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1 Experimental and theoretical methods

1.1 Experimental methods

This section describes the methods related to the experimental acquisition
of the data presented in this paper.

1.1.1 Sample preparation

Pyrene was purchased from Radiant Dyes and used without further purifica-
tion, with a purity of 95%. It was diluted in UV-quality ethanol (Carl Roth).
The solutions were stirred with a glass-covered magnet for approximately 30
minutes at room temperature and then sonicated. Afterward the samples
were filtered. Afterward the samples were filtered with 0.4 µm polypropy-
lene syringe filters (Chromacol) and stored in a cool and dark place. The
absorption spectra were measured using a UV2600 spectrophotometer (Shi-
madzu) in 1-mm quartz cells (Hellma), and additionally controlled in situ by
measuring the transmission through a photodiode (UV-sensitive 2032 - New-
port). Fluorescence spectra were measured with a Cary Eclipse fluorimeter,
using a 1×1 cm fluorescence cell from Hellma. Excitation was 260 nm, exci-
tation and emission slits were 20 and 1,5-2.0 mm respectively. Average time
of acquisition was 2-5 seconds each wavelength.

The OD of the samples was adjusted to be 0.3-0.35 at maximum ab-
sorbance. In order to minimize light scattering and pulse broadening, the
solutions were circulated through a home-built wire-guided jet [Pic15], with
the thickness (path length) in the excited volume maintained at ≈ 250 µm.
The excitation spot size was ≈ 50 µm and, with the jet pump speed used
(3000-3500 rpm), a refreshment of excitation volume was guaranteed for the
laser repetition rate of 1 kHz (see details in Ref. [Pic15]). The samples were
excited with the UV-pulses having energies in range of 15− 20nJ per beam.

1.1.2 Experimental setup

The experiments were conducted using an all-reflective 2DES-UV setup with
passive phase stabilization based on a reflective diffractive optic beamsplitter
(Holoeye)[Pro15], which allows us to perform both TA (transient absorption)
and PE (photon echo) experiments with approximately 6-fs resolution. The
collection of 2D spectra within a few hours is guaranteed by the long-term
phase stability (≥ Λ/100) of the setup [Pro15]. A thin neutral density filter
(OD = 2, BMW) in the local oscillator (LO) beam path created the probe
pulse for the TA experiment and the heterodyning of the beam. The UV
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pulses energies exciting the samples were 15 - 20 nJ per beam. We also per-
formed TA measurements without the LO-filter, in which case the energies
of both pump and probe pulses were comparable. We did not detected a
sufficient difference in the measured kinetics (both lifetimes and decay asso-
ciated spectra - DAS) between the measurements with and without LO-filter.
Because the LO-filter dispersion cause a chirp in the probe pulse, we phased
the PE spectra with TA measurements done without the LO-filter. The
broadband and coherent UV-pulses (6-7 fs FWHM) were produced using an
achromatic frequency doubling of a VIS broadband spectrum generated from
a home-built non collinear optical parametric generator pumped by a Coher-
ent Elite USP laser system (Coherent) which delivers 800-nm laser pulses of
35 fs FWHM at the repetition rate of 1 kHz. The design of the achromatic
doubling system, combined with a deformable mirror (Oko Technologies) for
compensation of phase distortions in the UV-pulses, was similar to that de-
scribed in [Bau04]. The temporal profiles of the UV-pulses were optimized
using a genetic algorithm and measured by a frequency-resolved optical gat-
ing method (FROG) with a home-built setup [Pro15a], and directly in situ
by recording the FROG-trace from a 150-mm fused silica cover slip. The
temporal profiles of the pulses (after optimization) were characterized using
a commercial software (Femtosecond Technologies).

1.1.3 Data collection

The frequency-resolved heterodyne photon echo signals were collected within
a scan range of 128 fs with a step of 1 fs at fixed waiting times T; at each
delay point 900-1800 single spectra were averaged (depending on the signal
magnitude) to achieve high signal-to-noise ratio. Each photon echo scan
took approximately 2-5 min (depending on averaging) per one delay point
T. The pump-probe spectra were typically collected in a delay range of 5-
10 ps with a step of 10-20 fs. At each delay point 3600 differential spectra
(pump-on - pump-off) were averaged. To resolve the long-lived decay times,
the delay scans were also performed in a 200 ps window with delay steps of
500 fs. In the present paper, we plot the differential spectra as measured,
without normalization to the probe spectra. In order to achieve high spectral
resolution necessary for resolving the oscillations, the delay step was set
to 4 fs in heterodyne transient grating measurements and associated TA-
measurements.

The TA spectra were collected at the same time delays as the TG spectra
and were individually used for phasing at each waiting time T. The contri-
bution of the nonlinear solvent response which is more than 100 times higher
than of the intrinsic signal and undesirable scattering effects from the sol-
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vent, prevented accurate measurements of intrinsic signal around zero delays
which amplitude typically reaches ≈ 1.5mOD (corresponding to ∆T ≈ 40
counts) or, in absolute units ≈ 0.5%.

1.1.4 Data processing

The TA spectra were globally fitted to a multi-exponential decay model using
a home-written software. Due to extremely strong contribution of the non-
linear solvent response and Rayleigh scattering we performed global analysis
on the TA data starting 150 fs after excitation. Phasing of the 2D spectra
is described in ref. [Pro09] by taking into account the wavelength-dependent
refraction index of the LO-filter material. The 2D spectra were then trans-
formed to the time domain, filtered with a Gaussian-shaped kernel, and trans-
formed back to the frequency domain. The aforementioned filtering lowers
the resolution in 2D spectra to approximately 200 cm−1.

1.2 Theoretical methods

This section describes the methods applied in the simulation of the TA and
PE spectra.

1.2.1 Electronic structure computations

The characterization of the electronic structure of pyrene was performed
using the complete active space self-consistent field (CASSCF) approach
[Roo87], followed by second order perturbation theory (CASPT2) [And90]
in its single-state (SS) flavor. The restricted active space (RAS) variation
of the scheme (i.e. RASSCF/ RASPT2) [Mal90,Mal08] which reduces the
number of simultaneous excitations was used thus allowing active spaces
containing all valence π-orbitals. The electronic structure computations
and geometry optimizations were performed within D2h symmetry at the
RASPT2/RASSCF(4, 8|0, 0|4, 8) level of theory thereby including all valence
π-orbitals in the active space (see Figures S15-S18) and allowing for up to
quadruple excitations. The computations were performed using the ab initio
software package Molcas 8 [Aqu16] through its interface with COBRAMM
[Wei18] allowing for parallelized numerical computation of the RASPT2 gra-
dients. The stationary nature of the obtained critical points was verified
by frequency computations (w/o symmetry). Due to the lack of analyti-
cal gradients for RASPT2/RASSCF in the quantum mechanical software of
choice the frequency computations were performed at CASSCF(8,8) level,
only after each geometry was first relaxed at this inferior level and it was
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verified that no significant changes occurred with respect to the RASPT2
optimization. The energies of the five lowest excited states of the sys-
tem were recomputed at each critical point within their symmetry at SS-
CASPT2/CASSCF(4, 8|0, 0|4, 16) level, thereby including further eight ex-
travalence virtual orbitals for a better description of the dynamic correlation
(see Figures S15-S18). The conical intersection optimizations were performed
through a constrained energy minimization applying the projection approach
by Bearpark at al. [Bea94], relying on numerical RASPT2 gradients and
non-adiabatic couplings and implemented in COBRAMM[Wei18]. The CI
optimizations were performed within CS symmetry at SS-CASPT2/SA-6-
RASSCF(4, 8|0, 0|4, 7) level where the completely anti-bonding orbital was
excluded from the active space to speed up computation. The ANO-L basis
set contracted to C[3s,2p,1d]/H[2s1p] was used[Wid90] throughout and the
Cholesky decomposition was adopted in order to speed up the evaluation of
two-electron integrals [Aqu09].

1.2.2 Spectroscopy simulations

The third-order signal is simulated according to the experimental set-up in
the rephasing (kI) phase-matching direction in a box-CARS geometry with
a fixed spatial orientation of the four pulses with wavevectors k1 through k4,
thereby scanning the time-interval t1 between both pump pulses k1 and k2

from −t1 to +t1. Thus, for positive delays t1 (i.e. pump pulse k1 arrives be-
fore pump pulse k2) we compute the rephasing contribution to the nonlinear
response, while for negative delays t1 (i.e. pump pulse k1 arrives after pump
pulse k2) we compute the non-rephasing contribution.

The nonlinear response can be expressed within the framework of cu-
mulant expansion of Gaussian fluctuations (CGF) [Muk95, Muk04, Abr09].
It allows to calculate the shapes of electronic transition bands coupled to a
bath for fluctuations with arbitrary time scales by using the formalism of line
shape functions when the fluctuations follow Gaussian statistics. A detailed
discussion of the working equations is provided in section 2. In summary, we
used a bath with both slow and fast modes in the limit of decoupled pop-
ulations and coherences (secular approximation) [Abr09, Abr07]. The slow
bath modes are responsible for spectral diffusion during the three intervals
t1, t2 and t3. The Markovian approximation is applied to the fast modes.
During t1 and t3, these cause homogeneous line broadening, while during t2
they induce population relaxation described by the Pauli master equation.
Utilizing the outcome of the electronic structure calculations performed in
this study, the acquired experimental data and the findings of previous TA
experiments, we elaborated a sequential model that describes the population
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decay following excitation of the second bright ππ∗ state (see section 3.1).
The Pauli master equation is solved for this model. We note that no explicit
non-adiabatic dynamics was performed and the model is based on making
reasonable hypothesis on the population state at different times, backed up
by the static computational data.

The spectral lineshapes are simulated through composite line shape func-
tions consisting of: a) a part responsible for the vibrational progression in
the spectra described through the multidimensional uncoupled displaced har-
monic oscillator (DHO) model [Muk95]); b) a part describing the homoge-
neous broadening due to coupling to a continuum of low-frequency modes rep-
resented by the line shape function of the semi-classical overdamped Brown-
ian oscillator (OBO) [Muk95, Li94, But12]. In this work the OBO parameters
were chosen so to reproduce the bandwidth in the linear absorption spectrum
at room temperature (see section 3.3 and Figure 1 from main text). Within
the DHO model the one-dimensional potential for the i− th state along each
normal mode k is fully characterized by two parameters, frequency ωk, rel-
ative displacement dik with respect to the GS equilibrium (see Figure S1).
We applied three different protocols for obtaining the DHO parameters de-
scribing the various states involved in the relaxational dynamics.

a) dynamics-based protocol: The parameters for describing the spectral
dynamics of the GSB, SE and ESA associated with the S4 state were
obtained from an adiabatic SA-3-CASSCF(4,4)/6-31G* molecular dy-
namics simulation, following Newton’s equations of motion for the nu-
clei in the second bright state, which is the third root with the uti-
lized active space of frontier orbitals HOMO-1, HOMO, LUMO and
LUMO+1. The nuclei were propagated for 250 fs with a time step of 0.5
fs and without initial kinetic energy (the so-called 0K trajectory) using
the velocity Verlet algorithm implemented in our in-house molecular
dynamics code COBRAMM interfaced with Molcas 8[Aqu16] for ob-
taining quantum-mechanical gradients[Alt07,Wei18]. Along the trajec-
tory 100 roots were computed at a SS-CASPT2/SA-100-RASSCF(4, 8|0, 0|4, 8)
level every 2 fs and the parameters ωk and d̃ik were obtained using a
Fourier series to fit the temporal evolution of the electronic gaps Ee(t)-
Eg(t) and Ef (t)-Ee(t). Further details are provided in sec. 3.2.1.

b) normal mode analysis: The parameters for describing the dynamics
of the dark 1B3u state (not directly visible in the spectrum but af-
fecting the spectral dynamics of the ESA), in which the population
is eventually trapped, were obtained using a Cartesian coordinates
projecting technique in which the geometrical deformations between
CI(1B1g/1B2u/1B3u), the entry point on the 1B3u PES, and the S1
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Figure S1: Displaced harmonic oscillator model for a three level system.

minimum were projected on the normal modes of the system[Kur01].
Thereby we utilized ground state MP2 normal modes and frequencies.
For further details see section 3.2.2.

c) gradient projection protocol: The parameters for describing the spec-
tral dynamics of the ESA associated with the dark 1B3u state, in which
the population is eventually trapped, were obtained from electronic
structure computations at the 1B3u minimum. Energies, gradients and
transition dipole moments were computed at CASPT2 level, ωk and d̃ik
were obtained through projection techniques[Lee16, Fer12] (see section
3.2.2), utilizing ground state MP2 normal modes and frequencies. The
protocol for obtaining the parameters is outlined in detail in section 3.

In particular, the gradient based approach used in earlier works reporting
simulations of spectra probing in the visible [Nen18, Bor18] was abandoned
in favour of a dynamics-based protocol for constructing the spectral densities
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of the deep-UV (i.e. up to 10 eV above the GS) excited states accessible (i.e.
bright) from the initially populated second bright state of pyrene. This was
necessary as due to the high state density in the deep-UV the calculation of
numerical gradients, required by the projection protocol, becomes unreliable.

The PP signal was computed as the marginal (with respect to the de-
lay time t1) of the two-dimensional Fourier transform (with respect to t1
and t3) of the nonlinear response of the system, which becomes equal to the
third-order signal within the limit of temporally well separated ultrashort
laser pulses (impulsive limit). Spectra simulations were performed with a
development version of Spectron [Abr09]. The present model allows to incor-
porate (within certain limits) state-specific photo-induced absorptions and
their spectral dynamics in photon echo and pump-probe spectroscopy simu-
lations. We have recently applied this methodology to simulate with remark-
able agreement to experiment time-resolved two-color UV-pump Vis-probe
electronic spectrum of trans-azobenzene [Nen18].

2 Simulation protocol for nonlinear spectroscopy

The pump probe (PP) signalW (3)(t2,Ω3) can be formally seen as the marginal
of the Fourier transform of the third-order signal S(3)(t1, t2, t3) [Muk95, Muk04,
Abr09, Ham11, Abr07].

W (3)(t2,Ω3) =

∫ ∞
−∞

dt1

∫ ∞
0

dt3 S
(3)(t1, t2, t3) eiΩ3t3δ(t1). (1)

In the following we will elaborate on the simulation protocol for S(3)(t1, t2, t3),
thus covering PP and two-dimensional (2D) nonlinear experiments. S(3)(t1, t2, t3)
is the convolution of the third order nonlinear response of the systemR(3)(t1, t2, t3)
due to the interaction with three incident laser pulses with wave vectors k1,
k2 and k3

S(3)(t1, t2, t3) =

∫ ∞
−∞

dt

∫ ∞
0

dt1

∫ ∞
0

dt2

∫ ∞
0

dt3 R
(3)(t1, t2, t3)×

E(r, t)E(r, t− t1)E(r, t− t1 − t2)E(r, t− t1 − t2 − t3)

(2)

with pulses E(r, t) = E(t)eikr−iωt with central frequency ω and complex en-
velope E(t). Assuming temporally well separated ultrashort laser pulses
(impulsive limit, i.e. the limit in which the pulse duration is less than a
single vibrational oscillation period) the nonlinear reponse of the system
R(3)(t1, t2, t3) becomes equivalent to the third-order signal S(3)(t1, t2, t3). In
section 3.4 the influence of the pulse duration on the spectra is demonstrated.
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R(3)(t1, t2, t3) can be written in terms of the perturbation of the system’s den-
sity matrix by three external optical electric fields (the interaction with the
optical filed being described in the impulsive limit through the coordinate
dependent transition dipole moment operator µ̂ =

∑
ij µij

∣∣i〉〈j∣∣) and the
field-free evolution of the density matrix during the intervals t1, t2 and t3
between the pulses:

R(3)(t1, t2, t3) = (i)3Tr [µ̂G(t3) [µ̂,G(t2) [µ̂,G(t1) [µ̂, ρ(0)]]]] (3)

giving rise to eight independent contributions (Liouville pathways). ρ(t)
is the time-dependent density matrix of the system, being in the ground
state (GS) at equilibrium before the interaction with the first pulse (i.e.
ρ(0) =

∣∣g〉〈g∣∣). For the electronic states i we consider the GS g, the mani-
fold of singly excited states (ESs) e, e′, accessible with the pump pulse (pair)
and the manifold of higher lying states f , accessible through the probe pulse.

G(t)ρ(t) = e−iĤtρ(0)eiĤt the retarded Green’s function, describes the field-
free system propagation governed by the vibronic Hamiltonian Ĥ. The non-
linear response R(3)(t1, t2, t3) depends on the spatial orientation of the wave
vectors of the incident pulses, i.e. is emitted in a given phase-matched direc-
tion. By adjusting the experimental set-up (boxcar arrangement, collinear
pump pulse arrangement) one can selectively detect sub-groups of Liouville

pathways. For example, the rephasing nonlinear response R
(3)
kI

(t1, t2, t3)

R
(3)
kI

(t1, t2, t3) =
∑

i=GSB,SE,ESA

R
(3)
kI,i

(t1, t2, t3) (4)

is emitted in the rephasing phase-matching direction (kI = −k1 + k2 + k3)
and includes three possible interaction sequences of the incident electric fields
with the system denoted as ground state bleach (GSB), excited state ab-
sorption (ESA) and stimulated emission (SE). Similarly, the nonrephasing
nonlinear response can be obtained in the phase-matching direction kII =
+k1 − k2 + k3. The definition of kI and kII phase-matching conditions in a
boxcar arrangement is associated with a fixed order of the incident pulses (i.e.
k1 interacts first, k2 second, k3 third). By changing the temporal order of the
first and second pulses one can record both kI and kII along the same phase-
matching direction. E.g. recording along the kI phase-matching direction
by interchanging in time first and second pulses gives +k2−k1 +k3, which is
identical to a nonrephasing nonlinear response. In this particular experiment,
the delay between both pump pulses is scanned from −τ to +τ along the
phase-matching direction. Thus, for negative delay times τ the nonrephasing
response is recorded, while for positive delay times τ the rephasing response
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is recorded. Finally, the 2D spectrum is obtained by Fourier transforming the
entire signal. The simulations were performed so as to match the experimen-
tal conditions. Therefore, the resulting spectra are neither rephasing, nor
nonrephasing, but rather the quasi-absorptive spectrum that could be also
obtained by measuring rephasing and nonrephasing responses independently
and plotting the real part of the sum of both representations. Such spectra
are preferred for analysis as phase-twists are canceled to a large extent. Fi-
nally, the pump-probe response can be obtained either in the rephasing or in
the nonrephasing directions, which become identical when t1 = 0.
Eq. 3 can be solved using second-order cumulant expansion within the frame-
work of linear coupling of the system’s energies to a Gaussian bath. This is
known as the cumulant expansion of Gaussian fluctuations (CGF). It allows
to calculate the shapes of electronic transition bands coupled to a bath for
fluctuations with arbitrary time scales by using the formalism of line shape
functions [Muk04, Abr07]. In the following we describe a bath with both
fast and slow modes, i.e. modes that adjust themselves quickly and such
that cause long-range memory effects. The Markovian approximation (mem-
orylessness) is applied to the fast modes. During t1 and t3, these cause homo-
geneous line broadening, while during t2 they induce population relaxation.
In the limit of decoupled populations and coherences (secular approximation
of the Green’s function) the population relaxation is described by the Pauli
master equation:

˙ρee(t) = −
∑
e′

Ke′e′,eeρe′e′(t) (5)

with K the rate matrix with elements Ke′e′,ee depicting the population trans-
fer rate from state e into state e′ which is taken to be independent of the
fluctuations of the slow modes. The solution of the differential equation is for-

mally given by the population Green’s function ρe′e′(t) =
∑
e

Ge′e′,ee(t)ρee(0)

and the elements of the matrix G act as time-dependent weighting factors
in the population pathways describing ESA and SE (see eq. 6). The slow
bath modes are responsible for spectral diffusion during all three intervals
t1, t2, and t3, causing correlations during the three intervals. The secular
approximation allows to further partition the nonlinear response (eq. 4) into
population (e′ = e during delay time t2) and coherence contributions (e′ 6= e
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during delay time t2). The population contributions then read:

R
(3)
kI,ESA,i = + i

∑
e′,e,f

µ2
fe′µ

2
ge Ge′e′,ee(t2)×

e
−i(εf − εe′)t3 + i(εe − εg)t1 + ϕESA,i

fe′e (t1, t1+t2, t1+t2+t3, 0)

R
(3)
kI,SE,i =− i

∑
e′,e

µ2
ge′µ

2
ge Ge′e′,ee(t2)×

e
−i(εe′ − εg)t3 + i(εe − εg)t1 + ϕSE,i

ege′ (0, t1+t2, t1+t2+t3, t1)

R
(3)
kI,GSB =− i

∑
e′,e

µ2
ge′µ

2
ge×

e−i(εe′ − εg)t3 + i(εe − εg)t1 + ϕGSB
ege′ (0, t1, t1+t2+t3, t1+t2).

(6)

The coherence contributions read:

R
(3)
kI,ESA,ii = + i

e′ 6=e∑
e′,e

∑
f

µfe′µfeµge′µge e
−i(εf − εe)t3×

e
−i(εe′ − εe)t2 + i(εe − εg)t1 + ϕESA,ii

fe′e (t1, t1+t2, t1+t2+t3, 0)

R
(3)
kI,SE,ii =− i

e′ 6=e∑
e′,e

µ2
ge′µ

2
ge e
−i(ε′e − εg)t3×

e
−i(εe′ − εe)t2 + i(εe − εg)t1 + ϕSE,ii

e′ge (0, t1+t2, t1+t2+t3, t1)
.

(7)

As there is only a single GS, no coherence contribution is observed for the
GSB. In eqs. 6-7 εi (i ∈ {g, e, f}) is the electronic contribution to the
energy of the i-th ES (the energy of the GS εg = 0 is used as a reference).
ϕ(t4, t3, t2, t1) are phase functions that describe the coupling to the bath and,
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hence, give rise to the time-dependent spectral line shapes [Abr07, Abr09].

ϕESA,i
fe′e (t1, t1+t2, t1+t2+t3, 0) = δe′ef

(C),∗
efe (t1, t1+t2, t1+t2+t3, 0)

+ ξe′ef
(I),∗
fe′e′e(t3, t2, t1)

ϕSE,i
ege′ (0, t1+t2, t1+t2+t3, t1) = δe′ef

(C)
ege (0, t1+t2, t1+t2+t3, t1)

+ ξe′ef
(I),∗
e′ge′e(t3, t2, t1)

ϕGSB
ege′ (0, t1, t1+t2+t3, t1+t2) = δe′ef

(C)
ege′(0, t1, t1+t2+t3, t1+t2)

ϕESA,ii
fe′e (t1, t1+t2, t1+t2+t3, 0) = f

(C),∗
e′fe (t1, t1+t2, t1+t2+t3, 0)

ϕSE,ii
ege′ (0, t1+t2, t1+t2+t3, t1) = f

(C)
e′ge(0, t1+t2, t1+t2+t3, t1)

(8)

where ξe′e = 1− δe′e. The phase functions of the population contributions to
the ESA and SE signals (ϕESA,i and ϕSE,i) have both a coherent (f

(C)
cba ) and

incoherent (f
(I)
cbe′e) part, the former comprising population-conserving Liou-

ville pathways, the latter population-transfer pathways with the Markovian
approximation for the fast modes. Both functions include correlations be-
tween t1, t2 and t3. The coherent function f

(C)
cba reads:

f
(C)
cba (τ4, τ3, τ2, τ1) =− gcc(τ43)− gbb(τ32)− gaa(τ21)

− gcb(τ42) + gcb(τ43) + gcb(τ32)

− gca(τ41) + gca(τ42) + gca(τ31)− gca(τ32)

− gba(τ31) + gba(τ32) + gba(τ21)

(9)

with τij = τi − τj. The incoherent function f
(I)
cbe′e reads:

f
(I)
cbe′e(t3, t2, t1) =− gee(t1)− gbb(t3)− g∗cc(t3)

− gbe(t1 + t2 + t3) + gbe(t1 + t2) + gbe(t2 + t3)− gbe(t2)

+ gce(t1 + t2 + t3)− gce(t1 + t2)− gce(t2 + t3) + gce(t2)

+ gcb(t3) + g∗bc(t3)

+ 2iIm[+gce′(t2 + t3)− gce′(t2)− gce′(t3)

− gbe′(t2 + t3) + gbe′(t2) + gbe′(t3)].

(10)

In the following we discard memory effects during the delay time t1 in the
incoherent part (all terms gbe(t) and gce(t) terms vanish). This implies that
the dynamics initiated on the potential energy surface of state e′ (populated
during the ES decay process) does not keep memory of the active modes in
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previously visited states. Hence, the dynamics during t2 and t3 are governed
only by the Hamiltonian of the e′ state while the line shape during the delay
time t1 is dictated by the term gee(t1). We note that while this approximation
affects the line shapes of the 2D spectra it does not affect the PP spectra
where t1 = 0, so that gbe(t) and gce(t) vanish by construction.
gij(t) in eqs. 9-10 is the line shape function, which is an integral transfor-
mation of the autocorrelation function of bath fluctuations Cij(t) [Muk95,
Muk09]:

gij(t) =
1

2π

∫
Cij(ω)

ω2
[coth

(
~ω

2kBT

)
(1− cosωt) + i sinωt− iωt] dω. (11)

In the case when the system is coupled to a set of high-frequency (intramolec-
ular) modes and a continuum of low-frequency (intra- and intermolecular)
modes the spectral density can be partitioned into: a) a weakly undamped
or underdamped contribution due to the slowly decaying correlation func-
tion due to high-frequency modes, responsible for vibrational progressions in
the spectra; b) an overdamped contribution due to the fast-decaying corre-
lation function associated with the low-frequency modes responsible for the
homogeneous broadening of the signals. The total line shape function then
contains two parts as well [Val16]. The semi-classical overdamped regime is
usually represented by the line shape function of the semi-classical Brownian
oscillator (OBO) in the high-temperature limit [Muk95, Li94, But12]:

gOBO
ij (t) =

λij
Λ

(
2kBT

~Λ
− i
)

(e−Λt + Λt− 1). (12)

In eq. 12 λij and Λ−1 are respectively the system-bath coupling strength and
the fluctuation time scale.

Undamped vibrations are described through the line shape function of the
multidimensional uncoupled displaced harmonic oscillator (DHO)[Muk95]:

gDHO
ij (t) =

∑
k

ωkd̃ikd̃jk
2

[
coth

(
ωk

2kBT

)
(1− cos (ωkt)) + i sin(ωkt)

]
(13)

with ωk the frequency and d̃ik the displacement of the i-th electronic potential
along the k-th mass-weighted normal mode (Figure S1). The state-specific
displacements d̃ik determine the magnitude of diagonal correlation functions
Cii(t) and are related to spectroscopic parameters like the Huang-Rhys fac-
tors Sik or the reorganization energy λik through the following relations:

Sik =
d̃2
ikωk

2~
and λik =

d̃2
ikω

2
k

2~
. (14)
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and can be used to compute the spectral densities either in the undamped
(C(u) or damped C(d) regimes [But12]:

Cu(w) =
∑
i

π Sik ω
2
k [δ(ω − ωk)] and Cd(w) =

∑
i

2
√

2 Sik ω
3
k ω γ

(ω2 − ω2
k)2 + 2γ2ω2)

(15)
where γ is a damping factor. Cross-correlation functions Cij(t) depend on the
displacements d̃ik and d̃jk associated with two transitions. Because negative
displacements (with respect to the GS, Figure S1) are allowed, the corre-
sponding spectral densities Cij(w) that can be formulated following eqs. 14
and 15 can have negative contributions[Nem10] (see next section).

3 Obtaining simulation parameters for Pyrene

The simulation of the pump-probe spectra for delay times t2 up to 1000 fs
within the framework described in the previous section requires the com-
putation of a number of parameters to feed in the line shape functions of
the overdamped Brownian and the undamped displaced harmonic oscillator
models (eqs. 12-13). These include the strength λij and time scale Λ−1 of
the system-bath coupling (12), as well as the normal modes, frequencies ωk

and displacements d̃ik (13). The computed line shape functions construct the
phase functions (eq. 8). To obtain the nonlinear responses for the different
Liouville pathways (eqs. 6-7) one has to further compute vertical transition
energies εi and dipole moments µij. Finally, the population dynamics must
be incorporated by solving the differential equation 5. In the following we
elaborate on how the individual parameters were obtained.

3.1 Solving the Pauli master equation: population dy-
namics

The system under study presents only one bright state under the envelope
of the pump pulse (250 − 270 nm), S4. This is the second bright ππ∗ state
of pyrene and the second state of B3u symmetry in the FC region at the SS-
CASPT2 / RASSCF(4, 8|0, 0|4, 16) / ANO-L[321,21] level within D2h sym-
metry, hence labeled also 2B3u. Due to the absence of further bright states
under the pump pulse envelope the coherence contributions to the nonlinear
response R

(3)
kI,ESA,ii and R

(3)
kI,SE,ii (eq. 7) in which the system is in an interstate

coherence during the delay time t2 vanish, leaving only the three population
contributions (6). Utilizing the outcome of the analysis of the potential en-
ergy surfaces, molecular dynamics simulations, the current experimental data
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2B3u

k2B3u−−−→ 1B1g

k1B1g−−−→ 1B3u

Figure S2: Population dynamics.

and the findings of previous transient absorption experiments we elaborated
a sequential model that describes the population decay following excitation
of S4 (2B3u) (Figure S3). The computation at the FC (Frank-Condon) point
shows the presence of another two electronic states in the vicinity of the
bright 2B3u state, denoted as 1B1g (approx. 0.25 eV below 2B3u) and 2B1g

(approx. 0.40 eV above 2B3u), both spectroscopically dark and not directly
accessible from the GS. Adiabatic molecular dynamics simulation performed
in state 2B3u demonstrate that the energy gaps are conserved throughout
the simulation (see Figure S4). Due to the lack of SE signatures in the ex-
perimental PP spectrum and the proximity of the dark states (in particular
1B1g), we assume that the bright 2B3u state is left before probing is initi-
ated (i.e. earlier than 200 fs). Tentatively, we assign a lifetime of 100 fs to
population transfer to the 1B1g state. The 1B1g state is characterized with a
three-state conical intersection with the lowest bright S2 state (labelled 1B2u)
and the dark S1 state (labelled 1B3u), ca. 0.1 eV above the local minimum,
suggesting the potential splitting of the population in S2 and S1. Previous
experiments pumping in the near-UV and selectively exciting the S2 state
have revealed an efficient sub-100 fs relaxational dynamics to the S1 state.
Thus, we expect a rapid depopulation of the S2 state. On the other hand,
the dark S1 state acts as a trap for the excited state population. Thus, we
assign the 750 fs lifetime obtained from the global analysis to the effective
population of S1. Within the time window of the simulation (1 ps) the pop-
ulation does not leave the S1 state. Furthermore, excited state cooling is
found to occur with 8 ps, thus the simulations reveal only ”hot” population
dynamics. Equation 16 shows the rate matrix corresponding to this model

K =
ρ1B3u

ρ1B1g

ρ2B3u

 +k1B3u −k1B1g 0
0 +k1B1g −k2B3u

0 0 +k2B3u

 (16)

where the rates k2B3u = 1/100 fs−1, k1B1g = 1/750 fs−1 were taken as the
reciprocal lifetimes. The rate of the depopulation of the dark trapping 1B3u

state is set to k1B3u = 1/∞ fs−1. Solving the Pauli master equation (eq. 5)
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we obtain following expressions for the population dynamics:

ρ2B3u(t) =e−k2B3ut

ρ1B1g(t) =
k2B3u

−k2B3u + k1B1g

(e−k2B3ut − e−k1B1gt)

ρ1B3u(t) =
−k1B1g

−k2B3u + k1B1g

(e−k2B3ut − 1) +
k2B3u

−k2B3u + k1B1g

(e−k1B1gt − 1)

(17)

Figure S3 shows the evolution of the population between 0 and 1 ps delay
time starting in the 2B3u state (ρ2B3u = 1). The population of the dark
intermediate 1B1g state ρ1B1g shows a peak around 230 fs. After 1 ps 70% of
the population is the ”hot” 1B3u state. The density-matrix element ρ2B3u(t)

Figure S3: Population dynamics of deep UV excited pyrene.

appears as a time-dependent weighting factor in front of the coherent part
f

(C)
cba of the population contributions R

(3)
kI,ESA,i and R

(3)
kI,SE,i (eq. 6) and causes

the exponential decay of the signals associated with the 2B3u state. Due to
the vanishing transition dipole moment of the GS← 1B1g transition and the
lack of intense ESA signals in the probed spectral window the 1B1g state can
be seen as a truly ”phantom” state which does not show in the spectra. Thus,
population in the 1B1g state does not give rise to any signal in the simulated
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spectra. The density-matix element ρ1B3u(t) multiply the incoherent part

f
(I)
cbe′e of the population contributions and lead to the build-up of the 1B3u

associated signals at times close to 1 ps. We note that due to the vanishing
transition dipole moment of the GS← 1B3u transition there is no incoherent
contribution to the SE.

3.2 Electronic structure computations: constructing
the displaced harmonic oscillator (DHO) model

The uncoupled DHO model (Figure S1) neglects inharmonicities along the
normal modes. Damping of the vibrations and internal vibrational redis-
tribution are neglected as they are not expected to show in the simulated
time window (0-1000 fs). Within this framework the one-dimensional poten-
tial for the i-th state along each normal mode is fully characterized by two
parameters, frequency ωk and relative displacement with respect to the GS
equilibrium d̃ik. Parameters are required for: a) the 2B3u (S4 at FC) and
1B3u (S1 at FC) states involved in the population dynamics (we remind that
the intermediately populated 1B1g state has no spectral signatures in the
probed window); b) the higher lying ESs probed out of the S4 state at early
times (< 200 fs); c) the higher lying ESs probed out of the S1 state at later
times. In particular, the parameters for the S4 state and of the ESs accessed
during probing were obtained using a dynamics-based protocol (see sec. 3.2.1
and sec. 3.2.3). The parameters for the S1 state were obtained through nor-
mal mode analysis (see sec. 3.2.2 and sec. 3.2.4), a projection technique
based on the Cartesian coordinate difference of the S1 minimum and the
CI(1B1g/1B2u/1B3u)). Finally, the parameters of the ESs probed out of the
S1 state were obtained at the S1 minimum relying on the gradient projection
technique (see sec. 3.2.2 and sec. 3.2.4). To achieve this goal we treated the
GS at second-order Møller-Plesset perturbation theory (MP2), while resort-
ing to a well established protocol for computing the electronic structure of
ESs: complete active space self-consistent field (CASSCF) theory [Roo87] fol-
lowed by multiconfigurational second-order perturbation theory (CASPT2)
[And90]. In order to reach the desired accuracy we made use of the restricted
active space formulation of these techniques (i.e. RASSCF/RASPT2 [Mal90,
Mal08]) which allows the use of larger active spaces compared to the CAS
variant. Before outlying the details of the computations we briefly present
the theoretical framework of the projection techniques used.
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3.2.1 Spectral densities from molecular dynamics

One way to obtain the frequencies ωk and displacements dik required to feed
the DHO model is by fitting the electronic gaps Ee(t) − Eg(t) (giving rise
to GSB and SE signals) and Ef (t) − Ee(t) (giving rise to ESAs) computed
along a single quantum-classical molecular dynamics trajectory without ini-
tial kinetic energy[Nen15], to the analytical expression for the classical time-
dependent fluctuation of the 1B2u-Sn energy gap (n belonging to a state from
either the GS, g, or the f -manifold).

Eh(t)−Ee(t) = −
∑
k

ω2
k(d̃ek−d̃hk)d̃ek cosωkt+

∑
k

ω2
k(d̃ek − d̃hk)2

2
+(ωhg−ωeg)

(18)
with h ∈ g, f . Eq. 18 allows extracting the mass-weighted displacement
coefficients dek and dfk, as well as the electronic transition energies ωeg and
ωfg (the parameters dgk and ωgg describing the ground state are zero per
definition). In the adopted DHO framework the spectral dynamics of the
ESA is a function of the dynamics in the photoactive state, i.e. of the rela-
tive displacement of the higher lying excited states PES with respect to the
PES of the photoactive state, and can induce positive or negative frequency
correlations.[Nem10] By definition the dynamics is restricted to the normal
modes describing the molecular dynamics in the e-manifold (i.e. if dek is zero,
then so is dfk). This is an implication of the missing state-specific modes.
Furthermore, we emphasize that the extraction of the energy fluctuations of
states from the f -manifold must be performed in a diabatic representation
(i.e. by following the excited state wavefunction rather than the adiabatic
root) in order to stay within the framework of the uncoupled harmonic os-
cillators as due to the high state density in the deep UV higher lying states
intersect, thus rendering the resulting adiabatic potentials highly anharmonic
(see Fig. S4). Although the derivation of the working equations is based on
the Franck-Condon (FC) approximation, whereby transition dipole moments
are independent of the nuclear coordinates, their fluctuations along the dy-
namics are accounted for in a semi-classical fashion by using the FC values for
the first and second interaction with the pump pulse, while taking the values
at time T for the interaction with the probe pulse and the local oscillator.

3.2.2 Spectral densities using gradient projection and normal mode
analysis.

An expression for the displacements d̃ik can be obtained from the expression
for the energy gap ∆Eij(q̃k) between states i and j in the displaced Harmonic
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oscillator model.

∆Eij(q̃) = εi − εj +
∑
k

1

2
ω2
k(d̃2

ik − d̃2
jk)− ω2

k(d̃ik − d̃jk)q̃k (19)

expressed in mass-weighted normal mode coordinates q̃. εi − εj is the adi-
abatic excitation energy between states i and j. When computed at the
equilibrium of state j the gradient of the energy of state i equates the gradi-
ent of the energy gap

∇q̃∆Eij(q̃) = ∇q̃Ei(q̃) = ∇QEi(Q) ∇q̃Q = P†M−
1
2fi (20)

where P is a matrix whose columns are the normal modes of the system
ξk expressed in normalized mass-weighted Cartesian coordinates Q, M is
a diagonal matrix with the nuclear masses and fi is the Cartesian energy
gradient. Taking the derivative with respect to q̃ in eq. 19 and inserting the
expression derived in eq. 20 gives [Lee16, Fer12]

d̃i = −W−2P†M−
1
2fi + d̃j (21)

where d̃i and d̃j are k-dimensional arrays of the displacements along all
modes on states i and j.
An alternative to the gradient projection technique is the normal mode anal-
ysis [Kur01]. Starting with the definition of the normal mode matrix (eq.
20)

P† = M
1
2∇q̃Q (22)

one can express it in terms of finite differences as

P†∆q̃ = M
1
2 ∆Q (23)

Thereby, ∆q̃ becomes the array of displacements d̃i along the normal modes
of the system when the difference is taken with respect to the reference point
on state i. Rearranging gives the final working equation

d̃i = P−1M
1
2 ∆Q (24)

which allows to estimate how much every normal mode ξk has to be dis-
placed to connect two points in Cartesian coordinate space. In eq. 24 ∆Q
is the difference in Cartesian coordinates between two geometries. With the
normal mode analysis attention should be paid to global translational and
rotational degrees of freedom which have to be removed prior to computing
the difference in Cartesian coordinates. To this end we followed an iterative
procedure relying on the vectors of inertia in order to minimize the distance
in space between two geometries as outlined in ref. [Kur01b]. Furthermore,
it is paramount that both geometries used to compute ∆Q have been opti-
mized at the same level of theory in order to avoid spurious contributions to
the spectral densities
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3.2.3 Electronic structure of the S4 state and its ESA.

In order to simulate the third order nonlinear signal associated with the dy-
namics in the second bright state S4 probed in the deep UV, knowledge of
following quantities is required: i) the electronic structure of pyrene up to 80
kcm−1 (ca. 10 eV), thus covering not only the S4 state (labeled e) but also
the manifold of higher lying states (labeled f) that fall within the envelope
of the probe pulse (i.e. 35.5-40.0 kcm−1 above the S4 state); ii) the Franck-
Condon active modes of the S4 state, source of the vibrational dynamics and
reflected in a checkerboard pattern and coherent intensity beats in the 2D
spectra; iii) the response of the states from the f -manifold to the vibrational
dynamics in the S4 state. ESA bands are an indirect probe of the coherent
vibrational dynamics in the photoactive state manifesting in oscillations of
signals intensities and/or spectral positions as a function of the delay time.

The frequency ωk and displacement dik parameters used to construct the
lineshape functions gij (eq. 13) were extracted from a 250 fs adiabatic
mixed quantum-classical molecular dynamics simulation treating electrons
quantum-mechanically by solving the time-dependent Schroedinger equation,
while applying classical Newtonian dynamics to the nuclei. The dynamics
was initiated in the S4 state at the Franck-Condon point without initial ki-
netic energy.
The higher excited state manifold f was computed at the SS-CASPT2/SA-
100-RASSCF(4, 8|0, 0|4, 8) level every 2 fs. At the Franck-Condon point we
selected the states from the f manifold within the probed spectral window
and with significant oscillator strength out of the S4 state (i.e. the reference
diabatic states, shown in green, blue, cyan, brown and magenta in Figure S4)
and tracked the temporal evolution of the wavefunction associated with each
reference state along the dynamics by searching for the adiabatic state with
the greatest overlap with the reference. The energy profiles extracted for
the five bright transitions are depicted in Figure S5 showing clear oscillatory
dynamics properly captured by the fitting procedure (black dotted lines).

The spectral density of the S4 state (Figure S6,f) is dominated by the
stretching of the central C-C bond (C4-C10) with 1457 cm−1 frequency (see
Figure S7). Several other C-C stretching and H-bending modes in the high-
frequency region (> 1000 cm−1) are found to contribute as well, so as a 592
cm−1 breathing mode in the low-frequency region (see Figure S7). We note
that the 1457 cm−1 mode is responsible for the checkerboard pattern in the
2D spectrum while the low-frequency modes give the fine-structure (visible
at low temperatures or in crystals) and are one of the reasons for the broad-
ening of the signals at room temperature.
To assess the reliability of the dynamics simulation we computed the spectral
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Figure S4: Electronic structure of pyrene up to 76 kcm−1 along the 0K
trajectory run in the S4 state (red). States with high oscillator strength from
S4 are highlighted in color.

density of the S4 state using the gradient projection and normal mode anal-
ysis protocols (see sec. 3.2.2). The comparison (Figure S6,f and Table S5)
shows a good agreement between all three methods, the difference between
the dynamics- and projection-based protocols arising due to the limited res-
olution in frequency of the dynamics-based protocol (ca. 60 cm−1) due to
the limited duration of the simulation.

Figure S6,a-e show the spectral densities associated with the bright state
from the f -manifold of pyrene under the probe envelope. Note, that as d̃j on
the RHS of eq. 21 is different from zero (being the array of positive defined
S4-specific displacements d̃2B3u) the displacements of the higher lying states
d̃f can assume both positive and negative values (see also Figure S1). Specif-
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Figure S5: Ef−Ee (a-e) and Ee−Eg (f) energy gap dynamics and transition
dipole moment fluctuations (gray) of the bright states D1-D5 from figure S4
along the 0K trajectory run in the S4 state. Fits of the energy gaps following
eq. 18 are shown in black.
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Figure S6: Spectral densities of the S4 state (f) and of the bright states
D1-D5 from figure S4 (a-e). Most prominent normal modes are labeled.
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ically, in Figure S6 the spectral densities are constructed using displacements
d̃f relative to the minimum S4min in order to highlight the differences be-

tween them. Table S4 instead lists the displacements d̃f for all states with
respect to the FC point as they enter in the line shape function eq. 9.

3.2.4 Electronic structure of the S1 state and its ESA.

The FC point is the doorway for the excited wavepacket on the bright state
S4. Its energy gradient or relative position in coordinate space with respect
to the ES local minimum allows to extract the active modes governing the
vibrational dynamics. Similarly, the three state CI(1B1g/1B2u/1B3u) is the
doorway for the wavepacket on the 1B3u state. Its analysis can help to
extract the 1B3u-specific active modes. The spectral density of the S1 state
(Figure S8,a) is dominated by the C-C stretching mode with 1668 cm−1

frequency (see Figure S8c). Several H-bending modes in the high-frequency
region (∼ 1000 cm−1) are found to contribute as well, together with two
asymmetric backbone bending modes with frequencies 350 cm−1 and 539
cm−1 in the low-frequency region (see Figure S8). The spectral density itself
was computed via normal mode analysis (eq. 24). We resort to normal mode
analysis in this case as gradients generally show larger fluctuations in the
crossing region due to strong wave function mixing. ∆Q was calculated as
the difference between the geometries of the energy minimum on the S1 state
S1min and CI(1B1g/1B2u/1B3u) as

∆Q = Q(1B3umin)−Q(CI(1B1g/1B2u/1B3u)) (25)

The electronic spectrum at the S1 minimum was calculated by averaging
over 20 states in the Ag and B2g irreducible representations, respectively
(i.e. SS-RASPT2/SA-20-RASSCF(4, 8|0, 0|4, 8)/ANO-L[321,21]). Among all
states only one state per symmetry (state 17 in symmetry Ag and state 15 in
symmetry B2g) fulfilled the requirements of having a large transition dipole
moment from S1 and absorbing in the 35.5-40.0 kcm−1 spectral window.
Figures S8,b shows the spectral densities of these states obtained via the
gradient projection method. The spectral densities are constructed using
displacements d̃f relative to the minimum S1min in order to appreciate the

differences between them. Table S6 lists the displacements d̃f for all states
with respect to CI(1B1g/1B2u/1B3u).
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Figure S7: Displacement vectors of the normal modes dominating the spec-
tral density of the S4 state (fig. S6).
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Figure S8: Spectral densities of the 1B3u state (red), as well as higher lying
states with considerable oscillator strength from 1B3u. Displacement vectors
of the normal modes dominating the spectral density of 1B3u are shown.
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3.3 Parameters for the overdamped Brownian oscilla-
tor (OBO) model

The parameters for the OBO model (eq. 12) were chosen so to reproduce
the bandwidth of the linear absorption spectrum at room temperature (see
Figure 1 in the main text) where inhomogeneous broadening contribution
was neglected. Best fit was obtained at coupling strength λ = 300 cm−1 and
time scale Λ = 1/50 fs−1. For simplification, the same OBO parameters were
used for all states.

3.4 Accounting for realistic pulses

Finite pulse duration is accounted for ad-hoc by convoluting the PP signal
W (3)(t2,Ω3) with a Gaussian function in the time domain

W (3)(t2,Ω3) =

∫ +∞

−∞
dτ W (3)(τ,Ω3) exp (−(τ − t2)2

2σ2
) (26)

A standard deviation σ = 3 fs was used (matching the experimental full-
width-half-maximum of 6 fs). Figure S9,a-b show the PP signal prior and af-
ter the convolution. Despite the broadening of the bands, the high-frequency
intensity beats (ca. 20 fs period) are still clearly visible. Furthermore, the
signal was manipulated by applying a Gaussian mask in the frequency do-
main centered at 37.5 kcm−1 with a FWHM= 5 kcm−1 in order to account
for the finite bandwidth of the probe pulse (see Figure 1 of the main paper).
Figure S9,c shows the PP signal after applying the mask. Contributions
below 250 nm (40 kcm−1) and above 280 nm (35 kcm−1) are cut off.

4 2D spectra

In the following we discuss in detail the simulated two-dimensional spectra.
Note that each set of spectra in Figures S10-S13 has been normalized and
absolute intensities should not be compared between figures.

4.1 Selected snapshots between 0-1000 fs

Figure S10 shows snapshots every 100 fs during the first picosecond after
pumping pyrene in the S4 state (i.e. T = 0, 100, 200, etc.). Visible are two
traces along Ω3 arising from pumping the fundamental (36.5 kcm−1) and the
first overtone (38.0 kcm−1) of the second bright state. At early times (0fs
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Figure S9: Theoretical pump-probe spectra of pyrene a) with idealistic
δ-pulses; b) after convolution with a Gaussian in the time domain with
FWHM= 6fs; c) after applying a Gaussian mask in the frequency domain
centered at 37.5 kcm−1 with a FWHM= 5 kcm−1. Parameters are chosen so
to reproduce the pulses used in the experimental set up.
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Figure S10: Selected 2DES snapshots between 0fs and 1000fs. Transitions
between vibrational levels of the ground state (v) and the excited state(v’)
are labeled. GSB and SE contributions shown in red, ESA in blue. ESA
associated with the S4 state labeled in blue, ESA associated with the 1B3u

state labeled in green.
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and 100fs) there are positive contributions from both GSB and SE along the
diagonal (36.5/36.5 kcm−1 and 38.0/38.0 kcm−1), as well off-diagonal contri-
butions (e.g. 38.0/36.5 kcm−1 36.5/38.0 kcm−1). The off-diagonal contribu-
tions arise due to pump and probe pulse addressing a different vibrational
level in the excited state. Weak SE contribution below 36.0 kcm−1 is also
recognizable in the first 100 fs (labeled in red). It arises from de-exciting
into a higher vibrational GS level (i.e. v0’ → v1) with the probe pulse (see
also Figure S11). At early times weak ESA contributions can be noticed
above 38.0 kcm−1 (labeled in blue, see also Figure S11 and S12). After 200 fs
the spectra begin to exhibit ESA features of the 1B3u state populated with
a time-constant of 750fs (see Figure S3). The “dark“ 1B3u state (no SE)
is characterized by two intense ESA contributions in the probed window, a
signal around 36.0-37.0 kcm−1 and a signal around 38.0-40.0 kcm−1 (see also
Figure S13). These become clearly visible at later times (900fs and 1000fs).
They overlap spectrally with the GSB signal and modulate its dynamics.

4.2 Spectral dynamics in the first 20 fs after pumping

Figure S11 shows the spectral dynamics during the very first 20fs after pump-
ing. The majority of the population is in the second bright state S4 and all
signals arise from this state. The 20 fs temporal window was selected as the
driving vibrational mode in the S4 state is the 1456 cm−1 C-C stretching with
a period of 23 fs. By inspecting the individual snapshots one can clearly see
the vibrational dynamics of the GSB and SE contributions, with off-diagonal
terms (e.g. 36.5/38.0 cm−1 due to pumping the v0 → v′0 transition and prob-
ing the v0 → v′1 transition), thus creating a checkerboard pattern. SE is
clearly distinguished between 4 fs and 12 fs. The ESA contribution above 38
kcm−1 originates from several superimposed states exhibiting different oscil-
lation patterns of energy and TDM (see Figure S5). Despite being weak the
ESA modulates the dynamics of the GSB, in particular the overtones (probe
at 38.5 kcm−1 and 40 kcm−1) which are partially or completely canceled.

The ESA contributions to the spectrum during the first 20fs after pump-
ing can be more clearly highlighted when working with cross-polarized pump
and probe pulses, the reason being that all higher lying states contributing
to the ESA have their transition dipole moments oriented orthogonally with
respect to the GS → S4 transition. As shown in Figure S12 with cross-
polarized pulses the GSB/SE contribution is nearly completely covered by
the ESA and only the most intense v0 → v0’ transition remains visible.
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Figure S11: Selected 2DES snapshots between 0fs and 20fs. Transitions
between vibrational levels of the ground state (v) and the excited state(v’)
are labeled. GSB and SE contributions shown in red, ESA in blue. ESA
associated with the S4 state labeled in blue.
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Figure S12: Selected 2DES snapshots between 0fs and 20fs obtained with
cross-polarized pump and probe pulses. Transitions between vibrational lev-
els of the ground state (v) and the excited state(v’) are labeled. GSB and SE
contributions shown in red, ESA in blue. ESA associated with the S4 state
labeled in blue
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4.3 Spectral dynamics of the ESA in the window 980-
1000 fs

Figure S13 shows the ESA contribution to the two-dimensional electronic
spectrum close to 1 ps. By this time about 70% of the population has relaxed
to the lowest dark 1B3u state and there is virtually no population left in the
initially pumped S4 state. Thus, the observed signals arise exclusively out of
the 1B3u state. It is noticeable that the ESA spans over the entire spectral
range and modulates the spectral dynamics of the GSB (see 500fs to 1000fs
in Figure S10). Two intense signals form the ESA spectrum, one around
36.0-37.0 kcm−1 and another one between 38.0-40.0 kcm−1. Both signals
show a vibrational sub-structure giving rise to a time-dependent multi-peak
pattern.
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Figure S13: Selected 2DES snapshots between 980fs and 1000fs, showing
contribution only from the ESA associated with the 1B3u state. ESA shown
in blue. ESA associated with the 1B3u state labeled in green.
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5 Parameters for the DHO model
Table S1. Parameters for simulating the signals associated with the S4 state (GSB, SE and ESA) obtained from
single point computations at the SS-CASPT2/SA-100-RASSCF(4, 8|0, 0|4, 8) level along a 0K trajectory run at the
SA-3-CASSCF(4,4) level.

Normal mode S4 D1 (root 49a) D2 (root 55a) D3 (root 86a) D4 (root 92a) D5 (root 97a)
� ω [cm−1] εbe/f [cm−1] 36712c 70052 71109 74806 74379 73433

ω6 182 d̃6 0.262 0.240 −0.624 −0.246 0.262d 0.262d

ω14 425 d̃14 0.194 0.536 0.526 0.220 −0.104 0.112

ω18 546 d̃18 0.240 0.487 0.363 0.622 0.399 −0.030

ω20 607 d̃20 0.157 0.335 0.218 0.468 0.481 0.447

ω34 1032 d̃34 0.072 0.156 0.058 0.072 0.206 −0.060

ω36 1093 d̃36 0.058 0.068 0.034 0.070 −0.058 0.290

ω40 1214 d̃40 0.082 0.001 0.046 0.015 −0.225 0.036

ω42 1275 d̃42 0.098 −0.005 0.044 −0.031 −0.077 0.200

ω44 1335 d̃44 0.065 −0.117 0.209 −0.025 0.003 0.028

ω46 1396 d̃46 0.049 −0.016 0.105 0.077 −0.096 −0.222

ω48 1457 d̃48 0.195 0.048 0.228 0.033 −0.091 −0.138

ω50 1517 d̃50 0.055 0.032 0.172 0.060 −0.013 −0.027

ω52 1578 d̃52 0.057 0.080 0.299 −0.049 0.001 0.098

ω54 1639 d̃54 0.031 −0.090 −0.164 0.072 −0.059 −0.047

ω56 1700 d̃56 0.052 −0.073 −0.131 0.219 0.047 0.082

ω60 1821 d̃60 0.030 −0.014 0.058 0.088 0.067 0.137
a root labeling follows the energetic order at the FC point in the Ag irreducible representation in CS symmetry, accounting

for both the electronic contribution εf and the state-specific reorganization energy (eq. 14); bεe/f is the electronic contribution
to the energy of the i-th ES (GS energy εg is set to zero); c spectrum origin (adiabatic transition energy) shifted to match
the experimental value;d same displacement as for state S4 due to instability of the gradient projection method.
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Table S2. Comparison of the parameters for simulating the signals associated with the S4 state (GSB, SE) ob-
tained through three different approaches: a) from single point computations at the SS-CASPT2/SA-100-RASSCF(4, 8|0, 0|4, 8)
level along a 0K trajectory run at the SA-3-CASSCF(4,4) level; b) using gradient projection on the normal modes
of the system obtained from a frequency computation at the equilibrium; c) using a projection of the difference
between GS and S4 equilibrium geometries in Cartesian coordinates on the normal modes obtained from a frequency
computation at the equilibrium.

Normal mode (MD) S4 (MD) Normal mode (QM freq.) S4 (gradient proj.) S4 (Cart. coord. proj.)
� ω [cm−1] εae/f [cm−1] 36712b

� ω [cm−1] εae/f [cm−1] 36712b 36712b

ω6 182 d̃6 0.262 - - - − −
ω14 425 d̃14 0.194 ω8 405 d̃8 0.154 0.196

ω18 546 d̃18 0.240 ω15 539 d̃15 0.003 0.001

ω20 607 d̃20 0.157 ω17 592 d̃17 0.261 0.288

ω34 1032 d̃34 0.072 ω37 1079 d̃37 0.116 0.121

ω36 1093 d̃36 0.058 - - - − −
ω40 1214 d̃40 0.082 ω40 1145 d̃40 0.006 0.017

ω42 1275 d̃42 0.098 ω47 1271 d̃47 0.098 0.085

ω44 1335 d̃44 0.065 ω48 1347 d̃48 0.026 0.030

ω46 1396 d̃46 0.049 - - - − −
ω48 1457 d̃48 0.195 ω52 1456 d̃52 0.160 0.135

ω50 1517 d̃50 0.055 - - - − −
ω52 1578 d̃52 0.057 ω58 1574 d̃58 0.055 0.066

ω54 1639 d̃54 0.031 ω62 1668 d̃62 0.054 0.022

ω56 1700 d̃56 0.052 - - - − −
ω60 1821 d̃60 0.030 - - - − −

aεe/f is the electronic contribution to the energy of the i-th ES (GS energy εg is set to zero); b spectrum origin (adiabatic
transition energy) shifted to match the experimental value.
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Table S3. Parameters for simulating the signals associated with the 1B3u state (only ESA). Parameters for
1B3u obtained through projection of the difference between the geometries of the 1B3u minimum and the three-state
CI(1B1g/1B2u,1B3u) in Cartesian coordinates on the normal modes obtained from a frequency computation at the GS
equilibrium. Parameters for the higher lying bright states obtained through projection of the excited state gradient,
obtained at the SA-30-RASSCF(4, 8|0, 0|4, 8) level in D2h symmetry, on the normal modes.

Normal mode 1B3u root 17 (Aa
g) root 15 (Bb

1g)
� ω [cm−1] εce/f [cm−1] 24996 60593 64097

ω6 350 d̃6 0.336 0.336 0.336

ω8 405 d̃8 0.458 0.148 0.205

ω12 494 d̃12 0.085 0.085 0.085

ω13 496 d̃13 0.114 0.114 0.114

ω15 539 d̃15 0.447 0.446 0.446

ω17 592 d̃17 0.443 0.636 0.746

ω20 698 d̃20 0.036 0.036 0.036

ω26 798 d̃26 0.065 0.009 0.099

ω36 1001 d̃36 0.075 0.075 0.075

ω37 1079 d̃37 0.312 0.347 0.333

ω40 1145 d̃40 0.427 0.376 0.384

ω44 1232 d̃44 0.058 0.058 0.058

ω47 1271 d̃47 0.124 0.037 0.070

ω48 1347 d̃48 0.112 0.149 0.044

ω52 1456 d̃52 0.135 0.038 0.056

ω54 1506 d̃54 0.039 0.039 0.039

ω57 1541 d̃57 0.028 0.028 0.028

ω58 1574 d̃58 0.107 0.040 0.044

ω60 1627 d̃60 0.027 0.027 0.027

ω62 1668 d̃62 0.688 0.650 0.598
a root labeling follows the energetic order at the 1B3u minimum in the Ag irreducible representation in D2h symmetry,

accounting for both the electronic contribution εf and the state-specific reorganization energy (eq. 14); b root labeling follows
the energetic order at the 1B3u minimum in the B1g irreducible representation in D2h symmetry, accounting for both the
electronic contribution εf and the state-specific reorganization energy (eq. 14); cεe/f is the electronic contribution to the
energy of the i-th ES (GS energy εg is set to zero).
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Figure S14: Bond length changes during the optimization of conical inter-
sections between various electronic states.

6 Rationalization of the structure of conical

intersections

The following rationalization relies on state-specific orbital occupations and
nodal structure analysis to predict geometrical (bond length) deformations
that would lead to a conical intersection between electronic states.
As seen in Table S5 at the equilibrium geometry of the second bright state
S4 (label 2B3u) it exhibits finite gaps with the lower states (0.25 eV to the
dark 1B1g state and 0.66 eV to the first bright S2 state). We ask ourselves
whether there exists an energetically low-lying crossing between both bright
states that would avoid the intermediate population of the dark state. The
wavefunction of the S4 state is defined by the configuration state functions
(CSFs) H-1→L (0.58) and H→L+1 (-0.55). The wavefunction of the first
bright state S2 (label 1B2u) is dominated by the H→L CSF (0.80). Evi-
dently, in the 1B2u state there is more electron density in the H-1 and L
orbitals (occupation 1.79/0.86 vs. 1.47/0.55), while in the S4 state there
is more electron density in the H and L+1 orbitals (occupation 1.50/0.48
vs. 1.15/0.20). Thus, any geometrical deformation that destabilizes H-1 or
L would destabilize 1B2u more than S4. Conversely, any geometrical defor-
mation that stabilizes H or L+1 would stabilize S4 more than 1B2u. By
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looking at the node pattern of the orbitals (Figures S15-S18) it becomes ev-
ident that this can be accomplished by elongating C3-C4, C3-C7, C1-C2 and
shortening C4-C10, C7-C8, C2-C3, as these deformations decrease the bond-
ing and increase the anti-bonding interactions in the H-1 and L orbitals, thus
effectively increasing their energies while simultaneously decreasing the anti-
bonding and increasing the bonding interactions in the H and L+1 orbitals,
thus effectively decreasing their energies. Performing a CI optimization (at
dynamically correlated SS-CASPT2 level), we indeed observe the expected
deformations (Figure S14). However, due to the large energy gap (0.66 eV)
it appears that very large deformations, associated with a insurmountable
barrier, are required to reach a point of degeneracy.

label orbital occupation
HOMO-2 HOMO-1 HOMO LUMO LUMO+1 LUMO+2

2B3u minimum
1B2u 1.92 1.79 1.15 0.86 0.20 0.08
2B3u 1.90 1.47 1.50 0.55 0.48 0.11

1B1g minimum
1B3u 1.92 1.51 1.42 0.55 0.54 0.08
1B2u 1.90 1.85 1.10 0.91 0.14 0.09
1B1g 1.78 1.89 1.15 0.32 0.10 0.80

As seen in Table S6 at the equilibrium geometry of the dark state 1B1g

it exhibits finite gaps with the lower lying states (0.27 eV to the first bright
state S2 (1B2u) and 0.60 eV to the first dark state S1 (1B3u)). We ask our-
selves what are geometrical deformations required to reach a CI with these
states. The wavefunctions of the 1B1g state are defined by the configuration
state functions (CSFs) H→L+2 (0.73) and H-2→L (-0.30). The wavefunc-
tion of the first bright state S2 (label 1B2u) is dominated by the H→L CSF
(0.82), while that of the first dark state S1 (label 1B3u) is a linear combina-
tion of the H→L+1 (0.59) and H-1→L (0.55).
Comparing the electronic structure of the 1B1g and S2 state, it appears that
in the 1B2u state there is more electron density in the L orbital (occupation
0.91 vs. 0.32), while in the 1B1g state there is more electron density in the
L+2 orbital (occupation 0.80 vs. 0.09). Thus, any geometrical deforma-
tion that destabilizes L would destabilize 1B2u more than 1B1g. Conversely,
any geometrical deformation that stabilizes L+2 would stabilize 1B1g more
than 1B2u. By looking at the node pattern of the orbitals (Figures S15-S18)
becomes evident that this can be accomplished by elongating C4-C10 and C2-
C3. Performing a CI optimization (at dynamically correlation SS-CASPT2
level), we indeed observe an increase of the C4-C10 bond from 1.46 Åto 1.51

38



Å(Figure S14) which leads to the decrease of the energy gap.
On the other hand, the electronic structure of the 1B1g and S1 (label 1B3u)
offers more flexibility for geometrical deformations. Comparing the electronic
structure of the 1B1g and S1 state, it appears that in the 1B3u state there
is more electron density in the H and L+1 orbitals (occupation 1.42/0.54
vs. 1.15/0.10), while in the 1B1g state there is more electron density in the
H-1 and L+2 orbital (occupation 1.89/0.80 vs. 1.51/0.08). Thus, any ge-
ometrical deformation that destabilizes H and L+1 would destabilize 1B3u

more than 1B1g. Conversely, any geometrical deformation that stabilizes H-
1 and L+2 would stabilize 1B1g more than 1B3u. By looking at the node
pattern of the orbitals (Figures S15-S18) it becomes evident that this can
be accomplished by elongating C4-C10, C7-C8 and C2-C3, while shortening
C3-C4, C3-C7, C1-C2. Thus, we have more geometrical parameters available
to reach a CI between 1B1g and S1. Indeed, a CI optimization circumvents
the gap of 0.60 eV between both states, locating a CI just 0.1 eV above the
1B1g minimum. As the elongation along C4-C10 and C2-C3 destabilize (albeit
to a less extent) the S2, the found geometry turns out to be a three-state CI
with 1B1g, 1B2u and 1B3u lying within 0.07 eV.

7 Active space orbitals
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Figure S15: Pyrene orbitals of symmetry B2g used in the construction of the
active spaces.
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Figure S16: Pyrene orbitals of symmetry B3g used in the construction of the
active spaces.
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Figure S17: Pyrene orbitals of symmetry Au used in the construction of the
active spaces.
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Figure S18: Pyrene orbitals of symmetry B1u used in the construction of the
active spaces.
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8 Electronic structure at representative ge-

ometries

Table S4. Irreducible representation (D2h symmetry group), vertical tran-
sition energies (VE), transition dipole moments (TDM), leading configura-
tion state functions (CSF) and the associated CI-coefficients and weights
(in brackets) of the lowest six excited states at the Franck-Condon point
of pyrene at the SS-CASPT2/RASSCF(4, 8|0, 0|4, 16)/ANO-L[321,21] level.
Orbital labeling follows the order in Figures S15-S18.

label VE TDM CSF CI-coeff. (weight)
(eV) (Debye)

GS - - closed shell 0.85 (0.73)
1B3u 3.17 0.00 H → L+1 0.59 (0.36)

H-1 → L 0.55 (0.31)
1B2u 3.74 1.86 H → L 0.82 (0.67)

H-1 → L+1 -0.29 (0.08)
1B1g 4.11 0.00 H → L+2 0.69 (0.48)

H-2 → L -0.24 (0.06)
2B3u 4.37 1.75 H-1 → L 0.58 (0.34)

H → L+1 -0.55 (0.31)
2B1g 4.76 0.00 H-3 → L 0.43 (0.19)

H → L+3 0.34 (0.12)
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Table S5. Irreducible representation (D2h symmetry group), vertical and
adiabatic (with respect to the GS at equilibrium) transition energies (VE
and AE, respectively), transition dipole moments (TDM), leading configu-
ration state functions and the associated CI-coefficients, weights (in brack-
ets) of the lowest six excited states at the 2B3u minimum of pyrene at the
SS-CASPT2/RASSCF(4, 8|0, 0|4, 16)/ANO-L[321,21] level. Orbital labeling
follows the order in Figures S15-S18.

label VE AE TDM CSF CI-coeff. (weight)
(eV) (eV) (Debye)

GS - 0.07 - closed shell 0.85 (0.72)
1B3u 3.03 3.10 0.00 H → L+1 0.60 (0.36)

H-1 → L 0.55 (0.30)
1B2u 3.60 3.67 1.66 H → L 0.80 (0.64)

H-1 → L+1 -0.33 (0.11)
1B1g 4.06 4.12 0.00 H → L+2 0.69 (0.48)

H-2 → L -0.30 (0.09)
2B3u 4.26 4.32 1.86 H-1 → L 0.58 (0.34)

H → L+1 -0.55 (0.31)
2B1g 4.65 4.71 0.00 H-3 → L 0.46 (0.21)

H → L+3 0.37 (0.14)
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Table S6. Irreducible representation (D2h symmetry group), vertical and
adiabatic (with respect to the GS at equilibrium) transition energies (VE
and AE, respectively), transition dipole moments (TDM), leading configu-
ration state functions and the associated CI-coefficients, weights (in brack-
ets) of the lowest six excited states at the 1B1g minimum of pyrene at the
SS-CASPT2/RASSCF(4, 8|0, 0|4, 16)/ANO-L[321,21] level. Orbital labeling
follows the order in Figures S15-S18.

label VE AE TDM CSF CI-coeff. (weight)
(eV) (eV) (Debye)

GS - 0.22 - closed shell 0.84 (0.71)
1B3u 3.10 3.32 0.00 H → L+1 0.59 (0.34)

H-1 → L 0.55 (0.30)
1B2u 3.43 3.65 2.11 H → L 0.82 (0.68)

H-1 → L+1 -0.23 (0.05)
1B1g 3.70 3.92 0.00 H → L+2 0.73 (0.53)

H-2 → L -0.30 (0.09)
2B3u 4.53 4.75 1.15 H-1 → L 0.44 (0.20)

H → L+1 -0.44 (0.20)
H-4 → L+2 -0.42 (0.18)

2B1g 4.54 4.76 0.00 H-3 → L 0.49 (0.24)
H → L+3 0.41 (0.17)
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Table S7. Irreducible representation (D2h symmetry group), vertical and
adiabatic (with respect to the GS at equilibrium) transition energies (VE
and AE, respectively), transition dipole moments (TDM), leading configu-
ration state functions and the associated CI-coefficients, weights (in brack-
ets) of the lowest six excited states at the 1B2u minimum of pyrene at the
SS-CASPT2/RASSCF(4, 8|0, 0|4, 16)/ANO-L[321,21] level. Orbital labeling
follows the order in Figures S15-S18.

label VE AE TDM CSF CI-coeff. (weight)
(eV) (eV) Debye

GS - 0.12 - closed shell 0.84 (0.71)
1B3u 3.07 3.19 0.00 H → L+1 0.59 (0.35)

H-1 → L 0.55 (0.30)
1B2u 3.46 3.59 2.03 H → L 0.82 (0.67)

H-1 → L+1 -0.25 (0.07)
1B1g 3.86 3.98 0.00 H → L+2 0.72 (0.52)

H-2 → L -0.31 (0.09)
2B3u 4.29 4.41 1.68 H-1 → L 0.56 (0.32)

H → L+1 -0.54 (0.29)
2B1g 4.58 4.70 0.00 H-3 → L 0.49 (0.24)

H → L+3 0.41 (0.16)
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Table S8. Irreducible representation (D2h symmetry group), vertical and
adiabatic (with respect to the GS at equilibrium) transition energies (VE
and AE, respectively), transition dipole moments (TDM), leading configu-
ration state functions and the associated CI-coefficients, weights (in brack-
ets) of the lowest six excited states at the 1B3u minimum of pyrene at the
SS-CASPT2/RASSCF(4, 8|0, 0|4, 16)/ANO-L[321,21] level. Orbital labeling
follows the order in Figures S15-S18.

label VE AE TDM CSF CI-coeff. (weight)
(eV) (eV) Debye

GS - 0.09 - closed shell 0.85 (0.72)
1B3u 3.01 3.09 0.00 H → L+1 0.60 (0.36)

H-1 → L 0.55 (0.30)
1B2u 3.59 3.67 1.67 H → L 0.80 (0.64)

H-1 → L+1 -0.32 (0.11)
1B1g 4.05 4.13 0.00 H → L+2 0.70 (0.49)

H-2 → L -0.31 (0.10)
2B3u 4.24 4.33 1.88 H-1 → L 0.59 (0.34)

H → L+1 -0.55 (0.31)
2B1g 4.63 4.71 0.00 H-3 → L 0.47 (0.22)

H → L+3 0.38 (0.15)
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Table S9. Irreducible representation (CS symmetry group), vertical and
adiabatic (with respect to the GS at equilibrium) transition energies (VE and
AE, respectively), transition dipole moments (TDM), leading configuration
state functions and the associated CI-coefficients, weights (in brackets) of
the lowest four excited states at the three-state CI(1B1g,1B2u,1B3u) pyrene
at the SS-CASPT2/SA-6-RASSCF(4, 8|0, 0|4, 12)/ANO-L[321,21] level. Or-
bital labeling follows the order in Figures S15-S18.

label VE AE TDM CSF CI-coeff. (weight)
(eV) (eV) Debye

GS - 0.70 - closed shell 0.83 (0.68)
1B3u 3.28 3.97 0.06 H-1 → L 0.57 (0.33)

H → L+1 -0.54 (0.30)
1B2u 3.26 3.95 2.14 H → L 0.80 (0.63)

H-1 → L+1 0.18 (0.03)
1B1g 3.33 4.03 0.47 H-2 → L 0.58 (0.33)

H → L+2 -0.44 (0.20)
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9 Decay associated spectra from experimen-

tal data

Global fitting of the experimental TA spectra show the presence of complex
dynamics. Two different experiments were conducted on the sample sample
system and with the same experimental conditions. A long scan study up
to 200 ps with 500 fs steps, and a short scan study up to 10 ps with 20 fs
steps. The global fitting was done in an iterative way by first letting the fit
converge, then optimizing the results by fixing some of the life-times of one of
the two sets of data, based on the results of the other. The short scan shows
three time-scales, a 0.75 ps lifetime (blue line) is associated with the initial
increase of the intensity of the ESA band (positive contributions around 255
nm) accompanied by the decrease of the bleach in the 272 nm region. It is
followed by a vibrational cooling processes in the ES described with two time
constants, 8 ps (green line), and 24 ps (red line) associated with a blue-shift
of the ESA contribution and a decrease of the ESA intensity, respectively.
The long scan study also showed three life-times, and the middle and longest
life-times of the short scan study overlap well, within experimental errors
with the two shortest life-times of the long scan study. The longest of the
life-times was purposely fixed to infinity, as a residual signal is always present.
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(a) (b)

(c) (d)

Figure S19: Decay traces of selected wavelengths, extracted from the exper-
imental TA spectra of Fig. 2 in the main text, pyrene in ethanol. (a) and
(c) 10ps scan, (b) and (d) 200ps scan. (a) and (b) decay trace at 275nm, (c)
and (d) decay trace at 256nm.

51



10 Heterodyne transient grating spectra and

fourier transform of residuals

Figure S20: Heterodyne transient grating spectra of pyrene in ethanol,
phased with respect to (homodyne) transient grating spectra obtained with
the same laboratory conditions. (a) real part, (b) imaginary part.
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Figure S21: Two-dimensional Fourier transform of the residuals of the spectra
in Fig. S20. (a) real part, (b) imaginary part.
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Figure S22: Integrated spectra over the wavelengths of Fig. S21, real part
(blue line) and imaginary part (red line) are plotted together for better com-
parison.
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11 2DPE experimental spectra

(a) (b)

(c) (d)

Figure S23: Real part of photon echo spectra at various waiting time T of
pyrene in ethanol. The contour steps are in 10% magnitudes; each spectrum
is normalized to its maximum.
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(a) (b)

(c) (d)

(e) (f)

Figure S24: Real part of photon echo spectra at various waiting time T of
pyrene in ethanol. The contour steps are in 10% magnitudes; each spectrum
is normalized to its maximum.
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(a) (b)

(c) (d)

(e) (f)

Figure S25: Real part of photon echo spectra at various waiting time T of
pyrene in ethanol. The contour steps are in 10% magnitudes; each spectrum
is normalized to its maximum.
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(a) (b)

(c)

Figure S26: Real part of photon echo spectra at various waiting time T of
pyrene in ethanol. The contour steps are in 10% magnitudes; each spectrum
is normalized to its maximum.
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12 Fourier transform of the oscillations of the

2D photon echo spectra

Figure S27: Fourier transform of the 2D photon echo data

In the following figure, the positive frequencies of the FT of the absolute
values of the four experimental peaks shown in Fig 6 in the main paper,
the numbers in the legend corresponding in the two figures. The oscillations
are extracted from 41 2D maps each one 5 fs delayed in (poluation) time,
between 500 fs and 700 fs. Therefore the sensitivity of the frequencies is of
approx. 167 cm−1.
The 333.6 cm−1 frequency was not considered as might be rising from some
laboratory noise or other artifacts.
The frequency of 667.1 cm−1 can be assigned to the 597 cm−1 detected in
the FT of the residuals of the TA and HTG spectra, while the 1334 cm−1

and 1501 cm−1, respectively to the 1238 cm−1 and 1413 cm−1, although a
mixing of the two is also possible, due to the relatively low resolution of the
data presented here, which would explain the difference in the ratio of the
intensities.
The last frequency assigned is the 3002 cm−1, which is clearly corresponding
to the 2942 cm−1 detected in the FT of the residuals of the TA and HTG
spectra.
The frequency of 1001 cm−1 is present only in the peaks 3 and 4 and is
currently under investigation.

59



13 Cartesian coordinates

GS
symmetry: D2h

MP2
basis set: ANO-L[321,21]

C −0.689941 −2.473788 0.000000
C −1.431154 −1.241299 0.000000
C −0.712710 0.000000 0.000000
C −2.843859 −1.220979 0.000000
C −3.541240 −0.000001 0.000000
C 0.689939 −2.473786 0.000000
C 1.431153 −1.241297 0.000000
C 2.843859 −1.220979 0.000000
H −1.242518 −3.420003 0.000000
H −3.391794 −2.169386 0.000000
H −4.636433 −0.000003 0.000000
H 1.242517 −3.420001 0.000000
H 3.391788 −2.169390 0.000000
C 0.689943 2.473789 0.000000
C 1.431155 1.241300 0.000000
C 0.712710 0.000002 0.000000
C 2.843861 1.220977 0.000000
C 3.541242 −0.000002 0.000000
C −0.689938 2.473788 0.000000
C −1.431153 1.241299 0.000000
C −2.843860 1.220977 0.000000
H 1.242519 3.420005 0.000000
H 3.391796 2.169385 0.000000
H 4.636435 −0.000001 0.000000
H −1.242510 3.420007 0.000000
H −3.391795 2.169385 0.000000
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S4min (2B3u)
symmetry: D2h, 2nd root in B3u

SS-RASPT2/SA-2-RAS(4, 8|0, 0|4, 8)
basis set: ANO-L[321,21]

C −1.265560 −4.642277 0.000000
C −2.687967 −2.309363 0.000000
C −1.353356 0.000000 0.000000
C −5.317032 −2.270754 0.000000
C −6.615089 0.000000 0.000000
H −2.294395 −6.395600 0.000000
H −6.342520 −4.026132 0.000000
H −8.647009 0.000000 0.000000
C 1.265560 −4.642277 0.000000
C 2.687967 −2.309363 0.000000
C 5.317032 −2.270754 0.000000
H 2.294395 −6.395600 0.000000
H 6.342520 −4.026132 0.000000
C 1.265560 4.642277 −0.000000
C 2.687967 2.309363 −0.000000
C 1.353356 −0.000000 −0.000000
C 5.317032 2.270754 −0.000000
C 6.615089 −0.000000 −0.000000
H 2.294395 6.395600 −0.000000
H 6.342520 4.026132 −0.000000
H 8.647009 −0.000000 −0.000000
C −1.265560 4.642277 −0.000000
C −2.687967 2.309363 −0.000000
C −5.317032 2.270754 −0.000000
H −2.294395 6.395600 −0.000000
H −6.342520 4.026132 −0.000000
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S3min (1B1gmin)
symmetry: D2h, 1st root in B1g

SS-RASPT2/SA-2-RAS(4, 8|0, 0|4, 8)
basis set: ANO-L[321,21]

C −0.717000 −2.448000 0.000000
C −1.436000 −1.233000 0.000000
C −0.723000 0.000000 0.000000
C −2.870000 −1.213000 0.000000
C −3.572146 0.000000 0.000000
H −1.273000 −3.386000 0.000000
H −3.419000 −2.155000 0.000000
H −4.665376 0.000000 0.000000
C 0.717000 −2.448000 0.000000
C 1.436000 −1.233000 0.000000
C 2.870000 −1.213000 0.000000
H 1.273000 −3.386000 0.000000
H 3.419000 −2.155000 0.000000
C 0.717000 2.448000 0.000000
C 1.436000 1.233000 0.000000
C 0.723000 0.000000 0.000000
C 2.870000 1.213000 0.000000
C 3.572146 0.000000 0.000000
H 1.273000 3.386000 0.000000
H 3.419000 2.155000 0.000000
H 4.665376 0.000000 0.000000
C −0.717000 2.448000 0.000000
C −1.436000 1.233000 0.000000
C −2.870000 1.213000 0.000000
H −1.273000 3.386000 0.000000
H −3.419000 2.155000 0.000000
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S2min (1B2u)
symmetry: D2h, 1st root in B2u

SS-RASPT2/SA-3-RAS(4, 8|0, 0|4, 8)
basis set: ANO-L[321,21]

C −0.695341 −2.441510 0.000000
C −1.424307 −1.237006 0.000000
C −0.705545 0.000000 0.000000
C −2.849178 −1.210583 0.000000
C −3.534693 −0.000000 0.000000
H −1.230954 −3.379741 0.000000
H −3.391350 −2.144258 0.000000
H −4.615518 −0.000000 0.000000
C 0.695341 −2.441510 0.000000
C 1.424307 −1.237006 0.000000
C 2.849178 −1.210583 0.000000
H 1.230954 −3.379741 0.000000
H 3.391350 −2.144258 0.000000
C 0.695341 2.441510 0.000000
C 1.424307 1.237006 0.000000
C 0.705545 −0.000000 0.000000
C 2.849178 1.210583 0.000000
C 3.534693 −0.000000 0.000000
H 1.230954 3.379741 0.000000
H 3.391350 2.144258 0.000000
H 4.615518 −0.000001 0.000000
C −0.695341 2.441510 0.000000
C −1.424307 1.237006 0.000000
C −2.849178 1.210583 0.000000
H −1.230954 3.379741 0.000000
H −3.391350 2.144258 0.000000
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S1min (1B3u)
symmetry: D2h, 1st root in B3u

SS-RASPT2/SS-RAS(4, 8|0, 0|4, 8)
basis set: ANO-L[321,21]

C −0.690801 −2.464193 0.000000
C −1.428491 −1.252226 0.000000
C −0.689856 −0.000000 0.000000
C −2.836767 −1.221816 0.000000
C −3.537580 0.000000 0.000000
H −1.228780 −3.401488 0.000000
H −3.382568 −2.154006 0.000000
H −4.617256 0.000000 0.000000
C 0.690801 −2.464193 0.000000
C 1.428491 −1.252226 0.000000
C 2.836767 −1.221816 0.000000
H 1.228780 −3.401488 0.000000
H 3.382568 −2.154006 0.000000
C 0.690801 2.464193 0.000000
C 1.428491 1.252226 0.000000
C 0.689856 −0.000000 0.000000
C 2.836767 1.221816 0.000000
C 3.537580 0.000000 0.000000
H 1.228780 3.401488 0.000000
H 3.382568 2.154006 0.000000
H 4.617256 0.000000 0.000000
C −0.690801 2.464193 0.000000
C −1.428491 1.252226 0.000000
C −2.836767 1.221816 0.000000
H −1.228780 3.401488 0.000000
H −3.382568 2.154006 0.000000
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CI(1B1g,1B2u,1B3u)
symmetry: CS, 4th/3rd/2nd root in a’
SS-RASPT2/SA-4-RAS(4, 8|0, 0|4, 7)

basis set: ANO-L[321,21]
C −0.706925 −2.462239 0.000000
C −1.410471 −1.255194 0.000000
C −0.726306 −0.036717 0.000000
C −2.857049 −1.270732 0.000000
C −3.539938 −0.068794 0.000000
C 0.764168 −2.455082 0.000000
C 1.471477 −1.245604 0.000000
C 2.906796 −1.261856 0.000000
H −1.253440 −3.410590 0.000000
H −3.391564 −2.224164 0.000000
H −4.634890 −0.055384 0.000000
H 1.315062 −3.400503 0.000000
H 3.443148 −2.213802 0.000000
C 0.750245 2.428427 0.000000
C 1.440487 1.209498 0.000000
C 0.789974 −0.029231 0.000000
C 2.886109 1.139256 0.000000
C 3.591497 −0.056259 0.000000
C −0.733128 2.419194 0.000000
C −1.401222 1.191446 0.000000
C −2.847742 1.138109 0.000000
H 1.313375 3.362943 0.000000
H 3.450235 2.076466 0.000000
H 4.684895 −0.065662 0.000000
H −1.307534 3.347779 0.000000
H −3.410453 2.076345 0.000000
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