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The condensate cosmology programme of group field theory quantum gravity has produced several
interesting results. The key idea is in the suggestion that a macroscopic homogeneous spacetime
can be approximated by a dynamical condensate phase of the underlying microscopic system of an
arbitrarily large number of candidate quanta of geometry. In this work, we extend the standard
treatments in two ways: by using a class of thermal condensates, the coherent thermal states,
which encode statistical fluctuations in quantum geometry; and, by introducing a suitable class
of smearing functions as non-singular, well-behaved generalisations for relational clock frames in
group field theory. In particular, we investigate an effective relational cosmological dynamics for
homogeneous and isotropic spacetimes, extracted from a class of free group field theory models, and
subsequently investigate aspects of its late and early times evolution. We find the correct classical
limit of Friedmann equations at late times, with a bounce and accelerated inflationary expansion at
early times. Specifically, we find additional correction terms in the evolution equations corresponding
to the statistical contribution of the new thermal condensates in general; and, a higher upper bound

on the number of e-folds, even without including any interactions.

I. INTRODUCTION

The ultimate goal of any theory of quantum grav-
ity is to describe the known physics, while also provid-
ing novel falsifiable physical predictions on a measurable
scale. One of the most important arenas in this respect
is cosmology, with features such as singularity resolution
and inflation representing crucial checkpoints for any vi-
able model based on an underlying theory of quantum
gravity. It is thus important for any candidate theory
to find a suitable continuum and semi-classical regime
within the full theory, in which standard cosmology can
be approximated, up to effective corrections of quantum
gravitational origin. In fact in the group field theory
(GFT) approach, such a regime has been suggested via
a class of condensate phases of the system [1-3].

Group field theory is a statistical field theory defined
formally by a partition function,

o /[D@DQ] o S(e.2) (1.1)

where the fields ¢ and @ are defined over a Lie group
base manifold G

0:G—=C:g,¢0— o(d, ) (1.2)

and S is a generically non-local function of the fields dic-
tating the system’s dynamics. The choice of Lie group
we are interested in is SU(2)? x R. This choice of base
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manifold is understood as considering a model of discrete
gravity associated with SU(2)¢ [4-9], coupled to a scalar
matter field taking values in R providing for instance,
the possibility of using the matter field ¢ to define a re-
lational frame of reference [1-3, 10, 11]. The group field
is invariant under a diagonal right action of SU(2) on
SU(2)",

©(gi,9) = ¢(gih, ¢), Vh € SU(2) (1.3)

where, § = (g;) for ¢ = 1,...,d. This symmetry en-
codes the geometric condition of closure of polyhedra
with d faces labelled by SU(2) data, associated with the
group fields. These polyhedra are the discrete fundamen-
tal quanta of geometry building up spacetime, which can
then be modelled as a peculiar, background independent’
quantum many-body system [12-17]. In fact, the GFT
partition function (1.1) dynamically generates discrete
quantum spacetimes that are labelled 2-complexes (spin
foams), with boundary states given by labelled graphs
(spin networks) [4-9, 18]. Bulk processes and boundary
states of group field theories are thus dual to polyhedral
complexes, in most commonly studied models based on
loopless combinatorics [15].

Such a many-body perspective, with the polyhedral
quanta of geometry being excitations of the field ¢, has

1 Background independence in non-perturbative discrete quantum
gravity approaches, like group field theory, is in the radical sense
of having no spacetime (and related continuum geometric) struc-
tures a priori. General relativistic spacetime (modulo effective
quantum gravitational corrections) must then emerge from an
underlying non-spatiotemporal, thus manifestly background in-
dependent, theory of quantum gravity.
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been very useful. It has allowed for tangible explorations
of connections of group field theory quantum gravity
(which in turn is strictly related to several other ap-
proaches, including loop quantum gravity [19-22], spin
foams [23, 24], causal dynamical triangulations [25], ten-
sor models [26] and lattice quantum gravity [27]) with
quantum information theory [28-31], and also with quan-
tum statistical mechanics and thermal physics [14, 32—
36]. Tt has further allowed for importing ideas and tools
from condensed matter theory, which has been crucial
for instance in the development of quantum condensate
cosmology [1-3].

The present work concerns the incorporation of statis-
tical fluctuations in GFT condensate cosmology, directly
building on works in [11, 32, 37], and evaluating the con-
sequences of the presence of such fluctuations in the ef-
fective cosmological evolution equations.

This is brought about by the use of thermal conden-
sates [32], which we understand as describing a phase
of the universe in which not all quanta have condensed.
Such a phase seems extremely likely in any reasonable ge-
ometrogenesis scenario, in which the universe transitions
from a primordial pre-geometric hot thermal phase, to
a phase with an approximate notion of continuum and
macroscopic geometry (here, encoded in the notion of
a condensate [2]), but naturally with a leftover thermal
cloud in general, of quanta that have not condensed. In
other words, here, we understand a pure, zero temper-
ature GFT condensate, that has been used extensively
in previous works [1, 3, 11, 37], as describing a suitable
macroscopic phase only at very late times of the system’s
evolution and not throughout. What we are working with
instead is an intermediary phase that would be expected
to arise in a transition between a hot pre-geometric phase
and a pure condensate. Therefore, in this work we paint a
picture of a universe being modelled as a quantum grav-
itational condensate of elementary quanta of geometry
along with a thermal cloud of the same quanta over it,
and in which an early time phase dominated by the ther-
mal cloud and a late time phase dominated by the con-
densate are generated dynamically.

Specifically, we work with a free GF'T model and ther-
mal condensates with a static (non-dynamical) thermal
cloud, to derive effective generalised evolution equations
for homogeneous and isotropic cosmology, which include
correction terms originating in the underlying quantum
gravitational and statistical properties of the system. At
late times we recover the correct general relativistic limit,
while at early times we get a bounce between contract-
ing and expanding phases, along with a phase of acceler-
ated expansion characterised by an increased number of
e-folds compared with previously reported numbers for
the same class of free models.

The article is organised as follows. In section II we
present a summary of the construction of thermal rep-
resentations in GFT associated with generalised Gibbs
states, and define coherent thermal states as candidates
for thermal quantum gravitational condensates for ap-

plying in condensate cosmology. In section III we anal-
yse a free GFT model for effective cosmology in presence
of thermal fluctuations introduced via coherent thermal
states. We start with explicating the choice of the state
in IITA, based on which we derive the GFT effective
equations of motion in III B. In sections III C and III D,
we reformulate the effective dynamics in terms of rela-
tional “clock” functions, implemented as smearing func-
tions along the ¢ direction of the base manifold G. As
we will discuss, this provides a suitable non-singular gen-
eralisation of a relational frame used in previous works
in terms of the coordinate ¢. We further derive the ef-
fective generalised Friedmann equations for flat homo-
geneous and isotropic cosmology in section III E, recover
the correct classical general relativistic limit in a late time
regime in IITE 1, and characterise the early time evolu-
tion through an assessment of singularity resolution and
inflation in IITE2. Finally, we close with a discussion
of various aspects surrounding the inclusion of statisti-
cal fluctuations, interactions and its implications at the
level of the effective GF'T models, and suggest further
extensions of this work in section IV.

II. THERMAL QUANTUM GRAVITY
CONDENSATES

A. Bosonic group field theory

The quantum operator group field theory for bosonic?

quanta is based on the commutation algebra,
[90(577 (b)? (pT (gla (b/)] = ]I(gu 51)6(¢ - (b/)

with [(7,0), ¢(@,¢')] = [¢1(3, 8), ¢ (7, &")] = 0. Here,
6 is a delta distribution for functions on R, I is a delta
distribution for gauge-invariant functions on SU(2)?, and
we have dropped the hats over operators to simplify our
notation. The Hilbert space for a single gauge-invariant
quantum is

(2.1)

H = L*(SU(2)?/SU(2)) ® L*(R) (2.2)
where the quotient by SU(2) ensures gauge invariance of
equation (1.3). This is the state space of a single quan-
tum d-polyhedron labelled with a real number ¢.

In order to work with formally well-defined quantities,
we smear the operator-valued distributions (g, ¢) with
a suitable basis of functions in H,

f1a(3,¢) = Ds(g) @ Ta(9) (2.3)

2 Bosonic statistics corresponds to an invariance under particle
exchanges in a generic many-body wavefunction. In the present
context, this corresponds to a graph automorphism under node
exchanges, since a generic many-body wavefunction here de-
scribes the state of a labelled graph.



where {T,(¢)}q is any orthonormal basis of complex-
valued smooth functions in L?(R) for the scalar field,
labelled by a discrete index «, and {D;(§)}s is the com-
plete set of orthonormal Wigner functions for gauge-
invariant functions on SU(2)%, given by Dj(g) =

Zﬁ C;lu H;’izl D#nn
by J = (5, m,t), with irreducible representations of
SU(2) indexed by j; € N/2, internal representation in-
dex m; € (—j, ..., j;) for each j;, and intertwiners (SU(2)
gauge-invariant tensors) indexed by ¢. Then the ladder
operators in this new basis (labelled by J, «) is given by
smearing the operators in the original basis (labelled by
J,®), that is

(gi) . The basis elements are labelled

@70 = o(fra) = / dgdé Dy (§)Ta(6)0(7.6) .

SU(2)4xR
(2.4)
o =gl = [ dgas DAL 5. 0)
(2.5)

This being simply a change of basis, the algebra is un-
changed, now taking the form

[CLJO“ aT,,a,] = 6JJ/6aa/ (26)

and [aja, a0 = [aT,a,aB/a,] = 0. The vacuum state

|0), which is specified by the annihilation operators,

ajo0) =0 VJ, « (2.7)

generates a Fock space Hp (for symmetric, bosonic
states), via cyclic actions of the algebra generators

{ajq, GJTJQ, 1}, given by

Hr = @sym (H®N) .

N>0

(2.8)

Lastly, we recall that a useful class of states in Hp are
the coherent states, defined by

|o) := Dy (o) |0) (2.9)
where D, is the displacement operator,
Dq(0) = e (@)=a(®) (2.10)
and
(0) = Y as0ts0 = [ dil0 0(G.0)6G.0)  (21)
J,a
(0) = osath, = [ dio o(3.0)5'(3.0) (212)
J,a

are the smeared operators, for any single-particle wave-
function o € H.

B. Thermal representations

The operator setup summarised above has been used to
show that effective cosmological dynamics, featuring var-
ious aspects such as early time bounces, inflation, cyclic
phases etc. [1-3], can be supported by GFT coherent
condensates of the form (2.9) above (with varying details
depending on the dynamical model of course). Particu-
larly in the context of this article, it has been shown that
an effective Friedmann dynamics [11, 37-40] can be ex-
tracted from an underlying GFT dynamics for coherent
states (2.9), thus exhibiting the viability of such conden-
sates as suitable quantum gravitational phases for the
cosmological sector [2].

However, as is evident from equation (2.9), this phase
is built over a degenerate and unentangled vacuum (2.7),
characterised by uncorrelated quanta. Furthermore, it
does not incorporate statistical fluctuations in the un-
derlying degrees of freedom. Now from a physical point
of view, one would expect that thermal fluctuations play
a role in the dynamical evolution of physical observables
describing any macroscopic system, including a space-
time built from a large number of elementary quanta
of geometry. In other words, studying statistical, ther-
mal properties of quantum spacetimes would be valuable
[14, 32-35], especially in strong gravity regimes like for
the early-time Planck-scale era in the context of quan-
tum cosmology models. Along these lines, thermal con-
densates of the form (2.25) have recently been suggested
to be a suitable class of states to consider [32].

In general, thermal effects are encoded in statistical
mixed states, represented by density operators defined
on a representation Hilbert space (here, H ), and of par-
ticular interest are statistical equilibrium states. In the
present background independent context of GFT, these
are given by generalised Gibbs states of the form,

1

e > BeO;
28}

P8}y = (2.13)

where, {O¢} is a finite set of observables of interest and
{B¢} is a multivariable generalised inverse temperature
[14, 33, 35]. Ome can extend this formalism for gen-
eralised Gibbs states even further in order to address
the question of including thermal fluctuations in conden-
sates, by constructing thermal representations as is done
for standard finite-temperature quantum field theories.
Such an extension of the GFT formalism to include ther-
mal representations was introduced in [32], by using tools
from thermofield dynamics [41-45]. Below we review the
main details of this construction.

A simple class of generalised Gibbs states that are
properly normalisable®, and are of interest to us partic-

3 We refer to [32, 35] for the details of proof of normalisation for
this class of states.



ularly in the present context of cosmology, are
(2.14)

where P is a positive, extensive operator on Hp, and
B € Ry. In the context of gravity for instance, P could
be chosen to be a spatial volume operator [14, 35], as will
be done later in section III. For now, we leave it as this
more general class of states, along the lines in [32].

We first define the zero temperature phase (8 = c0),
which is given in terms of the Hilbert space,
Hoo = Hr @ Hr (2.15)
where the Hilbert space H p is conjugate to 7 under the
action of an antiunitary (modular conjugation) operator
[42, 45-48], and is the Hilbert space of the tilde degrees
of freedom. For a detailed discussion on the tilde and
non-tilde degrees of freedom, their relations, and possible
meanings, we refer to [32] and references therein. For
now, we note that the zero temperature Hilbert space
Hoo can be understood as describing a bipartite system,
with the non-tilde degrees of freedom residing in Hp, and
its associated algebra generated by {a,a’, 1}, being our
original system of interest. Thus also, the observables
of interest here are those that belong to the algebra of
non-tilde a (or equivalently, ¢) operators.

The space Ho is a Fock space on the cyclic vacuum

0s0) = 10) @ |0) (2.16)
with ladder operators {ajq, a;a, aJj,a, d;a}gzoo that
satisfy,

[aa; ajr]/o/] = [asa; &jr]/a’] = 077000 (2.17)
and all other commutators, including those between tilde

and non-tilde operators, vanish. The vacuum |0) satis-
fies

aja |0s0) = Gya|0se) =0 VJ, . (2.18)

The thermal algebra {bq, bT]a, by ET]a}o<ﬂ<oo is then
introduced via thermal Bogoliubov transformations of
the generators (2.17), given by

by := cosh [04(B)] aja — sinh [04(8)] @,
by := cosh [04(B)] Gjo — sinh [054(8)] a,

and analogous expressions for their adjoints bT,a and lN)jf]a
Parameters 07,(3) encode complete information about
the statistical state, being functions of 8 and eigenvalues
of the observables characterising the state. In the present
case then, these functions are uniquely associated with
the Gibbs states pg of equation (2.14). In practice, they
are usually determined by the following condition for the

number operator?,

True (ppalaasa) = (0l abgasal0s)y, — (2:21)
where evaluating the right hand side (using inverse Bo-
goliubov transformations) gives,

Try, (ppal,ase) = sinh? [04(5)]

for all J, a.

Bogoliubov transformations are canonical, thus the (-
ladder operators satisfy the same bosonic commutation
algebra as before,

(2.22)

bra, bTJ/a«] = [bjas b,T]/o/] =077 0aa’ (2.23)
and all other commutators vanish. The temperature-
dependent annihilation operators define a new vacuum,

bia 108) = bia |0g> =0 VJ,« (2.24)
called a thermal vacuum, at inverse temperature 5. It is
cyclic, in turn generating a thermal Hilbert space Hg via
the action of the (S-ladder operators, which create and
annihilate b-quanta over |0g). It is in fact inequivalent
to all the different vacua at different temperatures, in-
cluding the zero temperature |0o) vacuum. Thus also
their corresponding thermal representations labelled by
the parameter § are all inequivalent, each representing a
distinct statistical phase of the system. Notice that [0g)
is an entangled state with quantum correlations between
pairs of a and @ quanta.

C. Coherent thermal states

Coherent thermal states are the canonical coherent
states over a thermal vacuum |0g), obtained through the
action of displacement operators of the form (2.10). They
are elements of the thermal Hilbert space Hg, and are de-
fined as

lo,5;8) := Du(0)Da(7) |0s) (2.25)
where, Dj is a displacement operator of the same form as
(2.10) but for the a ladder operators. Coherent thermal
states are eigenstates of [-annihilation operators with
temperature-dependent eigenfunctions,

bialo,a; ) = (cosh [0 1,] —sinh [054])0 54 |0, T; B)
(2.26)

bia|o,7:8) = (cosh [054] — sinh [014])5 74 |0, 55 B)
(2.27

)

4 In principle, the condition (2.21) of identifying observable av-
erages in the two representations, must be satisfied by the full
algebra [32, 41-45].



where 0 7o, = (fja,0)%. They are not however the eigen-
states of the original annihilation operators a s, belong-
ing to our system of interest. This fact induces the emer-
gence of non-trivial thermal contributions, along with co-
herence properties, in the expectation values of operators
originally defined on Hs, or its relevant subspace Hp.
For example, the average number density of the mode Jo
in a coherent thermal state is

(0,5; Bl al asa |0,5; B) = |07a|? +sinh? [074]  (2.28)

which contains both, the usual coherent number density
and an additional thermal contribution.

It is important to remark here that our use of the ba-
sis fJa, in particular of the countable basis {T}, }oen for
L?(R), in order to develop the finite-temperature GFT
formalism in terms of the ladder operators (equations
(2.4)-(2.5) and (2.19)-(2.20)), was crucial. The observ-
ables that one might consider in a chosen model must
admit domains of definition which contain the sector of
Hilbert space that one is interested in, here coherent ther-
mal states. Otherwise, no calculation could be carried
out without running into divergences and ill-defined ex-
pressions. This in particular applies to ¢-dependent oper-
ators, not smeared with T;,. For instance, if one considers
the number density operator as a function of ¢,

N () = / 453 D;(7)D1(5)e (3 )o@ 0)
= al(¢)as(¢)

then the calculation of the expectation value in a coherent
thermal state would give

(N3 (9)oa:5 = l0s(0)|? + sinh?[0(¢)] 6(¢ — ¢) (2.30)

which is clearly ill-defined due to the presence of the
Dirac delta distribution 6(0) in the thermal part eval-
uated at the singular point. We thus need to con-
sider smeared observables such as the operator aTJana
in (2.28), where now the thermal contribution contains a
well-defined Kronecker delta d,, coefficient instead.

At this point, we have introduced the necessary kine-
matical aspects of the theory in order to discuss an effec-
tive cosmological model incorporating statistical fluctu-
ations of quantum geometry, which is the subject of the
rest of the paper.

(2.29)

III. THERMAL CONDENSATE COSMOLOGY

We start by presenting the effective free GF'T dynamics
in a condensate phase with fluctuating geometric volume.
We then introduce the notion of a reference clock func-
tion, and reformulate the setup including the effective
dynamics in terms of functional quantities and equations
of motion, with respect to a generic class of these clock
functions. Based on this, we present an effective, re-

lational homogeneous and isotropic cosmological model,
and discuss its late and early times properties.

A. Condensates with volume fluctuations

Since we are interested in the homogeneous and
isotropic cosmological sector, the main observable of in-
terest is the volume operator, in particular the volume
associated to a (spatial) sub-manifold given by a folia-
tion parametrized by a clock function (see section III C).
Recall that the GFT volume operator associated with a
generic many-body state in Hp is

V.= g vy aTJana
J,a

(3.1)

where vy € R>¢ is the volume assigned to a single quan-
tum with a configuration J = (j,7,:). This is an ex-
tensive positive operator on Hp, and its action on any
multi-particle state gives the total volume by summing
up the volume contribution v; from each quantum.

Further, we select a statistical state of the form (2.14)
such that the generator P is the above volume operator,
that is a volume Gibbs state [14, 35] of the form

1
= — -8V
pe Z/ge

(3.2)
which encodes a statistically fluctuating volume of quan-
tum spacetime.

The quantum gravity condensate that we are interested
in is thus a coherent thermal state of the form (2.25),
but associated specifically with the volume Gibbs state in
equation (3.2). In other words, we are interested in using
a state |0, 7; 3), specified by two functions, the conden-
sate wavefunction o € H, and the Bogoliubov parameter
074(B) that is identified by the Bose number distribution
of the state (3.2),

1

sinh? (074 (8)] = eBus —1°

(3.3)

Notice that since the spectrum of V' is independent of
the modes T, the functions 6, are also independent of
them. Thus 0;, = 0, and we will drop the labels « in
quantities associated with 6 from here on. Also, notice
the following important property of our chosen state,

lim |0,5;3) = |0,5) = Da(0)Dqa(3)0,0)

Jim (3.4)

thanks to which all results of the previous works in
GFT cosmology are reproduced when the fluctuations
are turned off completely.

In the present context of extracting effective cosmo-
logical models from a candidate background independent
theory of quantum gravity, the use of relational observ-
ables is of utmost importance. As mentioned previously,
past works in GF'T cosmology have interpreted and used



the base manifold coordinate ¢ as a relational matter
clock, and considered quantities such as N(¢) as rela-
tional observables. However, we have also noticed above
that in the present setting such quantities (see equation
(2.30)) contain UV divergences related to occurrences of
the ill-defined §(¢ = 0) distributions, which had in turn
prompted us to change the basis® to T,, as a first step
in the inclusion of thermal fluctuations in the context of
GFT condensates. It follows that in this basis, we are
interested in a-dependent quantities defined by a partial
sum over J, such as

Vo = E vy aT]ana
J

(3.5)

and its statistical average in the thermal condensate
(which itself now includes statistical fluctuations in vol-
ume),

(Vadaais =Y vsllosal® +sinh? [6(8)]).
J

(3.6)

Finally, since the thermal cloud we consider is modelled
in terms of the volume Gibbs state whose Bose distribu-
tion is independent of «, which as we will see in section
I C, is strictly related to the evolution parameters for
relational dynamics, we are essentially considering the
case of a first approximation in which the thermal cloud
is non-dynamical and only the condensate part of the full
system is dynamical. We will return to this point later
in sections IITE 2 and IV.

B. Effective group field theory dynamics

A generic GFT action with a local kinetic term and a
non-local interaction term (higher than quadratic order
in the fields) takes the form,

S = [ dgioe(d. 014 0.0)0(G.0) + Suledl (1)
and gives the following classical equation of motion,

(SSint [907 95]
6p(g, @)
In the corresponding quantum theory on Hp, the equa-

tion of motion is,

H(F,0)e(F,0) + =0. (3.8)

—

(SSint [907 95]
6p(g, )

with some choice of operator ordering (and the hat nota-
tion reinstated temporarily). An effective equation of

5 Further details about this aspect and the definition of a basis-
independent clock are discussed in section IIT C.

motion can then be derived from the above operator
equation by taking its expectation value in a special class
of quantum states implementing a notion of semi-classical
and continuum approximations®. Here, we take the co-
herent thermal states introduced above as this class of
states. We thus consider,

—

. NP T (2% I
<070'75|<1/(97¢)<P(97¢)+WMU,@—0-
(3.10)

As a first step to investigate the role of statistical fluc-
tuations of quantum geometry in condensate cosmology,
we focus here only on the free part. This would allow
us to display clearly the impact of non-zero thermal fluc-
tuations. In other words, any difference in results that
we find, as compared to previous zero temperature free
theory studies, could then be attributed directly to the
presence of these statistical fluctuations. Therefore, re-
stricting to the free kinetic term, we obtain

(0,0:8| #(7,90)¢(F,9) |o,0;8) = H (7, 9)o (g, ¢) -
(3.11)

Further using the Peter-Weyl decomposition for o,

o(G.¢) =Y _ Ds(§)os(e), (3.12)
J

and considering the following kinetic term (which is
a standard choice, see for instance [49] and references
therein),

H = Ho(9) + H1(9)0; (3.13)
such that
H0(9)(Ds(g)os(d)) = BsDy(g)os(d) (3.14
H(9)03(D1(§)os(9)) = AyD(§)0505(¢)  (3.15)
we obtain the following equations of motion,
05(¢) — Mjos(¢) =0, VJ (3.16)

where M; := —%.

Thus, we see that the free GFT dynamical equation
of motion in a coherent thermal state is identical to the
case where one considers a simple coherent state (2.9)
in Hp, with no thermal cloud. But as we can already
anticipate, observable averages (like volume) will have

6 In line with previous works, we understand the implementation
of semi-classical and continuum approximations in the specific
sense of using the class of coherent states (which are well-known
to be the most classical quantum states, with a peak on a pair of
classical conjugate variables), and a condensate phase (described
by a collective condensate variable, and with a non-zero order
parameter), respectively.



thermal contributions in general, consequently modifying
their evolution equations.

This concludes the derivation of the effective GFT
equation of motion using a thermal coherent state. How-
ever, as we have mentioned earlier, calculations with ob-
servables in a (g, ¢) basis leads to singularities in the
¢-dependent quantities. This brings us to the following
section where we address the question of defining and ap-
plying a suitable time reference frame (a clock), and offer
a preliminary interpretation of the resultant quantities.

C. Smearing functions and reference clocks

As we have emphasised before, the use of ¢ as a refer-
ence clock is not possible here since the quantities of in-
terest, like (V(¢)), are mathematically ill-defined, which
prompted us to define quantities like (V) instead. Below,
we generalise this even further and introduce generic”
square-integrable, complex-valued smooth functions,

t(¢) = > taTo(0) (3.17)

in order to define observables and their dynamics as func-
tionals of ¢(¢) (which will later be interpreted as rela-
tional). This brings us to the aspect of smearing.

In the quantum operator setup summarised in sections
IT A and II B, instead of smearing the operators with a set
of basis functions f;, (7, ), we could instead smear the
algebra generators with a complete set of more general
smearing functions F(g,¢) (usually also satisfying ad-
ditional analyticity and sufficient decay properties). In
particular for the ¢ variable, this would amount to smear-
ing with smooth functions, say ¢(¢). This would result in
an equivalent, but basis-independent algebraic setup, as
commonly encountered in Weyl C*-algebraic theory as-
sociated with bosonic quanta®. For our actual purposes,
we retain the use of the Wigner basis D;(§), in order
to retain also the associated geometric interpretation of
(functions of) the spin labels J as it is standard in both
GFT and loop quantum gravity, while in the ¢ direction
we smear with a function ¢(¢). In other words, we are
interested in smeared operators of the form,

as(t) = / d§dé D (@03, 9) (3.18)

al(t) = / dgdé Dy (§)1(6)¢" (3, 6) (3.19)

which are now understood as functional (relational) lad-
der operators, with respect to the function t(¢). By ex-

7 While satisfying certain boundary conditions, see equations
(3.29).

8 See [35, 36] for details of a Weyl algebraic formulation in group
field theory.

tension, the observable of interest is the volume operator,
which now takes the form,

Vi = Z vy aT](t)aJ(t) (3.20)
7

which is interpreted as the operator associated to a spa-
tial slice labeled by the function ¢.

Notice that in general, t-relational operators, and their
expectation values, are non-local functions of their ¢-
relational counterparts. For instance, the average volume
in a thermal condensate state is

Vidoms =3 07 (|los(0)]2 +simh? [6,]][17)  (3.21)
J
where |[t|]* = (¢,t)12(r) and,
oy(t) = / 6 U)o s(6) = (tonew.  (3.22)
R

One can show that the quantity (Vi), .., can be ex-
pressed in terms a non-local function of ¢, namely

Vidors =S 0 / d6dd! HDNS) (N (6,6)) s o5
J R2

(3.23)
where

Ny (¢,¢') = al($)as(¢)

is the off-diagonal number density (2-point) operator
with expectation value,

(NJ(0:8)) g 55 = 0 (9)0(¢)) + sinh®[0,]6(¢ — ¢') .
(3.25)

(3.24)

These smearing functions ¢(¢) are understood as defin-
ing reference clock frames, the reasons for which will
be made more clear in the next section. For now, we
note that such a treatment is compatible with the fact
that at the level of a field theory, which a GFT is, we
would expect a relational clock variable to be more rea-
sonably defined as a genuine function, like ¢(¢), rather
than simply a parameter ¢ (which is here a coordinate of
the base manifold). Having said that, we strictly refrain
from assigning any further physical interpretation to the
function ¢, especially from the spacetime point of view,
unlike the coordinate ¢ which has been motivated as a
minimally coupled scalar matter field in previous works
(see for instance [10]).

Lastly, the generic non-locality of t¢-relational quanti-
ties with respect to ¢, for instance in (3.23), is reasonable
to expect simply as a technical feature that is character-
istic of changing reference frames in general.



D. Relational functional dynamics

At this point, we come to the important task of ex-
pressing the effective GFT equations of motion in terms
of the smearing function, with the dynamical collective
variable now being the condensate functional o(t), as de-
fined in (3.22), instead of o(¢).

The equations of motion (3.16) can be decomposed
over the countable basis T, namely one has

9301(¢) — Myos(¢) =0, VJ

& V5050 —Mjoja=0, VJa (3.26)
where
_ 5 )
= d o c—aee «
Vi, = [ ds <3¢T @5 + T @)
(3.27)

is a functional derivative operator with respect to a

complex-valued basis function T,,. Then, for an arbitrary

function ¢(¢), equations (3.26) imply
Vios(t) — Mjos(t) =0, YJ (3.28)

where we have defined the corresponding functional
derivative operator as

) 0
— [ do | Opt —— + Ost —) ,
fiao (00 s+ 00t s
and have assumed the following vanishing boundary con-
ditions for the smearing functions,

Vt =

lim t(¢) =0,

m lim O4t(¢) =0.

Jim (3.29)

Notice that equations (3.28) are obtained from the
original equations (3.16) simply by smearing the equa-
tions with #(¢). This is directly evident from the expres-
sion for o(t) in (3.22), and the following equation

Viost) = [ ot @) (330
R

We note that if one was working with a dynamical
model based on higher (than 2) order derivatives in ¢, or
in general is interested in extending this setup to include
arbitrary higher order generalisations of equation (3.30)
above, then the boundary conditions (3.29) must be sup-
plemented by vanishing of all higher order derivatives of
t in the limit ¢ — 4o00. In such a case then one could
work with the space of Schwartz functions for instance,
as the relevant set of smearing functions. However in the
present analysis, we do not need to restrict to this special
subspace of smooth functions, and the conditions (3.29)
are sufficient.

Let us comment on the interpretation of the operator

V: defined. By construction this operator satisfies,

Vitlt) = | dvie)0,t(o) (331)
for any function ¢(¢) € L?(R) satisfying (3.29), with
£(t) := (t,£)2(ry (Which in turn straightforwardly gives
equation (3.30) used above). This property is impor-
tant because it justifies the use of smearing functions
as relational clock fields. As we have shown above, the
t-relational dynamical quantities and equations are de-
rived from an appropriate smearing of their (possibly
non-local) ¢-relational counterparts. In particular, the
t-functional equations of motion (3.28) are simply the
smearing of the ¢-dependent equations (3.16). In fact
the flow induced by the operator V; is not on the base
manifold (in contrast with ¢), nor on a given spacetime,
but rather on the space of smearing functions. The in-
terpretation of the smearing can then be clarified, as a
first step, by considering a limiting case where the t-
relational setup reduces to the usual ¢-relational one.
Namely, if one takes a delta distribution® peaked on ¢,
that is t(¢') = 6(¢' — ¢), then the full ¢t-relational setup
introduced above naturally reduces to the ¢-relational
one that is used in all previous works in GF'T' cosmology.
For instance, all the smeared quantities take their usual
forms as functions of ¢, e.g. o;(t) = o(9), as(t) = a;(d),
(Ns(t) o5 = (Ni(®)), 5.5 Along these lines, one
can motivate specific choices of smooth clock functions
peaked around points of the base manifold, namely val-
ues of ¢, for instance Gaussian functions. Such choices
could then be interpreted as the implementation of a de-
parametrization procedure at the level of the background
independent quantum theory. Furthermore, one could
understand the selection of a relational clock as a re-
striction to a special sector of physical states in the full
(non-deparametrized) quantum theory, as was suggested
in [35]. In general, one would expect to be able to re-
alise such mechanisms in possibly different ways. In our
setting for instance, this would correspond to a special
choice of smearing functions ¢. Another possibility is ex-
plored in [50] in the context of zero temperature (5 = o)
GFT condensate cosmology. The complete details of such
mechanisms for deparametrization, how they relate to
each other if at all, and if there could be preferred choices,
are interesting queries that are left for future investiga-
tions. In this article however, we proceed without any
restriction to a specific class of ¢ functions and we work
with the general case.
Finally, using the decomposition

oy (t) = Chets (3.32)

9 Note that a distribution would not satisfy the boundary condi-
tions (3.29), and also the operator V; would not be well defined.
However, this peculiar case is to be understood only as a limit,
for instance by considering the limit of vanishing width for a
family of Gaussian functions.



where ¢} is the C? norm of o (t), we can split (3.28) into
two equations, one for the real part and the other for the
imaginary part, obtaining

Vich = C(Venh)? = MyCh =0
2V (5Vaen + G VinG =0

for all J. These two equations imply the existence of two
constants of motion, as in the case of 8 = oo free theory
[11], given by

Ey = (ViCh)? + (¢5)*(Viny)? = My(¢h)?*  (3.35)
Qs = (C5)*Vinf (3.36)

satisfying V, E; = 0 and V,Q; = 0.

E. Effective dynamics for homogeneous and
isotropic cosmology

Now, our investigation is based on four ingredients:
the choice of quantum states in the full theory (here,
the class of coherent thermal states based on the chosen
Gibbs state), the choice of dynamics, the choice of rela-
tional observables, and finally the choice of a subclass of
condensate wave functions. We have addressed the first
three points in sections IIT A-IITD, which brings us to
the last one, which we address as follows. A notion of ho-
mogeneity in the present non-spatiotemporal background
independent setting resides in: (i) the use of a coherent
condensate as the relevant phase for studying the effec-
tive cosmology extracted from a GFT model, and (i)
having an additional left diagonal symmetry on the con-
densate wavefunction o(hg;, ¢) = o(gi,¢), Vh € SU(2).
In other words, it resides in the facts that the collec-
tive dynamics is encoded in a left- and right-invariant
single-particle wavefunction o, which is also the order
parameter of the condensate (a,(t)), ;.5 = 0.(t), where

now J = (j, 1, tr); and that each a-quantum in the con-
densate is being described by the same wavefunction o.
Further, a notion of isotropy is implemented by fixing
the spins at each vertex to be equal, fixing the two in-
tertwiners to be equal (the geometric interpretation of
which remains to be understood), and choosing a special
class of intertwiners, namely the eigenvectors of the vol-
ume operator with the highest eigenvalue. We refer to
past works for detailed discussions on these aspects, for
instance [1, 2, 11, 51-53].

These restrictions imply that the condensate function
is entirely determined by the value of a single spin j. It
follows that the equations of motion (3.28) reduce to one
equation for each value of the SU(2) spin label j,

Viaj(t) — Mjo;(t) =0,

Vj e N/2. (3.37)

Consequently we have, Vj € N/2

Vi = iVl = Ml =0
VIVt + (Vint =0

with the same conserved charges (3.35) and (3.36), now
labelled by the spin j.

Having set all the ingredients for a dynamical analysis,
we can now proceed with the derivation of the effective
dynamical equations for the average volume (V;) in a co-
herent thermal state of the form (2.25), which include
geometric volume fluctuations as discussed in III A. For
simplicity of notation, we will drop the label ¢ on rela-
tional quantities (like ¢, 7 and volume averages) in the
following. Relational volume average is given by

V= (W)= ZU;‘(C? + 53 1t]]) (3.40)

where s; := sinh[#;(8)]. Using the effective equations
of motion (3.38) and (3.39), and the expressions for the
constants of motion (3.35) and (3.36), we obtain

V/ = VtV
= 2ZUj§thCj
J
Q2.
=2 v sgn(<;>\/Ej - C—; + M2 (3.41)
J J
V"= VIV =2 v(E; +2M;¢7) (3.42)

J

where we have used V;||t||*> = 0. From here on we shall
assume ||t||? = 1 for convenience.

Then, the effective generalised Friedmann equations,
including both quantum gravitational and statistical vol-
ume corrections are

2

(V,)z 4 [ 253G Sgn(§§)\/Ej—?—§+Mij

3_V _§ Zjvjcjz—l-zjvjs?

(3.43)
V7230 v(Ey 4 2M ()
\4 Zj ijJZ +Zj Ujs?

These equations represent the relational evolution for the
volume associated to a foliation labeled by the function
t. Compared to the analogous equations obtained in [11],
the main difference arises due to the expression (3.40) for
the average volume where there appears an additional
statistical contribution s?, which as we have described
above, originates directly from the quantum statistical
mechanics of the underlying quantum gravity theory.

(3.44)



1. Late times evolution

In the following, we will make use of the quantities
below that are formally defined as number densities cor-
responding to the different parameters characterising the
different phases of the system,

neol) = €2, nEo)—% (3.45)
)= o) = e @40

where ne, and ny, (equal to (3.3)) are the actual num-
ber densities (thus are non-negative) of the condensate
and thermal parts of the full system. Different physi-
cal regimes can then be described in terms of relative
strengths of these parameters.

The domain ng(j),ng(j) <K neo(j) is understood as a
classical limit where the volume is large but curvature is
small [11]. In this regime, we have

V' =~ 2ngn(CJ’-)vj\/Mj QJZ
J

V'~ 4 0 M;(
J

(3.47)

(3.48)

giving the corresponding generalised evolution equations,

(V’ )2 4 (Zj Sgn(@")“ﬂ/ﬁj@?)Q (3.49)

3V Zj chjz-i-zj ’UjS?

9
4 432, v M;¢F

— = . (3.50)
v Zj Uj@? +Zj UJS?

Note that the thermal contribution Vi, :=
>_;vjnen(j) is  invariant under variations in the
time function ¢, that is V;Vy, = 0. Hence, if the full
system evolves such that the condensate number density
Neo(j) increases monotonously in time, then eventually
we will reach the domain where the condensate part,
Veo 1= Zj VjNeo(J), dominates the thermal cloud, that
is Vo > Vyy,. Thus considering

nCO >> nQvnE;nth (351)

and
Vi, sgn((j) =+1, M; =M = 37G (3.52)

where G is Newton’s gravitational constant, we obtain

V'\? 4rG

<W) =3 (3.53)
1!
VV=127TG (3.54)

which are known to be the relational Friedmann equa-
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tions for spatially flat FLRW spacetime in general rela-
tivity. These are the equations of motion of the quan-
tum gravity system in a thermal condensate phase where
both (3.51) and (3.52) are valid. Physically, this regime
where the condition (3.51) is satisfied, i.e. the contribu-
tion coming from the condensate is dominant while the
statistical fluctuations are subdominant, corresponds to
a phase that effectively mimics a system in a zero tem-
perature condensate'®. Consequently, as shown above,
in this regime we simply get the zero temperature con-
densate cosmology obtained in previous works [11, 38].
In this sense, the use of zero temperature condensates
like |o) can be understood more generally as a thermal
quantum gravity condensate being in a dynamical regime
where the condensate dominates, nco = ngp.

2. FEarly times evolution

We can also look at the evolution equations (3.43) and
(3.44) in a different phase, in particular where the ther-
mal contributions and the quantum corrections become
relevant. For consistency, the choice (3.52), which re-
covers the classical limit giving the correct late time be-
haviour, is assumed.

Observe that the expression (3.41) for V/ admits roots.
Namely, there exist solutions {(f}; such that

V' =0. (3.55)
The solution is given explicitly in terms of M and the
constants of motion Ej, Q); as

, 1 , 1 . . .
neo(7) = —5nE(j) + \/Z?"LE(J)2 +ng(i)?, Vi (3.56)
where we have ignored the negative solutions, since n, is
the number density of the condensate and must be non-
negative in general. At this stationary point, the total
volume is

VO = Zvj(ngo(j) +nen(4))

J

(3.57)

which is clearly non-zero due to non-vanishing thermal
contribution in the present finite 8 case, even if the con-
densate part were to vanish. However, as it happens,
even ng, does not vanish as long as £ # 0. In particu-
lar, n2, # 0 even if Q = 0. To see this, notice that if
@ = 0, then F < 0, which is evident from their expres-
sions in equations (3.35)-(3.36), assuming a positive M

10 Note that there could also be a classical regime where the statisti-
cal fluctuations are not subdominant. In other words, statistical
fluctuations may be important even in regimes where quantum
fluctuations are negligible. In the present setting, this could cor-
respond to the case when nco > ng,ng holds true, while the
interplay between nco and ngy, is still relevant.



as required by the correct classical limit (3.52). In this
case then, n?, = |ng|. In the more general case with
Q@ # 0, both positive and negative F are allowed in prin-
ciple, but in each case we again have nZ, > 0. Thus, the
expectation value V does not vanish when V' = 0, im-
plying the existence of a non-vanishing minimum?** V° of
V throughout the evolution. Physically, in the context
of homogeneous and isotropic cosmology, this means that
the singularity has been resolved, and that the effective
evolution displays a bounce, with a non-zero minimum
of the spatial volume.

Further, this ensures a transition between two phases
of the universe characterised by the sign sgn((;), describ-
ing a contracting universe (sgn(¢}) < 0) and an expand-
ing one (sgn(¢j) > 0). Each of these phases behaves
according to the general relativistic FLRW evolution in
the classical and non-thermal limits (3.51), that is, when
¢; (equivalently the condensate contribution to the vol-
ume) becomes very large with respect to all the constants
of motion and the thermal contributions. However, as
expected, these two phases display a non-standard evo-
lution in general, especially when close to the bounce.
This is the regime where (; is comparable in magnitude
to the other quantities present in the model. This leads
to the particularly important question about the presence
of inflation and its magnitude.

To address this question, we proceed with a simplified
analysis, where we make the approximation of selecting
one spin mode [11, 37], thus dropping the sum over all
spins in the various expressions. In this case, the gener-
alised equations of motion (3.43) and (3.44) reduce to,

V, 2 E_jCQ
(V) _4M—|—4<

v/ E; — 2M s?
— = 4M + 2 i
Vv ( §2—|—s )

Now, an inflationary expansion can be estimated in terms
of the number of e-folds [37] given by

L (Ve 1. (ned
Ni=2 ( ed):—ln(ﬂ> (3.60)
3 Vng 3 ncog + Nth
where Vi, and Venq are the average total volumes at

the beginning and end of inflation respectively, and in
terms of an acceleration [37] given by

v’ 5 (V' 2
0= V‘§(v>

Q2 —2M 2 2——Ms
(C32+Sj)
(3.58)

(3.59)

(3.61)

11 It can be verified that this is indeed a minimum by checking that
Vlll”é’o > 0.
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Using equations (3.58) and (3.59) above, we get

8 -2 10 o
a:__M+2M u 1— nic
3 Nco + Nth 3 Neco + Nth
n?Q—i-nfh

20
—_— M| —— .
+ 3 ((nco+nth)2>

Assuming that the bounce is the starting point of infla-
tion, we have

(3.62)

nbee = n?, (3.63)

for any j. It can be checked straightforwardly that ac-
celeration is positive at the beginning of inflation, i.e.
a|peg > 0 as required. Now, the end of inflation is char-
acterised by a|eng = 0, which gives,

3 7
=-Nth — gNE

nCO _4 8
N \/49 2 B0 9 2,
—n
64 & 2 " 16
assuming an expanding phase of the universe, i.e. Vg >

Vieg, and non-negativity of ne“d even when ny, is negli-
gible. The number of e-folds can thus be estimated by,

—ngnig,)  (3.64)

3N

7 49, 2 2 (n2
1 (”th - ‘”E + \/64”E + ”Q 5 (né,

2
B+ ng

— NENL)

(3.65)

Since the quantities ng, ng and ng, are all indepen-
dent, we can observe three interesting regimes, giving
approximate numerical values for A:

Nth, NQ K NE :

1. (7

N~z <Z) ~0.186  (3.66)
1. (5

N~ (5) ~0.152  (3.67)

1
ngln

Nth, g K NQ :

nE,nQ K Nt *

(g) ~0.305 (3.68)

The upper bound on N in the previous zero tempera-
ture free theory analysis [37] is 0.186, while here for fi-
nite 3 free theory it is 0.305, achieved in an early time
limit. This difference is attributed to the only new aspect
that we have introduced in the model, the thermal cloud
of quanta of geometry. This shows that the number of
e-folds can be increased, even without a non-linear dy-
namics. This fact is in contrast with the previous conclu-
sions [37] stating that the only way to increase the num-
ber of e-folds is by adding non-linear interaction terms
in the GFT action (accompanied by their corresponding
coupling constants, which are free parameters which can
then be fine-tuned to essentially give the desired value



for N). However, it remains that the increase in N in
our case is very minimal and still not sufficient to match
the physical observations, estimated at N' ~ 60. Nev-
ertheless, this may be overcome if one goes beyond a
static thermal cloud. In other words, a dynamical ther-
mal cloud, which would be expected to be left over from a
geometrogenesis phase transition (of an originally unbro-
ken, pre-geometric phase), could have the potential to
provide a viable mechanism for an extended geometric
inflation. The implementation of dynamical statistical
fluctuations would require special care in order to avoid
pathological behaviours with regards to the use of rela-
tional clock functions t(¢), in addition to the standard
requirement of having stability via sufficiently subdomi-
nant or even decaying fluctuations in the relevant observ-
ables of the system, throughout the effective evolution of
the universe. We do not treat this case in the present
article and leave it for future works.

Finally, we note that the approximation of restrict-
ing to a single spin mode in the calculation above, does
not alter the qualitative conclusion that a static thermal
cloud is not sufficient to generate a satisfactory num-
ber of e-folds to match the observational estimate. How-
ever, a relaxation of the condition (3.52) for sgn((;), by
considering a non-homogeneous distribution of the sign
with respect to the modes j while preserving the classical
limit manifest in the emergence of Friedmann equations
at large volumes, might give rise to a larger ratio between
the volumes at the end and at the beginning of inflation
and consequently a larger number of e-folds.

IV. DISCUSSION AND OUTLOOK

In this work we have studied some implications of the
presence of statistical fluctuations in the context of group
field theory by using coherent thermal states for conden-
sate cosmology. We have modeled the quantum gravi-
tational phase of the universe as a thermal condensate
consisting of a condensate part representing an effec-
tive macroscopic homogeneous spacetime, and a static
thermal cloud representing quantum geometric statisti-
cal fluctuations over it. This work provides the first steps
towards building a GFT thermal condensate cosmology.

The model we present recovers the expected cosmo-
logical dynamics at late times (when the thermal part is
dominated by the condensate), but displays differences,
with respect to earlier works with pure non-thermal con-
densates, at early times, when the thermal cloud domi-
nates the condensate and in presence of quantum correc-
tions. In particular, we have shown that the singularity
is generically resolved with a bounce between a contract-
ing and an expanding phase of the universe, and that
there exists an early phase of accelerated inflationary ex-
pansion with an increased number of e-folds compared
to those achieved in previous zero temperature analysis
of free GFTs. This increase in the number of e-folds,
obtained in absence of interactions, is attributed to the
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presence of the thermal cloud.

For our analysis, we have introduced an appropriate
generalisation of the relational clock frame in GFT, by
considering clock functions ¢(¢), implemented as smear-
ing functions. Consequently, we have formulated the ef-
fective equations of motion and dynamical quantities as
functionals of t. A more complete understanding of such
relational frames in GFT and their precise relation to the
concept of deparametrization is left to future work.

Since the thermal cloud that we have considered in our
study is static, considering a dynamical thermal cloud
would be an important extension of this work, and would
allow to investigate further the dynamical implications
of the presence of a thermal cloud. Another valuable ex-
tension would be to consider an interacting GFT model
in presence of thermal fluctuations, even with a static
cloud. In fact, these aspects of having a dynamical ther-
mal cloud and an overall interacting theory are intimately
related, as would be expected. We discuss some of these
issues below, and suggest further lines of investigations.

There are three main features motivating our specific
choice of state, namely a coherent thermal state of the
form (2.25) at inverse temperature §. Firstly, S is as-
sumed to be constant. Secondly, the state is such that
the average number of quanta split neatly into a con-
densate and a non-condensate part, such that the zero
temperature limit gives a pure S-independent condensate
(see also equation (3.4)). That is,

<aTa>ﬁ = TN¢o + Mnon-co (41)
lim (a'a)p = neo (4.2)

B—00

where in the present work the non-condensate part is
taken to be thermal and at S-equilibrium. Having such
a split is not only convenient in doing computations but
also adds clarity to expressions in the subsequent anal-
yses when considering the interplays between the two.
Thirdly, the expectation value of the physical field oper-
ator in a coherent thermal state is temperature indepen-
dent, that is

<aJa>U =0ja = <a,]a>g75;3 (43)
thus being identical to the zero temperature case. Now
at first sight this may seem contrary to our expectation
that the condensate would be affected by the presence
of a thermal cloud in general. But in fact this choice
of state, satisfying the three properties noticed above, is
entirely compatible with our approximation of neglecting
interactions and using free dynamics. When temperature
is switched on, quanta from the condensate are depleted
into the thermal cloud. In a generally interacting case,
both the thermal cloud and the condensate are interact-
ing and dynamical by themselves, while also interacting
with each other. However, in the present case of free dy-
namics, the thermal cloud will not interact with the con-
densate part, in addition to the quanta being free also
within each part separately. Thus even though our state



includes a thermal cloud, the coherent condensate part
(described fully by its order parameter o) will be unaf-
fected by it, as depicted in equation (4.3) above. This is
further reasonable in light of constant 5. If temperature
were to change, say to increase, then we would expect
more quanta to be depleted into the thermal cloud, and
thus expect the state of the condensate to change. Since
the condensate is characterised completely by the order
parameter, it would also need to change.

So overall, considering the class of states in which the
order parameter is temperature independent, is a rea-
sonable approximation when the temperature is constant
and interactions are neglected. Not including interac-
tions ensures that the thermal cloud doesn’t affect the
condensate, while constant § ensures that the amount
of depletion is also constant, so together the condensate
can indeed be approximated by a [-independent order
parameter. In such a case we may be missing out on
some interesting physics, however we take our case as
a first step towards more advanced investigations in the
future.

From what we discussed above, a very interesting ex-
tension concerns the case of a dynamically changing f.
In this case, the expected dominance of the condensate
part over the thermal cloud at late times would not only
be determined by a dynamically increasing condensate
(as is the case in the present work), but also by what
would be a dynamically decreasing temperature as the
universe expands.

Furthermore, one could extend the previous studies
in GFT condensate cosmology [1-3] to the present set-
ting with thermal fluctuations, and investigate various
aspects including dynamical analysis of quantum fluctu-
ations, perturbations, anistropies and inhomogeneities.

Finally, from a physical point of view, we presently
understand [ as a statistical parameter that controls
the extent of depletion of the condensate into the ther-
mal cloud, and overall the strength of statistical fluctua-
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tions of observables in the system. The question remains
whether it also admits a geometrical interpretation. Tak-
ing guidance from classical general relativity, we know
that spatial volume generates a dynamical evolution in
constant mean curvature foliations, wherein the temporal
evolution is given by the so-called York time parameter.
Constant York time slices are thus constant extrinsic cur-
vature scalar (mean curvature) slices, and the two quan-
tities are proportional to each other. In this case, one
could attempt to understand [ as the periodicity in York
time, equivalently in scalar extrinsic curvature (both of
which are conjugates to the spatial volume). In particu-
lar for homogeneous and isotropic spacetimes, York time
is further proportional to the Hubble parameter. A de-
tailed investigation of such aspects and their implications
would be interesting and is left for future work.
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