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Capturing vacuum fluctuations and photon correlations in cavity quantum electrodynamics
with multitrajectory Ehrenfest dynamics
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We describe vacuum fluctuations and photon-field correlations in interacting quantum mechanical light-matter
systems by generalizing the application of mixed quantum classical dynamics techniques. We employ the
multitrajectory implementation of Ehrenfest mean-field theory, traditionally developed for electron-nuclear
problems, to simulate the spontaneous emission of radiation in a model quantum electrodynamical cavity-bound
atomic system. We investigate the performance of this approach in capturing the dynamics of spontaneous
emission from the perspective of both the atomic system and the cavity photon field through a detailed
comparison with exact benchmark quantum mechanical observables and correlation functions. By properly
accounting for the quantum statistics of the vacuum field, while using mixed quantum classical (mean-field)
trajectories to describe the evolution, we identify a surprisingly accurate and promising route towards describing
quantum effects in realistic correlated light-matter systems.
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I. INTRODUCTION

Profound changes in the physical and chemical properties
of material systems can be produced in situations where
the quantum nature of light plays an important role in the
interaction with the system [1–3]. A few notable recent ex-
amples of such effects are few-photon coherent nonlinear
optics with single molecules [4], direct experimental sam-
pling of electric-field vacuum fluctuations [5,6], multiple Rabi
splittings under ultrastrong vibrational coupling [7], exciton-
polariton condensates [8,9], and frustrated polaritons [10].
These exciting developments have been strongly driven by
experimental efforts, thus exposing the immediate need for
the development and improvement of theoretical approaches
that can bridge the gap between quantum optics and quantum
chemistry [11].

Due to the similarity of the electron-photon and the
electron-nuclear problems, simulation methods that have tra-
ditionally been of use in the quantum chemistry community,
such as semiclassical and mixed quantum classical methods,
offer a potentially interesting avenue to bridge this gap. In
particular, the family of trajectory-based quantum classical
methods has the advantage of providing a very intuitive, qual-
itative understanding of nonadiabatic molecular dynamics.
Further, these techniques typically do not exhibit the perni-
cious exponential scaling of computational effort inherent in
grid-based quantum calculations [12]. Available techniques in
this family of exact and approximate approaches are Ehrenfest
mean-field dynamics, fully linearized and partially linearized
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path-integral methods, forward-backward trajectory methods
[13–15], and trajectory surface-hopping algorithms [16]. All
these techniques have some ability to describe essential quan-
tum mechanical effects such as tunneling, interference, and
zero-point energy conservation.

Recently, Subotnik and co-workers performed investiga-
tions of light-matter interactions where an adjusted Ehrenfest-
theory-based method was used to simulate the spontaneous
emission of classical light [17–19]. Here, in contrast with
these works, we focus on the description of quantized light
fields. We then generalize the well-established multitrajectory
Ehrenfest method to treat quantum mechanical light-matter
interactions. We highlight the possibilities and theoretical
challenges of this method in comparison to the exact treat-
ment of the quantum system by applying this approach to
investigate spontaneous emission for a model atom in an
optical cavity. Furthermore we point out that in contrast
to many previous studies of atomic processes in quantum
electrodynamical (QED) cavities that use an open quantum
systems approach [20–22], in this work we treat the cavity
bound atomic system as a closed quantum system where all
the degrees of freedom of the atom and the cavity field are
treated explicitly.

The remainder of this work is divided into three sections:
in Sec. II, we briefly review general interacting light-matter
systems and the multitrajectory Ehrenfest dynamics method.
In this framework, we then introduce a one-dimensional (1D)
model system comprising a single (two- or three-level) atomic
system coupled to a multimode QED cavity. In Sec. III,
we investigate the performance of multitrajectory Ehrenfest
(MTEF) dynamics in describing the process of spontaneous
emission. We conclude our results in Sec. IV and discuss some
prospects for future work.
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II. THEORY

A. Quantum mechanical light-matter interactions

To begin, we describe a general coupled field-matter sys-
tem using Coulomb gauge and the dipole approximation
[23,24]. The total Hamiltonian for the system is [25–29]

Ĥ = ĤA + ĤF + ĤAF . (1)

The first term ĤA is the atomic Hamiltonian, which may be
generally expressed in the spectral representation,

ĤA =
∑

k

εk|k〉〈k|. (2)

Here, {εk, |k〉} are the atomic energies and stationary states of
the atomic system in the absence of coupling to the cavity.
The second term is the Hamiltonian of the uncoupled cavity
field ĤF ,

ĤF = 1

2

2N∑
α=1

(
P̂2

α + ω2
αQ̂2

α

)
. (3)

The photon-field operators Q̂α and P̂α obey the canonical com-
mutation relation [Q̂α, P̂α′ ] = ı h̄δα,α′ , and can be expressed
using creation and annihilation operators for each mode of the
cavity field,

Q̂α =
√

h̄

2ωα

(â†
α + âα ), (4)

P̂α = i

√
h̄ωα

2
(â†

α − âα ), (5)

where â†
α and âα denote the usual photon-creation and -

annihilation operators for photon mode α. The coordinatelike
operators Q̂α are directly proportional to the electric displace-
ment operator, while the conjugate momentalike operators
P̂α are related to the magnetic field [27,28]. The upper limit
of the sum in Eq. (3) is 2N , as there are (in principle) two
independent polarization degrees of freedom for each photon
mode; however, in the 1D cavity models presented here, only
a single polarization will be considered.

The final term in Eq. (1) represents the coupling between
the atom and the cavity field,

ĤAF =
2N∑
α=1

[
ωαQ̂α (λα · μ̂) + 1

2
(λα · μ̂)2

]
, (6)

where we denote μ̂ as the electronic dipole moment vector
of the atomic system, and λα as the electron-photon coupling
vector [25,28]. In the case of a two-level electronic system,
the quadratic term in the atom-field coupling Hamiltonian
simply results in a constant energy shift and hence has no
effect on observables [30], and we neglect this term in the
case of the three-level model system. Furthermore, we note
that this Hamiltonian can easily be extended to include nuclear
degrees of freedom; however, this has been omitted in the
present work.

B. Multitrajectory Ehrenfest dynamics

In this section, we apply the well-known multitrajectory
Ehrenfest method, traditionally introduced to study electron-

nuclear systems [31–33], to coupled light-matter systems
[24,33,34].

A particularly simple and instructive route to derive the
MTEF mean-field theory is via the quantum classical Liou-
ville (QCL) equation [35]. This equation of motion for the
density matrix is formally exact for an arbitrary quantum
mechanical system that is bilinearly coupled to a harmonic
environment, as is the case in the atom-field Hamiltonian
studied here. The QCL equation can be written in a compact
form as

∂

∂t
ρ̂W (X, t ) = −iLρ̂W (X, t ). (7)

It describes the time evolution of ρ̂W (X, t ), which is the
partial Wigner transform of the density operator taken
over the photon-field coordinates, which are thus repre-
sented by continuous phase-space variables, X = (Q, P) =
(Q1, Q2, . . . , Q2N , P1, P2, . . . , P2N ). The partial Wigner trans-
form of the density operator, ρ̂, is defined as

ρ̂W (Q, P) = 1

(2π h̄)2N

∫
dZeiP·Z

〈
Q − Z

2
|ρ̂|Q + Z

2

〉
. (8)

The QCL operator is defined as

iL· = i

h̄
[ĤW , ·] − 1

2
({ĤW , ·} − {·, ĤW }), (9)

where ĤW denotes the Wigner transform of Ĥ , [·, ·] is the
commutator, and {·, ·} is the Poisson bracket in the phase
space of the environmental variables.

At this point, one may arrive at MTEF equations by as-
suming that the total density of the system can be written as
an uncorrelated product of the atomic and photonic reduced
densities at all times,

ρ̂W (X, t ) = ρ̂A(t )ρF,W (X, t ), (10)

where the reduced density matrix of the atomic system is

ρ̂A(t ) = TrF [ρ̂(t )] =
∫

dX ρ̂W (X, t ), (11)

and the Wigner function of the cavity field is ρF,W (X, t ) =
TrA[ρ̂W (X, t )]. If one seeks solutions to the QCL equation of
this form, the Ehrenfest mean-field equations of motion for
the atomic system are obtained,

∂

∂t
ρ̂A(t ) = − i

h̄

[
ĤA + ĤAF,W (X (t )), ρ̂A(t )

]
, (12)

where ĤAF,W denotes the Wigner transform of ĤAF . The
evolution of the Wigner function of the photon field can be
represented as a statistical ensemble of independent trajecto-
ries, with weights w j ,

ρF,W (X, t ) =
Ntraj∑

j

w jδ[X − X j (t )], (13)

that evolve according to Hamilton’s equations of motion,

∂Qα

∂t
= ∂HE f f

F,W

∂Pα

,
∂Pα

∂t
= −∂HE f f

F,W

∂Qα

. (14)
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The effective photon-field Hamiltonian is

HE f f
F,W = 1

2

∑
α

[
P2

α + ω2
αQ2

α + 2ωαλαQαμ(t )
]
, (15)

where μ(t ) = TrA[ρ̂A(0)μ̂(t )].
The exact expression for the average value of any observ-

able, 〈O(t )〉, can be written as

〈O(t )〉 = TrA

∫
dXÔW (X, t )ρ̂W (X, t = 0). (16)

We note here that for this class of systems, the Ehrenfest
equations of motion for the photon-field coordinates corre-
spond to a mode-resolved form of Maxwell’s equations. In
applying the MTEF dynamics method numerically, we use the
above expressions in the following manner:

(i) We first perform Monte Carlo sampling from the Wigner
transform of the initial density operator of the photon field
ρ̂F,W (X, 0) to generate an ensemble of initial conditions,
for the trajectory ensemble (Q j

α (0), P j
α (0)). In this work, we

used uniform weights w j = 1
Ntraj

; however, other importance
sampling schemes could be employed as the only requirement
is that the sum of the weights is normalized,

∑
j w

j = 1.
(ii) We evolve each initial condition independently ac-

cording to the Ehrenfest equations of motion, producing a
trajectory. In the following, we refer to such a solution as an
ensemble of independent trajectories.

(iii) Average values are constructed by summing over the
entire trajectory ensemble and normalizing the result with re-
spect to Ntraj, the total number of trajectories in the ensemble,

〈O(t )〉 = ∑Ntraj

j TrA[ÔW (Q j, P j, t )ρ̂A(0)]/Ntraj.
Here, ρF,W (X, 0) is the Wigner transform of the zero-

temperature vacuum state,

ρF,W (X, 0) =
∏
α

1

π
exp

[
− P2

α

h̄ωα

− ωαQ2
α

h̄

]
. (17)

C. Observables and normal ordering

Before we proceed with a discussion of our simulation
results, we must note that the Wick normal-ordered form
for operators (denoted : Ô : for some operator Ô) is used
when calculating the average values in this study. The reason
for using the normal-ordered form, in practice, is to remove
the effect of vacuum fluctuations from the results, which
ensures that both 〈E〉 = 0 and 〈I〉 = 0, irrespective of the
number of photon modes in the cavity field, when the field
is in the vacuum state. The effect of this operator ordering is
particularly evident for the photon-number operator,

: N̂pt := 1

2

∑
α

(
P̂2

α

h̄ωα

+ ωαQ̂2
α

h̄
− 1

)
, (18)

where normal ordering produces a constant shift due to the
zero-point energy term.

The quantized electric-field operator is defined as

Ê (r, t ) =
∑

α

√
2ωαζα (r)Q̂α (t ), (19)

with

ζα (r) =
√

h̄ωα

ε0L
sin

(απ

L
r
)
. (20)

The corresponding normal-ordered electric-field intensity op-
erator is given by

: Ê2(r, t ) :=: Î (r, t ) := 2
∑

α

ωαζ 2
α (r)Q̂2

α (t ) −
∑

α

ζ 2
α (r).

(21)
The effect of normal ordering on this quantity is shown in
Fig. 2, where the intensity of the electric field is plotted in
both its canonical and normal-ordered forms. In addition to
a constant shift with respect to the normal-ordered quantity,
which is identically zero, the canonical average field intensity
also displays additional oscillations near the boundaries and
the atomic position, corresponding to the vacuum fluctuations
for this system.

We also consider the second-order correlation function for
the photon field [36],

: g2(r1, r2, t ) := 〈: Ê†(r1, t )Ê†(r2, t )Ê (r2, t )Ê (r1, t ) :〉
〈: Î (r1, t ) :〉 〈: Î (r2, t ) :〉 .

(22)
This function is frequently used in quantum optics to dis-
criminate between classical light and nonclassical states of
the photon field that exhibit photon bunching (g2 > 1) or
photon antibunching (g2 < 1). The normal-ordered form of
the numerator in g2, also referred to as G2(r1, r2, t ), is

: G2(r1, r2, t ) : = 4
∑

α

ω2
αζα (r1)ζα (r2)ζα (r2)ζα (r1)Q̂4

α (t )

−
∑
αβ

[
4ζβ (r1)ζβ (r2)ζα (r1)ζα (r2)

+ ζ 2
β (r2)ζ 2

α (r1) + ζ 2
β (r1)ζ 2

α (r2)
]
2ωαQ̂2

α (t ).

(23)

The partial Wigner transforms of the polynomial functions
of the bath-coordinate operators are simply polynomial func-
tions of the continuous bath coordinates, [Q̂n

α (t )]W = [Qα (t )]n

[37]. The same is also true for the corresponding momenta
and thus the average values of the preceding operators can be
easily calculated using mean-field trajectories.

D. Model system

Following previous work [26,38], we investigate a model
atomic system in a one-dimensional electromagnetic cavity,
as depicted in Fig. 1:

Ĥ =
m∑

k=1

εk |k〉 〈k| + 1

2

2N∑
α

(
P̂2

α + ω2
αQ̂2

α

)

+
2N∑
α

m∑
k,l=1

μklωαλα (rA)Q̂α |k〉 〈l| , (24)

where the upper limit of the first and last summation m
denotes the number of atomic energy levels. In the case
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ωα
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ωα
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α
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FIG. 1. Model atomic system in an electromagnetic cavity. The
atom (green) is trapped between two mirrorlike surfaces of the cavity,
supporting 2N photon modes with frequencies ωα = πcα

L , where
α = {1, 2, . . . , 2N} and L is the distance between the mirrors. The
strength of the interactions between each mode of the cavity field
and the atomic system is λα .

of a two-level atomic system, this corresponds to a spe-
cial case of the spin-boson model. With the position of the
atom fixed at rA = L

2 in this study, half of the 2N cav-
ity modes decouple from the atomic system by symmetry.
We adopt the same parameters as in Refs. [26,39], which
are based on a 1D hydrogen atom with a soft Coulomb
potential (in atomic units): {ε1, ε2} = {−0.6738,−0.2798},
λα ( L

2 ) = 0.0103(−1)α , L = 2.362 × 105, and μ12 = 1.034.
For the three-level atom, we adopt all the same parameters for
the field and the atom-field coupling as for the two-level
case. The atomic energies for the three-level model are
{ε1, ε2, ε3} = {−0.6738,−0.2798,−0.1547} and, as before,
the numerical parameters are based on the 1D soft-Coulomb
hydrogen atom. The dipole moment operator only couples
adjacent states, such that the only nonzero matrix elements
are {μ12, μ23} = {1.034,−2.536} and their conjugates.

Furthermore, with g2,1

ε2−ε1
= 1.2 × 10−2 for the two-level

system and g3,2

ε3−ε2
= 2.1 × 10−2 for the three-level system,

FIG. 2. Average value of the cavity electric-field intensity. Wick
normal ordering has been applied to the operator in the case of the red
dashed line, whereas the solid black line corresponds to the original
operator. The cavity field is prepared in the vacuum state, at zero
temperature.

where gi, j = μk,l

√
εi−ε j

2 λ is the coupling strength for the res-
onant mode, our system is beyond the weak coupling regime,
specifically for the three level case. This can also be explicitly
seen later in the results by the appearances of the polariton
peaks in the intensity, which are strong coupling features
and are beyond the description of the well-known analytic
Wigner-Weisskopf solution for weak coupling.

III. RESULTS AND DISCUSSION

We now investigate the performance of the MTEF method
in the context of cavity-bound spontaneous emission. In all
calculations shown below, we use 400 photon modes to repre-
sent the cavity field. We choose the atom to be initially in the
excited state, and the cavity field is in the vacuum state at zero
temperature. In all simulations reported here, we use an en-
semble of Ntraj = 104 independent trajectories, sampled from
the Wigner transform of the initial field density operator given
in the previous section. This level of sampling is sufficient
to converge the atomic observables to graphical accuracy;
however, observables and correlations functions of the photon
field would require a slightly larger trajectory ensemble for
graphical convergence. All observables shown below corre-
spond to their normal-ordered forms. For our benchmark nu-
merical treatment, we solved the time-dependent Schrödinger
equation by using a truncated configuration-interaction (CI)
expansion. More precisely, the photon-field state space is
truncated at two photons, whereas for the atomic system, a
two- and three-state discrete variable representation is used in
each case [26]. Numerical convergence is checked to ensure
that the CI basis that we employ is complete for the models
and parameter regimes studied in this work.

A. Two-level atom: One-photon emission process

In Fig. 3, we show the intensity of the cavity field
along the axis of the cavity, at four different times. As the

FIG. 3. Time evolution of the average field intensity for the
one-photon emission process, at four different time snapshots:
(a) t = 100, (b) t = 600, (c) t = 1200, (d) t = 2100 a.u. (e) Zoom-in
of the polariton peak at the atomic position. Exact simulation results
(black) and MTEF dynamics (green).
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FIG. 4. Time evolution of the atomic-state populations (top
panel) and the total photon number (bottom panel). Top panel: Solid
lines represent the atomic ground state and dashed lines represent
the excited state. Both panels: Exact simulation results (black) and
MTEF (green).

spontaneous-emission process proceeds, a photon wave
packet with a sharp front is emitted from the atom and travels
toward the boundaries where it is reflected, and then travels
back to the atom [e.g., Fig. 3(c)]. The emitted photon is then
absorbed and reemitted by the atom, which results in the
emergence of interference phenomena in the electric field.
This produces a photonic wave packet with a more complex
shape [Fig. 3(d)]. We observe that the MTEF simulations
capture the qualitative character of the spontaneous-emission
process extremely accurately, as well as the wave-packet
propagation through the cavity. However, MTEF dynamics
fails to reproduce the interference phenomena in the field due
to reemission. We do note, however, that the MTEF simula-
tions are capable of describing the remaining field intensity
at the atomic position [Fig. 3(e)]. This feature corresponds
to a bound electron-photon state, or polariton, which is an
emergent hybrid state of the correlated light-matter system.

We also plot the excited-state population of the atomic
system, and the average value of the photon number for
the field, in Fig. 4. Again, MTEF is able to capture the
qualitative behavior of both of these quantities very nicely.
However, it fails to quantitatively reproduce the correct
values for the emitted photon number and atomic popula-
tion transfer, as these quantities are underestimated. Fur-
thermore, as a result of this loss in accuracy, only a part
of the subsequent reexcitation and reemission processes
is captured.

In Fig. 5, we investigate the normalized second-order
correlation function, g2(r1, r2, t ), for the cavity photon field.
The unperturbed vacuum state, which is coherent, corresponds
to g2(r1, r2, t ) = 1, given by the black background seen in
Fig. 5. The vacuum state is disturbed by the emitted wave
packet, corresponding to antibunched light with g2(r1, r2, t ) <

1. The simplicity of the one-dimensional, one-photon pro-
cess is quite clear in Fig. 6, where we show the associated

FIG. 5. Second-order correlation function for the photon field,
g2(r1, r2, t ), for the two-level model, plotted at four time snapshots:
(a) t = 100, (b) t = 600, (c) t = 1200, (d) t = 2100 a.u. Exact
simulation results (left panels) and MTEF (right panels).

one-dimensional cuts of g2, along with projections of
g2(r1, r2, t ) along the positive and negative diagonals, r± =
(r1 ± r2)/

√
2. Here we find, similar to the intensity, a nice

qualitative agreement between MTEF and the exact result
for the first three time snapshots. However, for the last time
snapshot, the exact solution shows a broader correlation than
MTEF, which corresponds to the fact that MTEF is not able
to accurately capture reemission. Furthermore, as we only
consider a one-photon process in this case, the correlation is
symmetric in r+ and r−.

B. Three-level atom: Two-photon emission process

We now investigate the three-level system for the same
observables as the previous section. The initial state for
the atomic system is now the second-excited state. The
photonic initial state remains the zero-temperature vacuum
state.

In Fig. 7, we show the intensity of the cavity field
during the two-photon emission process. Similar dynamics
are observed compared with the two-level case. However, due
to the additional intermediate atomic state, we now observe
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FIG. 6. Associated one-dimensional diagonal cuts g2(r±, t ) of
the second-order correlation function, exact (black) and MTEF
(green), plotted at four time snapshots: (a) t = 100, (b) t = 600,
(c) t = 1200, (d) t = 2100 a.u.

a double-peak feature in the emitted photonic wave packet.
This feature corresponds to the emission of two photons,
as the excited atom initially drops to the first-excited state
emitting one photon, and then further relaxes to the ground
state, emitting a second photon. The polariton peak (the
central feature in the field intensity profile) is overestimated
in the MTEF simulations. This overestimation is due to the
incomplete relaxation of the second-excited state within the
Ehrenfest description.

In Fig. 8, we show the time evolution of the atomic-state
populations and total photon number. Again, the emitted pho-
tonic wave packet moves through the cavity, is reflected at the
mirrors, and returns to the atom. The first- and second-excited
states are then repopulated due to stimulated absorption. A
second spontaneous-emission process ensues and the emitted
field again takes on a more complex profile due to interfer-
ence. For the intensity, as well as the atomic population and
photon number, we observe that MTEF displays qualitatively
correct short-time dynamics. However, it fails to describe the

FIG. 7. Time evolution of the average field intensity for the
two-photon emission process, at four different time snapshots:
(a) t = 100, (b) t = 600, (c) t = 1200, (d) t = 2100 a.u. (e) Zoom-in
of the polariton peak at the atomic position. Exact simulation results
(black) and MTEF (green).

correct spatial structure of the (re)emitted two-photon wave
packet, as well as the correct amplitude for the observables,
in accordance with what was observed previously in the two-
level case.

In Fig. 9, we show g2(r1, r2, t ) for the two-photon emission
process. The energy-level spacing in the three-level truncation
of the 1D soft-Coulomb hydrogen atom is uneven, such that
the two emitted photons are of different frequencies. Hence,
in contrast to the one-photon process, we expect to observe
asymmetric features in the second-order correlation function.
In the exact result, we observe that the vacuum state is locally
disturbed by a structured, antibunched photon wave packet.

FIG. 8. Top panel: Time evolution of the atomic-state popula-
tions; solid line (m = 3), dashed lines (m = 2), and dotted line
(m = 1). Bottom panel: Total photon number as a function of time.
Exact simulation results (black) and MTEF (green).
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FIG. 9. Second-order correlation function for the photon field,
g2(r1, r2, t ), for the three-level model, plotted at four time snapshots:
(a) t = 100, (b) t = 600, (c) t = 1200, (d) t = 2100 a.u. Exact
simulation results (left panels) and MTEF (right panels).

The fine, multilobed spatial structure of the photon wave
packet is blurred into a single, rather narrow feature in the
MTEF result. However, MTEF dynamics indeed show the
correct spatial asymmetry that is expected in g2(r1, r2, t ). In
the corresponding one-dimensional cuts of g2(r1, r2, t ), shown
in Fig. 10, we show in further detail the comparison of MTEF
dynamics and the exact results in this more complex two-
photon case.

IV. SUMMARY AND OUTLOOK

In this work, we have adapted the multitrajectory Ehrenfest
(MTEF) method to simulate correlated quantum mechanical
light-matter systems. We applied this mixed quantum classical
dynamics method, which is traditionally applied to electron-
nuclear dynamics problems, to two- and three-level model
QED cavity-bound atomic systems, and in order to simulate
observables and correlation functions for both the atomic
system and the photon field. We find that MTEF dynamics
is able to qualitatively characterize the correct dynamics for
one- and two-photon spontaneous-emission processes in a
QED cavity. However, MTEF dynamics does suffer from

FIG. 10. Associated one-dimensional diagonal cuts g2(r±, t ) of
the second-order correlation function, exact (black) and MTEF
(green), plotted at four time snapshots: (a) t = 100, (b) t = 600,
(c) t = 1200, (d) t = 2100 a.u.

some quantitative drawbacks. Furthermore, we also observed
that MTEF dynamics simulations can, in fact, capture some
quantum mechanical features such as bound polariton states
and second-order photon correlations. Moreover, as exper-
imental advances drive the need for realistic descriptions
of light-matter coupled systems, trajectory-based quantum
classical algorithms emerge as a promising route towards
treating more complex and realistic systems. In particular, as
the equations of motion for the photonic system presented
in this work can be seen as a one-dimensional Maxwell’s
equation, one possible route to extend the MTEF approach
to realistic systems is the combination of our multitrajectory
approach with the recently presented work of Jestädt et al.
[40]. This work presents an ab initio light-matter coupling
methodology, which treats coupled classical light, electrons,
and nuclei by solving the Ehrenfest-Maxwell-Pauli-Kohn-
Sham equations in quantum electrodynamics and is ideally
suited for applications in nano-optics and nanoplasmonics.
Therefore, combining the multitrajectory approach from the
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present work with the methodology of Jestädt et al. provides a
computationally feasible way to simulate photon-field fluctu-
ations and correlations in realistic three-dimensional systems.
Furthermore, by also including a sampling for the nuclei,
this extension allows a fully quantized treatment of electrons,
photons, and nuclei in such systems. Work along these lines
is already in progress. Furthermore, an alternative to the
independent trajectory-based approach employed here is the
conditional wave-function approach, which allows one to
address nonadiabatic dynamics problems in complex systems
with higher accuracy than MTEF dynamics [41], and opens

up an interesting potential route for mixed quantum classical
methods in correlated light-matter systems.
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