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Supplemental Information:

Light-Matter Response in Non-Relativistic Quantum

Electrodynamics

S1 Current state of the art for spectroscopy: semi-

classical description

To highlight the many differences of the presented framework to the standard linear-response

approach we give here a brief recapitulation of the standard (matter-only) theory. The cur-

rent theoretical description of linear spectroscopic techniques is built on the semi-classical

approximation.S1 Herein, the many-particle electronic system is treated quantum mechan-

ically while the nuclei are subject to the Born-Oppenheimer approximation and the elec-

tromagnetic field appears as an external perturbation. As an external perturbation, the

electromagnetic field probes the quantum system, but is not a dynamical variable of the

complete system. To arrive at the semi-classical description starting from the full non-

relativistic description of the Pauli-Fierz Hamiltonian,S2 several approximations are used to

simplify the problem. In the following, we list these approximations explicitly

• The mean-field approximation renders the Pauli-Fierz Hamiltonian as a problem of

two coupled equations, i.e. the time-dependent Pauli equation and the inhomogeneous

Maxwell’s equations, and is also know as the Maxwell-Pauli equation.S3

• The decoupling of these Maxwell-Pauli equations leads to the inhomogeneous Maxwell’s

equation becoming independent of the electronic system and all field effects are treated

as a classical external field that perturbs the many-electron system.

• The dipole approximation, which ensures the uniformity of the external (decoupled)

field over the extend of the electronic system.
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Based on these approximations the Pauli-Fierz HamiltonianS3 reduces to the time-dependent

semi-classical Hamiltonian for many-particle systems given as

Ĥe(t) =
N∑
i=1

(
− h̄2

2me

∇2
i + v(ri, t)

)
+

e2

4πε0

N∑
i>j

1

|ri − rj|
, (S1)

including the kinetic energy, time-dependent external potential and the longitudinal Coulomb

interaction. The time-dependent external potential has two parts v(r, t) = v0(r) + δv(r, t).

Here, v0(r) describes the attractive part of the external potential due to the nuclei and

δv(r, t) = er · E⊥(t) with E⊥(t) being a classical external (transversal) probe field in dipole

approximation that couples to the electronic subsystem. In this decoupling limit of light

and matter, the many-particle wavefunction is labeled only by the particle coordinate and

spin as Ψ(r1σ1, ..., rNσN). In the dipole approximation we can investigate dipole-related

spectroscopic observables such as polarizabiltiy, absorption and emission spectra, etc from

linear to all orders in the external perturbation. Consider the particular case of a response of

an electronic system to an external weak probe field. In the dipole limit a key observable in

the study of electronic and optical excitations in large many-particle systems is the electron

density. Formulated within linear-response, the density response to an external perturbation

is given as:S4

δn(rt) = − i
h̄

∫ t

t0

dt′
∫
dr′〈Ψ0| [n̂I(rt), n̂I(r′t′)] |Ψ0〉

=

∫ t

t0

dt′
∫
dr′χ̃nn(rt, r′t′)δv(r′t′). (S2)

Here, χ̃nn(rt, r′t′) is the density-density function with respect to the ground-state Ψ0(r1σ1, ..., rNσN).

Practical calculations for the response of a many-electron system is a considerable challenge

due to the large degrees of freedom. In practice, time-dependent density functional the-

ory (TDDFT)S5,S6 is one of the most frequently applied theories to approach this problem.

Knowing the electron density in TDDFT we can in principle calculate all observables of
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interest. Formulated within TDDFT linear-response, the density-density response function

of the interacting system can be expressed in terms of non-interacting the density-density

response function and an exchange-correlation (xc) kernel that has a form of a Dyson-type

equation:S7

χ̃nn(rt, r′t′) = χnn,s(rt, r
′t′) +

∫∫
dxdτ

∫∫
dτ ′dyχnn,s(rt,xτ)fHxc(xτ,yτ

′)χ̃nn(yτ ′, r′t′), (S3)

where χnn,s and fHxc =
(
χnn,s
)−1 − (χ̃nn)−1. One of the most widely employed approaches to

TDDFT linear-response is the Casida formalism which can be written in a compact matrix

form. The Casida equation obtains the exact excitation energies Ωq of the many-particle

system and requires all occupied and unoccupied Kohn-Sham orbitals and energies including

the continuum of states. In practice, the Casida equation is often cast into the following

form

UE = Ω2
qE. (S4)

The explicit form of the matrix elements is given as (with q = (i, a))

Uqq′ = δqq′ω
2
q + 2

√
ωqωq′Kqq′(Ωq), (S5)

Kai,jb(Ωq) =

∫∫
drdr′ϕi(r)ϕ

∗
a(r)fHxc(r, r

′,Ωq)ϕb(r
′)ϕ∗j(r

′).

The Casida formalism is well established and has been applied to a variety of systems, see

e.g. Refs.S8–S12 and references therein.

The many obvious shortcomings of the approximations that lead to the standard Schrödinger

equation (S1) are well-known and discussed to some extend in the main part of the paper (for

more details see, e.g., Ref.S3). We point out that all of the above ubiquitous fundamental

equations are modified and the results based on the introduced generalized equations can

differ strongly, as discussed in Sec. 3 of the main article.

S-3



S2 Linear-response in non-relativistic QED

To help the reader with the unfamiliar generalized linear-response framework for coupled

light-matter systems, we here derive the linear-response equations and the ensuing response

functions presented in Sec. 1. In the non-relativistic setting of QED, the static and dynamical

behavior of the coupled electron-photon systems is given by

Ĥ(t) = Ĥ0 + Ĥext(t). (S6)

Where we define the time-independent electron-photon Hamiltonian as

Ĥ0 = T̂ + Ŵee +
1

2

M∑
α=1

[
p̂2
α + ω2

α

(
q̂α −

λα
ωα
·R
)2
]

+
N∑
i=1

v0(ri) +
M∑
α=1

jα,0
ωα

q̂α, (S7)

where the kinetic energy operator is T̂ = − h̄2

2me

∑N
i=1 ∇

2
i , the Coulomb potential is Ŵee =

e2

4πε0

∑N
i<j

1
|ri−rj | and the time-dependent external perturbation is given by

Ĥext(t) = V̂ext(t) + Ĵext(t). (S8)

Here, the time-dependent external potential and current are

V̂ext(t) =
N∑
i=1

v(ri, t), Ĵext(t) =
∑
α

jα(t)

ωα
q̂α. (S9)

We now introduce the interaction picture, where a general state vector of the interacting

electron-photon system is given by

ΨI(t) = Û †0(t)Ψ(t) = eiĤ0t/h̄Ψ(t),

with Ψ(t) as the state vector in the Schrödinger picture. Accordingly, an arbitrary operator
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Ô can be transformed from the Schrödinger to the interaction picture by

ÔI(t) = Û †0(t)ÔÛ0(t). (S10)

In the interaction picture, the evolution of the interacting electron-photon system from an

initial state Ψ0 is described by the following time-dependent Schrödinger equation

ih̄
∂

∂t
ΨI(t) = Ĥext,I(t)ΨI(t). (S11)

Through an integration, the above equation can be formally solved to yield

ΨI(t) = Ψ0 −
i

h̄

∫ t

t0

dt′Ĥext,I(t
′)ΨI(t

′). (S12)

If we only keep the first order, we obtain in the Schrödinger picture a closed solution

Ψ(t) ' Û0(t)Ψ0 −
i

h̄
Û0(t)

∫ t

t0

dt′Ĥext,I(t
′)Ψ0. (S13)

In our case however, we are not interested in the time evolution of the wave function, but

rather in the response of an observable Ô to (small) external perturbations. The change in

the expectation value of an arbitrary observable Ô due to the external perturbation Ĥext(t)

is given by

δ〈Ô(t)〉 = 〈Ψ(t)|Ô|Ψ(t)〉 − 〈Ψ0|Ô|Ψ0〉, (S14)

In linear-response theory, we now assume that the external perturbation in Eq. (S9) is

sufficiently small such that Eq. (S13) is a good approximation to Eq. (S12) and that Ψ0

equals the ground-state of Eq. (S7). Thus, if we evaluate Eq. (S14) with Eq. (S13), we

obtain

δ〈Ô(t)〉 = − i
h̄

∫ t

t0

dt′〈Ψ0|
[
ÔI(t), Ĥext,I(t

′)
]
|Ψ0〉, (S15)

As a side remark, beyond linear-response solutions can be obtained by higher-order terms in
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Eq. (S12). Staying within linear response, we can now use Eq. (S15) to obtain the response

of the electron density to Ĥext(t) that is given by

δn(rt) = − i
h̄

∫ t

t0

dt′
∫
dr′〈Ψ0|

[
n̂I(rt), V̂ext,I(r

′t′)
]
|Ψ0〉 −

i

h̄

∑
α

∫ t

t0

dt′〈Ψ0|
[
n̂I(rt), Ĵext,I(t

′)
]
|Ψ0〉.

Simplifying further, the density response reads

δn(rt) = − i
h̄

∫ t
t0
dt′
∫
dr′〈Ψ0| [n̂I(rt), n̂I(r′t′)] |Ψ0〉δv(r′t′)

− i
h̄

∑
α

∫ t
t0
dt′ 1

ωα
〈Ψ0| [n̂I(rt), q̂α,I(t′)] |Ψ0〉δjα(t′).

The response of the density to the external perturbation (v(rt), jα(t)) is

δn(rt) =

∫ ∞
t0

dt′
∫
dr′χnn(rt, r′t′)δv(r′t′) +

∑
α

∫ ∞
t0

dt′χnqα(rt, t′)δjα(t′),

where the response functions are

χnn(rt, r′t′) = − i
h̄

Θ(t− t′)〈Ψ0| [n̂I(rt), n̂I(r′t′)] |Ψ0〉, (S16)

χnqα(rt, t′) = − i
h̄

Θ(t− t′) 1

ωα
〈Ψ0| [n̂I(rt), q̂α,I(t′)] |Ψ0〉. (S17)

Similarly, the response of the photon coordinate qα(t) to Ĥext(t) is

δqα(t) = − i
h̄

∫ t

t0

dt′〈Ψ0|
[
q̂α,I(t), V̂ext,I(t

′)
]
|Ψ0〉 −

i

h̄

∫ t

t0

dt′〈Ψ0|
[
q̂α,I(t), Ĵext,I(t

′)
]
|Ψ0〉.

Following similar steps as above, the response of the photon coordinate to the external

perturbation (v(rt), jα(t)) is

δqα(t) =

∫ ∞
t0

dt′
∫
dr′χqαn (t, r′t′)δv(r′t′) +

∑
α′

∫ ∞
t0

dt′χqαqα′ (t, t
′)δjα′(t′),
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where the response functions are

χqαn (t, r′t′) = − i
h̄

Θ(t− t′)〈Ψ0| [qα,I(t), n̂I(r′t′)] |Ψ0〉, (S18)

χqαqα′ (t, t
′) = − i

h̄
Θ(t− t′) 1

ωα′
〈Ψ0| [qα,I(t), q̂α′,I(t

′)] |Ψ0〉. (S19)

Alternatively, the response functions of Eqs.(S16)-(S19) can be obtained using the functional

dependence of the observables on the external pair (v(rt), jα(t)). The wave function of

Eq. (2) in the main manuscript has a functional dependence Ψ([v, jα]; t) via the Hamiltonian

Eq. (S6), i.e., Ĥ(t) = Ĥ([v, jα]; t). Therefore, through the expectation of electron density

and photon displacement coordinate, both have a functional dependence on the external pair

as n([v, jα]; rt) and qα([v, jα]; t), respectively.

Considering the ground-state problem with external potential and current of (v0(r), jα,0),

we can perform a functional Taylor expansion of the density n(rt) and photon coordinate

qα(t) to first-order as

n([v, jα]; rt) = n([v0, jα,0]; r) +

∫∫
dr′dt′

δn([v0, jα,0]; rt)

δv(r′t′)
δv(r′t′) +

∑
α

∫
dt′
δn([v0, jα,0]; rt)

δjα(t′)
δjα(t′),

qα([v, jα]; t) = qα([v0, jα,0]) +

∫∫
dr′dt′

δqα([v0, jα,0]; t)

δv(r′t′)
δv(r′t′) +

∑
α′

∫
dt′
δqα([v0, jα,0]; t)

δjα′(t′)
δjα′(t′).

This reduces to the response of the electron density and photon coordinate given as

δn([v, jα]; rt) =

∫∫
dr′dt′χnv (rt, r′t′)δv(r′t′) +

∑
α

∫
dt′χnjα(rt, t′)δjα(t′),

and

δqα([v, jα]; t) =

∫∫
dr′dt′χqαv (t, r′t′)δv(r′t′) +

∑
α′

∫
dt′χqαjα′ (t, t

′)δjα′(t′),
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where we define the response functions of the above relation as

χnv (rt, r′t′) =
δn([v, jα]; rt)

δv(r′t′)

∣∣∣∣
v0(r),jα,0

, (S20)

χnjα(rt, t′) =
δn([v, jα]; rt)

δjα(t′)

∣∣∣∣
v0(r),jα,0

, (S21)

χqαv (t, r′t′) =
δqα([v, jα]; t)

δv(r′t′)

∣∣∣∣
v0(r),jα,0

, (S22)

χqαjα′ (t, t
′) =

δqα([v, jα]; t)

δjα′(t′)

∣∣∣∣
v0(r),jα,0

. (S23)

These response functions defined in Eqs.(S16)-(S19) and Eqs.(S20)-(S23) are equivalent.

The response functions expressed in the so-called Lehmann representation are given by

χnn(r, r′, ω) =
1

h̄
lim
η→0+

∑
k

[
fk(r)f

∗
k (r′)

ω − Ωk + iη
− fk(r

′)f ∗k (r)

ω + Ωk + iη

]
,

χnqα(r, ω) =
1

h̄
lim
η→0+

∑
k

1

ωα

[
fk(r)g

∗
α,k

ω − Ωk + iη
− gα,kf

∗
k (r)

ω + Ωk + iη

]
,

χqαn (r′, ω) =
1

h̄
lim
η→0+

∑
k

[
gα,kf

∗
k (r′)

ω − Ωk + iη
−

fk(r
′)g∗α,k

ω + Ωk + iη

]
,

χqαqα′ (ω) =
1

h̄
lim
η→0+

∑
k

1

ωα′

[
gα,kg

∗
α′,k

ω − Ωk + iη
−

gα′,kg
∗
α,k

ω + Ωk + iη

]
,

where fk(r) = 〈Ψ0|n̂(r)|Ψk〉 and gα,k = 〈Ψ0|q̂α|Ψk〉 are the transition matrix elements and

|Ψ0〉 is the correlated electron-photon ground state wave function. The excitation energies

Ωk = (Ek − E0)/h̄ of the finite interacting system are the poles of the response functions of

the unperturbed system. As a side remark, if we can choose the wave functions Ψ0 and Ψk

to be real, we find gα,k = g∗α,k, and fk(r) = f ∗k (r), thus χqαn (r, ω) = ωαχ
n
qα(r, ω).

S3 Linear-response within QEDFT

In this section, we present linear-response in QEDFT by employing the maps between in-

teracting and non-interacting system, we express the interacting response functions in terms
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of two non-interacting response functions and exchange correlation kernels. The responses

due to (v(rt), jα(t)) are evaluated at the ground-state (v0(r), jα,0) and will not be written

explicitly.

The non-interacting subsystems moving in an effective potential and current (vs(rt), j
s
α(t))

can be written as a time-dependent problem of the Schrödinger

ih̄
∂

∂t
Φ(t) = ĤKS(t)Φ(t). (S24)

Here, Φ(t) is the wave function of the auxiliary non-interacting system and the non-interacting

effective Hamiltonian ĤKS(t) = Ĥ
(0)
KS + Ĥ

(ext)
KS (t) that is meant to reproduce the exact density

and displacement field, is given explicitly as

Ĥ
(0)
KS = T̂ + Ĥpt +

(
v0(r) + v

(0)
Mxc([n, qα]; r)

)
+
∑
α

1

ωα

(
jα,0 + j

(0)
α,Mxc[n, qα]

)
q̂α,

and

Ĥ
(ext)
KS (t) = (v(rt) + vMxc([n, qα]; rt)) +

∑
α

1

ωα
(jα(t) + jα,Mxc ([n, qα]; t)) q̂α.

Here Ĥpt = 1
2

∑M
α=1 [p̂2

α + ω2
αq̂

2
α] is the oscillator for the photon mode and the mean-field xc

potential and current are defined as

vMxc([n, qα]; rt) := vs([n]; rt)− v([n, qα]; rt), (S25)

jα,Mxc([n, qα]; t) := jsα([qα]; t)− jα([n, qα]; t). (S26)

In the above definitions of vMxc([n, qα]; rt) and jα,Mxc([n, qα]; t), the initial state dependence

of the interacting Ψ0 and non-interacting Φ0 system has been dropped. For completeness,

the definition of jα,Mxc([n, qα]; t) accounts for a functional dependence on qα but this term

can be calculated explicitly since it has no xc part as seen in Eq. (8) of the main manuscript.
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The simplified form of jα,Mxc is shown in Eq. (6) of the main manuscript.

Through similar steps as in Eqs.(S11)-(S13), in first-order the solution of the Schrödinger-

Kohn-Sham equation reads

Φ(t) ' ÛKS,0(t)Φ0 −
i

h̄
ÛKS,0(t)

∫ t

t0

dt′Ĥ
(ext)
KS,I (t′)Û †KS,0(t)Φ0. (S27)

where ÛKS,0 = e−iĤ
(0)
KS t/h̄. Next, the bijective mapping between the interacting and non-

interacting system that yields the same density and photon coordinate is given as

(v(rt), jα(t))
1:1←→
Ψ0

(n(rt), qα(t))
1:1←→
Φ0

(vs(rt), j
s
α(t)), (S28)

which can be inverted as (vs([v, jα]; r′t′), jsα([v, jα]; t′)). The response of the electronic sub-

system due to the perturbations with the external pair (v(rt), jα(t)) is

δn(rt) = − i
h̄

∫∫
dτdx

∫∫
dt′dr′〈Φ0| [n̂I(rt), n̂I(xτ)] |Φ0〉

δvs([v, jα];xτ)

δv(r′t′)
δv(r′t′)

− i
h̄

∫∫
dτdx

∑
α

∫
dt′〈Φ0| [n̂I(rt), n̂I(xτ)] |Φ0〉

δvs([v, jα];xτ)

δjα(t′)
δjα(t′).

Where 〈Φ0| [n̂I(rt), q̂α,I(τ)] |Φ0〉 = 0 since both, electronic and photonic subsystems, are

independent in the non-interacting system. From Eq. (S28), we have (vs([n]; rt), jsα([qα]; t))

such that the above equation becomes

δn(rt) =

∫∫
dτdx

∫∫
dt′dr′

∫∫
dτ ′dyχnn,s(rt,xτ)

δvs([n];xτ)

δn(yτ ′)

δn([v, jα];yτ ′)

δv(r′t′)
δv(r′t′)

+

∫∫
dτdx

∑
α

∫
dt′
∫∫

dτ ′dyχnn,s(rt,xτ)
δvs([n];xτ)

δn(yτ ′)

δn([v, jα];yτ ′)

δjα(t′)
δjα(t′), (S29)

where χnn,s(rt,xτ) = (−i/h̄)Θ(t − τ)〈Φ0| [n̂I(rt), n̂I(xτ)] |Φ0〉 is the non-interacting density-

density response function. For clarity, the above density response is δn(rt) = δnv(rt) +

δnj(rt), where (δnv(rt), δnj(rt)) is the density response to the external pair (v(rt), jα(t)),

respectively.

S-10



Using Eqs.(S25) and (S26), we define the mean-field xc kernels as:

fnMxc([n, qα]; rt, r′t′) =
δvs([n]; rt)

δn(r′t′)
− δv([n, qα]; rt)

δn(r′t′)
, (S30)

f qαMxc([n, qα]; rt, t′) = −δv([n, qα]; rt)

δqα(t′)
, (S31)

gnMxc([n, qα]; t, r′t′) = −δjα([n, qα]; t)

δn(r′t′)
, (S32)

g
qα′
Mxc([n, qα]; t, t′) =

δjsα([qα]; t)

δqα′(t′)
− δjα([n, qα]; t)

δqα′(t′)
, (S33)

where δvs([n];rt)
δqα(t′)

= 0 = δjsα([qα];t)
δn(r′t′)

. These kernels are the respective inverse of the interacting

and non-interacting response functions.

From Eq. (S29), density response to δv(rt) can be written in terms of the density-density

response function given by

χnn(rt, r′t′) =

∫∫
dτdxχnn,s(rt,xτ)

∫∫
dτ ′dyfnMxc([n, qα];xτ,yτ ′)

δn([v, jα];yτ ′)

δv(rt′)

+

∫∫
dτdxχnn,s(rt,xτ)

∫∫
dτ ′dy

δv([n, qα];xτ)

δn(yτ ′)

δn([v, jα];yτ ′)

δv(r′t′)
.

Making the following substitution in the above equation

∫∫
dydτ ′

δv([n, qα];xτ)

δn(yτ ′)

δn([v, jα];yτ ′)

δv(r′t′)
= δ(x− r′)δ(τ − t′)−

∑
α

∫
dτ ′

δv([n, qα];xτ)

δqα(τ ′)

δqα([v, jα]; τ ′)

δv(r′t′)
,

where δv([n, qα];xτ)/δv(r′t′) = δ(x− r′)δ(τ − t′), we obtain the relation

χnn(rt, r′t′) = χnn,s(rt, r
′t′) +

∫∫∫∫
dτdxdτ ′dyχnn,s(rt,xτ)fnMxc(xτ,yτ

′)χnn(yτ ′, r′t′)

+
∑
α

∫∫∫
dτdxdτ ′χnn,s(rt,xτ)f qαMxc(xτ, τ

′)χqαn (τ ′, r′t′). (S34)

Next, the density response to δjα(t) in Eq. (S29) is expressed in terms of the response
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function as

χnqα(rt, t′) =

∫∫
dτdxχnn,s(rt,xτ)

∫∫
dτ ′dyfnMxc(xτ,yτ

′)
δn([v, jα];yτ ′)

δjα(t′)

+

∫∫
dτdxχnn,s(rt,xτ)

∫∫
dτ ′dy

δv([n, qα];xτ)

δn(yτ ′)

δn([v, jα];yτ ′)

δjα(t′)
.

Using the relation (obtained from δv([n, qα];xτ)/δjα(t′))

∫∫
dydτ ′

δv([n, qα];xτ)

δn(yτ ′)

δn([v, jα];yτ ′)

δjα(t′)
= −

∑
α′

∫
dτ ′

δv([n, qα];xτ)

δqα′(τ ′)

δqα′([v, jα]; τ ′)

δjα(t′)
,

the response function is given as

χnqα(rt, t′) =

∫∫∫∫
dτdxdτ ′dyχnn,s(rt,xτ)fnMxc(xτ,yτ

′)χnqα(yτ ′, t′)

+
∑
α′

∫∫∫
dτdxdτ ′χnn,s(rt,xτ)f

qα′
Mxc(xτ, τ

′)χqα′qα (τ ′, t′). (S35)

Similarly, the response to the photonic subsystem to linear perturbations from the exter-

nal pair (v(rt), jα(t)) is

δqα(t) = − i
h̄

∑
β

∫ t

t0

dτ
1

ωβ
〈Φ0| [qα,I(t), qβ,I(τ)] |Φ0〉

∫∫
dt′dr′

δjsβ([v, jα]; τ)

δv(r′t′)
δv(r′t′)

− i
h̄

∑
β

∫ t

t0

dτ
1

ωβ
〈Φ0| [qα,I(t), qβ,I(τ)] |Φ0〉

∑
α′

∫
dt′
δjsβ([v, jα]; τ)

δjα′(t′)
δjα′(t′),

where 〈Φ0| [q̂α,I(t), n̂I(xτ)] |Φ0〉 = 0 in the non-interacting system. By defining the non-

interacting photon-photon response function as χqαqβ,s(t, τ) = (−i/h̄)Θ(t−τ)(1/ωβ)〈Φ0| [qα,I(t), qβ,I(τ)] |Φ0〉

and using Eq. (S28), where we have (vs([n]; rt), jsα([qα]; t)), the response can be written as

δqα(t) =
∑
β

∫
dτχqαqβ,s(t, τ)

∑
β′

∫∫∫
dt′dr′dτ ′

δjsβ([qα]; τ)

δqβ′(τ ′)

δqβ′([v, jα]; τ ′)

δv(r′t′)
δv(r′t′)

+
∑
β

∫
dτχqαqβ,s(t, τ)

∑
α′,β′

∫∫
dt′dτ ′

δjsβ([qα]; τ)

δqβ′(τ ′)

δqβ′([v, jα]; τ ′)

δjα′(t′)
δjα′(t′). (S36)
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The above response of the displacement field is δqα(t) = δqα,v(t)+δqα,j(t), where (δqα,v(t), δqα,j(t))

is the response to the external pair (v(rt), jα(t)), respectively.

From Eq. (S36), the field response to δv(rt) can be written in terms of the photon-density

response function as

χqαn (t, r′t′) =
∑
β

∫
dτχqαqβ,s(t, τ)

∑
β′

∫
dτ ′g

qβ′

Mxc(τ, τ
′)χ

qβ′
n (τ ′, r′t′)

+
∑
β

∫
dτχqαqβ,s(t, τ)

∑
β′

∫
dτ ′

δjβ([n, qα]; τ)

δqβ′(τ ′)

δqβ′([v, jα]; τ ′)

δv(r′t′)
.

Using the relation (obtained from δjβ([n, qα]; τ)/δv(r′t′))

∑
β′

∫
dτ ′

δjβ([n, qα]; τ)

δqβ′(τ ′)

δqβ′([v, jα]; τ ′)

δv(rt′)
= −

∫∫
dτ ′dy

δjβ([n, qα]; τ)

δn(yτ ′)

δn([v, jα];yτ ′)

δv(r′t′)
,

the response function is given as

χqαn (t, r′t′) =
∑
β

∫
dτ

∫∫
dτ ′dyχqαqβ,s(t, τ)g

nβ
Mxc(τ,yτ

′)χnn(yτ ′, r′t′), (S37)

where g
nβ
Mxc = g

nβ
M and gqαMxc = 0 as determined from the equation of motion for the dis-

placement field. Also, from Eq. (S36), field response to δjα can be written in terms of the

photon-photon response function as

χqαqα′ (t, t
′) =

∑
β

∫
dτχqαqβ,s(t, τ)

∑
β′

∫
dτ ′g

qβ′

Mxc(τ, τ
′)χ

qβ′
qα′ (τ

′, t′)

+
∑
β

∫
dτχqαqβ,s(t, τ)

∑
β′

∫
dτ ′

δjβ([n, qα]; τ)

δqβ′(τ ′)

δqβ′([n, qα]; τ ′)

δjα′(t′)
.

Making the following substitution (where δjβ([n, qα]; τ)/δjα′(t′) = δ(τ − t′)δβ,α′) in the above

equation

∑
β′

∫
dτ ′

δjβ([n, qα]; τ)

δqβ′(τ ′)

δqβ′([v, jα]; τ ′)

δjα′(t′)
= δ(τ − t′)δβ,α′ −

∫∫
dτ ′dx

δjβ([n, qα]; τ)

δn(xτ ′)

δn([v, jα];xτ ′)

δjα′(t′)
,
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yields the photon-photon response function

χqαqα′ (t, t
′) = χqαqα′,s(t, t

′) +
∑
β

∫∫∫
dτdτ ′dxχqαqβ,s(t, τ)g

nβ
Mxc(τ,xτ

′)χnqα′ (xτ
′, t′), (S38)

where g
qβ′

Mxc = 0 since jα,M in Eq. (6) of the main manuscript has no functional dependency

on qα.

S4 Matrix formulation of QEDFT response equations

In this section we present a matrix formulation of non-relativistic QEDFT response equations

which in the no-coupling limit reduces to Casida equation. Through a Fourier transform of

Eqs.(S34)-(S35) and Eqs.(S37)-(S38) and making a substitution into Eqs.(35)-(38) (main

manuscript), we express the responses in the following form:

δnv(r, ω) =
∑
i,a

[
ϕa(r)ϕ

∗
i (r)P

(1)
ai,v(ω) + ϕi(r)ϕ

∗
a(r)P

(1)
ia,v(ω)

]
, (S39)

δnj(r, ω) =
∑
i,a

[
ϕa(r)ϕ

∗
i (r)P

(1)
ai,j(ω) + ϕi(r)ϕ

∗
a(r)P

(1)
ia,j(ω)

]
, (S40)

δqα,v(ω) = L
(1)
α,v,−(ω) + L

(1)
α,v,+(ω), (S41)

δqα,j(ω) = L
(1)
α,j,−(ω) + L

(1)
α,j,+(ω). (S42)

Here, the subscripts (v, j) on the first-order responses P
(1)
ia,v, P

(1)
ia,j, P

(1)
ai,v, P

(1)
ai,j, L

(1)
α,v,± and

L
(1)
α,j,± shows to what external perturbations (δv(r, t), δjα(t)) is being considered to induce

the coupled responses. In defining Eqs.(S39)-(S42), we used the static KS orbitals in

the Lehmann spectral representation of χnn,s(r, r
′, ω) and photon-photon response function
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χqαqα,s(ω) for a single-photon in Fock number basis are given as

χnn,s(r, r
′, ω) =

∑
i,a

(
ψa(r)ψi(r

′)ψ∗i (r)ψ
∗
a(r
′)

ω − (εa − εi) + iη
− ψi(r)ψa(r

′)ψ∗a(r)ψ
∗
i (r
′)

ω + (εa − εi) + iη

)
,

χqαqα,s(ω) =
1

2ω2
α

(
1

ω − ωα + iη
− 1

ω + ωα + iη

)
.

where the summations over occupied and unoccupied Kohn-Sham orbitals are performed

according to
∑

i =
∑N

i=1 and
∑

a =
∑∞

a=N+1 and from here on limη→0+ is implied. The

first-order responses P
(1)
ia,v, P

(1)
ia,j, P

(1)
ai,v, P

(1)
ai,j, L

(1)
α,v,± and L

(1)
α,j,± are given by

[ω − ωai]P(1)
ai,v(ω) =

∫
drϕi(r)ϕ

∗
a(r)δv

(1)
KS,v(r, ω), (S43)

[ω + ωai]P
(1)
ia,v(ω) = −

∫
drϕa(r)ϕ

∗
i (r)δv

(1)
KS,v(r, ω), (S44)

[ω − ωai]P(1)
ai,j(ω) =

∫
drϕi(r)ϕ

∗
a(r)δv

(1)
KS,j(r, ω), (S45)

[ω + ωai]P
(1)
ia,j(ω) = −

∫
drϕa(r)ϕ

∗
i (r)δv

(1)
KS,j(r, ω), (S46)

[ω − ωα]L
(1)
α,v,−(ω) =

1

2ω2
α

δj
(1)
α,KS,v(ω), (S47)

[ω + ωα]L
(1)
α,v,+(ω) = − 1

2ω2
α

δj
(1)
α,KS,v(ω), (S48)

[ω − ωα]L
(1)
α,j,−(ω) =

1

2ω2
α

δj
(1)
α,KS,j(ω), (S49)

[ω + ωα]L
(1)
α,j,+(ω) = − 1

2ω2
α

δj
(1)
α,KS,j(ω), (S50)
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where ωai = (εa− εi) and the respective effective potentials and currents (δvs,ν(r, ω), jsα,ν(ω))

as

δv
(1)
KS,v(r, ω) = δv(r, ω) +

∫
dr′fnMxc(r, r

′, ω)δnv(r
′, ω) +

∑
α

f qαMxc(r, ω)δqα,v(ω), (S51)

δv
(1)
KS,j(r, ω) =

∫
dr′fnMxc(r, r

′, ω)δnj(r
′, ω) +

∑
α

f qαMxc(r, ω)δqα,j(ω), (S52)

δj
(1)
α,KS,v(ω) =

∫
drgnαM (r)δnv(r, ω), (S53)

δj
(1)
α,KS,j(ω) = δjα(ω) +

∫
drgnαM (r)δnj(r, ω). (S54)

The mean-field kernel is given by gnαM (r) = −ω2
αλα · r. As stated above, the subscripts (v, j)

on the responses, KS potentials and currents signifies as to what external perturbations

(δv(r, t), δjα(t)) is being considered. The Kohn-Sham scheme of QEDFT decouples the

interacting system such that the responses are paired as (δnv(r, ω), δqα,v(ω)) due to δv(r, ω)

and (δnj(r, ω), δqα,jα(ω)) due to δjα(ω). Therefore, substituting Eqs.(S51) and (S53) into

Eqs.(S43)-(S44) and Eqs.(S47)-(S48) and after some simplification, we obtain

∑
j,b

[δabδij (ωai − ω) +Kai,jb(ω)]P
(1)
bj,v(ω) +Kai,bj(ω)P

(1)
jb,v(ω) +

∑
α

δabδijMα,bj(ω)
(
L

(1)
α,v,−(ω) + L

(1)
α,v,+(ω)

)
= −vai(ω), (S55)∑
j,b

[δabδij (ωai + ω) +Kia,bj(ω)]P
(1)
jb,v(ω) +Kia,jb(ω)P

(1)
bj,v(ω) +

∑
α

δabδijMα,jb(ω)
(
L

(1)
α,v,−(ω) + L

(1)
α,v,+(ω)

)
= −via(ω), (S56)

[ωα − ω]L
(1)
α,v,−(ω) +

∑
jb

[
Nα,jbP

(1)
bj,v(ω) +Nα,bjP

(1)
jb,v(ω)

]
= 0, (S57)

[ωα + ω]L
(1)
α,v,+(ω) +

∑
jb

[
Nα,jbP

(1)
bj,v(ω) +Nα,bjP

(1)
jb,v(ω)

]
= 0, (S58)
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Also, substituting Eqs.(S52) and (S54) into Eqs.(S45)-(S46) and Eqs.(S49)-(S50) and after

some simplification, we obtain

∑
j,b

δabδij

[
((ωai − ω) +Kai,jb(ω))P

(1)
bj,j(ω) +Kai,bj(ω)P

(1)
jb,j(ω) +

∑
α

Mα,bj(ω)
[
L

(1)
α,j,−(ω) + L

(1)
α,j,+(ω)

]]
= 0,

(S59)∑
j,b

δabδij

[
((ωai + ω) +Kia,bj(ω))P

(1)
jb,j(ω) +Kia,jb(ω)P

(1)
bj,j(ω) +

∑
α

Mα,jb(ω)
[
L

(1)
α,j,−(ω) + L

(1)
α,j,+(ω)

]]
= 0,

(S60)

[ωα − ω]L
(1)
α,j,−(ω) +

∑
jb

[
Nα,jbP

(1)
bj,j(ω) +Nα,bjP

(1)
jb,j(ω)

]
= − 1

2ω2
α

δjα(ω), (S61)

[ω + ωα]L
(1)
α,j,+(ω) +

∑
jb

[
Nα,jbP

(1)
bj,j(ω) +Nα,bjP

(1)
jb,j(ω)

]
= − 1

2ω2
α

δjα(ω), (S62)

where we defined the coupling matrices

Kai,jb(ω) =

∫∫
drdyϕi(r)ϕ

∗
a(r)f

n
Mxc(r,y, ω)ϕb(y)ϕ∗j(y), (S63)

Mα,ai(ω) =

∫
drϕi(r)ϕ

∗
a(r)f

qα
Mxc(r, ω), (S64)

Nα,ia =
1

2ω2
α

∫
drϕ∗i (r)ϕa(r)g

nα
M (r), (S65)

and

via(ω) =

∫
drϕ∗i (r)δv(r, ω)ϕa(r). (S66)

The coupling matrix Nα,ia has no frequency dependence since this is just the mean-field kernel

of the photon modes. We now introduce the following abbreviations L(ω) = δabδij (εa − εi)+

Kai,jb(ω), K(ω) = Kai,jb(ω), M(ω) = Mα,bj(ω), N = Nα,bj, X1(ω) = P
(1)
bj,v(ω), Y1(ω) =

P
(1)
jb,v(ω), X2(ω) = P

(1)
bj,j(ω), Y2(ω) = P

(1)
jb,j(ω), A1(ω) = L

(1)
α,v,−(ω), B1(ω) = L

(1)
α,v,+(ω),

A2(ω) = L
(1)
α,j,−(ω), B2(ω) = L

(1)
α,j,+(ω), V (ω) = −vai(ω), Jα(ω) = − δjα(ω)

2ω2
α

.
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Using these notations, we cast Eqs.(S55)-(S58) and Eqs.(S59)-(S62) into two matrix

equations given by





L(ω) K(ω) M(ω) M(ω)

K∗(ω) L(ω) M∗(ω) M∗(ω)

N N∗ ωα 0

N N∗ 0 ωα


+ ω



−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1







X1(ω)

Y1(ω)

A1(ω)

B1(ω)


=



V (ω)

V ∗(ω)

0

0


(S67)



L(ω) K(ω) M(ω) M(ω)

K∗(ω) L(ω) M∗(ω) M∗(ω)

N N∗ ωα 0

N N∗ 0 ωα


+ ω



−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1







X2(ω)

Y2(ω)

A2(ω)

B2(ω)


=



0

0

Jα(ω)

Jα(ω)


(S68)

Next, we argue that the right hand side of the above matrices remains finite as the frequency

ω approaches the exact excitation frequencies ω → Ωq of the interacting system while the

density and displacement field responses on the left hand side has poles at the true excitation

frequencies Ωq. This allows us to cast Eq. (S67) and Eq. (S68) into an eigenvalue problem



L(Ωq) K(Ωq) M(Ωq) M(Ωq)

K∗(Ωq) L(Ωq) M∗(Ωq) M∗(Ωq)

N N∗ ωα 0

N N∗ 0 ωα





X1(Ωq)

Y1(Ωq)

A1(Ωq)

B1(Ωq)


= Ωq



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1





X1(Ωq)

Y1(Ωq)

A1(Ωq)

B1(Ωq)


(S69)
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(Ωq) K(Ωq) M(Ωq) M(Ωq)

K∗(Ωq) L(Ωq) M∗(Ωq) M∗(Ωq)

N N∗ ωα 0

N N∗ 0 ωα





X2(Ωq)

Y2(Ωq)

A2(Ωq)

B2(Ωq)


= Ωq



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1





X2(Ωq)

Y2(Ωq)

A2(Ωq)

B2(Ωq)


(S70)

It is convenient to cast Eqs.(S69) and (S70) into a Hermitian eigenvalue problem which is

given by

 U V

V T ω2
α


 E1

P1

 = Ω2
q

 E1

P1

 , (S71)

 U V

V T ω2
α


 E2

P2

 = Ω2
q

 E2

P2

 , (S72)

where we assumed real-valued orbitals, i.e., K = K∗, M = M∗ and N = N∗, and the

matrices are given by U = (L −K)1/2(L + K)(L −K)1/2, V = 2(L −K)1/2M1/2N1/2ω
1/2
α ,

V ∗ = 2ω
1/2
α N1/2M1/2(L−K)1/2, and the eigenvectors are E1 = N1/2(L−K)−1/2(X1 + Y1)

and P1 = M1/2ω
−1/2
α (A1 + B1).

The pseudo-eigenvalue problem of Eqs.(S71) and (S72) is the final form of QEDFT matrix

equation for obtaining exact excitation frequencies and oscillator strengths.

S5 Oscillator Strengths

In this section, we derive the oscillator strengths resulting from the eigenvectors of the

pseudo-eigenvalue problem of Eqs.(S71) and (S72). Multiplying out Eq. (S67), we write the
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matrix equation in the form

(L+K)(X1 + Y1) + 2M(A1 + B1)− ω(X1 −Y1) = −2v,

(L−K)(X1 −Y1)− ω(X1 + Y1) = 0,

2N(X1 + Y1) + ωα(A1 + B1)− ω(A1 −B1) = 0,

ωα(A1 −B1)− ω(A1 + B1) = 0.

From here on we set S = (L−K), the above pair of equations now becomes

S(L+K)E1 + 2SMP1 − ω2E1 = −2Sv,

2ωαNE1 + ω2
αP1 − ω2P1 = 0.

This can be written in matrix form as
 S(L+K) 2SM

2ωαN ω2
α

− ω2

 1 0

0 1



 E1

P1

 = −

 2Sv

0

 , (S73)

where E1 = X1 + Y1 and P1 = A1 + B1. We perform the same steps as above to make the

nonlinear eigenvalue problem Hermitian and obtain

[
C − ω21

] N1/2S−1/2E1

M1/2ω
−1/2
α P1

 = −

 2N1/2S1/2v

0

 , (S74)

where C =

 U V

V ∗ ω2
α

. We determine the vectors given as

E1 = −2S1/2
[
C − ω21

]−1
S1/2v, (S75)

P1 = −2ω1/2
α M−1/2

[
C − ω21

]−1
N1/2S1/2v. (S76)
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When ZI is normalized, we can use the spectral expansion to get

[
C − ω21

]−1
=
∑
I

ZIZ
†
I

Ω2
I − ω2

, (S77)

where ZI =

 E1I

P1I

. The oscillator strength for the density-density response function

which is related to the dynamic polarizability is given in Eq.(54) in the main manuscript.

S5.1 Oscillator strength for the photon-matter response function

Next, we substitute the expression of the spectral expansion Eq. (S77) in Eq. (S76) and by

substituting P1 in Eq. (S40) yields

δqα,v(ω) =
∑
I

{
2ω

1/2
α M−1/2ZIZ

†
IN

1/2S1/2

ω2 − Ω2
I

}
v(ω).

The oscillator strength is given by

fpnI,α = 2ω1/2
α M−1/2ZIZ

†
IN

1/2S1/2. (S78)

Also, from Eq.(36) of the main manuscript and using the Lehmann representation of the

response function χqαn (r′, ω) the response δqα,v(ω) is given by

δqα,v(ω) =

∫
dr′
∑
k

[
2Ωk〈Ψ0|q̂α|Ψk〉〈Ψk|n̂(r′)|Ψ0〉

ω2 − Ω2
k

]
δv(r′, ω),

The oscillator strength of Eq.(S78) can be expressed as matrix elements of the internal pair

(n̂(r), q̂α) as

fα,k(r
′) = 2Ωk〈Ψ0|q̂α|Ψk〉〈Ψk|n̂(r′)|Ψ0〉 ≡ fpnI,α. (S79)
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S5.2 Oscillator strength for the matter-photon response function

Following similar steps as above with Eq. (S68) we obtain

E2 = −2S1/2N−1/2
[
C − ω21

]−1
M1/2ω1/2

α J ′α, (S80)

P2 = −2ω1/2
α

[
C − ω21

]−1
ω1/2
α J ′α. (S81)

where J ′α(ω) = jα(ω)
2ω2
α

and Jα(ω) = −J ′α(ω). By substituting the spectral expansion Eq. (S77)

in E2 and further substituting in Eq. (S41) yields

δnj(r, ω) = −2
∑
ia,I

ΦiaS
1/2N−1/2ZIZ

†
IM

1/2ω
1/2
α Φai

(Ω2
I − ω2)

J ′α(ω).

Following a similar procedure as above, we express the density response to the external

charge current as

δnj(r, ω) =
∑
I

{
ΦiaS

1/2N−1/2ZIZ
†
IM

1/2ω
1/2
α Φia

ω2 − Ω2
I

}
jα(ω)

ω2
α

,

where Φia(r) = ϕ∗i (r)ϕa(r) and the oscillator strength is given by

fnpI,α =
1

ωα
ΦiaS

1/2N−1/2ZIZ
†
IM

1/2ω1/2
α Φia. (S82)

From Eq.(37) of the main manuscript and using the Lehmann representation of the response

function χnqα(r, ω), the response δnj(r, ω) is given by

δnj(r, ω) =
∑
α,k

[
2Ωk〈Ψ0|n̂(r)|Ψk〉〈Ψk|q̂α|Ψ0〉

ω2 − Ω2
k

]
δjα(ω)

ωα
,

The oscillator strength of Eq.(S82) can be expressed as matrix elements of the internal pair

(n̂(r), q̂α) as

fk,α(r) = 2Ωk〈Ψ0|n̂(r)|Ψk〉〈Ψk|q̂α|Ψ0〉 ≡ fnpI,α. (S83)
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S5.3 Oscillator strength for the photon-photon response function

We define a collective photon coordinate for the α modes Q =
∑

α qα (in analogy with

R =
∑

i eri ). By perturbing the photon field through the photon coordinate with an

external charge current jα(ω), we induce a polarization of the field of mode α which we

denote as Q(ω) =
∑

α βα(ω)jα(ω). Where βα(ω) is the polarizability of field of the α mode.

To first-order, the collective coordinate is given by

δQ(t) =
∑
α

δqα(t). (S84)

The field polarizability in frequency space can be written as

βα(ω) =
∑
α′

δqα(ω)

δjα′(ω)
. (S85)

By substituting Eq. (S81) in Eq. (S42) and using the spectral expansion yields

δqα,j(ω) = −
∑
I

2ω
1/2
α ZIZ

†
Iω

1/2
α

Ω2
I − ω2

J ′α.

By substituting the above relation in Eq. (S85) we obtain

βα(ω) = −
∑
α′

∑
I

2ω
1/2
α ZIZ

†
Iω

1/2
α

Ω2
I − ω2

δjα(ω)/2ω2
α

δjα′(ω)
,

which simplifies to

βα(ω) = −
∑
I

1

ω2
α

ω
1/2
α ZIZ

†
Iω

1/2
α

Ω2
I − ω2

. (S86)

Eq. (S86) is the field polarizability analogous to the atomic polarizability tensor of Eq. (52)

of the main manuscript. As in Eq.(53) of the main manuscript in which the molecular

isotropic polarizability, α(ω) is defined as the mean value of three diagonal elements of the
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polarizability tensor, i.e., α(ω) = 1/3 (αxx(ω) + αyy(ω) + αzz(ω)), we analogously define an

absorption cross section of the field given by

σ̃α(ω) ≡ 4πω

c
Im Trβα(ω)/3. (S87)

For the oscillator strength, from Eq.(38) of the main manuscript and using the Lehmann

representation of the response function χqαqα′ (ω) the response δqα,j(ω) is given by

δqα,j(ω) =
∑
α′,k

[
2Ωk〈Ψ0|q̂α|Ψk〉〈Ψk|q̂α′|Ψ0〉

ω2 − Ω2
k

]
δjα′(ω)

ωα′
.

We find the oscillator strength

fppI,α =
1

3ω2
α

∣∣∣Z†Iω1/2
α

∣∣∣2 =
2

3
ΩI

∑
α′

1

ωα′
〈Ψ0|q̂α|ΨI〉〈ΨI |q̂α′|Ψ0〉. (S88)
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