Riccati equations in both the autonomous (ADRE) and non-autonomous (NDRE)
cases.

Moreover, over time more system classes, including specially structured differential algebraic equation
(DAE) based systems and second-order systems, have been added.

Future development plans The most immediate upcoming feature in the near future is the inclusion
of Krylov subspace projection methods for algebraic Lyapunov [55, 57] and Riccati equations [58, 37, 56].
The infrastructure and solvers are under current development and the feature is going to be part of version
3.0. The plans for the more distant future include, inclusion of low-rank solvers for Sylvester equations [12]
and non-symmetric AREs [13], as well as the discrete-time counterparts of the existing equations, i.e. Stein
equations [30, 36, 12, 32, 48] and discrete time Riccati equations. Also, more complex sets of equations like
Lur’e equations [47] and Lyapunov-plus-positive equations [18, 8, 54] are currently investigated and will be
added if solvers can be implemented in a robust and efficient way using the M-M.E.S.S. infrastructure.

1.2 Structure of this chapter
The following section introduces M-M.E.S.S. and its basic implementation philosophy. It further elaborates on
supported system structures beyond the basic form in (Σ) and describes current basic features of the package.
Section 3 is dedicated to the description of MOR methods contained or demonstrated in M-M.E.S.S., while
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usfs default so_1 / so_2 dae_1 dae_2 dae_1/2/3_so

System standard / gen-
eralized state-
space form

second-order
1st / 2nd com-
panion form

semi-explicit
index-1 DAE

semi-explicit
index-2 Stokes-
type DAEs

semi-explicit
second-order
index-1/2/3
DAEs using
companion form

Demos FDM [46],
Rail [15]

TripleChain [62,
50]

DAE1 (BIPS
Power-systems
model [23])

DAE2
Stokes [53],
Kárman vortex
shedding [65]

constrained
TripleChain

Table 1: Supported system structures via user-supplied function sets (usfs).

Section 4 shows how the existing tools in M-M.E.S.S. can be used to implement basic PMOR methods from
the literature. The last section shows some results on a selection of the above equations for a set of benchmark
examples. Furthermore, the usage of M-M.E.S.S. in parametric model order reduction is demonstrated.

2 M-M.E.S.S. — Philosophy and Features
The M-M.E.S.S. philosophy relies on three simple principles:
abstract state-space system All routines assume to work on a system of the form (Σ), or (Σ∞). For a

simple spatially discretized parabolic PDE, (Σ) is exactly given by the sparse matrices describing the
semi-discretized system. For other systems, (Σ) may be a dense, inaccessible realization, like, e.g. a
projection to a hidden manifold for a Stokes-type DAE system.

implicit reformulation When the system matrices are potentially dense or even inaccessible, or otherwise
prohibitive to use, the matrices are never formed explicitly, but only their actions are expressed in terms
of the original data. For the aforementioned DAEs this means, only the given semi-explicit system
matrices are employed, but the algorithm runs as if it was formulated on the hidden manifold, i.e. for the
implicit ordinary differential equation. This technique is often also called implicit index-reduction. For
second-order systems, similarly, it is sometimes prohibitive to work with the double-sized phase-space
realization in companion form. Again, all operations are executed only using the original second-order
matrices, while solutions live in the double sized space.

operation abstraction The abstraction of operations is realized via the so-called user-supplied function sets
(usfs), which we have inherited from LyaPack. In comparison to LyaPack we have slightly extended this
set of functions. At the same time, we have removed the necessity to provide empty functions, which
are now automatically replaced by a do_nothing function. While making things far more complicated
in, e.g. the default case (see Table 1), where all matrices are expected to be available, this allows to
hide the actual matrix realization from the algorithms. This way, in principle, the algorithms can run
matrix-free with respect to A and E as demonstrated in [16].

The basic structure and design, of M-M.E.S.S., was decided when object-oriented features in MATLAB
were in their early stages and essentially absent in GNU Octave. Still some of the design follows object-
oriented paradigms. We mimic the object-orientation by passing three central data-structures through all
relevant functions. These three items of type struct are
eqn This structure essentially holds all relevant information about the underlying system (Σ), or (Σ∞) and

determineswhich equation in the dual pair we are aiming to solve, by eqn.type=’N’, or eqn.type=’T’
representing the transposition on the left multiplication by A.

oper The operator structure, generated by the function operatormanager, holds all function handles for the
relevant operations with the system matrices A and E . A list of these operations can be found in Table 2.
Most functions in the list are accompanied by two functions, with appendices _pre and _post, called
at the beginning and the end of a function working with them. They are intended for the generation and
clean up of helper data, like the pre-factorization of matrices, when a sparse direct solver is used, or the
generation of a preconditioner for an iterative solver.

4



function call operation

Y = oper.mul_A(eqn,opts,opA,B,opB) Y = AopABopB

Y = opr.mul_E(eqn,opts,opE,B,opB) Y = EopEBopB

Y = oper.mul_ApE(eqn,opts,opA,p,opE,B,opB) Y =
(
AopA + pEopE

)
BopB

X = oper.sol_A(eqn,opts,opA,B,opB) AopAX = BopB

X = oper.sol_E(eqn,opts,opE,B,opB) EopEX = BopB

X = oper.sol_ApE(eqn,opts,opA,p,opE,B,opB)
(
AopA + pEopE

)
X = BopB

result = oper.init(eqn,opt,oper,f1,f2) general initialization and sanity checks

[W,res0] = oper.init_res(eqn,opts,oper,V) Compute initial residual factor W from
V, and res0 = ‖W ‖

[eqn,opts,oper] =
eval_matrix_functions(eqn,opts,oper,t)

In the time-varying case, fix all the
above to time instance t.

n = oper.size(eqn,opts,oper) Returns the dimension n in (Σ).

Table 2: User supplied function names and their actual operation.

opts The actual options structure is a structure of structures, i.e. it has a substructure for each algorithm/func-
tion, but also holds central information on the top level. For example opts.norm defines the norm that
should consistently be used in all operations and hierarchy levels of the potentially cascaded algorithms,
while substructures like opts.adi, or opts.shifts provide the specific control parameters for the
LR-ADI algorithm and the shift computation.

Note that for all matrix operations in the usfs, we allow for corresponding _pre and _post functions. Other
functions like init or size do not support _pre and _post.

While the function handles in oper work on the original A from (Σ), sometimes it is necessary to actually
work with low-rank updated versions of A in the form A +UVT. We have seen an example in (H∞ − ARE),
where Ã is in the very form. Another prominent appearance is the Newton-Kleinman iteration (see [31] for
classic iteration and [14] for the low-rank version) for (CARE), where in iteration j, the step equation (for the
second equation in the pair) takes the form(

A − BKj−1
)T XjE + ET Xj

(
A − BKj−1

)
=

[
C Kj−1

]T [
C Kj−1

]
.

Therefore, most solvers in M-M.E.S.S. assume that this structure can be given. The flag eqn.haveUV set to a
non-zero value indicates that this is the case. Then the fields eqn.U and eqn.V need to hold the corresponding
dense rectangular matrices of compatible dimensions. Similarly, the field eqn.haveE indicates that a non-
trivial, i.e. non-identity E matrix is present and needs to be used via the function handles in Table 2.

Note that it is prohibitive to form A+UVT explicitly, since even for very sparse A it can easily be a dense
matrix. Especially, it is prohibitive to use direct solvers based on matrix decompositions on it, since then even
if A+UVT manages to preserve some sparsity, the fill-in will make the triangular factors dense. Therefore, all
linear systems with A+UVT are solved via the Sherman-Morrison-Woodbury matrix-inversion formula (see,
e.g. [26, Section 2.1.4]) in M-M.E.S.S..
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solver description reference

algebraic Lyapunov equations

mess_lradi
The low-rank alternating directions implicit (LR-ADI) iteration
in residual based formulation and with automatic shift selection
for (CALE).

[32]

algebraic Riccati equations

mess_lrnm An inexact Kleinman-Newton iteration with line search for (CARE). [65]

mess_lrradi The RADI iteration for (CARE) [7]

mess_lrri A low-rank version of the Riccati iteration [34] for (H∞ − ARE)

differential Riccati equations

mess_bdf_dre Low-rank formulation of backward differentiation formulas for
large-scale differential Riccati equations (ADRE), (NDRE)

[33]

mess_rosenbrock_dre Low-rank formulation of Rosenbrock methods for large-scale differ-
ential Riccati equations (ADRE)

[33]

mess_splitting_dre Splitting schemes for large-scale differential Riccati equa-
tions (ADRE), (NDRE)

[59, 60]

Table 3: Solver functions with algorithm and feature descriptions and latest and most feature complete literature
references.

2.1 Available solver functions and underlying methods
We provide two solvers for the standard cases in (CALE) and (CARE) that are purely matrix-based, intended
for large-scale sparse matrix coefficients and classic 2-term low-rank factorizations of the constant terms and
cores in the quadratic terms. The functions are called mess_lyap and mess_care and mimic the calls of
lyap and care from MATLAB’s control systems toolbox, or the GNU Octave control package, for dense
matrices.

Other than that, we have the functions in Table 3 that allow for more flexible tuning, solve a large variety
of equations and, especially, benefit from the full potential of the user supplied functions. In the table we
give references to the most state of the art presentations of the algorithms in the literature, on which our
implementations are based.

3 Model Order Reduction in M-M.E.S.S.
The basic model order reduction (MOR) facilities in M-M.E.S.S. are limited. Still, all building blocks for
projection-based MOR using balancing methods, where matrix equations are most obviously applied, are
available. For the sake of completeness and to fix our notation, we repeat the basics of projection based
MOR. Given a state-space system of the form (Σ), we search for the two rectangular transformation matrices
V, W ∈ Rn×r that define the actual oblique projection T = V(WTV)−1WT, but transform the system into the
reduced coordinates directly. The reduced-order model then takes the form

Ê Û̂x(t) = Âx̂(t) + B̂u(t),
ŷ(t) = Ĉ x̂(t) + Du(t),

(ROM)
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where Ê = WTEV, Â = WT AV ∈ Rr×r , B̂ = WTB ∈ Rr×m, and Ĉ = CV ∈ Rp×r .
The number of actual MOR routines in M-M.E.S.S. is rather limited. In version 2.0.1, we have

mess_balanced_truncation implementing classic Lyapunov balancing [39, 61, 35], for systems (Σ) real-
ized with sparse E and A ([14, 28, 50]), and mess_tangential_irka implementing the tangential iterative
Krylov algorithm (IRKA) [27] for first and second order systems. Our Gramian computation methods are
integrated in a range of MOR software packages, though. While sssMOR [19] directly calls M-M.E.S.S.-1.0.1,
for other packages like MOREMBS [22] and MORPACK [40] we have contributed tailored versions of our
algorithms.

Also, we provide tools like a square root method (SRM) function to compute the transformation matrices
V and W from given Gramian factors. This function currently only uses the classic Lyapunov balancing error
bound in the adaptive mode. This is subject to change in future versions.

3.1 IRKA and classic balanced truncation
Consider that all matrices in (Σ) are available. As an example we use the Steel Profile benchmark [15, 42],
included in M-M.E.S.S., using the version with n = 1 357. Then computing the reduced order matrices Er ,
Ar , Br , Cr for maximum reduced order 25 using the tangential IRKA [27] is as easy as calling:
eqn = getrail(1);
opts.irka.r = 25;
[Er, Ar, Br, Cr] = mess_tangential_irka(eqn.E_,eqn.A_, eqn.B, eqn.C, opts)

This will use default values for maximum iteration numbers and stopping criteria, which can be refined via
the opts.irka structure. For a list of available options see help mess_tangential_irka.

Analogously, to compute a (Lyapunov) balanced truncation approximation of maximum order 50 and with
an absolute H∞-error tolerance of 10−2 for the same model the simplest call is:
eqn = getrail(1);
[Er, Ar, Br, Cr] = mess_balanced_truncation(eqn.E_, eqn.A_, eqn.B, eqn.C, 50, ...

1e-2);

Note that Lyapunov balancing leaves the D matrix untouched in general, while it is absent in this example
anyway. Note, further, that the interface may change slightly in future releases to make it more consistent with
that of the IRKA function and to allow for the addition of the other balancing methods.

The balanced truncation approximation can be achieved in a step by step procedure first computing the two
Gramian factors, then applying them in the square root method to determineV andW , and finally compressing
the large-scale matrices to the reduced-order system matrices. This can all be executed using the procedural
building blocks of mess_balanced_truncation. The example bt_mor_rail_tol in the DEMOS/Rail
folder, residing in the main installation folder of M-M.E.S.S.-2.0.1, demonstrates this procedure. The step-
wise approach can also be used for a number of structured systems like second-order systems, or semi-explicit
DAE systems, while mess_balanced_truncation only supports generalized systems with invertible E , and
all coefficients given explicitly as matrices, at the moment. See Table 4 for an overview of demonstration
examples explaining these procedures.

3.2 Further variants of balanced truncation
We have shown the Riccati equations defining the Gramians employed in positive-real, bounded-real, and
linear-quadratic Gaussian balanced truncation in equations (PRARE), (BRARE), (LQGARE) in the Introduc-
tion. Assuming, we have computed the Gramian factors, the reduced-order models can be derived, along the
lines of the demonstration examples from Table 4. This can be done using the same M-M.E.S.S. function at
least for a fixed desired reduced order. The error bound based order decision in the square root method needs
adaptation to the specific error bound in some cases, though, see e.g. [2, Section 7.5] for a comparison of the
bounds and procedures.

Here, we restrict ourselves to presenting how the specially structured Riccati equations can be solved with
the existing functionality in M-M.E.S.S..

3.2.1 Positive-real balancing
For positive-real systems, by definition D+DT is positive-definite, when it is invertible. This is always the case
when the Riccati equations exist and do not degenerate to a set of Lur’e equations. Then we can decompose

7



Example Description References

bt_mor_DAE1_tol Balanced truncation for a semi-explicit power systems model of
differential index 1

[23]

bt_mor_DAE2 Balanced truncation for Stokes and Oseen equations of index 2 [29, 17]

BT_TripleChain First-order and structure-preserving balanced truncation for a
model with three coupled mass-spring-damper chains

[62, 50, 49]

BT_sym_TripleChain As above, but exploiting state-space symmetry of the tailored com-
panion form first-order reformulation

BT_DAE3_SO
First-order and structure-preserving balanced truncation for a
variant of the above system that has a constraint turning it into an
index-3 DAE

[52, 63, 64]

Table 4: Demonstration examples for balanced truncation of structured systems in M-M.E.S.S..

D + DT into Cholesky factors, i.e. RTR = D + DT. Using these Cholesky factors, we define

Ẽ = E, Ã = A +UVT, B̃ = BR−1, C̃ = R−TC,

with U = B̃ and VT = C̃, and a straight forward calculation shows that (PRARE) can be rewritten in the form

0 = ÃPẼT + ẼPÃT + B̃B̃T + ẼPC̃TC̃PẼT

0 = ÃTQẼ + ẼTQÃ + C̃TC̃ + ẼTQB̃B̃TQẼ .

This resembles the Riccati case in (H∞ − ARE) with a low-rank updated matrix A and only the positive
quadratic term present. This case is supported by the mess_lrri routine. Note that D + DT is of small
dimension, such that this reformulation is always feasible.

3.2.2 Bounded-real balancing
The bounded-real assumptions guarantee that I−DDT and I−DTD are symmetric positive definite. Therefore,
we can decompose them into Cholesky factors, i.e. RTR = I − DDT and LTL = I − DTD. Now, we define

Ẽ = E, Ã = A +UVT, B̃ = BL−1, C̃ = R−1C,

with U = BDT and VT = (I − DDT)−1C and another technical, but straight forward, calculation shows
that (BRARE) can be rewritten in the form

0 = ÃPẼT + ẼPÃT + B̃B̃T + ẼPC̃TC̃PẼT

0 = ÃTQẼ + ẼTQÃ + C̃TC̃ + ẼTQB̃B̃TQẼ .

This, again, falls into the class of equations in (H∞ − ARE) with a low-rank updated matrix A and only the
positive square term present. As mentioned above, this case is supported by the mess_lrri routine. For the
same reason as above, this reformulation can always be done.

3.2.3 Linear-quadratic Gaussian balancing
For linear-quadratic Gaussian balanced truncation, an important special case (see, e.g. [11, 41, 38, 3]) is
D = 0. In that case (LQGARE) obviously reduces to the standard Riccati equation (CARE) that can be
solved using mess_lrnm or mess_lrradi. The corresponding M-M.E.S.S. workflow is demonstrated in the
lqgbt_mor_FDM example for a simple heat equation model semi-discretized by the finite difference method.

8



On the other hand, when D , 0, it is, by standard assumptions in M-M.E.S.S., real and all eigenvalues of
DDT and DTD are non-negative. Therefore, I + DDT and I + DTD are symmetric and positive definite and
analogous to the above, we can decompose into Cholesky factorizations RTR = I +DDT and LTL = I +DTD.
We now define

Ẽ = E, Ã = A +UVT, B̃ = BL−1, C̃ = R−1C,

with U = −BDT and VT = (I + DDT)−1C. An analogous calculation to the bounded-real case shows
that (LQGARE) can be rewritten in the form

0 = ÃPẼT + ẼPÃT + B̃B̃T − ẼPC̃TC̃PẼT

0 = ÃTQẼ + ẼTQÃ + C̃TC̃ − ẼTQB̃B̃TQẼ .

Due to the differing signs, here, we end up with a standard Riccati equation (CARE), just like in the case
D = 0. Again the transformation is always feasible in the sense of M-M.E.S.S. applicability.

4 Parametric Model Order Reduction using M-M.E.S.S.
Parametric MOR (PMOR) aims to preserve symbolic parameters in the original system description also in the
reduced-order model. In the most general case that means the system

E(µ) Ûx(µ, t) = A(µ)x(µ, t) + B(µ)u(t),
y(µ, t) = C(µ)x(µ, t) + D(µ)u(t), (Σ(µ))

is transformed into

Ê(µ) Û̂x(µ, t) = Â(µ)x̂(µ, t) + B̂(µ)u(t),
ŷ(t) = Ĉ(µ)x̂(µ, t) + D(µ)u(t).

(ROM(µ))

By default, M-M.E.S.S.-2.0.1 does not support PMOR. It is, however, very easy to implement basic PMOR
routines building up on the methods from the previous section. The key ingredient, that at the same time
establishes the link to the previous section in many methods, is the necessity to evaluate standard MOR
problems in certain training points for given parameter values µ(i) (i = 1, . . . , k), e.g. on a sparse-grid in the
parameter domain. While piecewise MOR approaches (e.g. [4]) aim to find constant global (with respect to
the parameter) transformation matrices V and W to derive (ROM(µ)), other methods aim to establish it by
interpolation of some kind. The literature basically provides three approaches interpolating different system
features, see, e.g., [10] for further categorization of PMOR methods:

• matrix interpolation, i.e. function interpolation of the parameter-dependent coefficient matrices, or the
transformation matrices, (e.g. [43, 25, 24, 1]),

• interpolation of the transfer functions in the parameter variable [5],
• interpolation of system poles (e.g. [9, 66]).
We demonstrate the basic steps for piecewise and interpolatory methods along the lines of [4, 5] in the

remainder of this section and give numerical illustrations in Section 5.

4.1 Piecewise MOR
We have mentioned above that the aim, here, is to find V and W constant, such that Ê(µ) = WTE(µ)V ,
Â(µ) = WT A(µ)V , B̂(µ) = WTB(µ), Ĉ(µ) = C(µ)V . The strong point of this method is that it trivially allows
the ROMs in the parameters µ(i) to vary in their reduced-order. This is due to the fact that

V =
[
V (1) · · ·V (k)

]
and W =

[
W (1) · · ·W (k)

]
,

with V (i) and W (i) the transformation matrices at parameter sample µ(i). This concatenation should be
followed by a rank truncation to eliminate linear dependencies.

It essentially does not matter how the single transformation matrices have been generated. We follow the
presentation in [4], where IRKA is used. In the numerical experiments we also compare to versions using
balanced truncation in the training samples.
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4.2 Interpolation of transfer functions
The representation of (Σ(µ)) in frequency domain after Laplace transformation in the time variable (t), leads
to the transfer function

H(µ, s) = C(µ)(sE(µ) − A(µ))−1B(µ).
The IRKA method seeks to interpolate this function in s-direction and the well known balanced truncation
error bound limits the approximation error to this function for fixed µ. Therefore, it is an obvious task to try
and preserve these features by interpolation in µ-direction. Baur and Benner meet this goal in [5] for local
balanced truncation approximations of (Σ(µ)), achieving both stability preservation and an error bound, i.e.
the selling points of balanced truncation. Moreover their method shares the flexibility with respect to the
ROM orders, since the interpolation is done via the transfer function, that has fixed dimension independent of
the realization of the system. On the other hand, interpolation on matrix manifolds and with respect to system
invariants need to fix the dimensions of those objects.

For simplicity we restrict ourselves to the case of scalar parameters. The approach in [5] defines (ROM(µ))
via its transfer function, which is chosen as an interpolant of the form

Ĥ(µ, s) =
k∑
i=1

`i(µ)Ĥ(i)(s) =
k∑
i=1

`i(µ)Ĉ(i)
(
sÊ (i) − Â(i)

)−1
B̂(i)

=

k∑
i=1

Ĉ(i)(µ)
(
sÊ (i) − Â(i)

)−1
B̂(i)

with scalar coefficients functions `i(µ), Ĥ(i)(s) the transfer function of the ROM at parameter sample µ(i) and
Ĉ(i)(µ) = `i(µ)Ĉ(i). One can use the last identity to define the matrices for the ROM-realization

Ê =


Ê (1)

. . .
Ê (k)

 , Â =


Â(1)

. . .
Â(k)

 , B̂ =


B̂(1)
...

B̂(k)

 ,
Ĉ(µ) = [

Ĉ(1)(µ) · · · Ĉ(k)(µ)
]
,

such that
Ĥ(µ, s) = Ĉ(µ)

(
sÊ − Â

)−1
B̂.

Note that the parameter could as well be put into B̂. The specific choice of Lagrange polynomials is not
necessary. We present experiments with both classic polynomial interpolation and spline interpolation in the
next section. Sincewe are dealingwith scalar coefficient functions here, it is advisable for amodernMATLAB-
implementation to exploit the power of Chebfun [21, 20]. We do this for the polynomial interpolation and the
generation of the grid of training parameters, while the splines use our own implementation.

5 Numerical Experiments
The experiments reported here have been executed in MATLAB R2019a on a Lenovo X380 Yoga equipped
with an Intel® i7 8770 and 32GB of main memory running 64bit Linux based on Ubuntu 18.04. The
experiments use M-M.E.S.S.-2.0.1 [51] and Chebfun version 5.7.0 [21, 20].

The source code of the implementations used to compute the presented results can be obtained
from:

https://doi.org/10.5281/zenodo.3678213

and is authored by Jens Saak and Steffen W. R. Werner.

For easier comparison with the other reported software packages, all experiments use the thermal block
benchmark introduced in a separate chapter of this volume. It describes a simple heat transfer model on the
domain depicted in Figure 1a. Here, we investigate the one parameter version of the benchmark. That means,
the heat transfer coefficients on the four circular sub-domains are given as 0.2µ, 0.4µ, 0.6µ, and 0.8µ for a
single scalar parameter µ ∈ [10−6, 102] = M ⊂ R. The full order model has dimension n = 7 488 and one
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Figure 1: Computational domain and sigma magnitude plot for the thermal block model.

Method ROMs Full One-sided
Piecewise

BT(10−4) 9/12/15/13/12/9/8/9/8/7 102 (52) 200 (36)
BT(20) 20/20/20/20/20/20/20/20/20/20 199 (64) 200 (72)
IRKA 20/20/20/20/20/20/20/20/20/20 200 (132) 200 (132)

Lagrange
BT(10−4) 9/9/12/15/12/9/8/8/7/7 96 –
IRKA 20/20/20/20/20/20/20/20/20/20 200 –

B-Spline
BT(10−4) 9/9/12/15/12/9/8/8/7/7 96 –
IRKA 20/20/20/20/20/20/20/20/20/20 200 –

Table 5: Reduced orders of the training-sample ROMs and final ROM (numbers in () are after additional
truncation with tolerance 10−6).
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Figure 2: Relative sigma-magnitude errors of different piecewise parametric reduction approaches for the
thermal block model.
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Figure 3: Relative sigma-magnitude errors of different piecewise parametric one-sided reduction approaches
for the thermal block model.
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Figure 4: Relative sigma-magnitude errors of different transfer function interpolation methods for parametric
reduction for the thermal block model.
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input but 4 outputs. In Figure 1b we present the sigma-magnitude plot of the full order model (FOM), i.e. we
plot ‖H(µ, s)‖2 = σmax(H(µ, s)) over the full parameter range and the frequency range [10−4, 104]. The plot
is based on 100 logarithmically equi-spaced sample points (logspace-generated) in each direction. We also
use this sampling for all relative sigma-magnitude error plots in the other figures. The error plots analogously
show



H(µ, s) − Ĥ(µ, s)



2 /‖H(µ, s)‖2.

Excluding the 10 000 evaluations for the pre-sampling of the original transfer function, all computations
for generation of the ROMs and evaluation of the approximation errors can be executed in less than 8 minutes.

We compare both IRKA and classic (Lyapunov) balanced truncation (BT) in the piecewise as well as the
transfer function interpolation context. For IRKA we use fixed order r = 20 in all training samples, while for
BT we run in two modes. Since we have the BT error-bound that allows for adaptive processing, i.e. automatic
choice of the reduced order, we do that with absolute error tolerance 10−4. On the other hand, for a more fair
comparison to IRKA we also run BT for fixed order r = 20. We refer to these two modes as BT(10−4) and
BT(20) in the following.

For the piecewise approaches we use 10 logarithmically equi-spaced (logspace-generated) parameter
samples in M as the training positions. For the interpolatory approaches we choose 10 Chebyshev-roots
generated by Chebfun. We have mentioned the final rank-truncation after basis concatenation in Section 4.1.
We use a tolerance equal to eps in the standard case. Alternatively, to further compress the final parametric
ROM, we truncate with tolerance 10−6 and refer to this approach by the name truncated piecewise.

For the training, BT can not reuse information from previous samples very easily. On the other hand,
IRKA can be initialized with the ROM from the previous parameter sample, which in most cases made it
converge after less than 5 steps (mostly being stopped by criterion monitoring the relative change of the model
in theH2-norm). For further implementation details we refer to the scripts in the code package.

Although, BT guarantees the local ROMs in the sample points to preserve the asymptotic stability of
the original model, and also IRKA preserves stability upon convergence, this feature is in general lost after
concatenating the bases to the global one. Still, for a one-sided projection the stability of the global ROM can
be preserved. Due to stability and symmetry of the thermal block model, Bendixson’s theorem [6] guarantees
this. Therefore, we compare to a one-sided approach that simply combines V and W into one matrix. The
comparison can be found in Figures 2 and 3. And the corresponding ROM orders are given in the first block
of Table 5.

For the interpolatory approaches, we compare Lagrange polynomials and variation diminishing B-splines
of order 2. Here, we always use BT(10−4) in the BT case, since the results are already hard to distinguish
from the IRKA-based ones in this case and we do not expect much improvement from the higher local orders.

It can be seen from Table 5 that the piecewise BT models are, in parts significantly, smaller than the
piecewise IRKA models. This comes at the price that the accuracy is not as good in parts of the domain.
Nonetheless, e.g. the truncated one-sided BT(10−4) approximation yields a relative error of below 1% on a
majority (around 70%) of the investigated frequency-parameter domain with a model size that is 3.7 to 5.6
times smaller. There is a significant increase in error for those frequencies, where the transfer function has
very small values (see Figure 1b) that can be considered to be on the noise level.

The results are very satisfactory and so are the computation times. This indicates that the implementations
can be used for larger and more challenging examples, that we can not report here due to space restrictions.
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