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We consider the decidability of the membership problem for matrix-exponential semigroups: Given k ∈ N
and square matrices A1, . . . ,Ak ,C , all of the same dimension and with real algebraic entries, decide whether

C is contained in the semigroup generated by the matrix exponentials exp(Ai t ), where i ∈ {1, . . . ,k } and

t ≥ 0. This problem can be seen as a continuous analog of Babai et al.’s and Cai et al.’s problem of solving

multiplicative matrix equations and has applications to reachability analysis of linear hybrid automata and

switching systems. Our main results are that the semigroup membership problem is undecidable in general,

but decidable if we assume that A1, . . . ,Ak commute. The decidability proof is by reduction to a version of

integer programming that has transcendental constants. We give a decision procedure for the latter using

Baker’s theorem on linear forms in logarithms of algebraic numbers, among other tools. The undecidability
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1 INTRODUCTION

Reachability problems are a staple of theoretical computer science and algorithmic verification.
In this article, our motivation stems from systems with both continuous variables and discrete
control modes. Systems of this type permeate engineering and the physical sciences: examples
include linear hybrid automata, switching systems, continuous-time Markov chains, and cyber-
physical systems—see References [1, 2, 15, 16].

We focus on systems consisting of a finite number of discrete control modes (or states), having
the property that the continuous variables of interest evolve in each mode according to some
linear differential equation of the form ẋ = Ax . Here x is a vector of continuous variables, and
A is a square “rate” matrix of appropriate dimension. As is well known, in each mode the closed
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15:2 J. Ouaknine et al.

form solution x (t ) to the differential equation admits a matrix-exponential representation of the
form x (t ) = exp(At )x (0). Thus, if such a system evolves through a series of k modes, where the ith
mode has rate matrix Ai , then the overall effect on the initial configuration x (0) is determined by

multiplying by the matrix
∏k

i=1 exp(Aiti ), where ti ≥ 0 denotes the amount of time spent in the ith
mode for i = 1, . . . ,k . A particularly interesting situation arises when the matrices Ai commute;
in such cases the order in which the modes are visited (or, indeed, whether they are visited only
once or several times) is immaterial, the only relevant data being the total time spent in each mode.
Natural questions then arise as to what kinds of linear transformations can thus be achieved by
such systems.

The following decision problem captures a fundamental reachability question in the setting de-
scribed above. The Matrix-Exponential Semigroup Membership Problem (MSMP) asks, given square
matrices A1, . . . ,Ak ,C , all of the same dimension and with real-algebraic entries, whether C is
a member of the matrix semigroup generated by the set of matrices exp(Ait ) for i ∈ {1, . . . ,k }
and t ≥ 0. The main result of this article shows decidability of this problem when the matrices
A1, . . . ,Ak commute. We also show that the problem is undecidable in general.

1.1 Related Work

In the case of matrix-exponential semigroups with a single generator, the membership problem was
shown to be decidable in Reference [12], and a polynomial-time procedure was subsequently given
in Reference [9]. Further reachability problems in the setting of a single generator are considered
in Reference [6].

There is a rich literature on membership problems for matrix semigroups, which can be seen
as discrete analogs of the matrix-exponential semigroups studied in this article. Given square ma-
trices A1, . . . ,Ak ,C , all of the same dimension, and with algebraic entries, the Matrix Semigroup
Membership Problem consists in deciding whether the matrixC belongs to the multiplicative semi-
group generated by {A1, . . . ,Ak }. A related problem is to determine, given the multiplicative ma-

trix equation
∏k

i=1 A
ni

i = C , whether there is a solution n1, . . . ,nk ∈ N . Both these problems have
been shown to be undecidable in general [5, 23]. When the matrices A1, . . . ,Ak commute, the two
problems are equivalent and known to be decidable [3]. Prior to Reference [3], the case k = 1 was
shown to be decidable in Reference [17], and the case k = 2 was first shown to be decidable in
Reference [8]. The case k = 2 without commutativity assumptions was shown to be decidable in
Reference [5]. See Reference [13] for a relevant survey and Reference [10] for some interesting
related problems.

1.2 Structure of the Paper

To prove decidability of the Matrix-Exponential Semigroup Membership Problem in case the gen-
erating matrices A1, . . . ,Ak all commute, we successively reformulate the problem until we even-
tually arrive at a version of integer programming that has transcendental constants. We show
how to solve the latter problem using Baker’s theorem on linear forms in logarithms of algebraic
numbers and results in simultaneous Diophantine approximation.

If matrices A and B commute, then so do their exponentials exp(A) and exp(B). Using this fact,
it immediately follows that in the case of commuting matrices A1, . . . ,Ak , the Matrix-Exponential
Semigroup Membership Problem is equivalent to the following problem:

Definition 1.1. Given square matrices A1, . . . ,Ak andC , all of the same dimension and with real
algebraic entries, the Matrix-Exponential Equation Problem (MEP) consists in determining whether

there exist real numbers t1, . . . , tk ≥ 0 such that
∏k

i=1 exp(Aiti ) = C .
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The Matrix-Exponential Equation Problem corresponds to reachability in a switching system in
which the number of mode switches is fixed a priori. Using results in linear algebra about commut-
ing matrices and basic facts about matrix logarithms, the special case of the Matrix-Exponential
Equation Problem for commuting matrices can be reduced to the following problem concerning
systems of linear-exponential equations:

Definition 1.2. An instance of the Linear-Exponential Equation Problem (LEP) consists of a system
of linear-exponential equations in nonnegative real variables t1, . . . , tk :

exp ��
k∑

i=1

λ(j )
i ti�� = c j exp(dj ) (j = 1, . . . ,m)

At = b,

(1)

where k,m ∈ N and the constants λ(j )
i , c j ,dj and the entries of the matrixA and vectorb are (possi-

bly complex) algebraic numbers. The problem asks to determine whether there exist nonnegative
real numbers t1, . . . , tk ≥ 0 that satisfy the system (1).

By taking logarithms we can reduce the Linear-Exponential Equation Problem to a version of
integer programming with transcendental constants. More precisely, we consider real constants
that can be written as linear forms in logarithms of algebraic numbers, that is, numbers of the
form α0 +

∑m
i=1 αi log(βi ), where α0, . . . ,αm are algebraic numbers and β1, . . . , βm are non-zero

algebraic numbers (with both the αi and βi being possibly complex) and log is a fixed branch of
the complex logarithm function.

Definition 1.3. An instance of the Algebraic-Logarithmic Integer Programming Problem (ALIP)
consists of a finite system of inequalities of the form πΛx ≤ e , where Λ is a matrix with real
algebraic entries and where the coordinates of e are real linear forms in logarithms of algebraic
numbers. The problem asks to determine whether such a system admits a solution x in integers.

Our strategy to decide the Matrix-Exponential Semigroup Membership Problem in the commu-
tative case is to establish the following chain of reductions:

MSMP ≡ MEP ≤ LEP ≤ ALIP

and, finally, to show decidability of ALIP using results in transcendence theory and Diophantine
approximation.

In the general setting (i.e., without assuming commutativity) we show that both the Matrix-
Exponential Semigroup Membership Problem and the Matrix-Exponential Equation Problem are
undecidable. The proof is by reduction from Hilbert’s Tenth Problem. We also show undecidability
of variants of these problems that involve vector reachability and hyperplane reachability.

Definition 1.4. Given square matricesA1, . . . ,Ak and vectors x ,y, all of the same dimension and
with real algebraic entries, the Matrix-Exponential Vector Reachability Problem (MVRP) consists of
deciding whether there exists a matrix C in the semigroup generated by the set {exp(Ait ) : t ≥
0, i = 1, . . . ,k } such thatCx = y. The Matrix-Exponential Hyperplane Reachability Problem (MHRP)
asks whether there exists such a matrix C satisfying xTCy = 0.

Our undecidability results will be established by the following chain of reductions (where HTP
refers to Hilbert’s Tenth Problem):

HTP ≤ MEP ≤ MSMP ≤ MVRP ≤ MHRP.
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2 MATHEMATICAL BACKGROUND

In this section, we review some results in linear algebra, convex geometry, and number theory.
We also introduce some specialised mathematical notation that will be needed in the subsequent
development.

2.1 Linear Algebra

2.1.1 Jordan Canonical Forms. Let A ∈ Qd×d be a square matrix with rational entries. The
minimal polynomial of A is the unique monic polynomial m(x ) ∈ Q[x] of least degree such that
m(A) = 0. By the Cayley-Hamilton Theorem, the degree ofm is at most the dimension ofA. The set
σ (A) of eigenvalues is the set of zeros ofm, also known as the spectrum ofA. The index of an eigen-
value λ, denoted by ν (λ), is its multiplicity as a zero of m. We use ν (A) to denote maxλ∈σ (A) ν (λ):
the maximum index over all eigenvalues of A. An eigenvalue λ is said to be simple if ν (λ) = 1 and
repeated otherwise. Given an eigenvalue λ ∈ σ (A), we say thatv ∈ Cd is a generalised eigenvector
of A ifv ∈ ker (A − λI )m , for somem ∈ N .

For each eigenvalue λ of A, we denote the subspace of Cd spanned by the set of generalised
eigenvectors associated with λ byVλ . We denote the subspace of Cd spanned by the set of gener-
alised eigenvectors associated with some real eigenvalue byVr . We likewise denote the subspace
of Cd spanned by the set of generalised eigenvectors associated with some non-real eigenvalue
byVc .

Based on the Jordan decomposition of A, as described later on in this subsection, each vector
v ∈ Cd can be written uniquely as

v =
∑

λ∈σ (A)

vλ , (2)

wherevλ ∈ Vλ . It follows thatv can also be uniquely written asv = vr +vc , wherevr ∈ Vr and
vc ∈ Vc .

We will need the following result:

Proposition 2.1. Suppose that v ∈ Rd and that v =
∑

λ∈σ (A) vλ , where vλ ∈ Vλ . For all λ ∈
σ (A), it holds thatv

λ
andvλ are component-wise complex conjugates.

Proof. Since A is real,vλ ∈ ker (A − λI )m implies thatvλ ∈ ker (A − λI )
m

and hence thatv
λ
∈

ker (A − λI )m . In other words, bothvλ andv
λ

lie inVλ . The result now follows from the fact that

0 = v −v =
∑

λ∈σ (A)

(vλ −vλ
)

and from uniqueness of the decomposition (2). �

We can write any matrix A ∈ Cd×d as A = Q−1 JQ for some invertible matrix Q and block diag-
onal Jordan matrix J = diag(J1, . . . , JN ), with each block Ji having the following form:

���������

λ 1 0 · · · 0
0 λ 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1
0 0 0 · · · λ

���������
Moreover, given a rational matrixA, its Jordan Normal FormA = Q−1 JQ can be computed in poly-
nomial time, as shown in Reference [7].
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Note that each vector v appearing as a column of the matrix Q−1 is a generalised eigenvector
and that the index ν (λ) of each eigenvalue λ corresponds to the dimension of the largest Jordan
block associated with it.

One can obtain a closed-form expression for powers of block diagonal Jordan matrices and use
this to get a closed-form expression for the powers of a general matrix A. In fact, if Ji is a l × l
Jordan block associated with an eigenvalue λ, then

Jn
i =

�����������

λn nλn−1
(

n
2

)
λn−1 · · ·

(
n

l−1

)
λn−l+1

0 λn nλn−1 · · ·
(

n
l−2

)
λn−l+2

...
...

...
. . .

...
0 0 0 · · · nλn−1

0 0 0 · · · λn

�����������
, (3)

where
(
n
j

)
is defined to be 0 when n < j.

2.1.2 Matrix Exponentials. The exponential of a matrixA ∈ Cd×d is defined by the power series

exp(A) :=

∞∑
i=0

Ai

i!
∈ Cd×d .

The series above always converges, and so the exponential of a matrix is always well defined.
Given t ∈ C, one can obtain a closed-form representation of exp(At ) as follows. Find Q ∈ GLd (C)
such that A = Q−1 JQ and J = diag(J1, . . . , JN ) is a block diagonal Jordan matrix. Then exp(At ) =
Q−1 exp(Jt )Q , where exp(Jt ) = diag(exp(J1t ), . . . , exp(JN t )). Note that, due to Equation (3), if

J =

���������

λ 1 0 · · · 0
0 λ 1 · · · 0
...
...
. . .

. . .
...

0 0 · · · λ 1
0 0 · · · 0 λ

���������
is a Jordan block associated with an eigenvalue λ, then

exp(Jt ) = exp(λt )

������������

1 t t 2

2 · · · t k−1

(k−1)!

0 1 t · · · t k−2

(k−2)!
...
...
. . .

. . .
...

0 0 · · · 1 t
0 0 · · · 0 1

������������
.

If A and B commute, then so do exp(A) and exp(B) and in this case we have exp (A) exp (B) =
exp (A + B).

Proposition 2.2. Letv lie in the generalised eigenspaceVλ for some λ ∈ σ (A). ThenbT exp(At )v
is a linear combination of terms of the form tn exp(λt ), n ∈ N .

Proof. Note that ifA = Q−1 JQ and J = diag(J1, . . . , JN ) is a block diagonal Jordan matrix, then
exp(At ) = Q−1 exp(Jt )Q and exp(Jt ) = diag(exp(J1t ), . . . , exp(JN t )). The result follows by observ-
ing that Qv is zero in every component other than those pertaining the block corresponding to
the eigenspaceVλ . �
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2.1.3 Matrix Logarithms. Given a matrix A ∈ Cd×d , define the matrix logarithm

log(A) :=

∞∑
m=1

(−1)m+1 (A − I )m

m
∈ Cd×d

whenever the above series converges. In particular, the matrix logarithm that is well defined in case
A is unipotent (e.g., when A is a upper unitriangular matrix), since in this case the above series
becomes a polynomial expression in A. In fact, it is well-known that the matrix exponential func-
tion and matrix logarithm functions yield a bijection between nilpotent and unipotent matrices in
Cd×d (see, e.g., Reference [14, Chapter 2]). Thus we have the following.

Proposition 2.3. Given an upper unitriangular matrix M ∈ Cd×d , there exists a unique strictly
upper triangular matrix L such that exp(L) = M . Moreover, the entries of L lie in the field Q(Mi, j :
1 ≤ i, j ≤ d ) generated over Q by the entries of M .

2.1.4 Properties of Commuting Matrices. We present a useful decomposition of Cd induced by
the commuting matricesA1, . . . ,Ak ∈ Cd×d (cf. Reference [8, Section 2]). Recall that σ (Ai ) denotes
the spectrum of the matrix Ai and fix

λ = (λ1, . . . , λk ) ∈ σ (A1) × · · · × σ (Ak ).

Note that the generalised eigenspace of λi of Ai is equal to ker (Ai − λi I )
d . (This is because the

increasing sequence (ker (Ai − λi I )
n )n∈N of subspaces of Cd must converge in at most d steps.)

With this in mind, we define the following subspace of Cd :

Vλ =

k⋂
i=1

ker (Ai − λi I )
d .

Let Σ = {λ ∈ σ (A1) × · · · × σ (Ak ) : Vλ � {0}}. Below, Ai �Vλ
denotes the restriction of the linear

operator Ai to the linear subspaceVλ , which is invariant under Ai .

Theorem 2.4. For all λ = (λ1, . . . , λk ) ∈ Σ and all i ∈ {1, . . . ,k } the following properties hold:

(1) Vλ is invariant under Ai .
(2) σ (Ai �Vλ

) = {λi }.
(3) Cd =

⊕
λ∈Σ

Vλ .

Proof. We show by induction on k that the subspacesVλ satisfy the properties above.
When k = 1, the result follows from the existence of Jordan Canonical Forms. When k > 1, sup-

pose that σ (Ak ) = {μ1, . . . , μm }, and letUj = ker (Ak − μ j I )
d , for j ∈ {1, . . . ,m}. Again, it follows

from the existence of Jordan Canonical Forms that

Cd =

m⊕
j=1

Um .

Pick i ∈ {1, . . . ,k − 1} and j ∈ {1, . . . ,m}. Now, as Ak and Ai commute, so do (Ak − μ j I ) and Ai .

Therefore, for allv ∈ Uj , (Ak − μ j I )
dAiv = Ai (A − μ j I )

d
v = 0, so Aiv ∈ Uj ; that is,Uj is invari-

ant under Ai . The result follows from applying the induction hypothesis to the commuting oper-
ators Ai �Uj

. �

We will also make use of the following well-known result on simultaneous triangularisation of
commuting matrices. See, for example, Reference [22].
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Theorem 2.5. Given commuting matrices A1, . . . ,Ak ∈ Cd×d , there exists a matrix P ∈ GLd (C)
such that P−1AiP is upper triangular for all i ∈ {1, . . . ,k }. Moreover, if the entries of every matrix Ai

are algebraic numbers then P may be chosen to have algebraic entries also.

Note that Theorem 2.5 will allow us to reduce general instances of MSMP with commuting
matrices to the subcase where all those matrices are in upper triangular form.

2.2 Number Theory

2.2.1 Linear Diophantine Equations with Algebraic Coefficients. A complex number α is said
to be algebraic if it is a root of some non-zero polynomial with integer coefficients. The set of

algebraic numbers forms a field, denoted Q. A complex number that is not algebraic is said to be
transcendental.

For computational purposes, we represent an algebraic number by a polynomial P with rational
coefficients such that P (α ) = 0, together with a numerical approximation p + qi , where p,q ∈ Q,
of sufficient accuracy to distinguish α from the other roots of P [11, Section 4.2.1]. Under this
representation, arithmetic operations and equality testing can be carried out effectively, as can
sign testing of real algebraic numbers

The subfield K of C generated by given algebraic numbers α1, . . . ,αk is finite dimensional as
a vector space over Q. Moreover, given representations of α1, . . . ,αk , one can compute a basis of
K over Q and the (rational) coefficients of each αi with respect to this basis (see Reference [11,
Section 4.5]).

Proposition 2.6. Let S = {x ∈ Zn : Ax = b}, where matrix A and vector b have algebraic coeffi-

cients. Then we can decide whether S is non-empty and, if so, can compute x0 ∈ Zd and M ∈ Zd×s ,
for some s ≤ d , such that S = {x0 +My : y ∈ Zs }.

Proof. Compute a basis α1, . . . ,αk of the subfield of C that is generated by the entries ofA and

b. Then we can write A =
∑k

i=1 Aiαi and b =
∑k

i=1 biαi , where Ai is a matrix of rational numbers
of the same dimension as A and bi is a rational vector of the same dimension as b. Now we have
that

Ax = b ⇔ ��
k∑

i=1

Aiαi
��x =

k∑
i=1

biαi

⇔ Aix = bi ,∀i ∈ {1, . . . ,k }.
Thus we have characterised S as the set of integer solutions of a system of equations with ra-

tional coefficients. Now the desired representation of S can be computed using, e.g., the procedure
described in Reference [11, Chapter X]. �

2.2.2 Linear Forms in Logarithms. Let log denote the principal branch of the complex logarithm
function, i.e., the imaginary part of log(z) lies in the interval (−π ,π ] for all z � 0.

Given k ∈ N , a number Λ of the form

Λ := α0 + α1 log(β1) + · · · + αk log(βk ), (4)

where α0, . . . ,αn , β1, . . . , βk are algebraic numbers, with the βi non-zero, is said to be a linear form
in logarithms of algebraic numbers. Note that the collection of such linear forms is closed under
addition, complex conjugation, and under multiplication by algebraic numbers.

To effectively manipulate linear forms, we will need the following result of Baker [4].

Theorem 2.7 (Baker). Let β1, . . . , βk be non-zero algebraic numbers. If log(β1), . . . , log(βk ) are

linearly independent over Q, then 1, log(β1), . . . , log(βk ) are linearly independent over Q.
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Proposition 2.8. Let Λ = α0 +
∑k

i=1 αi log(βi ) ∈ R be a linear form in logarithms of algebraic
numbers for some nonnegative integerk . Then we can effectively determine the sign of Λ (zero, positive,

or negative) and whether Λ
π

is algebraic.

Proof. Clearly, we may assume without loss of generality that α1, . . . ,αk are non-zero. We say
that Λ is reduced if the set of terms TΛ := {log(−1), log(β1), . . . , log(βk )} is linearly independent
over Q. Rational linear independence of TΛ is equivalent to the requirement that the set of multi-
plicative relations L := {(n1, . . . ,nk ) ∈ Zk : βn1

1 · · · β
nk

k
= 1} contain only the zero vector. Now L

is a subgroup of Zk , and by a deep result of Masser [21] it is possible to compute a basis of L (see,
e.g., Reference [8]). In particular, if Λ is not reduced, then we can compute an integer linear rela-
tion among log(−1), log(β1), . . . , log(βk ) and rewrite Λ so as to eliminate one of the terms log(βi )
in TΛ. Continuing in this way, we eventually reach an equivalent reduced form of Λ.

Suppose that Λ is reduced. Then by Theorem 2.7 the set {1, log(−1), log(β1), . . . , log(βk )} is

linearly independent over Q. It follows that Λ = 0 if and only if k = 0 and α0 = 0. Hence it is
decidable whether or not Λ = 0. If Λ � 0, then we can determine the sign of Λ by computing a

rational approximation of Λ of sufficient precision. Furthermore, we have that Λ/π ∈ Q if and
only if k = 1, α0 = 0, and β1 = −1. �

2.2.3 Diophantine Approximation. Given a vector a ∈ Rd and a set S ⊆ Rd , write dist(a, S ) for
the �1-distance between a and S , i.e., infb ∈S ‖a − b‖1. We will need the following consequence
of Kronecker’s theorem on simultaneous inhomogeneous diophantine approximation (see Refer-
ence [18, Corollary 2.8]).

Theorem 2.9. Suppose that C = {c1, . . . ,ck } ⊆ Rd and that no integer vector is orthogonal to C.

Then for any q ∈ Rd and for any ε > 0 there exist non-negative real numbers λ1, . . . , λk such that

dist ��q +
k∑

i=1

λici ,Z
d�� ≤ ε .

2.2.4 Schanuel’s Conjecture. Schanuel’s Conjecture [19] is a unifying conjecture in transcen-
dence theory that generalises many of the classical results in the field (including Theorem 2.7). The
conjecture states that if α1, . . . ,αk ∈ C are rationally linearly independent, then some k-element
subset of {α1, . . . ,αk , e

α1 , . . . , eαk } is algebraically independent.
Assuming Schanuel’s Conjecture, MacIntyre and Wilkie [20] have shown decidability of the

first-order theory of the expansion of the real field with the exponentiation function and the sin
and cos functions restricted to bounded intervals.

Theorem 2.10 (Wilkie and MacIntyre). If Schanuel’s conjecture is true, then, for each n ∈ N ,
the first-order theory of the strucure (R,+, ·, exp, cos �[0,n], sin �[0,n]) is decidable.

2.3 Convex Geometry

2.3.1 Convex Polytopes. A convex polytope is a subset of Rn of the form

P = {x ∈ Rn : Ax ≤ b},
whereA ∈ Rd×n andb ∈ Rd for somed ∈ N . When all the entries ofA andb are algebraic numbers,
P is said to have an algebraic description. In this case, we can decide non-emptiness of P, e.g., by
reduction to the satisfiability problem for the existential theory of real closed fields.

We will need the following result:

Theorem 2.11 (Minkowski-Weyl). Any polytope P ⊆ Rd can be written as the sum of two sets

H ⊆ Rd and C ⊆ Rd , whereH is a finitely generated convex hull and C is a finitely generated cone.
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2.3.2 Fourier-Motzkin Elimination. Fourier-Motzkin elimination is a simple method for elimi-
nating variables from systems of linear inequalities. The procedure consists in isolating one vari-
able at a time and comparing all its lower and upper bounds. Note that this method preserves the
set of solutions on the remaining variables, so a solution of the reduced system can always be
extended to a solution of the original one.

Proposition 2.12. It is decidable whether a given convex polytope P = {x ∈ Rn : πAx < b} is
empty, where the entries of A are all real algebraic numbers and those of b are real linear forms in
logarithms of algebraic numbers. Moreover, if P is non-empty, then one can compute a rational vector
q ∈ P.

Proof. Note that P is non-empty iff there exists y ∈ Rn with Ay < b. The existence of such a
vectory can be decided using Fourier-Motzkin elimination. The linear inequalities that are gener-
ated by the elimination process are such that each coefficient of a variable yi is real algebraic and
the constant term is a real linear form in logarithms of algebraic numbers. Having eliminated all
variables, we can decide emptiness, since we can effectively decide whether a real linear form in
logarithms is strictly positive by Proposition 2.8. �

3 EXAMPLE

The following example illustrates some elements of our approach to establishing decidability of
the Matrix-Exponential Semigroup Membership Problem.

Let λ1, λ2 be real algebraic numbers such that λ1 > λ2 and consider the following commuting
matrices A1,A2:

Ai =

(
λi 1
0 λi

)
, i ∈ {1, 2}.

Given nonnegative real variables t1, t2, we have that (see Section 2.1.2)

exp(Aiti ) = exp(λiti )

(
1 ti
0 1

)
, i ∈ {1, 2}. (5)

Let c1, c2 be real algebraic numbers such that c1, c2 > 0, and let

C =

(
c1 c2

0 c1

)
.

We would like to determine whether there exist t1, t2 ∈ R, t1, t2 ≥ 0 such that

exp(A1t1) exp(A2t2) = C . (6)

Using the closed-form expression for matrix exponentials in Equation (5), Equation (6) is equiv-
alent to the following pair of equations:

exp(λ1t1 + λ2t2) = c1

(t1 + t2) exp(λ1t1 + λ2t2) = c2.

Solving directly, we have

t1 =
log(c1) − c2

c1
λ2

λ1 − λ2
and t2 =

c2

c1
λ1 − log(c1)

λ1 − λ2
.

Now t1, t2 ≥ 0 holds if and only if

λ2 ≤
c1

c2
log(c1) ≤ λ1.
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15:10 J. Ouaknine et al.

Whether these inequalities hold amounts to comparing linear forms in logarithms of algebraic
numbers, which is decidable by Proposition 2.8.

4 DECIDABILITY IN THE COMMUTATIVE CASE

We first reduce the MEP with commuting matrices to the LEP, as defined in Section 1.2. The idea
is to perform a change of basis so that the matrices A1, . . . ,Ak , and C in an instance of MEP
all become block-diagonal, with each block being upper triangular; we then analyse the problem
blockwise, making use of Proposition 2.3 concerning logarithms of unipotent matrices.

Proposition 4.1. MEP with commuting matrices reduces to LEP.

Proof. Consider an instance of MEP, as given in Definition 1.1, with commuting n × n matrices
A1, . . . ,Ak and target matrix C .

We first show how to define a matrix P such that each matrix P−1AiP is block diagonal for
i = 1, . . . ,k , with each block being upper triangular.

By Theorem 2.4, we can write Cn as a direct sum of subspaces Cn = ⊕m
j=1Vj such that for every

subspaceVj and matrix Ai ,Vj is an invariant subspace of Ai on which Ai has a single eigenvalue

λ(j )
i .
Define a matrix Q by picking an algebraic basis for eachVj and taking the columns of Q to be

the successive vectors of each basis. Then, for i = 1, . . . ,k , the matrix Q−1AiQ is block-diagonal,

where the jth block is a matrix B (j )
i that represents Ai � Vj , j = 1, . . . ,m.

Fixing the index of a block j ∈ {1, . . . ,m}, note that the matrices B (j )
1 , . . . ,B

(j )
k

all commute. Thus

we may apply Theorem 2.5 to obtain an algebraic matrix Mj such that each matrix M−1
j B (j )

i Mj is

upper triangular, i = 1, . . . ,k . Thus, we can write

M−1
j B (j )

i Mj = λ(j )
i I + N (j )

i

for some strictly upper triangular matrix N (j )
i .

We define M to be the block-diagonal matrix M = diag(M1, . . . ,Mm ). Letting P = QM , we have

that P−1AiP is block-diagonal, with the jth block being λ(j )
i I + N (j )

i for j = 1, . . . ,m. Now for all
t1, . . . , t − K ≥ 0, we have

k∏
i=1

exp(Aiti ) = C ⇔
k∏

i=1

exp
(
P−1AiPti

)
= P−1CP . (7)

If P−1CP is not block-diagonal, with each block being upper triangular and with the same entries
along the diagonal, then Equation (7) has no solution, and the problem instance must be negative.

Otherwise, denoting the blocks of P−1CP by D (j ) for j ∈ {1, . . . ,m}, our problem amounts to si-
multaneously solving the system of matrix equations

k∏
i=1

exp
((
λ(j )

i I + N (j )
i

)
ti
)
= D (j ), j ∈ {1, . . . ,m}, (8)

where there is one equation for each block.

For each fixed j, the matrices N (j )
i inherit commutativity from the matrices B (j )

i , so we have

k∏
i=1

exp
(
(λ(j )

i I + N (j )
i )ti

)
= exp ��

k∑
i=1

(λ(j )
i I + N (j )

i )ti��
= exp ��

k∑
i=1

λ(j )
i ti�� · exp ��

k∑
i=1

N (j )
i ti�� .
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Hence the system (8) is equivalent to

exp ��
k∑

i=1

λ(j )
i ti�� · exp ��

k∑
i=1

N (j )
i ti�� = D (j ) j ∈ {1, . . . ,m}. (9)

By assumption, the diagonal entries of each matrix D (j ) are all equal to a single value—say, c (j ) .

Since the diagonal entries of exp(
∑k

i=1 N
(j )ti ) are all 1, the system (9) is equivalent to

exp ��
k∑

i=1

λ(j )
i ti�� = c (j ) and exp ��

k∑
i=1

N (j )
i ti�� = 1

c (j )
D (j )

for j = 1, . . . ,m.
Applying Proposition 2.3, the above system can equivalently be written

exp ��
k∑

i=1

λ(j )
i ti�� = c (j ) and

k∑
i=1

N (j )
i ti = S (j ) (10)

for some effectively computable matrices S (j ) with algebraic entries, j = 1, . . . ,m. But the above
system of equations is an instance of LEP. �

Next we reduce the Linear-Exponential Equation Problem to the ALIP, as defined in Section 1.2.

Proposition 4.2. LEP reduces to ALIP.

Proof. Consider an instance of LEP, comprising a system of equations

exp ��
k∑
�=1

λ(j )
�
t��� = c j exp(dj ) j ∈ {1, . . . ,m}, (11)

and linear equations At = b.
Recall that log denotes the principal branch of the complex logarithm function. Note that if any

c j = 0 for some j, then Equation (11) has no solution. Otherwise, by applying log to each equation
in Equation (11), we get

k∑
�=1

λ(j )
�
t� = dj + log(c j ) + 2πinj j ∈ {1, . . . ,m}, (12)

where nj ∈ Z.
The system of Equations (12) can be written in matrix form as

Λt ∈ d + log(c ) + 2πiZm , (13)

where Λ is the m × k matrix with Λj, � = λ(j )
�

and log is applied pointwise to vectors. A solution
to the given instance of LEP comprises a solution t ≥ 0 to Equation (13) that furthermore satisfies
At = b. Such a solution exists if and only if the convex polytope

T := {x ∈ Rm : ∃t ≥ 0 (d + log(c ) + 2πix = Λt and At = b)}
contains an integer point.

The linear constraints in the definition of T are such that the coefficients of t1, . . . , tk are alge-
braic and the constant terms are linear forms in logarithms of algebraic numbers. By dividing the
equational constraints in the definition of T into real and imaginary parts, we can use Fourier-
Motzkin elimination to eliminate the existentially quantified variables t and arrive at a character-
isation T = {x : πBx ≤ e}, for some effectively computable matrix B and vector e such that the
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entries of B are real algebraic and the entries of e are real linear forms in logarithms of algebraic
numbers. But this is the form of an instance of ALIP. �

We are left with the task of showing that ALIP is decidable. The key tools here are Theorem 2.9
and Proposition 2.12.

Proposition 4.3. ALIP is decidable.

Proof. We are given a convex polytope P = {x ∈ Rd : πAx ≤ b}, where the entries of A are
real algebraic and the entries of b are real linear forms in logarithms of algebraic numbers. We
wish to decide whether P contains an integer point.

First, we show how to reduce the problem of deciding whether P contains an integer point to
finitely many instances of the problem of finding an integer point in a convex polytope Q of the
form

Q = {x ∈ Rd : Cx = d, πEx < f }, (14)

where the entries ofC,E,d are real algebraic and the entries of f are real linear forms in logarithms
of algebraic numbers. We will obtain a collection of such polytopes Q from P by replacing the
non-strict inequality “≤” in every constraint of P with either strict inequality “<” or equality
“=”. To this end, note that when x ∈ Zd , Ax is a vector with algebraic coefficients; so whenever
bi/π is transcendental (which can be effectively checked by Proposition 2.8), we may replace the
inequality π (Ax )i ≤ bi in the definition of P with a strict inequality π (Ax )i < bi without affecting
P ∩ Zd . However, whenever bi/π is algebraic, we split our problem into two cases: In the first
case, we replace the inequality π (Ax )i ≤ bi with an equality π (Ax )i = bi , and, in the second case,
we replace the inequality π (Ax )i ≤ bi with the strict inequality π (Ax )i < bi . Thus, we obtain a
finite collection of polytopes of the form (14).

Next we eliminate the equality constraints in the definition of Q so that only strict inequality
constraints remain. Indeed, by Proposition 2.6, we can compute an integer matrix M and vector x0

such that

{x ∈ Zd : Cx = d } = {x0 +My : y ∈ Zd ′ }
for some d ′ < d . Then the polytope Q′ := {y ∈ Rd ′ : πE (x0 +My) < f } contains an integer point
iff Q contains an integer point. Now determining the existence of an integer point in a polytope
of the form Q′ is simply a version of ALIP in which all inequality constraints are strict.

It remains to show how to decide whether a polytope P := {x ∈ Rd : πAx < b}, defined using
only strict constraints, contains an integer point. To do this, we first use Theorem 2.12 to decide
whether P is non-empty. In case P is non-empty, we can use Fourier-Motzkin elimination to find
a vector q ∈ Qd and ε > 0 such that the closed l1-ball B with centre q and radius ε with respect
to the l1 norm is contained in P.

The next step is to consider the Minkowski-Weyl decomposition of P, namely P = H + C,
whereH is the convex hull of finitely many points of P and C = {x ∈ Rd : Ax ≤ 0} is a cone with
an algebraic description. Note that P is bounded if and only if C = {0}, in which case the problem
at hand is simple: Consider the polytope Q with an algebraic description obtained by rounding up
each coordinate ofb/π , which has the same conic part as P and which contains P, and therefore is
bounded; finally, compute a bound on Q (such a bound can be defined in the first-order theory of
the reals), which is also a bound onP, and test the integer points within that bound for membership
in P. Otherwise,

C = {α1c1 + · · · + αkck : α1, . . . ,αk ≥ 0},

where c1, . . . ,ck ∈ Q
d

are the extremal rays of C. Note that q + C ⊆ P and that B + C ⊆ P.
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Now we consider a variation of an argument that appears in Reference [18]. Consider the com-
putable set

L = C⊥ ∩ Zd .

If L = {0}, then, due to Theorem 2.9, it must be the case that there exist non-negative reals
λ1, . . . , λk such that

dist ��q +
k∑

i=1

λici ,Z
d�� ≤ ε,

and we know that P ∩ Zd � ∅ from the fact that the closed ball B of centre q and radius ε with
respect to the l1 norm is contained in P.

However, if L � {0}, then let z ∈ L \ {0}. SinceH is a bounded subset of Rn , the set

{zTx : x ∈ P} = {zTx : x ∈ H }
is a bounded subset of R. Therefore, there exist a,b ∈ Z such that

∀x ∈ P,a ≤ zTx ≤ b,

so we can reduce our problem to b − a + 1 lower-dimensional instances by finding the integer
points of {x ∈ P : zTx = i} for i ∈ {a, . . . ,b}. Note that we have seen earlier in the proof how
to reduce the dimension of the ambient space when the polytope P is contained in an affine
hyperplane. �

Putting together Proposition 4.1, Proposition 4.2, and Proposition 4.3, we obtain the following.

Theorem 4.4. The Matrix-Exponential Semigroup Membership Problem (as given in Definition 1.1)
is decidable in case the generating matrices A1, . . . ,Ak commute.

5 UNDECIDABILITY OF THE NON-COMMUTATIVE CASE

In this section, we show that the Matrix Exponential Equation Problem and the Matrix-Exponential
Semigroup Membership Problem are both undecidable in general.

5.1 Matrix-Exponential Equation Problem with Constraints

The proof of undecidability of MEP in the non-commutative case is by reduction from Hilbert’s
Tenth Problem. The reduction proceeds via several intermediate problems. These problems are
obtained by augmenting MEP with various classes of arithmetic constraints on the real variables
that appear in the statement of the problem.

Definition 5.1. We consider the following three classes of arithmetic constraints over real vari-
ables t1, t2, . . .:

• EπZ comprises constraints of the form ti ∈ α + βπZ, where α and β � 0 are real-valued
constants such that cos(2αβ−1), β are both algebraic numbers.

• E+ comprises linear equations of the form α1t1 + · · · + αntn = α0 for α0, . . . ,αn real alge-
braic constants.

• E× comprises equations of the form t� = titj .

These constraints will be useful in defining polynomial relations, as well as in enforcing that
certain variables be integer multiples of π . They will play a crucial role in the reduction from
Hilbert’s Tenth Problem.

A class of constraints E ⊆ EπZ ∪ E+ ∪ E× induces a generalisation of the MEP problem as
follows:

Journal of the ACM, Vol. 66, No. 3, Article 15. Publication date: May 2019.



15:14 J. Ouaknine et al.

Definition 5.2 (MEP with Constraints). Given a class of constraints E ⊆ EπZ ∪ E+ ∪ E×, the
problem MEP(E) is as follows. An instance consists of real algebraic matrices A1, . . . ,Ak ,C and a
finite set of constraints E ⊆ E on real variables t1, . . . , tk . The question is whether there exist non-

negative real values for t1, . . . , tk such that
∏k

i=1 e
Ai ti = C and the constraints E are all satisfied.

Note that in the above definition of MEP(E), the set of constraints E only utilises real variables

t1, . . . , tk appearing in the matrix equation
∏k

i=1 e
Ai ti = C . However, without loss of generality,

we can allow constraints to utilise fresh variables ti , for i > k , since we can always define a corre-
sponding matrixAi = 0 for such variables, for then eAi ti = I has no effect on the matrix product. In
other words, we can without loss of generality have constraints in E with existentially quantified
variables. In particular, we have the following useful observations:

• We can express inequality constraints of the form ti � α in E+ ∪ E× by using fresh variables
tj , t� . Indeed, ti � α is satisfied whenever there exist values of tj and t� such that ti = tj + α
and tjt� = 1.

• By using fresh variables, E+ ∪ E× can express polynomial constraints of the form
P (t1, . . . , tn ) = t for P a polynomial with integer coefficients.

We illustrate the above two observations in an example.

Example 5.3. Consider the problem, given matrices A1,A2 and C , to decide whether there exist
t1, t2 ≥ 0 such that

eA1t1eA2t2 = C and t2
1 − 1 = t2, t2 � 0.

This is equivalent to the following instance of MEP(E+ ∪ E×): Decide whether there exist
t1, . . . , t5 ≥ 0 such that

5∏
i=1

eAi ti = C and t1t1 = t3, t3 − 1 = t2, t2t4 = t5, t5 = 1,

where A1,A2, and C are as above and A3 = A4 = A5 = 0.

We will make heavy use of the following proposition to combine several instances of the con-
strained MEP into a single instance by combining matrices blockwise.

Proposition 5.4. Given real algebraic matrices A1, . . . ,Ak ,C and A′1, . . . ,A
′
k
,C ′, there exist real

algebraic matrices A′′1 , . . . ,A
′′
k

, C ′′ such that for all t1, . . . , tk :

k∏
i=1

eA′′i ti = C ′′ ⇔ ��
k∏

i=1

eAi ti = C�� ∧ ��
k∏

i=1

eA′i ti = C ′�� .
Proof. For any i ∈ {1, . . . ,k }, define

A′′i =

[
Ai 0
0 A′i

]
, C ′′ =

[
C 0
0 C ′

]
.

The result follows, because the matrix exponential can be computed blockwise (as is clear from its
power series definition):

k∏
i=1

eA′′i ti =

k∏
i=1

[
eAi ti 0

0 eA′i ti

]
=

[∏k
i=1 e

Ai ti 0

0
∏k

i=1 e
A′i ti

]
. �
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We remark that in the statement of Proposition 5.4 the two matrix equations that are combined
are over the same set of variables. However, we can clearly combine any two matrix equations for
which the common variables appear in the same order in the respective products.

The core of the reduction is to show that the constraints in EπZ,E+, and E× do not make the
MEP problem harder.

Proposition 5.5. MEP(EπZ ∪ E+ ∪ E×) reduces to MEP(E+ ∪ E×).

Proof. Let A1, . . . ,Ak ,C be real algebraic matrices and E ⊆ EπZ ∪ E+ ∪ E× a finite set of con-
straints on real variables t1, . . . , tk . Since E is finite, it suffices to show how to eliminate a single
constraint in EπZ ∩ E from E.

Let tj ∈ α + βπZ be a constraint in E. By definition of EπZ, we have that β � 0 and that both
β and cos(2αβ−1) are real algebraic. The Pythagorean theorem implies that sin(2αβ−1) is also real
algebraic. Now define the following extra matrices:

A′j =

[
0 2β−1

−2β−1 0

]
,C ′ =

[
cos(2αβ−1) sin(2αβ−1)
− sin(2αβ−1) cos(2αβ−1)

]
.

Our assumptions ensure that A′j and C ′ are both real algebraic.

We now have the following chain of equivalences:

eA′j tj = C ′ ⇔
[

cos(2tjβ
−1) sin(2tjβ

−1)
− sin(2tjβ

−1) cos(2tjβ
−1)

]
= C ′

⇔ cos(2tjβ
−1) = cos(2αβ−1)

∧ sin(2tjβ
−1) = sin(2αβ−1)

⇔ 2β−1tj ≡ 2αβ−1 (mod 2π )

⇔ tj ∈ α + βπZ.

Thus, the additional matrix equation eA′j tj = C ′ is equivalent to the constraint tj ∈ α + βπZ. Ap-
plying Proposition 5.4, we can thus eliminate this constraint. �

Proposition 5.6. MEP(E+ ∪ E×) reduces to MEP(E+).

Proof. Let A1, . . . ,Ak ,C be real algebraic matrices and E ⊆ E+ ∪ E× a finite set of constraints
on variables t1, . . . , tk . We proceed as above, showing how to remove each constraint in E× from
E. In so doing, we potentially increase the number and the dimension of matrices and add new
constraints from E+.

Let tl = titj be an equation in E. To eliminate this equation, the first step is to introduce fresh
variables x ,x ′,y,y ′, z and add the constraints

ti = x , tj = y, t� = z,

which are all in E+. We now add a new matrix equation over the fresh variables x ,x ′,y,y ′, z that
is equivalent to the constraint xy = z. Since this matrix equation involves a new set of variables,
we are free to the set the order of the matrix products, which is crucial to express the desired
constraint.

The key gadget is the following matrix product equation, which holds for any x ,x ′,y,y ′, z � 0:⎡⎢⎢⎢⎢⎢⎣
1 0 −z
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 −y ′
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 x 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 y
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 −x ′ 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1 x − x ′ z − xy
0 1 y − y ′
0 0 1

⎤⎥⎥⎥⎥⎥⎦ .
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Notice that each of the matrices on the left-hand side of the above equation has a single non-zero
off-diagonal entry. Crucially, each matrix of this form can be expressed as an exponential. Indeed,
we can write the above equation as a matrix-exponential product

eB1zeB2y′eB3xeB4yeB5x ′ =

⎡⎢⎢⎢⎢⎢⎣
1 x − x ′ z − xy
0 1 y − y ′
0 0 1

⎤⎥⎥⎥⎥⎥⎦
for matrices

B1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 −1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ B3 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ B5 =

⎡⎢⎢⎢⎢⎢⎣
0 −1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
B2 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦ B4 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦ .
Thus the constraint xy = z can be expressed as

eB1zeB2y′eB3xeB4yeB5x ′ = I . (15)

Again, we can apply Proposition 5.4 to combine Equation (15) with the matrix equation from
the original problem instance and thus encode the constraint z = xy. �

Proposition 5.7. MEP(E+) reduces to MEP.

Proof. LetA1, . . . ,Ak ,C be real algebraic matrices and E ⊆ E+ a set of constraints. We proceed
as above, showing how to eliminate each constraint from E that lies in E+, while preserving the
set of solutions of the instance.

Let β +
∑k

i=1 αiti = 0 be an equation in E. Recall that β,α1, . . . ,αk are real algebraic. Define the
extra matrices A′1, . . . ,A

′
k

and C ′ as follows:

A′i =

[
0 αi

0 0

]
, C ′ =

[
1 −β
0 1

]
.

Our assumptions ensure that A′1, . . . ,A
′
k

and C ′ are all real algebraic. Furthermore, the following
extra product equation becomes

k∏
i=1

eA′i ti = C ⇔
k∏

i=1

[
1 αiti
0 1

]
=

[
1 −β
0 1

]

⇔
k∑

i=1

αiti = −β .

The result follows by applying Proposition 5.4. �

Combining Proposition 5.5, Proposition 5.6, and Proposition 5.7, we have the following.

Proposition 5.8. MEP(EπZ ∪ E+ ∪ E×) reduces to MEP.
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5.2 Reduction from Hilbert’s Tenth Problem

Theorem 5.9. MEP is undecidable in the non-commutative case.

Proof. We have seen in the previous section that the problem MEP(EπZ ∪ E+ ∪ E×) reduces
to MEP without constraints. Thus, it suffices to reduce Hilbert’s Tenth Problem to MEP(EπZ ∪
E+ ∪ E×). In fact, the matrix equation will not play a role in the target of this reduction, only the
additional constraints.

Let P be a polynomial of total degree d in k variables with integer coefficients. From P , we build
a homogeneous polynomial Q by adding a new variable λ:

Q (x, λ) = λdP
(x1

λ
, . . . ,

xk

λ

)
.

Note that Q still has integer coefficients. Furthermore, we have the relationship

Q (x, 1) = P (x).

As we have seen previously, it is easy to encode Q with constraints, in the sense that we can
compute a finite set of constraints EQ ⊆ E+ ∪ E× utilising variables t0, . . . , tm , λ such that E is
satisfied if and only if t0 = Q (t1, . . . , tk , λ). Note that EQ may need to utilise variables other than
t1, . . . , tk to do that. Another finite set of equations EπZ ⊆ EπZ is used to encode that t1, . . . , tk , λ ∈
πZ. Finally, E= ⊆ E+ ∪ E× is used to encode t0 = 0 and 1 � λ � 4. The latter is done by adding the
polynomial equations λ = 1 + α2 and λ = 4 − β2 for some α and β . Finally, we have the following
chain of equivalences:

∃t0, . . . , λ � 0 s.t. EQ ∪ EπZ ∪ E= is satisfied

⇔ ∃t1, . . . , λ � 0 s.t. 0 = Q (t1, . . . , tk , λ)

∧ t1, . . . , tk , λ ∈ πZ ∧ 1 � λ � 4

⇔ ∃n1, . . . ,nk ∈ N s.t. 0 = Q (πn1, . . . ,πnk ,π )

⇔ ∃n1, . . . ,nk ∈ N s.t. 0 = πdQ (n1, . . . ,nk , 1)

⇔ ∃n1, . . . ,nk ∈ N s.t. 0 = P (n1, . . . ,nk ). �

5.3 Enforcing a Matrix Product Order

In this section, we will present a gadget matrix-exponential semigroup that can enforce a certain
partial order on the matrices reaching a particular target. This will be useful to establish the reduc-
tion MEP ≤ MSMP. More precisely, we will exhibit five matricesW ,X ,Y ,Z , and G such that any

product G =
∏p

i=1 e
Ai ti , where ti > 0 and Ai ∈ {W ,X ,Y ,Z } is such that all the “X ” appear before

the “Y .” Define the following matrices:

W =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 1 0
0 0 2

⎤⎥⎥⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , Z =

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 −1 0
0 0 −2

⎤⎥⎥⎥⎥⎥⎦ ,
Y =

⎡⎢⎢⎢⎢⎢⎣
0 1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎢⎢⎣
1 1 0
0 1 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦ .
One easily computes the exponentialsW ,X ,Y ,Z :

eW t =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 et 0
0 0 e2t

⎤⎥⎥⎥⎥⎥⎦ , eX t =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 t
0 0 1

⎤⎥⎥⎥⎥⎥⎦ , eY t =

⎡⎢⎢⎢⎢⎢⎣
1 t 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦ , eZ t =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 e−t 0
0 0 e−2t

⎤⎥⎥⎥⎥⎥⎦ .
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The crux of the proof will be based on the following asymmetry betweenX and Y , which leaves
the top right corner zero in one case but nonzero in the other. As we will later observe, once the
top right corner is nonzero, it cannot be cleared,

eX teYu =

⎡⎢⎢⎢⎢⎢⎣
1 u 0
0 1 t
0 0 1

⎤⎥⎥⎥⎥⎥⎦ , eY teXu =

⎡⎢⎢⎢⎢⎢⎣
1 u tu
0 1 t
0 0 1

⎤⎥⎥⎥⎥⎥⎦ .
Proposition 5.10. If there exist p ∈ N , Ai ∈ {W ,X ,Y ,Z } and ti > 0, for i ∈ {1, . . . ,p}, such that∏p
i=1 e

Ai ti = G, then the product contains at least one1 “X ” and one “Y ,” and all the “X ” appear before
the “Y .” Formally, there exist i and j such that Ai = X and Aj = Y , and for any such choice we have
i < j.

Proof. First, observe that any such product is always an upper triangular matrix with non-
negative entries (because all the matrices have non-negative entries) and positive entries on the
diagonal. Let M be such a matrix; we denote its coefficients by 0 if they are zero and + if they are
positive. The following automaton should be read as follows: An arrow from M to M ′ annotated
with A means that any product of a matrix of the shape of M by eAt with t > 0 will give a matrix
with the shape of M ′. Note that the empty product gives the identity. One easily checks that the
following transitions hold.

Starting from the identity and applying the different products eAi ti in the automaton, it is clear
that the only way to reach a matrix of the shape ofG is to have all the “X ” before “Y .” Formally, by
contradiction, if there were i < j such that Ai = Y and Aj = X , then by the automaton, we would

end up with a matrix where the top right corner is nonzero, which contradictsG =
∏p

i=1 e
Ai ti . �

The previous lemma shows that this semigroup enforces a partial order on the matrices in prod-
ucts that reach the matrix G. The next lemma shows that G can indeed be reached using these
kinds of products, essentially proving that G belongs to this semigroup.

Proposition 5.11. For any positive real t , there exists a non-negative real u such that

eW ueX teY teZu = G or eZueX teY teW u = G .

1Note that this is not entirely trivial, because we required only positive ti in the product.
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Proof. Consider the following products for an arbitrary u � 0:

eW ueX teY teZu =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 eu 0
0 0 e2u

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 t 0
0 1 t
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 e−u 0
0 0 e−2u

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 eu 0
0 0 e2u

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 te−u 0
0 e−u te−2u

0 0 e−2u

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
1 te−u 0
0 1 te−u

0 0 1

⎤⎥⎥⎥⎥⎥⎦ ,
and

eZueX teY teW u =

⎡⎢⎢⎢⎢⎢⎣
1 teu 0
0 1 teu

0 0 1

⎤⎥⎥⎥⎥⎥⎦ .
If t � 1, then choosing u = ln t � 0 in the first product gives G; otherwise, choosing u = ln 1

t
� 0

in the second product gives G. �

5.4 Undecidability of the Semigroup Membership Problem

We will now show the undecidability of MSMP.
In short, the difference is that we do not fix the order of the matrices in the product and that

each matrix may be used more than once. We will now show the following key result.

Theorem 5.12. MSMP is undecidable in the non-commutative case.

Proof. We have seen in the previous section that MEP is undecidable in the non-commutative
case. Thus, it suffices to reduce MEP to MSMP to show undecidability.

Let A1, . . . ,Ak ,C ∈ Q
n×n

be an instance of MEP. Denote by Im the identity of size m and 0m

the zero matrix of sizem. Recall the 3 × 3 matricesW ,X ,Y ,Z ,G, defined in Section 5.3. For every
i ∈ {2, . . . ,k − 1}, define the following matrices:

Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai

03(i−2)

Y
X

03(k−1−i )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B′i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0n

03(i−2)

Y
X

03(k−1−i )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We also define the matrices

B1 =

⎡⎢⎢⎢⎢⎢⎣
A1

X
03(k−2)

⎤⎥⎥⎥⎥⎥⎦ , B′1 =

⎡⎢⎢⎢⎢⎢⎣
0n

X
03(k−2)

⎤⎥⎥⎥⎥⎥⎦ ,
Bk =

⎡⎢⎢⎢⎢⎢⎣
A1

03(k−2)

Y

⎤⎥⎥⎥⎥⎥⎦ , B′k =

⎡⎢⎢⎢⎢⎢⎣
0n

03(k−2)

Y

⎤⎥⎥⎥⎥⎥⎦ ,
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and, for every i ∈ {1, . . . ,k − 1},

Wi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0n

03(i−1)

W
03(k−1−i )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Zi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0n

03(i−1)

Z
03(k−1−i )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, we define the target matrix:

C ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C

G
. . .

G

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can now define our MSMP instance as follows; the target matrix is C ′ and the semigroup G is
generated by {

eBi ti , eB′i ti : ti � 0, i = 1, . . . ,k
}

∪
{
eWi ti , eZi ti : ti � 0, i = 1, . . . ,k − 1

}
.

We claim the original instance of MEP is satisfiable if and only if C ′ ∈ G. Let us examine both
directions independently.

Assume that the MEP instance is satisfiable. Then there exist t1, . . . , tk � 0 such that

k∏
i=1

eAi ti = C .

Define τ = max{t1, . . . , tk } + 1 (note that τ > 0) and t ′i = τ − ti � 0 for every i ∈ {1, . . . ,k }. A
straightforward calculation shows that:

k∏
i=1

(
eBi ti eB′i t ′i

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∏k
i=1 e

Ai ti

eX τ eY τ

. . .

eX τ eY τ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C

U
. . .

U

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where U = eX τ eY τ . Apply Proposition 5.11 to get λ � 0 such that either eW λUeZ λ = G or
eZ λUeW λ = G. In the first case, conclude by checking that

k−1∏
i=1

eWi λ
k∏

i=1

(
eBi ti eB′i t ′i

) k−1∏
i=1

eZi λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C

G
. . .

G

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= C ′.

In the second case, exchange the Wi and Zi to get the same result. This concludes the proof that
the MSMP instance is satisfiable, since all the products belong to G.
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Assume that the MSMP instance is satisfiable. Then there exist t1, . . . , tm > 0 (we can always

take them positive) and M1, . . . ,Mm ∈
{
Bi ,B

′
i : i = 1, . . . ,k } ∪

{
Wi ,Zi : i = 1, . . . ,k − 1

}
such that

m∏
j=1

eMj tj = C ′. (16)

Observe that, by construction, this product has the following form:

m∏
j=1

eMj tj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
V

U1

. . .

Uk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where V belongs to the semigroup generated by {eAi t : t � 0} and Ui belongs to the semigroup
generated by {eW t , eX t , eY t , eZ t : t � 0}. Since Equation (16) implies that Ui = G, we can apply
Proposition 5.10 to get each product producing Ui must have all its “X ” before its “Y .” Further-
more, each Ui must contain at least one X and one Y in its product. For any i ∈ {1, . . . ,k }, let ki

(respectively, k ′i ) denote the first (respectively, last) index j such that Mj = Bi or B′i . Those indices
exist because of the proposition, since at least one Bi or B′i must appear for every i to get both
an X and a Y in each product giving Ui . Obviously, ki � k ′i by definition. We now claim that the
proposition implies that:

k1 � k ′1 < k2 � k ′2 < k3 · · · < kk−1 � k ′k−1.

Indeed, Proposition 5.10 ensures that in the product givingU1, all the “X ” appear before the “Y ,” but
the only matrices that contribute someX toU1 are B1 and B′1, and the only matrices that contribute
some Y toU1 are B2 and B′2. Thus, k ′1 < k2, i.e., the last “X ” coming from B1 or B′1 is before the first
“Y ” coming from B2 or B′2. A similar reasoning ensures that k ′2 < k3 and so on. This shows that
for any i ∈ {1, . . . ,k }, if Mj = Bi , then j ∈ {ki , . . . ,k

′
i }. Thus, all the B1 appear before the B2, which

appear before the B3, and so on. However, since the Bi are the only ones to contribute to V , then
V must be of the form:

V =
k∏

i=1

eAi t ′i ,

where t ′i � 0 is the sum of all tj such that Mj = Bi . Finally, V = C , so the instance of MEP is
satisfiable. �

6 VECTOR AND HYPERPLANE REACHABILITY

In this section, we show that the vector and halfspace reachabililty problems for matrix-
exponential semigroups, as given in Definition 1.4, are both undecidable.

Theorem 6.1. The Matrix-Exponential Vector Reachability Problem is undecidable.

Proof. This can be shown by reduction from the membership problem for matrix-exponential
semigroups. In particular, given square matrices B1, . . . ,Bk ,C , we construct matrices A1, . . . ,Ak

and vectors x ,y for which

m∏
j=1

exp(Bi j
tj ) = C ⇔

m∏
j=1

exp(Ai j
tj )x = y. (17)
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Let c1, . . . ,cn be the columns of C , from left to right, and let e1, . . . ,en denote the canonical
basis of Rn . Then Equation (17) can be achieved by setting, for each i ∈ {1, . . . ,n},

Ai =
�����
Bi · · · 0
...
. . .

...
0 · · · Bi

����� ∈ R
n2×n2

,

as well as

x =
�����
e1

...
en

����� and y =
�����
c1

...
cn

�����. �

Theorem 6.2. The Matrix-Exponential Hyperplane Reachability Problem is undecidable.

Proof. This can be shown by reduction from the vector reachability problem. Similarly to what
we did in the previous proof, we will define matrices C1, . . . ,Ck and vectors w,z such that

k∏
i=1

exp(Aiti )x = y ⇔ wT
k∏

i=1

exp(Citi )z = 0.

Let e1, . . . ,en denote the canonical basis of Rn . Moreover, let

Bi =

(
Ai 0
0 0

)
,u j =

(
e j

−e j

)
,v =

(
x
y

)

and

Ci =
�����
Bi ⊗ I + I ⊗ Bi · · · 0

...
. . .

...
0 · · · Bi ⊗ I + I ⊗ Bi

�����.
Then

k∏
i=1

exp(Aiti )x = y

⇔
n∑

j=1

��uT
j

k∏
i=1

exp(Biti )v��
2

= 0

⇔
n∑

j=1

��(u j ⊗ u j )
T

k∏
i=1

(exp(Biti ) ⊗ exp(Biti )) (v ⊗ v )�� = 0

⇔
n∑

j=1

��(u j ⊗ u j )
T

k∏
i=1

exp ((Bi ⊗ I + I ⊗ Bi )ti ) (v ⊗ v )�� = 0

⇔
�����
u1 ⊗ u1

...
un ⊗ un

�����
T

k∏
i=1

exp(Citi )
�����
v ⊗ v
...

v ⊗ v

����� = 0.

The result then follows by taking

w =
�����
u1 ⊗ u1

...
un ⊗ un

����� and z =
�����
v ⊗ v
...

v ⊗ v

�����. �
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7 TURING-DEGREE OF MSMP

We are interested in classifying the Turing-degree of MSMP. Recall that the first level of the arith-
metical hierarchy, denoted Σ1, consists of the recursively enumerable languages, while the second
level of the arithmetical hierarchy, denoted Σ2, consists of the languages that can be enumerated
by a Turing machine with an oracle to a language in Σ1.

Theorem 7.1. MSMP lies in Σ2.

Proof. Given an instance of MSMP, determined by generating matrices A1, . . . ,Ak and target
C , consider the functions fw : R |w | → R, defined for each w ∈ {1, . . . ,k }∗ by

fw (t ) =
������
|w |∏
i=1

exp(Awi
ti ) −C

������
2

F

,

where ‖ · ‖F denotes the Frobenius norm of a matrix (obtained as the positive square root of the
sum of the squares of the matrix entries). Note that each fw is an exponential-polynomial that
takes values in the nonnegative reals. Clearly, the given instance of MSMP is positive if and only
if some fw has a (necessarily tangential) zero.

Before proceeding, note that exponential-polynomials are closed under differentiation and that
they are computable functions.

Letb : N → {1, . . . ,k }∗ be any computable surjection. For each n ∈ N andw ∈ {b (1), . . . ,b (n)},
consider the Turing machine Aw ,n that does the following: For each m ∈ N , partition [0,n] |w | in
a uniform grid, with mesh size m−1, and compute the approximate value of fw with error at most
m−1 at each grid point; if it is ever the case that all the approximate values of fw are greater than

(1 +
Lw ,n

√
|w |

2 )m−1 (where Lw ,n is an upper bound on ‖∇fw ‖ �[0,n], which we can compute by using
the triangle inequality and the monotonicity of the exponential function), Aw ,n halts. Due to the
Mean Value Theorem and to the compactness of [0,n], Aw ,n halts if and only if fw �[0,n] does not
have a zero. Thus, the instance of MSMP is positive if and only if some Aw ,n does not halt.

Now consider the Turing machine B with access to an oracle for the Halting Problem that, for
each n ∈ N and w ∈ {b (1), . . . ,b (n)}, uses the oracle to decide whether Aw ,n halts and B only if
halts if some oracle call determines that Aw ,n runs forever. Then B halts if and only if the MSMP
instance in consideration is positive. �

Moreover, the following result holds.

Theorem 7.2. If Schanuel’s conjecture is true, then MSMP lies in Σ1.

Proof. Let fw ,w ∈ {1, . . . ,k }� be as in the proof of Theorem 7.1. Consider the Turing Machine
T , which, for eachn ∈ N andw ∈ {b (1), . . . ,b (n)}, uses Theorem 2.10 to decide whether fw admits

a zero in the region [0,n] |w | and halts when such a zero is found. Then T halts if and only if the
instance of MSMP under consideration is positive. �

8 CONCLUSION

We have shown that the Matrix-Exponential Semigroup Membership Problem is undecidable in
general but decidable when the generating matrices A1, . . . ,Ak commute. Our results are anal-
ogous to what is known for the discrete version of this problem—the Matrix Semigroup Mem-
bership Problem—namely decidability in the commutative case and undecidability in general (see
Section 1.1). Finally, we have shown that the Matrix-Exponential Semigroup Membership Prob-
lem is in Σ1 if Schanuel’s conjecture is true and in Σ2 unconditionally. Note that for the Matrix
Semigroup Membership Problem, membership in Σ1 follows trivially from the fact that a finitely
generated matrix semigroup is recursively enumerable.
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It would be interesting to look at possibly decidable restrictions of Matrix-Exponential Semi-
group Membership Problem: For example, the case with two non-commuting generators, which
was shown to be decidable in the case of the analogous discrete problem in Reference [5]. Bound-
ing the dimension of the ambient vector space might also yield decidability, along the lines of
results in the discrete case in Reference [24]. Finally, deriving upper and lower bounds for the
computational complexity of the commutative case remains to be addressed.
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