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SUMMARY

Ancient Chinese poetry is constituted by structured
language that deviates from ordinary language usage
[1, 2]; its poetic genres impose unique combinatory
constraints on linguistic elements [3]. How does the
constrained poetic structure facilitate speech seg-
mentation when common linguistic [4–8] and statisti-
cal cues [5, 9] are unreliable to listeners in poems?
We generated artificial Jueju, which arguably has the
most constrained structure in ancient Chinese poetry,
and presented each poem twice as an isochronous
sequence of syllables to native Mandarin speakers
while conducting magnetoencephalography (MEG)
recording.We found that listeners deployed their prior
knowledge of Jueju to build the line structure and to
establish the conceptual flow of Jueju. Unprecedent-
edly, we found a phase precession phenomenon
indicating predictive processes of speech segmenta-
tion—the neural phase advanced faster after listeners
acquired knowledge of incoming speech. The statisti-
cal co-occurrence of monosyllabic words in Jueju
negatively correlated with speech segmentation,
which provides an alternative perspective on how sta-
tistical cues facilitate speech segmentation. Our find-
ings suggest that constrained poetic structures serve
as a temporal map for listeners to group speech con-
tents and to predict incoming speech signals. Lis-
teners can parse speech streams by using not only
grammatical and statistical cues but also their prior
knowledge of the form of language.

RESULTS AND DISCUSSION

Jueju and Poem Generation
An example of Jueju is shown in Figure 1A. We generated 150

artificial poems that resemble Jueju using a recurrent neural
Curre
network model trained on a large corpus of ancient Chinese

poems (see Figure 1B and STAR Methods), which allowed us

to control semantic and thematic content, linguistic choices

(i.e., style), and listeners’ familiarity. We further selected 30 real

poems from the poem corpus, which matched the generated

poems in regard with listeners’ familiarity and linguistic choices.

Phrases in one line of Jueju are not strictly constrained by gram-

matical rules; lines are paired without strict semantic coherence

[1, 2]. It is challenging for Chinese listeners to construct struc-

tures of unfamiliar Jueju simply based on semantic scheme

and grammatical rules.

To eliminate the confounding acoustic cues (e.g., pauses and

intonation), we synthesized each monosyllabic word individually

and concatenated them to construct the auditory stimuli as

isochronous sequences of syllables (Figure 1C). Each syllable

was 300 ms (syllable rate: �3.33 Hz); each line of a poem con-

tained five syllables, resulting in a duration of 1,500 ms (line

rate: �0.67 Hz). A couplet of lines contained two lines

(3,000 ms) and closed with a rhyme word (rhyming rate:

�0.33 Hz). The modulation spectra of the stimuli (Figure 1D)

demonstrated no salient amplitude modulations around the line

rate or the rhyming rate.
Speech Segmentation Driven by Listeners’ Prior
Knowledge of Poetic Structure
Thirteen native speakers of Mandarin Chinese, who received

formal education in China and learned the structure of Jueju,

listened to each poem twice while undergoing magnetoenceph-

alography (MEG) recording.We hypothesized that the neural sig-

natures at the timescales corresponding to the line and rhyming

rates would be observed when listeners were actively parsing

the poetic speech stream according to their prior knowledge of

the structure of Jueju. We first conducted a spectral analysis

on the averaged MEG responses across two presentations in

the independently defined auditory channels (Figure 2A and

STAR Methods). The amplitude spectrum shows prominent

peaks corresponding to the syllable rate and its harmonics,

which reflects neural tracking of the amplitude envelopes of

the stimuli (Figure 1D). After removing the intrinsic 1/f amplitude
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Figure 1. Poem Generation and Experimental Paradigm

(A) An example of Jueju. Jueju contains four lines with five characters in each line. English sense-for-sense translations are shown under each line [10].

(B) Poem generation using recurrent neural network. To generate the first line, keywords were chosen to generate phrases by referring to Chinese poetic tax-

onomy (ShiXueHanYing). Phrases were combined into lines, from which the first line of a poem was selected. Subsequent lines were generated based on all the

previously generated lines, which are subject to phonological (rhyme) and structural constraints (the length of each line).

(C) MEG experimental paradigm. Each poem stimulus was presented as an isochronous sequence of auditory syllables twice during MEG recording. At the top,

an example artificial poem and its synthesized waveform are shown. Each syllable is 300 ms long (syllable rate: �3.33 Hz), each line is 1,500 ms long

(line rate: �0.67 Hz), and the rhyming rate between two lines is �0.33 Hz. The participants were required to evaluate the poem by the end of each trial.

(D) Modulation spectra of the poem stimuli. The modulation spectra of 150 artificial poem stimuli and 30 real poem stimuli show salient peaks at the syllable rate

and its harmonics, but not at the line rate or the rhyming rate. See also Figure S1.
distribution estimated using a surrogate permutation procedure,

two spectral components emerged in the relative amplitude

spectrum (Figure 2A, lower panel), with �0.64 Hz matching the

line rate. The topographies and source localizations of the two

components are shown in Figures 2B and 2C.

We next examined the effects of hemispheric lateralization

and repetition of the poem stimuli using ten MEG channels for

each hemisphere and each frequency component, which were

selected based on the topographies of the spectral components

of �0.24 and �0.64 Hz, respectively (Figure 2B). We first con-

ducted a cluster-based test to determine frequency ranges

showing significant effects (p < 0.01) (Figure 2D). Through a

two-way repeated-measure ANOVA (rmANOVA) within each sig-

nificant frequency range (Figure 2E), we found that the amplitude

of the second presentation of the poem stimuli significantly

decreased compared with the first presentation between 0.12

and 0.28 Hz (F(1,12) = 9.45, p = 0.0095, hp
2 = 0.441)—a phenom-

enon of repetition suppression on the level of the entire poem

stimuli [11], which was arguably induced by the expectation of

incoming stimuli [12]. The main effect of lateralization and

the interaction effect were not significant (F(1,12) = 0.60,

p = 0.452, hp
2 = 0.048; F(1,12) = 0.10, p = 0.756, hp

2 = 0.008).

The significant left lateralization was observed between 0.48

and 0.70 Hz (F(1,12) = 9.58, p = 0.009, hp
2 = 0.444), which is

consistent with previous literature showing a left lateralization

of sentence-level processing [13–17]. The main effect of repeti-

tion and the interaction effect were not significant (F(1,12) =
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1.50, p = 0.244, hp
2 = 0.111; F(1,12) = 1.56, p = 0.236, hp

2 =

0.115). Interestingly, this finding suggests that the left-lateralized

sentence-level process does not necessarily involve strict syn-

tactical processing but represents more general combinatory

processes of linguistic elements, as the lines of Jueju lack well-

constructed sentence structures. These findings cannot be ex-

plained by the acoustic properties of the poemstimuli (Figure S1).

Moreover, the number of channels included in the analyses did

not affect our observations (Figures S2A and S2B).

These results demonstrate that listeners employ the poetic

structure as a template to actively group words into cohorts

congruent to the formal and conceptual structure of Jueju, which

is complementary to previous findings that neural signals mark

boundaries of linguistic elements, such as words and phrases

[4–8]. This structure-based combinatory process potentially ex-

plains how the constrained structure aids poem appreciation—

as poetic languages deviate from ordinary languages and unique

combinations of words are often used, imposing a stringent

formal and conceptual structure provides a poetic temporal

frame for listeners to constitute semantic cohorts intended by

poets.

We did not find any neural evidence of the neural tracking of

the rhyming structure, although the neural network took into

account the phonological rules [18]. This could be because coar-

ticulations between words and prosodic cues produced by

human speakers important to rhyme were absent in the synthe-

sized poem stimuli. Another possibility is that the rhyme relation



Figure 2. Spectral Analyses of MEG Signals

(A) The amplitude spectra of neural responses

averaged over the auditory channels (dark green

dots on the inserted topographies). The top

panel shows the averaged spectrum of both

the first and second presentations over 150

poem stimuli. The dashed blue line represents

the threshold of the surrogate test (99th

percentile). After subtracting the mean of the null

distribution out of the MEG spectrum, two

spectral components emerged around 0.24 and

0.64 Hz (lower panel), with �0.64 Hz matching

the line rate.

(B) MEG topographies of the relative amplitude at

0.24 and 0.64 Hz.

(C) MEG source localization of the spectral com-

ponents around 0.24 and 0.64 Hz.

(D) Analysis on the channels of interest (ten

channels in each hemisphere, green dots on the

inserted topographies). The amplitude spectra

below 2 Hz are shown for the channels selected

based on the components of 0.24 (upper panel)

and 0.64 Hz (lower panel), separately. The line

color codes for hemispheres and presentations.

The dashed boxes indicate the frequency ranges

showing significant effects across hemispheres

and presentations (p < 0.01). The thick dashed box

indicates the significant frequency range corre-

sponding to the frequency at which the channels

were selected.

(E) Averaged amplitude in the significant frequency

ranges. In the low-frequency range between 0.12

and 0.28 Hz (upper panel), the first presentation of

the poem stimuli evoked significantly larger

amplitude than the second presentation (p < 0.01).

In the frequency range between 0.48 and 0.70 Hz (lower panel), significant left lateralization was found (p < 0.01). The shaded areas in (A) and (D) represent one

standard error of the mean; the error bars in (E) represent one standard error of the mean. See also Figures S1 and S2.
can only be identified after the occurrence of the last word, which

may not promote the grouping within a couplet.

Neural Phase Precession Induced by the Repetition of
Poem Stimuli
Distinct neural signatures are observed previously at boundaries

between complex linguistic structures in the temporal domain

[5, 7, 19]; the temporal information of the neural signals may

reveal the active operation of the poem parsing due to listeners’

prior knowledge of poems. We filtered the MEG signals between

0.1 and 2 Hz to remove components (�3.33 Hz) evoked by the

amplitude envelopes. The filtered temporal responses showed

robust onset and offset responses to the poem stimuli (Fig-

ure 3A). Clear peaks were observed at the boundary between

the first and second lines (�1.5 s), as well as between the second

and third lines (�3.0 s); the peak around the boundary between

the third and the fourth lines seemingly shifted forward. The

fact that the time points of peaks closely matched the line

boundaries suggests that the brain may actively predict the

line structure to segment the poem contents.

We selected two frequency bands centered around �0.24

and �0.64 Hz, separately (Figure 3B, upper panel; STAR

Methods). The neural dynamics between 0.1 and 0.4 Hz primarily

reflected the onset and offset responses to the poem stimuli as

well as the neural responses to the boundary between the third

and fourth lines around 4.5 s. The temporal dynamics in the
frequency band between 0.4 and 0.96 Hz matched the line rate

and a peak-to-peak cycle roughly corresponding to the duration

of a line (1.5 s). To validate our observation quantitatively and to

further examine the origin of the repetition effect at �0.24 Hz

(Figure 2E, upper panel), we conducted a series of simulation an-

alyses (STAR Methods), which demonstrated that the spectral

component of �0.24 Hz represented a combination of the onset

responses to the poem stimuli and a downward amplitude mod-

ulation component ranging from the first line to the third line (Fig-

ure S2C). The repetition effect at �0.24 Hz was associated with

the decreasedmodulation strength in the second presentation of

the poem stimuli (Figure S2D). The downward amplitude modu-

lation across the first three lines indicates a grouping between

the first three lines and the last line and is consistent with the

conceptual flow of Jueju—‘‘Qi (initialization) Cheng (elaboration)

Zhuan (continuum/twist) He (integration),’’ a conceptual organi-

zation of the first three lines versus the last line in Jueju [20].

We next compared the phase difference between the first and

second presentations for each hemisphere in the two frequency

bands, respectively. The phase series from the group-averaged

responses in Figure 3B (lower panel) reveals salient phase differ-

ences between the two presentations of the same poem stimuli.

We then conducted circular statistical tests and found that, in the

lower frequency range (0.1–0.4 Hz), the phase of the first presen-

tation led the second presentation in the beginning (p < 0.01)

(Figure 3C, left panel; left hemisphere: �0.6–1.3 s; right
Current Biology 30, 1299–1305, April 6, 2020 1301



Figure 3. Neural Phase Precession Caused by Poem Repetition

(A) Neural dynamics of poem parsing. The upper panel shows the topographies of the neural responses to the poem stimuli and the lower panel shows the neural

responses between 0.1 and 2 Hz from the channels selected from both the �0.24 and �0.64 Hz components.

(B) The upper panel shows the neural dynamics between 0.1 to 0.4 Hz and between 0.4 to 0.96 Hz; the lower panel shows phase series of averaged neural

responses to the poem stimuli at the two frequency ranges.

(C) Phase precession—the phase differences between the first and second presentations in each hemisphere. The colored dashed boxes indicate the periods

where the phase difference between the second and first presentations significantly differs from zero in each hemisphere (p < 0.01). From 0.1 to 0.4 Hz, the phase

series of the second presentation significantly lagged at the beginning in both hemispheres, but flipped to advance faster than that of the first presentation around

the onset of the last line in the left hemisphere. From 0.4 to 0.96 Hz, the phase series of the second presentation advanced faster and significantly differed from

that of the first presentation after the onset of the third line in the left hemisphere. The shaded areas in (A) and (B) represent one standard error of the mean; the

shaded areas in (C) represent one circular standard deviation over participants. See also Figures S2 and S3.
hemisphere: �0.05–1.4 s). An explanation from the perspective

of neural signals is simply that the offset responses of the first

presentation lasted over 2 s after the offset (Figure 3A) and

affected the onset responses of the second presentations, which

caused the phase differences. From a cognitive perspective, the

prolonged process of the first presentation likely slowed down

the processing of speech contents in the beginning of the sec-

ond presentation and hence caused the phase delay around

the onset. However, the direction of phase difference flipped,

and the difference peaked around the transition between the

third and last lines (left hemisphere: 4.05–4.7 s, p < 0.01). The

phase series of two presentations aligned with each other as

the poem stimuli were reaching the end, which suggests that

the brain tracks the unfolding of the poetic stimuli globally.

In contrast, the phase series of both presentations were

aligned at the beginning in the higher frequency range (0.4–

0.96 Hz) (Figure 3C, right panel), but the phase series of the

second presentation advanced faster than that of the first

presentation after the second line in the left hemisphere (3.65–

4.8 s and 5.05–6.25 s, p < 0.01)—a phenomenon of phase pre-

cession found in spatial domain [21], reflecting the prediction

of future events [22, 23]. This is probably because, after being

primed on the contents of the poem stimuli in the first presenta-

tion, the participants registered the words of the first presenta-

tion in the working memory and employed the memorized words

as temporal landmarks to predict the boundaries of lines in the

second presentation, as suggested by the source localization
1302 Current Biology 30, 1299–1305, April 6, 2020
results showing an increase of amplitude in left frontal area for

the second presentation (Figure S3). However, the phase pre-

cession observed here is unlikely to be accounted by mecha-

nisms solely related to memory, which is often shown within a

higher frequency band (i.e., the theta band, 4–8 Hz) [24–27].

The fact that the phase precession only happened in the left

hemisphere and at the frequency corresponding to the line rate

echoes the finding in Figure 2E and demonstrates that the phase

precession is primarily involved in the process of segmenting line

structures of Jueju.

In summary, these results further demonstrate that speech

segmentation is driven by listeners’ prior knowledge of not only

formality of speech materials but also speech contents [28].

Speech segmentation involves predictive processes as a result

of listeners’ prior knowledge of speech materials.

WordCo-occurrence Negatively Correlateswith Speech
Segmentation
It has been shown that statistical regularity of linguistic elements

aids in speech segmentation [5, 9]. Here, we quantified statistical

co-occurrence of monosyllabic words in the poem materials us-

ing an index of language perplexity, and examined whether the

segmentation of poetic speech stream correlated with the lan-

guage perplexity. The language perplexity of a poem is the in-

verse probability of the test lines, normalized by the number of

words [29] (STAR Methods) and represents how likely words of

a poem tend to appear together in the language corpus used



Figure 4. Correlation between Language Perplexity and Speech Segmentation

(A) Distribution of the language perplexity. The language perplexity indicates uncertainty of words in the probability distribution of poetic contents derived from the

training corpus.

(B) Language perplexity and neural correlations. The line color codes hemisphere and presentation. The transparent thin lines (same color code) represent the

upper and lower thresholds derived from a permutation test (p < 0.01). The significant correlations were observed for the first presentation in the left hemisphere

from 0.66 to 0.8 Hz. The shaded areas represent one standard error of the mean.

(C) Topographies of language perplexity and neural correlations from 0.66 to 0.8 Hz. See also Figure S4.
for training the neural network. The language perplexities of all

the poems are shown in Figure 4A.We correlated the language

perplexity with the neural responses to the poem stimuli from

the ten channels selected at �0.24 and �0.64 Hz, respectively

(Figures 4B and S4). We conducted a permutation test by

shuffling the poem tokens and derived thresholds of the two-

sided alpha level of 0.01 (STAR Methods). We chose a threshold

of 0.01 instead of 0.05 because four conditions (two hemi-

spheres and two presentations) were tested. We observed a

significant positive correlation between neural responses

from 0.66 to 0.8 Hz in the left hemisphere and the language

perplexity during the first presentation (Figure 4B), which echoes

the finding on the line parsing (Figure 2E). We further calculated

the correlations over all the channels and show the topography

in Figure 4C. The positive correlation was only significant for

the first presentation, probably because the representation of

the line structure was established during the first presentation

and the brain relied less on the external features of the poems

to process the poem stimuli during the second presentation. It

is worth noting that the lower the language perplexity of a

poem is, the higher the statistical co-occurrence is among

words. Therefore, this finding shows that the word co-occur-

rence, quantified by the language perplexity, negatively corre-

lated with speech segmentation.

One explanation for the negative correlation between the

statistical co-occurrence of monosyllabic words and the line

segmentation is that, when the language perplexity of a poem

is low, words and phrases within the poem are seemingly

related to each other within and across lines. This smeared

boundaries between lines and conflicted with listeners’ knowl-

edge of the poetic structure; worse speech segmentation

around the line rate was observed. In contrast, the poems of

high language perplexity have words and phrases that do not

usually appear together in the representative language corpus

used for training the neural network, which made each word or

phrase stand out, so that listeners can better group those inde-

pendent words into lines based on the poetic structure. There-

fore, better line segmentation was observed. Complementary

to the previous finding of the statistical regularity aiding in
speech segmentation [5, 9], our finding suggests that the seg-

mentation cues in a speech stream are selectively deployed by

the brain according to cognitive tasks and contexts. In the cur-

rent context of grouping poetic languages that deviate from ordi-

nary language usage, listeners segmented the poetic speech

stream according to their prior knowledge of poetic structure

while assigning less weight to the statistical cues.

In summary, we investigated how the poetic structures aid

speech segmentation and how listeners’ prior knowledge of

the poetic structures contribute to speech segmentation. We

employed artificial intelligence and neurophysiology collabora-

tively and gained insights from the neural correlates of speech

segmentation—we observed amulti-timescale process of active

speech segmentation driven by listeners’ prior knowledge of the

formal and conceptual structure of poems (Figure 2). Unprece-

dently, we found the phenomenon of phase precession in

speech perception due to repetition of poems, reflecting a pre-

dictive process of speech segmentation (Figure 3). The statistical

co-occurrence of monosyllabic words in the poems did not

explain this structure-based speech segmentation (Figure 4).

Our findings demonstrate that, in addition to grammatical struc-

tures, semantic cohorts, and statistical cues, listeners’ prior

knowledge of the structural regularity of language materials

can be exploited to actively segment speech streams and group

linguistic contents.
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Chinese Poetry Generation with

Recurrent Neural Networks
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Other

157 axial gradiometer whole head

MEG at New York University

KIT, Kanazawa, Japan N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Xing Tian (xing.tian@

nyu.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirteen Chinese native speakers studying at New York University participated in the MEG experiment (6 females; age ranging

from 23 to 30; 12 right-handed and 1 left-handed). None of the participants majored in Chinese literature; all of the participants

were fully familiar with the structure of Chinese ancient poetry and acquired their knowledge of Jueju from education acquired

before college. None of the participants had any prior experience on any of the artificial poems before the magnetoencepha-

lography experiment. All the participants had normal hearing and reported no neurological deficits according to their self-report.

Written consent forms were obtained before the experiment. The study was approved by the New York University Institutional

Review Board (IRB# 10–7277) and conducted in conformity with the 45 Code of Federal Regulations (CFR) part 46 and the prin-

ciples of the Belmont Report.

METHOD DETAILS

Artificial poem generation
We replicated the poem generation procedures in Zhang and Lapata (2014) (github.com/XingxingZhang/rnnpg) and constructed a

poem generationmodel using recurrent neural networks. We brief the procedures here. Themodel primarily selected poetic contents

(words and lines) constrained by the learned surface realization (e.g., phonological rules). Trained on a corpus of classical Chinese

poems that contained 78,859 quatrains from Tang Poems, Song Poems, Song Ci, Ming Poems, Qing Poems, and Tai Poems, the

model learned representations of individual characters and their combinations into one or more lines, as well as how these lines
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mutually reinforce and constrain each other. The loss functionwas determined by the cross-entropy between the predicted character

distribution and the actual character distribution in our corpus. An L2 regularization term was employed. During poem generation,

some keywords (e.g., spring, lute, drunk) were first supplied, which defined the main topic of a poem, and then the generation model

expanded the keywords into a set of phrases which were restricted to the ShiXueHanYing poetic phrase taxonomy [30, 31]. From

there, the model produced the first line of the poem based on these keywords. Subsequent lines were generated based on all pre-

vious lines, which were subject to phonological (e.g., phonological rules) and structural constraints (the length of each line). An illus-

tration of the poem generation is shown in Figure 1B, which was adapted from Zhang and Lapata, 2014.

We first used the poemmodel to generate 4000 artificial poems. To select artificial poemswithin a representative range of qualities,

one of the authors (M.M), who had expertise on Chinese ancient poetry, rated the generated poems and manually grouped them into

three categories – ‘good’, ‘medium’, and ‘bad’. From these three categories, we randomly selected 32 ‘good’ poems, 86 ‘medium’

poems, and 32 ‘bad’ poems to constitute 150 artificial poems used in theMEG experiment. We further acquired an objective index of

complexity of these 150 artificial poems - language perplexity. The language perplexity gave a convenient intuition of the degree of

uncertainty in the probability distribution of poetic contents derived from the training corpus - the lower the language perplexity is, the

more likely the corresponding poem is generated by our language model trained on the poetry corpus. The words in the poem of low

language perplexity tend to co-occur in the poetry corpus.

In computational linguistics, a general way to evaluate the performance of a trained language model is to calculate perplexity on

held-out lines. The language perplexity is the inverse probability assigned to a held-out line, normalized by the number of words it

contains [29]. It is equivalent to 2 to the power of cross-entropy between the true probabilistic distribution of lines in the training

corpus and the actual probabilistic distribution of the held-out lines. If our trained neural network language model had learned the

probabilistic distribution of poetic contents in the corpus and the held-out lines were drawn from an unknown probabilistic distribu-

tion, the cross-entropy quantifies the realized average encoding size (a measurement of uncertainty) using the distribution of poetic

contents of the training corpus and the actual encoding size based on the probabilistic distribution fromwhich the held-out lines were

drawn. Here, we calculated the language perplexity as below: the language perplexity of a poem is the inverse probability of the test

lines (w), normalized by the number of words (N):

PðWÞ = Pðw1;w2;.;wNÞ�1=N

According to the chain rule of probability, we derived:

PðWÞ =
"YN

i = 1

1

Pðwijw1;w2;.;wi�1Þ

#�1=N

A recurrent neural network model was used to compute the conditional probability

Pðwijw1;w2;.;wi�1Þ
We further selected 30 poems written by humans and evaluated the language perplexity to make a comparison between artificial

poems and real poems. The 30 real poems were further used in the MEG experiment and were less known to Chinese listeners, so

that theymatched the familiarity of the artificial poems. The histogram of the language perplexity of all the selected poems is shown in

Figure 4A.

MEG measurement
Poem stimuli. The 150 artificial poems and the 30 human written poems were included in the MEG experiment. We used the same

procedure as in the study of Ding et al. [7] to synthesize poem stimuli. All monosyllabic characters in the poems were synthesized

individually using the Neospeech synthesizer (http://www.neospeech.com/, the male voice, Liang). The synthesized syllables

were adjusted to 300 ms by truncation or padding silence at the end. If a syllable was truncated, the last 25 ms of this syllable

was smoothed by a cosine window. Each poem was constructed by concatenating the waveforms of characters, based on the

poem structure, into an isochronous sequence of syllables without inserting any acoustic gaps. By following this procedure, we elim-

inated any acoustic cues, such as co-articulation and intonation in poems recited by humans, so that we can investigate how poems

are parsed by listeners according to their forms and structures. Each poem contained 20 syllables and four lines. Therefore, each

poem stimulus was 6 s long with the syllable rate around 3.33 Hz, the line rate was around 0.67 Hz, and the rhyming rate was around

0.33 Hz (Figure 1C).

All the poem stimuli were normalized to �65 dB SPL. The stimuli were delivered through plastic air tubes connected to foam ear-

pieces (E-A-R Tone Gold 3A Insert earphones, Aearo Technologies Auditory Systems) in the experiment.

Experimental procedure
Before the MEG recording, the participants were required to read all the selected 180 poems within 5 - 10 min. They were asked to

answer the question ‘how good is the poem’ instructed in Chinese and rated the poems from 1 (bad) to 3 (good). This procedure

aimed to familiarize the participants with the poem materials but prevented them from memorizing the poems as the time period

was too short for the participants to memorize all the 180 poems. The 180 poems were displayed in four Excel sheets and the order

of sheets for rating was counter-balanced among the participants.
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During the MEG recording, participants were presented each poem stimulus twice and rated the poems from 1 (bad) to 3 (good)

after the second presentation by pressing one of three buttons using their right hand. On each trial, participants were first required to

focus on a white fixation in the center of a black screen. After 2.5 �3.5 s, the fixation disappeared and one poem stimulus was pre-

sented. After the poem stimulus was over, the white fixation reappeared. The same poem was presented again 1 s later. After the

second presentation, a question in Chinese, ‘how good is the poem?’, was displayed on the screen and the participants were

required to rate the poem. The next trial started in 2.5 �3.5 s after the button press. The procedure was illustrated in Figure 1C.

The poem stimuli were presented in three blocks and the order of the poems was randomized for each participant.

MEG recording and preprocessing
MEG signals were recorded with participants in a supine position, in a magnetically shielded room using a 157-channel whole-head

axial gradiometer system (KIT, Kanazawa Institute of Technology, Japan). The MEG data were acquired with a sampling rate of

1,000 Hz, filtered online with a low-pass filter of 200 Hz, with a notch filter at 60 Hz. After the main experiment, participants were pre-

sented with 1 kHz tone beeps of 50 ms duration as a localizer to determine their M100 evoked responses, which is a canonical audi-

tory response [32]. Twenty channels with the largest M100 response in both hemispheres (10 channels in each hemisphere) were

selected as auditory channels for each participant individually.

MEG data analyses in sensor space were conducted in MATLAB using the Fieldtrip toolbox 20181014 [33]. Raw MEG data were

noise-reduced offline using the time-shifted PCA [34] and sensor noise suppression [35] methods. The data of each block were high-

pass filtered post-acquisition at 0.1 Hz using a two-pass third-order Butterworth filter. Each presentation of the poem stimuli in a trial

was extracted into a 11 s epoch, with 3 s pre-stimulus period and 2 s post-stimulus period. Each epochwent through a low-pass two-

pass fourth-order Butterworth filter at 60 Hz (the default setting of Fieldtrip toolbox).

All trials were visually inspected, and those with artifacts such as channel jumps and large fluctuations were discarded. The base-

line was corrected for each trial by subtracting out the mean of the whole trial before conducting further analyses. An independent

component analysis was used to correct for eye blink-, eye movement-, heartbeat-related and system-related artifacts. As record-

ings from some participants were very noisy, up to 30 trials were excluded for a few participants. To keep the number of trials consis-

tent across the participants and between the presentations, we kept 150 trials from the first presentation and from the second

presentation, respectively, for each participant. The removed trials were randomly selected and we did not take into consideration

whether a removed trial was from an artificial poem or a real one. As both the artificial poems and the real poems were novel to the

participants, we grouped all the poems to increase statistical power. The 150 trials of each presentation included both the artificial

poems and the real poems.

QUANTIFICATION AND STATISTICAL ANALYSIS

Modulation spectra of the poem stimuli
To characterize acoustic properties of the synthesized poem stimuli, we derived amplitude envelopes of the poem stimuli by simu-

lating outputs of cochlear filters using a gammatone filterbank.We filtered the audio files through a gammatone filterbank of 64 bands

logarithmically spanning from 80 Hz to 6400 Hz [36, 37]. The amplitude envelope of each cochlear band was extracted by applying

the Hilbert transformation on each band and taking the absolute values [38, 39]. The amplitude envelopes of 64 bands were then

averaged and down-sampled from the sampling rate of 16000 Hz to 1000 Hz to match the sampling rate of the processed MEG sig-

nals for further analyses (i.e., acoustic-neuro coherence).

We transformed the amplitude envelopes to modulation spectra so that the canonical temporal dynamics of the poem stimuli can

be concisely shown in the spectral domain. We first calculated the modulation spectrum of the amplitude envelope of each poem

stimuli using the FFT and took the absolute value of each frequency point. We then averaged the modulation spectra across the

180 poem stimuli and showed the averaged modulation spectrum in Figure 1D.

MEG Spectral analysis
We first conducted spectral analyses using the auditory channels independently selected for each participant using the auditory lo-

calizer, as we assumed for this first step of analysis that the auditory stimuli would evoke strong auditory-related responses, which

should be mostly reflected in the auditory channels. We first averaged in the temporal domain over all the trials selected after pre-

processing from both the first and the second presentations, so that we had enough analytic power to extract neural signatures

involved with parsing the poem stimuli. On each channel, the averaged data from 0.5 s pre-stimulus period and 6.5 s post-stimulus

period were selected and a Hanning window of 7 s was applied on the selected data. We converted the data from the temporal

domain to the spectral domain using the fast Fourier transform (FFT) and derived amplitude spectra by taking the absolute value

of each complex number. The length of data points was 7000 and we padded 43000 data points so that the spectral resolution of

the amplitude spectra was 0.02 Hz, which guaranteed that we had sufficient spectral resolution to observe neural signatures around

the rhyming rate (�0.33 Hz) or the line rate (�0.67 Hz). We averaged the amplitude spectra over all the auditory channels and derived

an averaged amplitude spectrum for each participant.

To remove the influence of the 1/f shape of the spectrum and to reveal neural signatures in the frequency range below 1 Hz, we

employed a surrogate procedure. For each presentation in a trial, we randomly selected a new onset point between 2.5 pre-stimulus

period and 1 s post-stimulus period and defined a new data series of 6.5 s.We conducted the spectral analysis to derive an amplitude
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spectrum for each participant and calculated a group-averaged amplitude spectrum from this new dataset. This procedure was

repeated 1000 times and we sorted the results at each frequency point to derive a threshold of a one-sided alpha level of 0.01.

By subtracting the mean of the amplitude distribution of the surrogate procedure from the empirical amplitude spectrum, the neural

components locked to the poetic structure were revealed (Figure 2A, lower panel), as the surrogate procedure disrupted the temporal

correspondence between the poem stimuli and the neural signals.

The results above revealed two spectral components (�0.24 Hz and �0.64 Hz): �0.64 Hz was potentially relevant to parsing line

structures of the poem stimuli while �0.24 Hz indicated existence of a neural component at a timescale above the line structure. We

next selected MEG channels that showed the highest amplitude of the two components based on the group-averaged results (Fig-

ures 2A and 2B) for further investigation on lateralization and the effects of repetition of the poem stimuli. We selected ten channels in

each hemisphere and averaged the power spectra over the channels in each hemisphere for each participant. The number of the

channels selected was arbitrarily determined, so that the decision could affect our results. We varied the channel selection and

show that the channel selection did not affect the main findings qualitatively nor the conclusion of the study (Figure S2).

To determine the significant frequency ranges showing differences between hemispheres and presentations, we first conducted a

cluster-based permutation test from0.1 to 2Hz on the four combinations of two factors - hemisphere (2 levels) and presentation order

(2 levels) [40]. We shuffled the labels of the four combinations in each participant’s data and created a new group dataset. Then, we

conducted a one-way rmANOVA at each frequency point. We set the alpha level of the threshold as 0.05 following the previous con-

ventions and grouped frequency points above this threshold into clusters. We calculated the cluster statistics (F value) and kept the

cluster of the highest F value. This procedure was repeated 1000 times andwe sorted the F values over 1000 clusters. The 99 percen-

tile was chosen as the threshold.

Acoustic-neuro coherence
Wecalculated the coherence between the neural signals and the amplitude envelopes of the poem stimuli in the spectral domain. The

rationale here is that, if certain acoustic properties in the poem stimuli indicate boundaries of lines or other poetic structures, high

coherence between the acoustics and the neural signals should be observed at the corresponding timescales of the poetic struc-

tures. If such coherence is not observed, it can be concluded that listeners do not rely on the acoustic cues to segment poetic

streams. This measurement has been used in neurophysiological studies on speech perception [41, 42], which quantified how neural

responses evoked by auditory stimuli correlate with acoustic dynamics.

We here calculated magnitude-squared coherence [43] using the function ‘mscohere’ in MATLAB 2016b (https://de.mathworks.

com/help/signal/ref/mscohere.html). The calculation included the neural signal of each trial from 0 s to 6 s, which matched the length

of the poem stimuli. We zeropadded 50000 points to ensure enough spectral resolution. No windowing function was used so that the

coherence was calculated on the entire poem stimuli. To determine the significant frequency ranges showing differences between

hemispheres and presentations, we first conducted a cluster-based permutation test from 0.1 to 7Hz on the four combinations of two

factors - hemisphere (2 levels) and presentation order (2 levels). Here, we selected an upper bound of 7 Hz because we aimed to

include the first harmonic component of the syllable rate (6.67 Hz). The procedure here was the same as in MEG Spectral analysis

above.

MEG Temporal analyses
To show temporal dynamics of the neural responses reflecting parsing poetic structures of the poem stimuli (Figure 3A), we filtered

each trial using a low-pass two-pass third-order Butterworth filter at 2 Hz to remove neural responses to acoustic properties of the

poem stimuli (Figure 1C).

To investigate the temporal dynamics of the two frequency components (�0.24 Hz and �0.64 Hz), we selected two frequency

ranges: 0.1 – 0.4 Hz and 0.4 – 0.96 Hz. The rationale was that a frequency component in neural signals is often not a strictly sinusoidal

component but a narrowband component with a center frequency. The spectral ranges of an amplitude peak in the spectrum reflect

the bandwidth of the narrowband frequency component. If we only selected a part of this peak range, this would distort the temporal

characteristics of this frequency component. The rationale for selecting the 0.1 – 0.4 Hz range was that we first constrained the low

spectral bound to be 0.1 Hz, as the cutoff frequency of the high pass filter applied in the preprocessing step was 0.1 Hz. Then, we

averaged the amplitude spectra over two hemispheres and two presentations, so that a group-averaged amplitude spectrum was

derived, which was unbiased to hemispheres and presentations. Based on this amplitude spectrum, we selected 0.4 Hz, which

was the trough between the spectral peaks of the two frequency components, detected by calculating the second derivative of

the spectrum. For the 0.4 - 0.96 Hz range, we selected the frequency point of 0.96 Hz, which was the upper bound of the spectral

peak of the component of�0.64Hz.We did not select the frequency rangeswhere significant effects of hemisphere and presentation

order were found, because the significant ranges did not cover the whole spectral peaks of the two frequency components.

We applied a bandpass two-pass third-order Butterworth filter on each trial of the preprocessed data to extract temporal signals in

both the frequency ranges. We down-sampled the data from 1000 Hz to 20 Hz, as the sampling rate of 20 Hz was enough to carry

spectral components in the filtered data and fast calculations could be conducted. For each participant, we averaged over 150 trials

of each presentation and then applied the Hilbert transform on the averaged data. The phase series was extracted from the complex

number of each time point. We calculated the differences of phase between the two presentations and then derived circular means

and circular standard deviations over the participants (Figure 3C). We conducted a one-sample circular t test for the mean phase at

each time point from�1 s to 7 s and set the alpha level to be 0.01 by assuming themean direction to be zerowithout binning the phase
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data [44]. This circular test calculated confidence intervals based on the chosen alpha level and determined whether the phase

difference between the second and the first presentations was larger than the confidence interval – at which time point the phase

difference significantly differed from zero. We chose a stringent alpha level of 0.01 in order to decrease the type I error, as four con-

ditions were tested here (two hemispheres and two presentations).

MEG source reconstruction
Each participant’s head shape was digitized (Polhemus 3SPACE FASTRAK) before the MEG recording session. Five marker coils

were attached to their head and were localized with respect to the MEG sensors at the beginning and at the end of the MEG

recording. We generated individual head models by co-registering the Freesurfer average brain (CorTechs Labs Inc., Lajolla, CA)

based on individual head shapes and position, and by using uniform scaling, translation, and rotation in MNE-Python [45]. We did

not use participants’ MRI anatomy of the brain for generating head models. The source reconstructions were done by estimating

the cortically constrained dynamic statistical parametric mapping (dSPM) of the MEG data. The forward solution (magnetic field es-

timates at each MEG sensor) was estimated from a source space of 5121 activity points with a boundary-element model (BEM)

method. The inverse solution was calculated from the forward solution. Subsequently, we morphed each individual brain back to

the FreeSurfer average brain to obtain the group-averaged results.

We matched the parameters used in Fieldtrip during preprocessing and conducted preprocessing in MNE-python (lowpass

filtering at 60 Hz and independent component analysis). After preprocessing, we derived single-trial data in source space, which

were then exported toMATLAB.We conducted the same spectral analysis in the source space as that in the sensor space inMATLAB

and converted the data back to Python format to create the source plots of each frequency components (Figure 2). Similarly, we

repeated the temporal analysis in the source space and generated the source plots (Figure S3A).

ROI analysis of neural dynamics in the source space
Regions of interests (ROI) in the frontal and temporal lobes were defined based on anatomical labels in the HCP-MMP1.0 parcellation

[46]. For the frontal ROI, four areas (‘FOP50, ‘45’, ‘p47r’, and ‘IFSa’ as labeled in the parcellation) were included. For the temporal ROI,

three areas (‘STGa’, ‘TA2’, and ‘PI’ as labeled in the parcellation) were included. The ROI selections aimed to match the areas

showing increased neural activity in the second presentation (Figure S3A). This selection resulted in four ROIs, one frontal ROI

and one temporal ROI in each hemisphere (Figure S3B). We took absolute values of each source dipole and derived a mean over

all the source dipoles in each ROI.

Correlations between neural signals and language perplexity
We correlated the amplitude spectra from 0.05 Hz to 5 Hz of the neural signals with the language perplexity to investigate whether the

language perplexity modulated the neural signatures that reflected poem parsing processes. The correlation was conducted using

the channels selected based on the two frequency components, respectively (Figure 2D, inserts).

For the correlation between the language perplexity and the neural signals, we included both the artificial poems and the real

poems. At each frequency point, we correlated the amplitude values of the trials from the artificial poems with their corresponding

language perplexity using Pearson correlation. We applied Fisher-z transformation on the correlation coefficients of each participant

and averaged the transferred coefficients over all the participants. To determine the significance of correlations, we conducted a per-

mutation test.We randomly shuffled the correspondence between the trials and the poem stimuli and derived a correlation coefficient

from the shuffled dataset for each participant. We repeated the group-averaging procedure and derived a new group-averaged co-

efficient. This procedure was repeated 1000 times and we sorted the results at each frequency point to derive a threshold of a two-

sided alpha level of 0.01 (the thin lines in Figures 4B and S4A), as four conditions were tested.

Simulation on examining the origin of the effect at �0.24 Hz
Our focus on the neural signals within the frequency range around 0.24 Hz was motivated from two observations: 1) after subtracting

out the baseline derived from the surrogate test (MEG Spectral analysis), we observed a peak at�0.24 Hz in the amplitude spectrum

(Figure. 2A, lower panel); 2) correspondingly, a repetition effect was found between 0.12 Hz and 0.28 Hz (Figure 2D, upper panel). The

spectral component of�0.24Hz did not sufficiently suggest existence of rhythms at�0.24 Hz, as the signal length (7 s) used to calcu-

late the amplitude spectra was less than two cycles of�0.24 Hz. It is helpful to further examine the origin of the effect at�0.24 Hz, so

that a proper explanation can be provided. Therefore, we conducted a series of simulations and related the simulations to the data to

further reveal the origin of the effect at �0.24 Hz. In short, we showed that the spectral component of �0.24 Hz represented a com-

bination of the onset responses to the poem stimuli and a downward amplitude modulation from the first line to the third line in Jueju,

and that the repetition effect around 0.24 Hz (Figure 2D, upper panel) originated from the decreased amplitude modulation on the

poetic line segmentation from the first presentation to the second presentations.

The temporal range (�0.5 s to 6.5 s) used to calculate the amplitude spectra for the results in Figure 2D included four major com-

ponents – the onset response, the offset response, the neural signals corresponding to the poetic line segmentation, and a downward

amplitude modulation on the line segmentation (Figure S2C). One or a few of these four major components probably contributed to

the effect at�0.24 Hz, so we constructedmodels to examine the effect of each of the four components on the spectral component of

�0.24 Hz. Admittedly, the neural dynamics in the data is more complex and our abstraction may not fully grasp the details of the

neural signals. For example, we did not include in the models the phase precession (Figure 3C). However, the following simulations
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showed that these four major components were sufficient to explain the origin of the effect at�0.24 Hz. The MATLAB codes used to

conduct the simulation analyses and to plot the corresponding figures for illustration were deposited in theOSF project folder, andwe

also deposited the figures generated from the simulation analyses.

We constructed four models based on our above abstraction to capture the neural dynamics in Figure 3A (MATLAB script:

Simulation_1.m). The model outputs in the temporal and spectral domains are shown in Figure S2D. Model 1 included a component

of the line segmentation. The neural signals corresponding to the line segmentation were simulated by a sinusoid wave at �0.67 Hz

(the line rate). To simplify the model, we assumed that the peaks of the sinusoid wave aligned perfectly with the line boundaries. The

onset of the simulated signal for the line segmentation started from 750 ms, the middle point of the first line. Therefore, the sinusoid

wave included three cycles, each of which corresponded to one line. Following the procedures used to calculate the amplitude

spectra in Figure 2D, we calculated the amplitude spectrum of the simulated line segmentation. The free parameter of Model 1 is

the amplitude of the line segmentation and was set to 1, initially.

Model 2 was constructed based onModel 1 and the amplitude modulation from the first line to the third line was added. The ampli-

tude modulation was hypothesized or abstracted to be a straight line with its slope as a free parameter. The modulation effect was

imposed on the line segmentation from 750 ms to 5250 ms. The intersection of the modulation line was not fixed. Alternatively, we

imposed a constraint driven by the results at�0.64 Hz (Figures 2D and 2E), which was that the modulation did not change themagni-

tude of the line segmentation. This constraint helped us tease out the effect at around 0.24 Hz from around 0.64 Hz – the repetition

effect was found at�0.24 Hz, but not at�0.64 Hz (Figure 2E). Therefore, themiddle point of themodulation line (3000ms) had a fixed

value equal to half of the amplitude of the sinusoid wave of the line segmentation.

Model 3 was constructed based onModel 1 and included two components: the line segmentation and the onset/offset responses.

The peak latencies of the onset/offset responses were fixed at 250 ms and 6300 ms, respectively, which were determined from Fig-

ure 3A. The amplitude of the onset responsewas set to 2 and the offset responsewas set to 3. The initial values were determined from

the observation on Figure 3Awhere the onset responsewas roughly twice larger than the neural responses around the first line ending

and the offset responsewas larger than both the onset response and the neural responses around the first line ending.We later varied

the amplitude bymultiplying a gain with the onset/offset responses and changed the window length - the temporal span of the onset/

offset responses. Therefore, there are two free parameters for the onset/offset responses: the window length and the amplitude gain.

Model 4 was a full model and included all the four components. There are four parameters in the full model: line segmentation

amplitude (the initial value was set to 1), modulation slope (1), window length of onset/offset responses (1.2 s), and amplitude

gain of onset/offset responses (1). The initial values were selected based on our observation that such values enabled the model

to generate temporal dynamics similar to the empirical data in Figure 3A (specifically, the first presentation in the left hemisphere).

We examined how each parameter affected the effect at �0.24 Hz in the following analyses. It can be seen from the simulation

that the full model (Model 4) can best capture the spectral findings in Figure 2D (Figure S2D). The spectral component of the model

between 0.12 Hz and 0.28 matched the shape of the amplitude spectra in Figure 2E.

We varied one of the four parameters of the full model while keeping the other three parameters fixed (MATLAB script:

Simulation_2.m), so that it showed how each parameter affected the spectral results. We then provided quantitative evaluations

on how each parameter affected the effect around 0.24 Hz in the full model (MATLAB script: Simulation_3.m). In Figure 2D, we found

the significant repetition effect between 0.12 Hz and 0.28 Hz, so the following analyses were focused on this frequency range. The

rational is that, if we could replicate this repetition effect using ourmodel, we could demonstrate which parameter played a prominent

role in modulating the neural component around�0.24 Hz and hence reveal the origin of the repetition effect at�0.24 Hz. Therefore,

we averaged the spectral amplitude between 0.12 Hz and 0.28 Hz of the model outputs and tested how each parameter modulated

the averaged magnitude within this frequency range.

We first selected a representative value range for each parameter. The selection was motivated by two observations: 1) By

comparing the temporal dynamics of the model with the data in Figure 3A, we selected a set of values that produced temporal dy-

namics similar to the data. For example, if the window length of the onset/offset responses is larger than 1.5 s, the onset/offset re-

sponses will overlap with the line segmentation, which is inconsistent with the data. Therefore, we set the upper bound of the window

length as 1.5 s; 2) After testing our model using different parameters values, we found that the averaged spectral magnitude approx-

imately had a linear relationship with the parameter values. Therefore, the parameter value ranges would not matter too much to

decide how the averaged spectral magnitude changed with the parameter values. Therefore, we selected the value range for

each parameter as the following - line segmentation amplitude: 0.1 – 1;modulation slope: 0.1 – 1; window length: 0.15 s – 1.5 s; ampli-

tude gain: 0.1 – 1.

We sampled each parameter in 20 steps within its selected value range and calculated the averaged spectral magnitude corre-

sponding to each selection of the four parameters. Totally, 160000 (20 * 20 * 20 * 20) results were generated. We then marginalized

three of the four parameters by averaging the results over all the value selections of the three parameters, so we could plot the rela-

tionship between the change of one remaining parameter and the change of the spectral magnitude. Bymarginalizing the parameters

this way, we took account into the other three parameters while evaluating the remaining one parameter. We fit a line between each

parameter and the spectral magnitude and derived the slopes. We found that the line segmentation amplitude and the modulation

slope greatly changed the spectral magnitude between 0.12 Hz and 0.28 Hz, whereas varying the window length and the amplitude

gain of onset/offset responses did not change the spectral magnitude to a large extent. It is worth noting that the line segmentation

amplitude modulated the magnitude both at �0.24 Hz and at �0.64 Hz. Changing the line segmentation amplitude violated the

constraint derived from our data (Figure 2E) that the spectral magnitude of the line segmentation did not change between the two
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presentations of the poem stimuli. Therefore, one conclusion can be drawn from the above simulations, which is that the amplitude

modulation on the line segmentation from the first to the third line contributed prominently to the effect around 0.24 Hz. Next, we fit

our model to the data and explained the repetition effect around 0.24 Hz by manipulating the modulation slope.

Here, we focused on the modulation slope while fixing the other three parameters at their initial values. We fit a line to the data of

each condition in Figure 3A from 750 ms to 5250 ms and derived slopes from the data. We took the absolute values of the slopes so

that the strength of amplitude modulation indicated by the slopes can be easily compared between conditions. Similar to the results

in Figure 2E, we found a repetition effect of slope, with the line segmentation in the first presentationmodulated to a larger extent than

the second presentation. As we did not find amain effect of hemisphere around 0.24 Hz in Figure 2E, we averaged the slopes over the

two hemispheres and simplified our following analyses. We calculated the ratio of the slopes between the first and the second pre-

sentations and received a ratio of 3.92.

We applied this ratio from the data to our model and created two conditions corresponding to the two presentations of the poem

stimuli. The simulated first presentation had a slope of 1 and the simulated second presentation had a slope of 1/3.92. We calculated

the amplitude spectra of the two model presentations and averaged the spectral magnitude between 0.12 Hz and 0.28 Hz, and then

calculated the ratio of the model spectral magnitude between the first and the second presentations as well as the ratio from the data

for each participant. From the data, we calculated the standard error of themean of the ratio and derived the 95%confidence interval.

Indeed, the ratio of themodel spectral magnitude between the two simulated conditions fell within the 95% confidence interval of the

data ratio. This demonstrated that the origin of the repetition effect at �0.24 Hz came from the differences of the amplitude modu-

lation on the line segmentation between the first and the second presentations of the poem stimuli.

One remaining issue is whether our model could reproduce the temporal dynamics at �0.24 Hz (Figure 3B, upper left panel). If the

answer is positive, this would further validate the explanation provided by the model for the finding at �0.24 Hz. We selected the full

model (Model 4) without further changing the initial values of the parameters and employed the same low-pass filter with a cutoff

frequency of 0.4 Hz used in our data analyses (MEG Temporal analyses) (MATLAB script: Simulation_4.m). Although the detailed dy-

namics between the filtered model output and the data differed, we replicated in our model the main temporal signature – a dip

around the onset of the poem stimuli, a peak around the ending of the first line, and another dip around the ending of the third

line at�4.5 s. This result demonstrated that the spectral component of�0.24 Hz emerged from a combination of the onset response

to the poem stimuli and the amplitude modulation on the line segmentation.

The simulations conducted above showed that the spectral component of�0.24Hzwas associated with the amplitudemodulation

on the line segmentation at �0.64 Hz. This modulation effect was the origin of the repetition effect at �0.24 Hz (Figure 2E, upper

panel). Our simulation results suggest that the neural amplitude modulation existed across the first three line. Admittedly, the sim-

ulationsmay not demonstrate this point in a straightforward way. However, the dip around 4.5 s and the amplitudemodulation across

the first three lines both coincided with the conceptual structure of Jueju – ‘Qi (initialization) Cheng (elaboration) Zhuan (continuum/

twist) He (integration)’, which is a conceptual grouping between the first three lines and the last line.

DATA AND CODE AVAILABILITY

The preprocessed MEG dataset, analysis and simulation codes have been deposited in OSF (https://osf.io/jg3xh/).

ADDITIONAL RESOURCES

The poem texts and auditory stimuli, online crowdsourcing behavioral evaluation on the artificial poems, and the behavioral online

rating datasets and analysis code can be found at https://ray306.github.io/neural_poem/.
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