## Supporting Information:

## Light-Matter Response in Non-Relativistic Quantum Electrodynamics

Johannes Flick, ${ }^{*, \uparrow, \ddagger, \delta}$ Davis M. Welakuh, ${ }^{*, \ddagger}$ Michael Ruggenthaler, ${ }^{*, \ddagger}$ Heiko Appel, ${ }^{*, \ddagger}$ and Angel Rubio ${ }^{*, \ddagger, \uparrow, \|}$<br>$\dagger$ John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA<br>$\ddagger$ Max Planck Institute for the Structure and Dynamics of Matter and Center for<br>Free-Electron Laser Science 83 Department of Physics, Luruper Chaussee 149, 22761<br>Hamburg, Germany<br>【Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA<br>§Present address: Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA<br>|| Nano-Bio Spectroscopy Group, Departmento de Fisica de Materiales, Universidad del Pais Vasco UPV/EHU-20018 San Sebastián, Spain<br>E-mail: jflick@flatironinstitute.org; davis.welakuh@mpsd.mpg.de;<br>michael.ruggenthaler@mpsd.mpg.de; heiko.appel@mpsd.mpg.de; angel.rubio@mpsd.mpg.de

October 29, 2019

# Supplemental Information: <br> Light-Matter Response in Non-Relativistic Quantum Electrodynamics 

## S1 Current state of the art for spectroscopy: semiclassical description

To highlight the many differences of the presented framework to the standard linear-response approach we give here a brief recapitulation of the standard (matter-only) theory. The current theoretical description of linear spectroscopic techniques is built on the semi-classical approximation. ${ }^{\text {S1 }}$ Herein, the many-particle electronic system is treated quantum mechanically while the nuclei are subject to the Born-Oppenheimer approximation and the electromagnetic field appears as an external perturbation. As an external perturbation, the electromagnetic field probes the quantum system, but is not a dynamical variable of the complete system. To arrive at the semi-classical description starting from the full nonrelativistic description of the Pauli-Fierz Hamiltonian, ${ }^{, 52}$ several approximations are used to simplify the problem. In the following, we list these approximations explicitly

- The mean-field approximation renders the Pauli-Fierz Hamiltonian as a problem of two coupled equations, i.e. the time-dependent Pauli equation and the inhomogeneous Maxwell's equations, and is also know as the Maxwell-Pauli equation. ${ }^{\text {S3 }}$
- The decoupling of these Maxwell-Pauli equations leads to the inhomogeneous Maxwell's equation becoming independent of the electronic system and all field effects are treated as a classical external field that perturbs the many-electron system.
- The dipole approximation, which ensures the uniformity of the external (decoupled) field over the extend of the electronic system.

Based on these approximations the Pauli-Fierz Hamiltonian ${ }^{[53}$ reduces to the time-dependent semi-classical Hamiltonian for many-particle systems given as

$$
\begin{equation*}
\hat{H}_{e}(t)=\sum_{i=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{i}^{2}+v\left(\mathbf{r}_{i}, t\right)\right)+\frac{e^{2}}{4 \pi \epsilon_{0}} \sum_{i>j}^{N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}, \tag{S1}
\end{equation*}
$$

including the kinetic energy, time-dependent external potential and the longitudinal Coulomb interaction. The time-dependent external potential has two parts $v(\mathbf{r}, t)=v_{0}(\mathbf{r})+\delta v(\mathbf{r}, t)$. Here, $v_{0}(\mathbf{r})$ describes the attractive part of the external potential due to the nuclei and $\delta v(\mathbf{r}, t)=e \mathbf{r} \cdot \mathbf{E}_{\perp}(t)$ with $\mathbf{E}_{\perp}(t)$ being a classical external (transversal) probe field in dipole approximation that couples to the electronic subsystem. In this decoupling limit of light and matter, the many-particle wavefunction is labeled only by the particle coordinate and spin as $\Psi\left(\mathbf{r}_{1} \sigma_{1}, \ldots, \mathbf{r}_{N} \sigma_{N}\right)$. In the dipole approximation we can investigate dipole-related spectroscopic observables such as polarizabiltiy, absorption and emission spectra, etc from linear to all orders in the external perturbation. Consider the particular case of a response of an electronic system to an external weak probe field. In the dipole limit a key observable in the study of electronic and optical excitations in large many-particle systems is the electron density. Formulated within linear-response, the density response to an external perturbation is given as: [54

$$
\begin{align*}
\delta n(\mathbf{r} t) & =-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \int d \mathbf{r}^{\prime}\left\langle\Psi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{n}_{I}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle \\
& =\int_{t_{0}}^{t} d t^{\prime} \int d \mathbf{r}^{\prime} \tilde{\chi}_{n}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right) \tag{S2}
\end{align*}
$$

Here, $\tilde{\chi}_{n}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)$ is the density-density function with respect to the ground-state $\Psi_{0}\left(\mathbf{r}_{1} \sigma_{1}, \ldots, \mathbf{r}_{N} \sigma_{N}\right)$. Practical calculations for the response of a many-electron system is a considerable challenge due to the large degrees of freedom. In practice, time-dependent density functional theory (TDDFT) ${ }^{\underline{S 5 \mid S 6}}$ is one of the most frequently applied theories to approach this problem. Knowing the electron density in TDDFT we can in principle calculate all observables of
interest. Formulated within TDDFT linear-response, the density-density response function of the interacting system can be expressed in terms of non-interacting the density-density response function and an exchange-correlation (xc) kernel that has a form of a Dyson-type equation: ${ }^{[57}$

$$
\begin{equation*}
\tilde{\chi}_{n}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=\chi_{n, \mathrm{~s}}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)+\iint \mathrm{d} \mathbf{x} \mathrm{~d} \tau \iint \mathrm{~d} \tau^{\prime} \mathrm{d} \mathbf{y} \chi_{n, \mathrm{~s}}^{n}(\mathbf{r} t, \mathbf{x} \tau) f_{\mathrm{Hxc}}\left(\mathbf{x} \tau, \mathbf{y} \tau^{\prime}\right) \tilde{\chi}_{n}^{n}\left(\mathbf{y} \tau^{\prime}, \mathbf{r}^{\prime} t^{\prime}\right) \tag{S3}
\end{equation*}
$$

where $\chi_{n, \mathrm{~s}}^{n}$ and $f_{\mathrm{Hxc}}=\left(\chi_{n, \mathrm{~s}}^{n}\right)^{-1}-\left(\tilde{\chi}_{n}^{n}\right)^{-1}$. One of the most widely employed approaches to TDDFT linear-response is the Casida formalism which can be written in a compact matrix form. The Casida equation obtains the exact excitation energies $\Omega_{q}$ of the many-particle system and requires all occupied and unoccupied Kohn-Sham orbitals and energies including the continuum of states. In practice, the Casida equation is often cast into the following form

$$
\begin{equation*}
U \mathbf{E}=\Omega_{q}^{2} \mathbf{E} \tag{S4}
\end{equation*}
$$

The explicit form of the matrix elements is given as (with $q=(i, a)$ )

$$
\begin{align*}
U_{q q^{\prime}} & =\delta_{q q^{\prime}} \omega_{q}^{2}+2 \sqrt{\omega_{q} \omega_{q^{\prime}}} K_{q q^{\prime}}\left(\Omega_{q}\right),  \tag{S5}\\
K_{a i, j b}\left(\Omega_{q}\right) & =\iint d \mathbf{r} d \mathbf{r}^{\prime} \varphi_{i}(\mathbf{r}) \varphi_{a}^{*}(\mathbf{r}) f_{H x c}\left(\mathbf{r}, \mathbf{r}^{\prime}, \Omega_{q}\right) \varphi_{b}\left(\mathbf{r}^{\prime}\right) \varphi_{j}^{*}\left(\mathbf{r}^{\prime}\right) .
\end{align*}
$$

The Casida formalism is well established and has been applied to a variety of systems, see e.g. Refs. ${ }^{[88 / 512]}$ and references therein.

The many obvious shortcomings of the approximations that lead to the standard Schrödinger equation (S1) are well-known and discussed to some extend in the main part of the paper (for more details see, e.g., Ref. $\left.{ }^{[53}\right)$. We point out that all of the above ubiquitous fundamental equations are modified and the results based on the introduced generalized equations can differ strongly, as discussed in Sec. 3 of the main article.

## S2 Linear-response in non-relativistic QED

To help the reader with the unfamiliar generalized linear-response framework for coupled light-matter systems, we here derive the linear-response equations and the ensuing response functions presented in Sec. 1. In the non-relativistic setting of QED, the static and dynamical behavior of the coupled electron-photon systems is given by

$$
\begin{equation*}
\hat{H}(t)=\hat{H}_{0}+\hat{H}_{e x t}(t) \tag{S6}
\end{equation*}
$$

Where we define the time-independent electron-photon Hamiltonian as

$$
\begin{equation*}
\hat{H}_{0}=\hat{T}+\hat{W}_{e e}+\frac{1}{2} \sum_{\alpha=1}^{M}\left[\hat{p}_{\alpha}^{2}+\omega_{\alpha}^{2}\left(\hat{q}_{\alpha}-\frac{\boldsymbol{\lambda}_{\alpha}}{\omega_{\alpha}} \cdot \mathbf{R}\right)^{2}\right]+\sum_{i=1}^{N} v_{0}\left(\mathbf{r}_{i}\right)+\sum_{\alpha=1}^{M} \frac{j_{\alpha, 0}}{\omega_{\alpha}} \hat{q}_{\alpha} \tag{S7}
\end{equation*}
$$

where the kinetic energy operator is $\hat{T}=-\frac{\hbar^{2}}{2 m_{e}} \sum_{i=1}^{N} \nabla_{i}^{2}$, the Coulomb potential is $\hat{W}_{e e}=$ $\frac{e^{2}}{4 \pi \epsilon_{0}} \sum_{i<j}^{N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}$ and the time-dependent external perturbation is given by

$$
\begin{equation*}
\hat{H}_{e x t}(t)=\hat{V}_{e x t}(t)+\hat{J}_{e x t}(t) \tag{S8}
\end{equation*}
$$

Here, the time-dependent external potential and current are

$$
\begin{equation*}
\hat{V}_{e x t}(t)=\sum_{i=1}^{N} v\left(\mathbf{r}_{i}, t\right), \quad \hat{J}_{e x t}(t)=\sum_{\alpha} \frac{j_{\alpha}(t)}{\omega_{\alpha}} \hat{q}_{\alpha} \tag{S9}
\end{equation*}
$$

We now introduce the interaction picture, where a general state vector of the interacting electron-photon system is given by

$$
\Psi_{I}(t)=\hat{U}_{0}^{\dagger}(t) \Psi(t)=e^{i \hat{H}_{0} t / \hbar} \Psi(t)
$$

with $\Psi(t)$ as the state vector in the Schrödinger picture. Accordingly, an arbitrary operator
$\hat{O}$ can be transformed from the Schrödinger to the interaction picture by

$$
\begin{equation*}
\hat{O}_{I}(t)=\hat{U}_{0}^{\dagger}(t) \hat{O} \hat{U}_{0}(t) \tag{S10}
\end{equation*}
$$

In the interaction picture, the evolution of the interacting electron-photon system from an initial state $\Psi_{0}$ is described by the following time-dependent Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \Psi_{I}(t)=\hat{H}_{e x t, I}(t) \Psi_{I}(t) \tag{S11}
\end{equation*}
$$

Through an integration, the above equation can be formally solved to yield

$$
\begin{equation*}
\Psi_{I}(t)=\Psi_{0}-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \hat{H}_{e x t, I}\left(t^{\prime}\right) \Psi_{I}\left(t^{\prime}\right) \tag{S12}
\end{equation*}
$$

If we only keep the first order, we obtain in the Schrödinger picture a closed solution

$$
\begin{equation*}
\Psi(t) \simeq \hat{U}_{0}(t) \Psi_{0}-\frac{i}{\hbar} \hat{U}_{0}(t) \int_{t_{0}}^{t} d t^{\prime} \hat{H}_{e x t, I}\left(t^{\prime}\right) \Psi_{0} \tag{S13}
\end{equation*}
$$

In our case however, we are not interested in the time evolution of the wave function, but rather in the response of an observable $\hat{O}$ to (small) external perturbations. The change in the expectation value of an arbitrary observable $\hat{O}$ due to the external perturbation $\hat{H}_{\text {ext }}(t)$ is given by

$$
\begin{equation*}
\delta\langle\hat{O}(t)\rangle=\langle\Psi(t)| \hat{O}|\Psi(t)\rangle-\left\langle\Psi_{0}\right| \hat{O}\left|\Psi_{0}\right\rangle \tag{S14}
\end{equation*}
$$

In linear-response theory, we now assume that the external perturbation in Eq. (S9) is sufficiently small such that Eq. (S13) is a good approximation to Eq. S12) and that $\Psi_{0}$ equals the ground-state of Eq. (S7). Thus, if we evaluate Eq. (S14) with Eq. (S13), we obtain

$$
\begin{equation*}
\delta\langle\hat{O}(t)\rangle=-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime}\left\langle\Psi_{0}\right|\left[\hat{O}_{I}(t), \hat{H}_{e x t, I}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle \tag{S15}
\end{equation*}
$$

As a side remark, beyond linear-response solutions can be obtained by higher-order terms in

Eq. (S12). Staying within linear response, we can now use Eq. (S15) to obtain the response of the electron density to $\hat{H}_{\text {ext }}(t)$ that is given by

$$
\delta n(\mathbf{r} t)=-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \int d \mathbf{r}^{\prime}\left\langle\Psi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{V}_{e x t, I}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle-\frac{i}{\hbar} \sum_{\alpha} \int_{t_{0}}^{t} d t^{\prime}\left\langle\Psi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{J}_{e x t, I}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle
$$

Simplifying further, the density response reads

$$
\begin{aligned}
\delta n(\mathbf{r} t) & =-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \int d \mathbf{r}^{\prime}\left\langle\Psi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{n}_{I}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right) \\
- & \frac{i}{\hbar} \sum_{\alpha} \int_{t_{0}}^{t} d t^{\prime} \frac{1}{\omega_{\alpha}}\left\langle\Psi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{q}_{\alpha, I}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle \delta j_{\alpha}\left(t^{\prime}\right) .
\end{aligned}
$$

The response of the density to the external perturbation $\left(v(\mathbf{r} t), j_{\alpha}(t)\right)$ is

$$
\delta n(\mathbf{r} t)=\int_{t_{0}}^{\infty} d t^{\prime} \int d \mathbf{r}^{\prime} \chi_{n}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)+\sum_{\alpha} \int_{t_{0}}^{\infty} d t^{\prime} \chi_{q_{\alpha}}^{n}\left(\mathbf{r} t, t^{\prime}\right) \delta j_{\alpha}\left(t^{\prime}\right)
$$

where the response functions are

$$
\begin{align*}
& \chi_{n}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=-\frac{i}{\hbar} \Theta\left(t-t^{\prime}\right)\left\langle\Psi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{n}_{I}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle  \tag{S16}\\
& \chi_{q_{\alpha}}^{n}\left(\mathbf{r} t, t^{\prime}\right)=-\frac{i}{\hbar} \Theta\left(t-t^{\prime}\right) \frac{1}{\omega_{\alpha}}\left\langle\Psi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{q}_{\alpha, I}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle \tag{S17}
\end{align*}
$$

Similarly, the response of the photon coordinate $q_{\alpha}(t)$ to $\hat{H}_{\text {ext }}(t)$ is

$$
\delta q_{\alpha}(t)=-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime}\left\langle\Psi_{0}\right|\left[\hat{q}_{\alpha, I}(t), \hat{V}_{e x t, I}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime}\left\langle\Psi_{0}\right|\left[\hat{q}_{\alpha, I}(t), \hat{J}_{e x t, I}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle
$$

Following similar steps as above, the response of the photon coordinate to the external perturbation $\left(v(\mathbf{r} t), j_{\alpha}(t)\right)$ is

$$
\delta q_{\alpha}(t)=\int_{t_{0}}^{\infty} d t^{\prime} \int d \mathbf{r}^{\prime} \chi_{n}^{q_{\alpha}}\left(t, \mathbf{r}^{\prime} t^{\prime}\right) \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)+\sum_{\alpha^{\prime}} \int_{t_{0}}^{\infty} d t^{\prime} \chi_{q_{\alpha^{\prime}}}^{q_{\alpha}}\left(t, t^{\prime}\right) \delta j_{\alpha^{\prime}}\left(t^{\prime}\right)
$$

where the response functions are

$$
\begin{align*}
\chi_{n}^{q_{\alpha}}\left(t, \mathbf{r}^{\prime} t^{\prime}\right) & =-\frac{i}{\hbar} \Theta\left(t-t^{\prime}\right)\left\langle\Psi_{0}\right|\left[q_{\alpha, I}(t), \hat{n}_{I}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle  \tag{S18}\\
\chi_{q_{\alpha^{\prime}}}^{q_{\alpha}}\left(t, t^{\prime}\right) & =-\frac{i}{\hbar} \Theta\left(t-t^{\prime}\right) \frac{1}{\omega_{\alpha^{\prime}}}\left\langle\Psi_{0}\right|\left[q_{\alpha, I}(t), \hat{q}_{\alpha^{\prime}, I}\left(t^{\prime}\right)\right]\left|\Psi_{0}\right\rangle . \tag{S19}
\end{align*}
$$

Alternatively, the response functions of Eqs. (S16)-(S19) can be obtained using the functional dependence of the observables on the external pair $\left(v(\mathbf{r} t), j_{\alpha}(t)\right)$. The wave function of Eq. (2) in the main manuscript has a functional dependence $\Psi\left(\left[v, j_{\alpha}\right] ; t\right)$ via the Hamiltonian Eq. (S6), i.e., $\hat{H}(t)=\hat{H}\left(\left[v, j_{\alpha}\right] ; t\right)$. Therefore, through the expectation of electron density and photon displacement coordinate, both have a functional dependence on the external pair as $n\left(\left[v, j_{\alpha}\right] ; \mathbf{r} t\right)$ and $q_{\alpha}\left(\left[v, j_{\alpha}\right] ; t\right)$, respectively.

Considering the ground-state problem with external potential and current of $\left(v_{0}(\mathbf{r}), j_{\alpha, 0}\right)$, we can perform a functional Taylor expansion of the density $n(\mathbf{r} t)$ and photon coordinate $q_{\alpha}(t)$ to first-order as

$$
\begin{aligned}
& n\left(\left[v, j_{\alpha}\right] ; \mathbf{r} t\right)=n\left(\left[v_{0}, j_{\alpha, 0}\right] ; \mathbf{r}\right)+\iint d \mathbf{r}^{\prime} d t^{\prime} \frac{\delta n\left(\left[v_{0}, j_{\alpha, 0}\right] ; \mathbf{r} t\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)} \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)+\sum_{\alpha} \int d t^{\prime} \frac{\delta n\left(\left[v_{0}, j_{\alpha, 0}\right] ; \mathbf{r} t\right)}{\delta j_{\alpha}\left(t^{\prime}\right)} \delta j_{\alpha}\left(t^{\prime}\right), \\
& q_{\alpha}\left(\left[v, j_{\alpha}\right] ; t\right)=q_{\alpha}\left(\left[v_{0}, j_{\alpha, 0}\right]\right)+\iint d \mathbf{r}^{\prime} d t^{\prime} \frac{\delta q_{\alpha}\left(\left[v_{0}, j_{\alpha, 0}\right] ; t\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)} \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)+\sum_{\alpha^{\prime}} \int d t^{\prime} \frac{\delta q_{\alpha}\left(\left[v_{0}, j_{\alpha, 0}\right] ; t\right)}{\delta j_{\alpha^{\prime}}\left(t^{\prime}\right)} \delta j_{\alpha^{\prime}}\left(t^{\prime}\right) .
\end{aligned}
$$

This reduces to the response of the electron density and photon coordinate given as

$$
\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{r} t\right)=\iint d \mathbf{r}^{\prime} d t^{\prime} \chi_{v}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)+\sum_{\alpha} \int d t^{\prime} \chi_{j_{\alpha}}^{n}\left(\mathbf{r} t, t^{\prime}\right) \delta j_{\alpha}\left(t^{\prime}\right)
$$

and

$$
\delta q_{\alpha}\left(\left[v, j_{\alpha}\right] ; t\right)=\iint d \mathbf{r}^{\prime} d t^{\prime} \chi_{v}^{q_{\alpha}}\left(t, \mathbf{r}^{\prime} t^{\prime}\right) \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)+\sum_{\alpha^{\prime}} \int d t^{\prime} \chi_{j_{\alpha^{\prime}}}^{q_{\alpha}}\left(t, t^{\prime}\right) \delta j_{\alpha^{\prime}}\left(t^{\prime}\right),
$$

where we define the response functions of the above relation as

$$
\begin{align*}
\chi_{v}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) & =\left.\frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{r} t\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}\right|_{v_{0}(\mathbf{r}), j_{\alpha, 0}}  \tag{S20}\\
\chi_{j_{\alpha}}^{n}\left(\mathbf{r} t, t^{\prime}\right) & =\left.\frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{r} t\right)}{\delta j_{\alpha}\left(t^{\prime}\right)}\right|_{v_{0}(\mathbf{r}), j_{\alpha, 0}}  \tag{S21}\\
\chi_{v}^{q_{\alpha}}\left(t, \mathbf{r}^{\prime} t^{\prime}\right) & =\left.\frac{\delta q_{\alpha}\left(\left[v, j_{\alpha}\right] ; t\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}\right|_{v_{0}(\mathbf{r}), j_{\alpha, 0}}  \tag{S22}\\
\chi_{j_{\alpha^{\prime}}}^{q_{\alpha}}\left(t, t^{\prime}\right) & =\left.\frac{\delta q_{\alpha}\left(\left[v, j_{\alpha}\right] ; t\right)}{\delta j_{\alpha^{\prime}}\left(t^{\prime}\right)}\right|_{v_{0}(\mathbf{r}), j_{\alpha, 0}} \tag{S23}
\end{align*}
$$

These response functions defined in Eqs. (S16)-(S19) and Eqs. (S20)-(S23) are equivalent.
The response functions expressed in the so-called Lehmann representation are given by

$$
\begin{aligned}
\chi_{n}^{n}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right) & =\frac{1}{\hbar} \lim _{\eta \rightarrow 0^{+}} \sum_{k}\left[\frac{f_{k}(\mathbf{r}) f_{k}^{*}\left(\mathbf{r}^{\prime}\right)}{\omega-\Omega_{k}+i \eta}-\frac{f_{k}\left(\mathbf{r}^{\prime}\right) f_{k}^{*}(\mathbf{r})}{\omega+\Omega_{k}+i \eta}\right] \\
\chi_{q_{\alpha}}^{n}(\mathbf{r}, \omega) & =\frac{1}{\hbar} \lim _{\eta \rightarrow 0^{+}} \sum_{k} \frac{1}{\omega_{\alpha}}\left[\frac{f_{k}(\mathbf{r}) g_{\alpha, k}^{*}}{\omega-\Omega_{k}+i \eta}-\frac{g_{\alpha, k} f_{k}^{*}(\mathbf{r})}{\omega+\Omega_{k}+i \eta}\right] \\
\chi_{n}^{q_{\alpha}}\left(\mathbf{r}^{\prime}, \omega\right) & =\frac{1}{\hbar} \lim _{\eta \rightarrow 0^{+}} \sum_{k}\left[\frac{g_{\alpha, k} f_{k}^{*}\left(\mathbf{r}^{\prime}\right)}{\omega-\Omega_{k}+i \eta}-\frac{f_{k}\left(\mathbf{r}^{\prime}\right) g_{\alpha, k}^{*}}{\omega+\Omega_{k}+i \eta}\right] \\
\chi_{q_{\alpha^{\prime}}}^{q_{\alpha}}(\omega) & =\frac{1}{\hbar} \lim _{\eta \rightarrow 0^{+}} \sum_{k} \frac{1}{\omega_{\alpha^{\prime}}}\left[\frac{g_{\alpha, k} g_{\alpha^{\prime}, k}^{*}}{\omega-\Omega_{k}+i \eta}-\frac{g_{\alpha^{\prime}, k} g_{\alpha, k}^{*}}{\omega+\Omega_{k}+i \eta}\right]
\end{aligned}
$$

where $f_{k}(\mathbf{r})=\left\langle\Psi_{0}\right| \hat{n}(\mathbf{r})\left|\Psi_{k}\right\rangle$ and $g_{\alpha, k}=\left\langle\Psi_{0}\right| \hat{q}_{\alpha}\left|\Psi_{k}\right\rangle$ are the transition matrix elements and $\left|\Psi_{0}\right\rangle$ is the correlated electron-photon ground state wave function. The excitation energies $\Omega_{k}=\left(E_{k}-E_{0}\right) / \hbar$ of the finite interacting system are the poles of the response functions of the unperturbed system. As a side remark, if we can choose the wave functions $\Psi_{0}$ and $\Psi_{k}$ to be real, we find $g_{\alpha, k}=g_{\alpha, k}^{*}$, and $f_{k}(\mathbf{r})=f_{k}^{*}(\mathbf{r})$, thus $\chi_{n}^{q_{\alpha}}(\mathbf{r}, \omega)=\omega_{\alpha} \chi_{q_{\alpha}}^{n}(\mathbf{r}, \omega)$.

## S3 Linear-response within QEDFT

In this section, we present linear-response in QEDFT by employing the maps between interacting and non-interacting system, we express the interacting response functions in terms
of two non-interacting response functions and exchange correlation kernels. The responses due to $\left(v(\mathbf{r} t), j_{\alpha}(t)\right)$ are evaluated at the ground-state $\left(v_{0}(\mathbf{r}), j_{\alpha, 0}\right)$ and will not be written explicitly.

The non-interacting subsystems moving in an effective potential and current $\left(v_{s}(\mathbf{r} t), j_{\alpha}^{s}(t)\right)$ can be written as a time-dependent problem of the Schrödinger

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \Phi(t)=\hat{H}_{\mathrm{KS}}(t) \Phi(t) \tag{S24}
\end{equation*}
$$

Here, $\Phi(t)$ is the wave function of the auxiliary non-interacting system and the non-interacting effective Hamiltonian $\hat{H}_{\mathrm{KS}}(t)=\hat{H}_{\mathrm{KS}}^{(0)}+\hat{H}_{\mathrm{KS}}^{(e x t)}(t)$ that is meant to reproduce the exact density and displacement field, is given explicitly as

$$
\hat{H}_{\mathrm{KS}}^{(0)}=\hat{T}+\hat{H}_{p t}+\left(v_{0}(\mathbf{r})+v_{M x c}^{(0)}\left(\left[n, q_{\alpha}\right] ; \mathbf{r}\right)\right)+\sum_{\alpha} \frac{1}{\omega_{\alpha}}\left(j_{\alpha, 0}+j_{\alpha, M x c}^{(0)}\left[n, q_{\alpha}\right]\right) \hat{q}_{\alpha},
$$

and

$$
\hat{H}_{\mathrm{KS}}^{(e x t)}(t)=\left(v(\mathbf{r} t)+v_{M x c}\left(\left[n, q_{\alpha}\right] ; \mathbf{r} t\right)\right)+\sum_{\alpha} \frac{1}{\omega_{\alpha}}\left(j_{\alpha}(t)+j_{\alpha, M x c}\left(\left[n, q_{\alpha}\right] ; t\right)\right) \hat{q}_{\alpha} .
$$

Here $\hat{H}_{p t}=\frac{1}{2} \sum_{\alpha=1}^{M}\left[\hat{p}_{\alpha}^{2}+\omega_{\alpha}^{2} \hat{q}_{\alpha}^{2}\right]$ is the oscillator for the photon mode and the mean-field xc potential and current are defined as

$$
\begin{align*}
v_{M x c}\left(\left[n, q_{\alpha}\right] ; \mathbf{r} t\right) & :=v_{s}([n] ; \mathbf{r} t)-v\left(\left[n, q_{\alpha}\right] ; \mathbf{r} t\right),  \tag{S25}\\
j_{\alpha, M x c}\left(\left[n, q_{\alpha}\right] ; t\right) & :=j_{\alpha}^{s}\left(\left[q_{\alpha}\right] ; t\right)-j_{\alpha}\left(\left[n, q_{\alpha}\right] ; t\right) . \tag{S26}
\end{align*}
$$

In the above definitions of $v_{M x c}\left(\left[n, q_{\alpha}\right] ; \mathbf{r} t\right)$ and $j_{\alpha, M x c}\left(\left[n, q_{\alpha}\right] ; t\right)$, the initial state dependence of the interacting $\Psi_{0}$ and non-interacting $\Phi_{0}$ system has been dropped. For completeness, the definition of $j_{\alpha, M x c}\left(\left[n, q_{\alpha}\right] ; t\right)$ accounts for a functional dependence on $q_{\alpha}$ but this term can be calculated explicitly since it has no xc part as seen in Eq. (8) of the main manuscript.

The simplified form of $j_{\alpha, M x c}$ is shown in Eq. (6) of the main manuscript.
Through similar steps as in Eqs.(S11)-(S13), in first-order the solution of the Schrödinger-Kohn-Sham equation reads

$$
\begin{equation*}
\Phi(t) \simeq \hat{U}_{\mathrm{KS}, 0}(t) \Phi_{0}-\frac{i}{\hbar} \hat{U}_{\mathrm{KS}, 0}(t) \int_{t_{0}}^{t} d t^{\prime} \hat{H}_{\mathrm{KS}, I}^{(e x t)}\left(t^{\prime}\right) \hat{U}_{\mathrm{KS}, 0}^{\dagger}(t) \Phi_{0} . \tag{S27}
\end{equation*}
$$

where $\hat{U}_{\mathrm{KS}, 0}=e^{-i \hat{H}_{\mathrm{KS}}^{(0)} t / \hbar}$. Next, the bijective mapping between the interacting and noninteracting system that yields the same density and photon coordinate is given as

$$
\begin{equation*}
\left(v(\mathbf{r} t), j_{\alpha}(t)\right) \underset{\Psi_{0}}{\stackrel{1: 1}{\leftrightarrows}}\left(n(\mathbf{r} t), q_{\alpha}(t)\right) \underset{\Phi_{0}}{\stackrel{1: 1}{\Phi_{0}}}\left(v_{s}(\mathbf{r} t), j_{\alpha}^{s}(t)\right), \tag{S28}
\end{equation*}
$$

which can be inverted as $\left(v_{s}\left(\left[v, j_{\alpha}\right] ; \mathbf{r}^{\prime} t^{\prime}\right), j_{\alpha}^{s}\left(\left[v, j_{\alpha}\right] ; t^{\prime}\right)\right)$. The response of the electronic subsystem due to the perturbations with the external pair $\left(v(\mathbf{r} t), j_{\alpha}(t)\right)$ is

$$
\begin{aligned}
\delta n(\mathbf{r} t)= & -\frac{i}{\hbar} \iint d \tau d \mathbf{x} \iint d t^{\prime} d \mathbf{r}^{\prime}\left\langle\Phi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{n}_{I}(\mathbf{x} \tau)\right]\left|\Phi_{0}\right\rangle \frac{\delta v_{s}\left(\left[v, j_{\alpha}\right] ; \mathbf{x} \tau\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)} \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right) \\
& -\frac{i}{\hbar} \iint d \tau d \mathbf{x} \sum_{\alpha} \int d t^{\prime}\left\langle\Phi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{n}_{I}(\mathbf{x} \tau)\right]\left|\Phi_{0}\right\rangle \frac{\delta v_{s}\left(\left[v, j_{\alpha}\right] ; \mathbf{x} \tau\right)}{\delta j_{\alpha}\left(t^{\prime}\right)} \delta j_{\alpha}\left(t^{\prime}\right)
\end{aligned}
$$

Where $\left\langle\Phi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{q}_{\alpha, I}(\tau)\right]\left|\Phi_{0}\right\rangle=0$ since both, electronic and photonic subsystems, are independent in the non-interacting system. From Eq. (S28), we have $\left(v_{s}([n] ; \mathbf{r} t), j_{\alpha}^{s}\left(\left[q_{\alpha}\right] ; t\right)\right)$ such that the above equation becomes

$$
\begin{align*}
\delta n(\mathbf{r} t) & =\iint d \tau d \mathbf{x} \iint d t^{\prime} d \mathbf{r}^{\prime} \iint d \tau^{\prime} d \mathbf{y} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) \frac{\delta v_{s}([n] ; \mathbf{x} \tau)}{\delta n\left(\mathbf{y} \tau^{\prime}\right)} \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{y} \tau^{\prime}\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)} \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right) \\
& +\iint d \tau d \mathbf{x} \sum_{\alpha} \int d t^{\prime} \iint d \tau^{\prime} d \mathbf{y} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) \frac{\delta v_{s}([n] ; \mathbf{x} \tau)}{\delta n\left(\mathbf{y} \tau^{\prime}\right)} \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{y} \tau^{\prime}\right)}{\delta j_{\alpha}\left(t^{\prime}\right)} \delta j_{\alpha}\left(t^{\prime}\right) \tag{S29}
\end{align*}
$$

where $\chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau)=(-i / \hbar) \Theta(t-\tau)\left\langle\Phi_{0}\right|\left[\hat{n}_{I}(\mathbf{r} t), \hat{n}_{I}(\mathbf{x} \tau)\right]\left|\Phi_{0}\right\rangle$ is the non-interacting densitydensity response function. For clarity, the above density response is $\delta n(\mathbf{r} t)=\delta n_{v}(\mathbf{r} t)+$ $\delta n_{j}(\mathbf{r} t)$, where $\left(\delta n_{v}(\mathbf{r} t), \delta n_{j}(\mathbf{r} t)\right)$ is the density response to the external pair $\left(v(\mathbf{r} t), j_{\alpha}(t)\right)$, respectively.

Using Eqs.(S25) and (S26), we define the mean-field xc kernels as:

$$
\begin{align*}
& f_{M x c}^{n}\left(\left[n, q_{\alpha}\right] ; \mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=\frac{\delta v_{s}([n] ; \mathbf{r} t)}{\delta n\left(\mathbf{r}^{\prime} t^{\prime}\right)}-\frac{\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{r} t\right)}{\delta n\left(\mathbf{r}^{\prime} t^{\prime}\right)},  \tag{S30}\\
& f_{M x c}^{q_{\alpha}}\left(\left[n, q_{\alpha}\right] ; \mathbf{r} t, t^{\prime}\right)=-\frac{\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{r} t\right)}{\delta q_{\alpha}\left(t^{\prime}\right)},  \tag{S31}\\
& g_{M x c}^{n}\left(\left[n, q_{\alpha}\right] ; t, \mathbf{r}^{\prime} t^{\prime}\right)=-\frac{\delta j_{\alpha}\left(\left[n, q_{\alpha}\right] ; t\right)}{\delta n\left(\mathbf{r}^{\prime} t^{\prime}\right)}  \tag{S32}\\
& g_{M x c}^{q_{\alpha^{\prime}}}\left(\left[n, q_{\alpha}\right] ; t, t^{\prime}\right)=\frac{\delta j_{\alpha}^{s}\left(\left[q_{\alpha}\right] ; t\right)}{\delta q_{\alpha^{\prime}}\left(t^{\prime}\right)}-\frac{\delta j_{\alpha}\left(\left[n, q_{\alpha}\right] ; t\right)}{\delta q_{\alpha^{\prime}}\left(t^{\prime}\right)} \tag{S33}
\end{align*}
$$

where $\frac{\delta v_{s}[[n] ; r t)}{\delta q_{\alpha}\left(t^{\prime}\right)}=0=\frac{\delta j_{\alpha}^{s}\left(\left[q_{\alpha}\right] ; t\right)}{\delta n\left(\mathbf{r}^{\prime} t^{\prime}\right)}$. These kernels are the respective inverse of the interacting and non-interacting response functions.

From Eq. (S29), density response to $\delta v(\mathbf{r} t)$ can be written in terms of the density-density response function given by

$$
\begin{aligned}
\chi_{n}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)= & \iint d \tau d \mathbf{x} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) \iint d \tau^{\prime} d \mathbf{y} f_{M x c}^{n}\left(\left[n, q_{\alpha}\right] ; \mathbf{x} \tau, \mathbf{y} \tau^{\prime}\right) \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{y} \tau^{\prime}\right)}{\delta v\left(\mathbf{r} t^{\prime}\right)} \\
& +\iint d \tau d \mathbf{x} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) \iint d \tau^{\prime} d \mathbf{y} \frac{\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{x} \tau\right)}{\delta n\left(\mathbf{y} \tau^{\prime}\right)} \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{y} \tau^{\prime}\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}
\end{aligned}
$$

Making the following substitution in the above equation

$$
\iint d \mathbf{y} d \tau^{\prime} \frac{\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{x} \tau\right)}{\delta n\left(\mathbf{y} \tau^{\prime}\right)} \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{y} \tau^{\prime}\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}=\delta\left(\mathbf{x}-\mathbf{r}^{\prime}\right) \delta\left(\tau-t^{\prime}\right)-\sum_{\alpha} \int d \tau^{\prime} \frac{\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{x} \tau\right)}{\delta q_{\alpha}\left(\tau^{\prime}\right)} \frac{\delta q_{\alpha}\left(\left[v, j_{\alpha}\right] ; \tau^{\prime}\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}
$$

where $\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{x} \tau\right) / \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)=\delta\left(\mathbf{x}-\mathbf{r}^{\prime}\right) \delta\left(\tau-t^{\prime}\right)$, we obtain the relation

$$
\begin{align*}
\chi_{n}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)= & \chi_{n, s}^{n}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)+\iiint \int d \tau d \mathbf{x} d \tau^{\prime} d \mathbf{y} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) f_{M x c}^{n}\left(\mathbf{x} \tau, \mathbf{y} \tau^{\prime}\right) \chi_{n}^{n}\left(\mathbf{y} \tau^{\prime}, \mathbf{r}^{\prime} t^{\prime}\right) \\
& +\sum_{\alpha} \iiint d \tau d \mathbf{x} d \tau^{\prime} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) f_{M x c}^{q_{\alpha}}\left(\mathbf{x} \tau, \tau^{\prime}\right) \chi_{n}^{q_{\alpha}}\left(\tau^{\prime}, \mathbf{r}^{\prime} t^{\prime}\right) \tag{S34}
\end{align*}
$$

Next, the density response to $\delta j_{\alpha}(t)$ in Eq. (S29) is expressed in terms of the response
function as

$$
\begin{aligned}
\chi_{q_{\alpha}}^{n}\left(\mathbf{r} t, t^{\prime}\right)= & \iint d \tau d \mathbf{x} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) \iint d \tau^{\prime} d \mathbf{y} f_{M x c}^{n}\left(\mathbf{x} \tau, \mathbf{y} \tau^{\prime}\right) \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{y} \tau^{\prime}\right)}{\delta j_{\alpha}\left(t^{\prime}\right)} \\
& +\iint d \tau d \mathbf{x} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) \iint d \tau^{\prime} d \mathbf{y} \frac{\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{x} \tau\right)}{\delta n\left(\mathbf{y} \tau^{\prime}\right)} \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{y} \tau^{\prime}\right)}{\delta j_{\alpha}\left(t^{\prime}\right)}
\end{aligned}
$$

Using the relation (obtained from $\left.\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{x} \tau\right) / \delta j_{\alpha}\left(t^{\prime}\right)\right)$

$$
\iint d \mathbf{y} d \tau^{\prime} \frac{\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{x} \tau\right)}{\delta n\left(\mathbf{y} \tau^{\prime}\right)} \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{y} \tau^{\prime}\right)}{\delta j_{\alpha}\left(t^{\prime}\right)}=-\sum_{\alpha^{\prime}} \int d \tau^{\prime} \frac{\delta v\left(\left[n, q_{\alpha}\right] ; \mathbf{x} \tau\right)}{\delta q_{\alpha^{\prime}}\left(\tau^{\prime}\right)} \frac{\delta q_{\alpha^{\prime}}\left(\left[v, j_{\alpha}\right] ; \tau^{\prime}\right)}{\delta j_{\alpha}\left(t^{\prime}\right)}
$$

the response function is given as

$$
\begin{align*}
\chi_{q_{\alpha}}^{n}\left(\mathbf{r} t, t^{\prime}\right)= & \iiint \int d \tau d \mathbf{x} d \tau^{\prime} d \mathbf{y} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) f_{M x c}^{n}\left(\mathbf{x} \tau, \mathbf{y} \tau^{\prime}\right) \chi_{q_{\alpha}}^{n}\left(\mathbf{y} \tau^{\prime}, t^{\prime}\right) \\
& +\sum_{\alpha^{\prime}} \iiint d \tau d \mathbf{x} d \tau^{\prime} \chi_{n, s}^{n}(\mathbf{r} t, \mathbf{x} \tau) f_{M x c}^{q_{\alpha^{\prime}}}\left(\mathbf{x} \tau, \tau^{\prime}\right) \chi_{q_{\alpha}}^{q_{\alpha^{\prime}}}\left(\tau^{\prime}, t^{\prime}\right) \tag{S35}
\end{align*}
$$

Similarly, the response to the photonic subsystem to linear perturbations from the external pair $\left(v(\mathbf{r} t), j_{\alpha}(t)\right)$ is

$$
\begin{aligned}
\delta q_{\alpha}(t)= & -\frac{i}{\hbar} \sum_{\beta} \int_{t_{0}}^{t} d \tau \frac{1}{\omega_{\beta}}\left\langle\Phi_{0}\right|\left[q_{\alpha, I}(t), q_{\beta, I}(\tau)\right]\left|\Phi_{0}\right\rangle \iint d t^{\prime} d \mathbf{r}^{\prime} \frac{\delta j_{\beta}^{s}\left(\left[v, j_{\alpha}\right] ; \tau\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)} \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right) \\
& -\frac{i}{\hbar} \sum_{\beta} \int_{t_{0}}^{t} d \tau \frac{1}{\omega_{\beta}}\left\langle\Phi_{0}\right|\left[q_{\alpha, I}(t), q_{\beta, I}(\tau)\right]\left|\Phi_{0}\right\rangle \sum_{\alpha^{\prime}} \int d t^{\prime} \frac{\delta j_{\beta}^{s}\left(\left[v, j_{\alpha}\right] ; \tau\right)}{\delta j_{\alpha^{\prime}}\left(t^{\prime}\right)} \delta j_{\alpha^{\prime}}\left(t^{\prime}\right),
\end{aligned}
$$

where $\left\langle\Phi_{0}\right|\left[\hat{q}_{\alpha, I}(t), \hat{n}_{I}(\mathbf{x} \tau)\right]\left|\Phi_{0}\right\rangle=0$ in the non-interacting system. By defining the noninteracting photon-photon response function as $\chi_{q_{\beta, s}}^{q_{\alpha}}(t, \tau)=(-i / \hbar) \Theta(t-\tau)\left(1 / \omega_{\beta}\right)\left\langle\Phi_{0}\right|\left[q_{\alpha, I}(t), q_{\beta, I}(\tau)\right]\left|\Phi_{0}\right\rangle$ and using Eq. (S28), where we have $\left(v_{s}([n] ; \mathbf{r} t), j_{\alpha}^{s}\left(\left[q_{\alpha}\right] ; t\right)\right)$, the response can be written as

$$
\begin{align*}
\delta q_{\alpha}(t)= & \sum_{\beta} \int d \tau \chi_{q_{\beta, s}}^{q_{\alpha}}(t, \tau) \sum_{\beta^{\prime}} \iiint d t^{\prime} d \mathbf{r}^{\prime} d \tau^{\prime} \frac{\delta j_{\beta}^{s}\left(\left[q_{\alpha}\right] ; \tau\right)}{\delta q_{\beta^{\prime}}\left(\tau^{\prime}\right)} \frac{\delta q_{\beta^{\prime}}\left(\left[v, j_{\alpha}\right] ; \tau^{\prime}\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)} \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right) \\
& +\sum_{\beta} \int d \tau \chi_{q_{\beta, s}}^{q_{\alpha}}(t, \tau) \sum_{\alpha^{\prime}, \beta^{\prime}} \iint d t^{\prime} d \tau^{\prime} \frac{\delta j_{\beta}^{s}\left(\left[q_{\alpha}\right] ; \tau\right)}{\delta q_{\beta^{\prime}}\left(\tau^{\prime}\right)} \frac{\delta q_{\beta^{\prime}}\left(\left[v, j_{\alpha}\right] ; \tau^{\prime}\right)}{\delta j_{\alpha^{\prime}}\left(t^{\prime}\right)} \delta j_{\alpha^{\prime}}\left(t^{\prime}\right) . \tag{S36}
\end{align*}
$$

The above response of the displacement field is $\delta q_{\alpha}(t)=\delta q_{\alpha, v}(t)+\delta q_{\alpha, j}(t)$, where $\left(\delta q_{\alpha, v}(t), \delta q_{\alpha, j}(t)\right)$ is the response to the external pair $\left(v(\mathbf{r} t), j_{\alpha}(t)\right)$, respectively.

From Eq. (S36), the field response to $\delta v(\mathbf{r} t)$ can be written in terms of the photon-density response function as

$$
\begin{aligned}
\chi_{n}^{q_{\alpha}}\left(t, \mathbf{r}^{\prime} t^{\prime}\right)= & \sum_{\beta} \int d \tau \chi_{q_{\beta, s}}^{q_{\alpha}}(t, \tau) \sum_{\beta^{\prime}} \int d \tau^{\prime} g_{M x c}^{q_{\beta^{\prime}}}\left(\tau, \tau^{\prime}\right) \chi_{n}^{q_{\beta^{\prime}}}\left(\tau^{\prime}, \mathbf{r}^{\prime} t^{\prime}\right) \\
& +\sum_{\beta} \int d \tau \chi_{q_{\beta, s}}^{q_{\alpha}}(t, \tau) \sum_{\beta^{\prime}} \int d \tau^{\prime} \frac{\delta j_{\beta}\left(\left[n, q_{\alpha}\right] ; \tau\right)}{\delta q_{\beta^{\prime}}\left(\tau^{\prime}\right)} \frac{\delta q_{\beta^{\prime}}\left(\left[v, j_{\alpha}\right] ; \tau^{\prime}\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}
\end{aligned}
$$

Using the relation (obtained from $\left.\delta j_{\beta}\left(\left[n, q_{\alpha}\right] ; \tau\right) / \delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)\right)$

$$
\sum_{\beta^{\prime}} \int d \tau^{\prime} \frac{\delta j_{\beta}\left(\left[n, q_{\alpha}\right] ; \tau\right)}{\delta q_{\beta^{\prime}}\left(\tau^{\prime}\right)} \frac{\delta q_{\beta^{\prime}}\left(\left[v, j_{\alpha}\right] ; \tau^{\prime}\right)}{\delta v\left(\mathbf{r} t^{\prime}\right)}=-\iint d \tau^{\prime} d \mathbf{y} \frac{\delta j_{\beta}\left(\left[n, q_{\alpha}\right] ; \tau\right)}{\delta n\left(\mathbf{y} \tau^{\prime}\right)} \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{y} \tau^{\prime}\right)}{\delta v\left(\mathbf{r}^{\prime} t^{\prime}\right)}
$$

the response function is given as

$$
\begin{equation*}
\chi_{n}^{q_{\alpha}}\left(t, \mathbf{r}^{\prime} t^{\prime}\right)=\sum_{\beta} \int d \tau \iint d \tau^{\prime} d \mathbf{y} \chi_{q_{\beta, s}}^{q_{\alpha}}(t, \tau) g_{M x c}^{n_{\beta}}\left(\tau, \mathbf{y} \tau^{\prime}\right) \chi_{n}^{n}\left(\mathbf{y} \tau^{\prime}, \mathbf{r}^{\prime} t^{\prime}\right) \tag{S37}
\end{equation*}
$$

where $g_{M x c}^{n_{\beta}}=g_{M}^{n_{\beta}}$ and $g_{M x c}^{q_{\alpha}}=0$ as determined from the equation of motion for the displacement field. Also, from Eq. (S36), field response to $\delta j_{\alpha}$ can be written in terms of the photon-photon response function as

$$
\begin{aligned}
\chi_{q_{\alpha^{\prime}}}^{q_{\alpha}}\left(t, t^{\prime}\right)= & \sum_{\beta} \int d \tau \chi_{q_{\beta, s}}^{q_{\alpha}}(t, \tau) \sum_{\beta^{\prime}} \int d \tau^{\prime} g_{M x c}^{q_{\beta^{\prime}}}\left(\tau, \tau^{\prime}\right) \chi_{q_{\alpha^{\prime}}}^{q_{\beta^{\prime}}}\left(\tau^{\prime}, t^{\prime}\right) \\
& +\sum_{\beta} \int d \tau \chi_{q_{\beta, s}}^{q_{\alpha}}(t, \tau) \sum_{\beta^{\prime}} \int d \tau^{\prime} \frac{\delta j_{\beta}\left(\left[n, q_{\alpha}\right] ; \tau\right)}{\delta q_{\beta^{\prime}}\left(\tau^{\prime}\right)} \frac{\delta q_{\beta^{\prime}}\left(\left[n, q_{\alpha}\right] ; \tau^{\prime}\right)}{\delta j_{\alpha^{\prime}}\left(t^{\prime}\right)} .
\end{aligned}
$$

Making the following substitution (where $\delta j_{\beta}\left(\left[n, q_{\alpha}\right] ; \tau\right) / \delta j_{\alpha^{\prime}}\left(t^{\prime}\right)=\delta\left(\tau-t^{\prime}\right) \delta_{\beta, \alpha^{\prime}}$ ) in the above equation

$$
\sum_{\beta^{\prime}} \int d \tau^{\prime} \frac{\delta j_{\beta}\left(\left[n, q_{\alpha}\right] ; \tau\right)}{\delta q_{\beta^{\prime}}\left(\tau^{\prime}\right)} \frac{\delta q_{\beta^{\prime}}\left(\left[v, j_{\alpha}\right] ; \tau^{\prime}\right)}{\delta j_{\alpha^{\prime}}\left(t^{\prime}\right)}=\delta\left(\tau-t^{\prime}\right) \delta_{\beta, \alpha^{\prime}}-\iint d \tau^{\prime} d \mathbf{x} \frac{\delta j_{\beta}\left(\left[n, q_{\alpha}\right] ; \tau\right)}{\delta n\left(\mathbf{x} \tau^{\prime}\right)} \frac{\delta n\left(\left[v, j_{\alpha}\right] ; \mathbf{x} \tau^{\prime}\right)}{\delta j_{\alpha^{\prime}}\left(t^{\prime}\right)}
$$

yields the photon-photon response function

$$
\begin{equation*}
\chi_{q_{\alpha^{\prime}}}^{q_{\alpha}}\left(t, t^{\prime}\right)=\chi_{q_{\alpha^{\prime}, s}}^{q_{\alpha}}\left(t, t^{\prime}\right)+\sum_{\beta} \iiint d \tau d \tau^{\prime} d \mathbf{x}_{q_{\beta, s}}^{q_{\alpha}}(t, \tau) g_{M x c}^{n_{\beta}}\left(\tau, \mathbf{x} \tau^{\prime}\right) \chi_{q_{\alpha^{\prime}}}^{n}\left(\mathbf{x} \tau^{\prime}, t^{\prime}\right), \tag{S38}
\end{equation*}
$$

where $g_{M x c}^{q_{\beta^{\prime}}}=0$ since $j_{\alpha, M}$ in Eq. (6) of the main manuscript has no functional dependency on $q_{\alpha}$.

## S4 Matrix formulation of QEDFT response equations

In this section we present a matrix formulation of non-relativistic QEDFT response equations which in the no-coupling limit reduces to Casida equation. Through a Fourier transform of Eqs.(S34)-(S35) and Eqs.(S37)-(S38) and making a substitution into Eqs.(35)-(38) (main manuscript), we express the responses in the following form:

$$
\begin{align*}
\delta n_{v}(\mathbf{r}, \omega) & =\sum_{i, a}\left[\varphi_{a}(\mathbf{r}) \varphi_{i}^{*}(\mathbf{r}) \mathbf{P}_{a i, v}^{(1)}(\omega)+\varphi_{i}(\mathbf{r}) \varphi_{a}^{*}(\mathbf{r}) \mathbf{P}_{i a, v}^{(1)}(\omega)\right],  \tag{S39}\\
\delta n_{j}(\mathbf{r}, \omega) & =\sum_{i, a}\left[\varphi_{a}(\mathbf{r}) \varphi_{i}^{*}(\mathbf{r}) \mathbf{P}_{a i, j}^{(1)}(\omega)+\varphi_{i}(\mathbf{r}) \varphi_{a}^{*}(\mathbf{r}) \mathbf{P}_{i a, j}^{(1)}(\omega)\right],  \tag{S40}\\
\delta q_{\alpha, v}(\omega) & =\mathbf{L}_{\alpha, v,-}^{(1)}(\omega)+\mathbf{L}_{\alpha, v,+}^{(1)}(\omega),  \tag{S41}\\
\delta q_{\alpha, j}(\omega) & =\mathbf{L}_{\alpha, j,-}^{(1)}(\omega)+\mathbf{L}_{\alpha, j,+}^{(1)}(\omega) . \tag{S42}
\end{align*}
$$

Here, the subscripts $(v, j)$ on the first-order responses $\mathbf{P}_{i a, v}^{(1)}, \mathbf{P}_{i a, j}^{(1)}, \mathbf{P}_{a i, v}^{(1)}, \mathbf{P}_{a i, j}^{(1)}, \mathbf{L}_{\alpha, v, \pm}^{(1)}$ and $\mathbf{L}_{\alpha, j, \pm}^{(1)}$ shows to what external perturbations $\left(\delta v(\mathbf{r}, t), \delta j_{\alpha}(t)\right)$ is being considered to induce the coupled responses. In defining Eqs.(S39)-S42), we used the static KS orbitals in the Lehmann spectral representation of $\chi_{n, s}^{n}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)$ and photon-photon response function
$\chi_{q_{\alpha, s}}^{q_{\alpha}}(\omega)$ for a single-photon in Fock number basis are given as

$$
\begin{aligned}
\chi_{n, s}^{n}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right) & =\sum_{i, a}\left(\frac{\psi_{a}(\mathbf{r}) \psi_{i}\left(\mathbf{r}^{\prime}\right) \psi_{i}^{*}(\mathbf{r}) \psi_{a}^{*}\left(\mathbf{r}^{\prime}\right)}{\omega-\left(\epsilon_{a}-\epsilon_{i}\right)+i \eta}-\frac{\psi_{i}(\mathbf{r}) \psi_{a}\left(\mathbf{r}^{\prime}\right) \psi_{a}^{*}(\mathbf{r}) \psi_{i}^{*}\left(\mathbf{r}^{\prime}\right)}{\omega+\left(\epsilon_{a}-\epsilon_{i}\right)+i \eta}\right) \\
\chi_{q_{\alpha, s}}^{q_{\alpha}}(\omega) & =\frac{1}{2 \omega_{\alpha}^{2}}\left(\frac{1}{\omega-\omega_{\alpha}+i \eta}-\frac{1}{\omega+\omega_{\alpha}+i \eta}\right)
\end{aligned}
$$

where the summations over occupied and unoccupied Kohn-Sham orbitals are performed according to $\sum_{i}=\sum_{i=1}^{N}$ and $\sum_{a}=\sum_{a=N+1}^{\infty}$ and from here on $\lim _{\eta \rightarrow 0^{+}}$is implied. The first-order responses $\mathbf{P}_{i a, v}^{(1)}, \mathbf{P}_{i a, j}^{(1)}, \mathbf{P}_{a i, v}^{(1)}, \mathbf{P}_{a i, j}^{(1)}, \mathbf{L}_{\alpha, v, \pm}^{(1)}$ and $\mathbf{L}_{\alpha, j, \pm}^{(1)}$ are given by

$$
\begin{align*}
{\left[\omega-\omega_{a i}\right] \mathbf{P}_{a i, v}^{(1)}(\omega) } & =\int d \mathbf{r} \varphi_{i}(\mathbf{r}) \varphi_{a}^{*}(\mathbf{r}) \delta v_{\mathrm{KS}, v}^{(1)}(\mathbf{r}, \omega),  \tag{S43}\\
{\left[\omega+\omega_{a i}\right] \mathbf{P}_{i a, v}^{(1)}(\omega) } & =-\int d \mathbf{r} \varphi_{a}(\mathbf{r}) \varphi_{i}^{*}(\mathbf{r}) \delta v_{\mathrm{KS}, v}^{(1)}(\mathbf{r}, \omega),  \tag{S44}\\
{\left[\omega-\omega_{a i}\right] \mathbf{P}_{a i, j}^{(1)}(\omega) } & =\int d \mathbf{r} \varphi_{i}(\mathbf{r}) \varphi_{a}^{*}(\mathbf{r}) \delta v_{\mathrm{KS}, j}^{(1)}(\mathbf{r}, \omega),  \tag{S45}\\
{\left[\omega+\omega_{a i}\right] \mathbf{P}_{i a, j}^{(1)}(\omega) } & =-\int d \mathbf{r} \varphi_{a}(\mathbf{r}) \varphi_{i}^{*}(\mathbf{r}) \delta v_{\mathrm{KS}, j}^{(1)}(\mathbf{r}, \omega),  \tag{S46}\\
{\left[\omega-\omega_{\alpha}\right] \mathbf{L}_{\alpha, v,--}^{(1)}(\omega) } & =\frac{1}{2 \omega_{\alpha}^{2}} \delta j_{\alpha, \mathrm{KS}, v}^{(1)}(\omega),  \tag{S47}\\
{\left[\omega+\omega_{\alpha}\right] \mathbf{L}_{\alpha, v,+}^{(1)}(\omega) } & =-\frac{1}{2 \omega_{\alpha}^{2}} \delta j_{\alpha, \mathrm{KS}, v}^{(1)}(\omega),  \tag{S48}\\
{\left[\omega-\omega_{\alpha}\right] \mathbf{L}_{\alpha, j,--}^{(1)}(\omega) } & =\frac{1}{2 \omega_{\alpha}^{2}} \delta j_{\alpha, \mathrm{KS}, j}^{(1)}(\omega),  \tag{S49}\\
{\left[\omega+\omega_{\alpha}\right] \mathbf{L}_{\alpha, j,+}^{(1)}(\omega) } & =-\frac{1}{2 \omega_{\alpha}^{2}} \delta j_{\alpha, \mathrm{KS}, j}^{(1)}(\omega), \tag{S50}
\end{align*}
$$

where $\omega_{a i}=\left(\epsilon_{a}-\epsilon_{i}\right)$ and the respective effective potentials and currents $\left(\delta v_{s, \nu}(\mathbf{r}, \omega), j_{\alpha, \nu}^{s}(\omega)\right)$ as

$$
\begin{align*}
\delta v_{\mathrm{KS}, v}^{(1)}(\mathbf{r}, \omega) & =\delta v(\mathbf{r}, \omega)+\int d \mathbf{r}^{\prime} f_{M x c}^{n}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right) \delta n_{v}\left(\mathbf{r}^{\prime}, \omega\right)+\sum_{\alpha} f_{M x c}^{q_{\alpha}}(\mathbf{r}, \omega) \delta q_{\alpha, v}(\omega),  \tag{S51}\\
\delta v_{\mathrm{KS}, j}^{(1)}(\mathbf{r}, \omega) & =\int d \mathbf{r}^{\prime} f_{M x c}^{n}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right) \delta n_{j}\left(\mathbf{r}^{\prime}, \omega\right)+\sum_{\alpha} f_{M x c}^{q_{\alpha}}(\mathbf{r}, \omega) \delta q_{\alpha, j}(\omega),  \tag{S52}\\
\delta j_{\alpha, \mathrm{KS}, v}^{(1)}(\omega) & =\int d \mathbf{r} g_{M}^{n_{\alpha}}(\mathbf{r}) \delta n_{v}(\mathbf{r}, \omega)  \tag{S53}\\
\delta j_{\alpha, \mathrm{KS}, j}^{(1)}(\omega) & =\delta j_{\alpha}(\omega)+\int d \mathbf{r} g_{M}^{n_{\alpha}}(\mathbf{r}) \delta n_{j}(\mathbf{r}, \omega) \tag{S54}
\end{align*}
$$

The mean-field kernel is given by $g_{M}^{n_{\alpha}}(\mathbf{r})=-\omega_{\alpha}^{2} \boldsymbol{\lambda}_{\alpha} \cdot \mathbf{r}$. As stated above, the subscripts $(v, j)$ on the responses, KS potentials and currents signifies as to what external perturbations $\left(\delta v(\mathbf{r}, t), \delta j_{\alpha}(t)\right)$ is being considered. The Kohn-Sham scheme of QEDFT decouples the interacting system such that the responses are paired as $\left(\delta n_{v}(\mathbf{r}, \omega), \delta q_{\alpha, v}(\omega)\right)$ due to $\delta v(\mathbf{r}, \omega)$ and $\left(\delta n_{j}(\mathbf{r}, \omega), \delta q_{\alpha, j_{\alpha}}(\omega)\right)$ due to $\delta j_{\alpha}(\omega)$. Therefore, substituting Eqs. S51) and S53) into Eqs. S43)-(S44) and Eqs. S47)-(S48) and after some simplification, we obtain

$$
\begin{align*}
& \sum_{j, b}\left[\delta_{a b} \delta_{i j}\left(\omega_{a i}-\omega\right)+K_{a i, j b}(\omega)\right] \mathbf{P}_{b j, v}^{(1)}(\omega)+K_{a i, b j}(\omega) \mathbf{P}_{j b, v}^{(1)}(\omega)+\sum_{\alpha} \delta_{a b} \delta_{i j} M_{\alpha, b j}(\omega)\left(\mathbf{L}_{\alpha, v,-}^{(1)}(\omega)+\mathbf{L}_{\alpha, v,+}^{(1)}(\omega)\right) \\
& =-v_{a i}(\omega), \\
& \sum_{j, b}\left[\delta_{a b} \delta_{i j}\left(\omega_{a i}+\omega\right)+K_{i a, b j}(\omega)\right] \mathbf{P}_{j b, v}^{(1)}(\omega)+K_{i a, j b}(\omega) \mathbf{P}_{b j, v}^{(1)}(\omega)+\sum_{\alpha} \delta_{a b} \delta_{i j} M_{\alpha, j b}(\omega)\left(\mathbf{L}_{\alpha, v,-}^{(1)}(\omega)+\mathbf{L}_{\alpha, v,+}^{(1)}(\omega)\right) \\
& =-v_{i a}(\omega),  \tag{S56}\\
& {\left[\omega_{\alpha}-\omega\right] \mathbf{L}_{\alpha, v,-}^{(1)}(\omega)+\sum_{j b}\left[N_{\alpha, j b} \mathbf{P}_{b j, v}^{(1)}(\omega)+N_{\alpha, b j} \mathbf{P}_{j b, v}^{(1)}(\omega)\right]=0}  \tag{S57}\\
& {\left[\omega_{\alpha}+\omega\right] \mathbf{L}_{\alpha, v,+}^{(1)}(\omega)+\sum_{j b}\left[N_{\alpha, j b} \mathbf{P}_{b j, v}^{(1)}(\omega)+N_{\alpha, b j} \mathbf{P}_{j b, v}^{(1)}(\omega)\right]=0} \tag{S58}
\end{align*}
$$

Also, substituting Eqs.(S52) and (S54) into Eqs.(S45)-(S46) and Eqs.(S49)-(S50) and after some simplification, we obtain

$$
\begin{align*}
& \sum_{j, b} \delta_{a b} \delta_{i j}\left[\left(\left(\omega_{a i}-\omega\right)+K_{a i, j b}(\omega)\right) \mathbf{P}_{b j, j}^{(1)}(\omega)+K_{a i, b j}(\omega) \mathbf{P}_{j b, j}^{(1)}(\omega)+\sum_{\alpha} M_{\alpha, b j}(\omega)\left[\mathbf{L}_{\alpha, j,-}^{(1)}(\omega)+\mathbf{L}_{\alpha, j,+}^{(1)}(\omega)\right]\right]=0, \\
& \sum_{j, b} \delta_{a b} \delta_{i j}\left[\left(\left(\omega_{a i}+\omega\right)+K_{i a, b j}(\omega)\right) \mathbf{P}_{j b, j}^{(1)}(\omega)+K_{i a, j b}(\omega) \mathbf{P}_{b j, j}^{(1)}(\omega)+\sum_{\alpha} M_{\alpha, j b}(\omega)\left[\mathbf{L}_{\alpha, j,-}^{(1)}(\omega)+\mathbf{L}_{\alpha, j,+}^{(1)}(\omega)\right]\right]=0,  \tag{S59}\\
& {\left[\omega_{\alpha}-\omega\right] \mathbf{L}_{\alpha, j,-}^{(1)}(\omega)+\sum_{j b}\left[N_{\alpha, j b} \mathbf{P}_{b j, j}^{(1)}(\omega)+N_{\alpha, b j} \mathbf{P}_{j b, j}^{(1)}(\omega)\right]=-\frac{1}{2 \omega_{\alpha}^{2}} \delta j_{\alpha}(\omega),}  \tag{S61}\\
& {\left[\omega+\omega_{\alpha}\right] \mathbf{L}_{\alpha, j,+}^{(1)}(\omega)+\sum_{j b}\left[N_{\alpha, j b} \mathbf{P}_{b j, j}^{(1)}(\omega)+N_{\alpha, b j} \mathbf{P}_{j b, j}^{(1)}(\omega)\right]=-\frac{1}{2 \omega_{\alpha}^{2}} \delta j_{\alpha}(\omega),} \tag{S62}
\end{align*}
$$

where we defined the coupling matrices

$$
\begin{align*}
K_{a i, j b}(\omega) & =\iint d \mathbf{r} d \mathbf{y} \varphi_{i}(\mathbf{r}) \varphi_{a}^{*}(\mathbf{r}) f_{M x c}^{n}(\mathbf{r}, \mathbf{y}, \omega) \varphi_{b}(\mathbf{y}) \varphi_{j}^{*}(\mathbf{y}),  \tag{S63}\\
M_{\alpha, a i}(\omega) & =\int d \mathbf{r} \varphi_{i}(\mathbf{r}) \varphi_{a}^{*}(\mathbf{r}) f_{M x c}^{q_{\alpha}}(\mathbf{r}, \omega),  \tag{S64}\\
N_{\alpha, i a} & =\frac{1}{2 \omega_{\alpha}^{2}} \int d \mathbf{r} \varphi_{i}^{*}(\mathbf{r}) \varphi_{a}(\mathbf{r}) g_{M}^{n_{\alpha}}(\mathbf{r}), \tag{S65}
\end{align*}
$$

and

$$
\begin{equation*}
v_{i a}(\omega)=\int d \mathbf{r} \varphi_{i}^{*}(\mathbf{r}) \delta v(\mathbf{r}, \omega) \varphi_{a}(\mathbf{r}) \tag{S66}
\end{equation*}
$$

The coupling matrix $N_{\alpha, i a}$ has no frequency dependence since this is just the mean-field kernel of the photon modes. We now introduce the following abbreviations $L(\omega)=\delta_{a b} \delta_{i j}\left(\epsilon_{a}-\epsilon_{i}\right)+$ $K_{a i, j b}(\omega), K(\omega)=K_{a i, j b}(\omega), M(\omega)=M_{\alpha, b j}(\omega), N=N_{\alpha, b j}, \mathbf{X}_{1}(\omega)=\mathbf{P}_{b j, v}^{(1)}(\omega), \mathbf{Y}_{1}(\omega)=$ $\mathbf{P}_{j b, v}^{(1)}(\omega), \mathbf{X}_{2}(\omega)=\mathbf{P}_{b j, j}^{(1)}(\omega), \mathbf{Y}_{2}(\omega)=\mathbf{P}_{j b, j}^{(1)}(\omega), \mathbf{A}_{1}(\omega)=\mathbf{L}_{\alpha, v,-}^{(1)}(\omega), \mathbf{B}_{1}(\omega)=\mathbf{L}_{\alpha, v,+}^{(1)}(\omega)$, $\mathbf{A}_{2}(\omega)=\mathbf{L}_{\alpha, j,-}^{(1)}(\omega), \mathbf{B}_{2}(\omega)=\mathbf{L}_{\alpha, j,+}^{(1)}(\omega), V(\omega)=-v_{a i}(\omega), J_{\alpha}(\omega)=-\frac{\delta j_{\alpha}(\omega)}{2 \omega_{\alpha}^{2}}$.

Using these notations, we cast Eqs.(S55)-(S58) and Eqs.(S59)-(S62) into two matrix equations given by

$$
\begin{align*}
& {\left[\left(\begin{array}{cccc}
L(\omega) & K(\omega) & M(\omega) & M(\omega) \\
K^{*}(\omega) & L(\omega) & M^{*}(\omega) & M^{*}(\omega) \\
N & N^{*} & \omega_{\alpha} & 0 \\
N & N^{*} & 0 & \omega_{\alpha}
\end{array}\right)+\omega\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right]\left(\begin{array}{l}
\mathbf{X}_{1}(\omega) \\
\mathbf{Y}_{1}(\omega) \\
\mathbf{A}_{1}(\omega) \\
\mathbf{B}_{1}(\omega)
\end{array}\right)=\left(\begin{array}{c}
V(\omega) \\
V^{*}(\omega) \\
0 \\
0
\end{array}\right)}  \tag{S67}\\
& {\left[\left(\begin{array}{cccc}
L(\omega) & K(\omega) & M(\omega) & M(\omega) \\
K^{*}(\omega) & L(\omega) & M^{*}(\omega) & M^{*}(\omega) \\
N & N^{*} & \omega_{\alpha} & 0 \\
N & N^{*} & 0 & \omega_{\alpha}
\end{array}\right)+\omega\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right]\left(\begin{array}{l}
\mathbf{X}_{2}(\omega) \\
\mathbf{Y}_{2}(\omega) \\
\mathbf{A}_{2}(\omega) \\
\mathbf{B}_{2}(\omega)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
J_{\alpha}(\omega) \\
J_{\alpha}(\omega)
\end{array}\right)} \tag{S68}
\end{align*}
$$

Next, we argue that the right hand side of the above matrices remains finite as the frequency $\omega$ approaches the exact excitation frequencies $\omega \rightarrow \Omega_{q}$ of the interacting system while the density and displacement field responses on the left hand side has poles at the true excitation frequencies $\Omega_{q}$. This allows us to cast Eq. (S67) and Eq. (S68) into an eigenvalue problem

$$
\left(\begin{array}{cccc}
L\left(\Omega_{q}\right) & K\left(\Omega_{q}\right) & M\left(\Omega_{q}\right) & M\left(\Omega_{q}\right)  \tag{S69}\\
K^{*}\left(\Omega_{q}\right) & L\left(\Omega_{q}\right) & M^{*}\left(\Omega_{q}\right) & M^{*}\left(\Omega_{q}\right) \\
N & N^{*} & \omega_{\alpha} & 0 \\
N & N^{*} & 0 & \omega_{\alpha}
\end{array}\right)\left(\begin{array}{l}
\mathbf{X}_{1}\left(\Omega_{q}\right) \\
\mathbf{Y}_{1}\left(\Omega_{q}\right) \\
\mathbf{A}_{1}\left(\Omega_{q}\right) \\
\mathbf{B}_{1}\left(\Omega_{q}\right)
\end{array}\right)=\Omega_{q}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
\mathbf{X}_{1}\left(\Omega_{q}\right) \\
\mathbf{Y}_{1}\left(\Omega_{q}\right) \\
\mathbf{A}_{1}\left(\Omega_{q}\right) \\
\mathbf{B}_{1}\left(\Omega_{q}\right)
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
\left(\Omega_{q}\right) & K\left(\Omega_{q}\right) & M\left(\Omega_{q}\right) & M\left(\Omega_{q}\right)  \tag{S70}\\
K^{*}\left(\Omega_{q}\right) & L\left(\Omega_{q}\right) & M^{*}\left(\Omega_{q}\right) & M^{*}\left(\Omega_{q}\right) \\
N & N^{*} & \omega_{\alpha} & 0 \\
N & N^{*} & 0 & \omega_{\alpha}
\end{array}\right)\left(\begin{array}{l}
\mathbf{X}_{2}\left(\Omega_{q}\right) \\
\mathbf{Y}_{2}\left(\Omega_{q}\right) \\
\mathbf{A}_{2}\left(\Omega_{q}\right) \\
\mathbf{B}_{2}\left(\Omega_{q}\right)
\end{array}\right)=\Omega_{q}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
\mathbf{X}_{2}\left(\Omega_{q}\right) \\
\mathbf{Y}_{2}\left(\Omega_{q}\right) \\
\mathbf{A}_{2}\left(\Omega_{q}\right) \\
\mathbf{B}_{2}\left(\Omega_{q}\right)
\end{array}\right)
$$

It is convenient to cast Eqs. 569 and into a Hermitian eigenvalue problem which is given by

$$
\begin{align*}
& \left(\begin{array}{cc}
U & V \\
V^{T} & \omega_{\alpha}^{2}
\end{array}\right)\binom{\mathbf{E}_{1}}{\mathbf{P}_{1}}=\Omega_{q}^{2}\binom{\mathbf{E}_{1}}{\mathbf{P}_{1}},  \tag{S71}\\
& \left(\begin{array}{cc}
U & V \\
V^{T} & \omega_{\alpha}^{2}
\end{array}\right)\binom{\mathbf{E}_{2}}{\mathbf{P}_{2}}=\Omega_{q}^{2}\binom{\mathbf{E}_{2}}{\mathbf{P}_{2}}, \tag{S72}
\end{align*}
$$

where we assumed real-valued orbitals, i.e., $K=K^{*}, M=M^{*}$ and $N=N^{*}$, and the matrices are given by $U=(L-K)^{1 / 2}(L+K)(L-K)^{1 / 2}, V=2(L-K)^{1 / 2} M^{1 / 2} N^{1 / 2} \omega_{\alpha}^{1 / 2}$, $V^{*}=2 \omega_{\alpha}^{1 / 2} N^{1 / 2} M^{1 / 2}(L-K)^{1 / 2}$, and the eigenvectors are $\mathbf{E}_{1}=N^{1 / 2}(L-K)^{-1 / 2}\left(\mathbf{X}_{1}+\mathbf{Y}_{1}\right)$ and $\mathbf{P}_{1}=M^{1 / 2} \omega_{\alpha}^{-1 / 2}\left(\mathbf{A}_{1}+\mathbf{B}_{1}\right)$.

The pseudo-eigenvalue problem of Eqs. (S71) and (S72) is the final form of QEDFT matrix equation for obtaining exact excitation frequencies and oscillator strengths.

## S5 Oscillator Strengths

In this section, we derive the oscillator strengths resulting from the eigenvectors of the pseudo-eigenvalue problem of Eqs. (S71) and (S72). Multiplying out Eq. (S67), we write the
matrix equation in the form

$$
\begin{aligned}
(L+K)\left(\mathbf{X}_{1}+\mathbf{Y}_{1}\right)+2 M\left(\mathbf{A}_{1}+\mathbf{B}_{1}\right)-\omega\left(\mathbf{X}_{1}-\mathbf{Y}_{1}\right) & =-2 \boldsymbol{v} \\
(L-K)\left(\mathbf{X}_{1}-\mathbf{Y}_{1}\right)-\omega\left(\mathbf{X}_{1}+\mathbf{Y}_{1}\right) & =0 \\
2 N\left(\mathbf{X}_{1}+\mathbf{Y}_{1}\right)+\omega_{\alpha}\left(\mathbf{A}_{1}+\mathbf{B}_{1}\right)-\omega\left(\mathbf{A}_{1}-\mathbf{B}_{1}\right) & =0 \\
\omega_{\alpha}\left(\mathbf{A}_{1}-\mathbf{B}_{1}\right)-\omega\left(\mathbf{A}_{1}+\mathbf{B}_{1}\right) & =0
\end{aligned}
$$

From here on we set $S=(L-K)$, the above pair of equations now becomes

$$
\begin{aligned}
& S(L+K) \mathbf{E}_{1}+2 S M \mathbf{P}_{1}-\omega^{2} \mathbf{E}_{1}=-2 S \boldsymbol{v} \\
& 2 \omega_{\alpha} N \mathbf{E}_{1}+\omega_{\alpha}^{2} \mathbf{P}_{1}-\omega^{2} \mathbf{P}_{1}=0
\end{aligned}
$$

This can be written in matrix form as

$$
\left[\left(\begin{array}{cc}
S(L+K) & 2 S M  \tag{S73}\\
2 \omega_{\alpha} N & \omega_{\alpha}^{2}
\end{array}\right)-\omega^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]\binom{\mathbf{E}_{1}}{\mathbf{P}_{1}}=-\binom{2 S \boldsymbol{v}}{0}
$$

where $\mathbf{E}_{1}=\mathbf{X}_{1}+\mathbf{Y}_{1}$ and $\mathbf{P}_{1}=\mathbf{A}_{1}+\mathbf{B}_{1}$. We perform the same steps as above to make the nonlinear eigenvalue problem Hermitian and obtain

$$
\begin{equation*}
\left[C-\omega^{2} \mathbb{1}\right]\binom{N^{1 / 2} S^{-1 / 2} \mathbf{E}_{1}}{M^{1 / 2} \omega_{\alpha}^{-1 / 2} \mathbf{P}_{1}}=-\binom{2 N^{1 / 2} S^{1 / 2} \boldsymbol{v}}{0} \tag{S74}
\end{equation*}
$$

where $C=\left(\begin{array}{cc}U & V \\ V^{*} & \omega_{\alpha}^{2}\end{array}\right)$. We determine the vectors given as

$$
\begin{align*}
& \mathbf{E}_{1}=-2 S^{1 / 2}\left[C-\omega^{2} \mathbb{1}\right]^{-1} S^{1 / 2} \boldsymbol{v}  \tag{S75}\\
& \mathbf{P}_{1}=-2 \omega_{\alpha}^{1 / 2} M^{-1 / 2}\left[C-\omega^{2} \mathbb{1}\right]^{-1} N^{1 / 2} S^{1 / 2} \boldsymbol{v} \tag{S76}
\end{align*}
$$

When $\mathbf{Z}_{I}$ is normalized, we can use the spectral expansion to get

$$
\begin{equation*}
\left[C-\omega^{2} \mathbb{1}\right]^{-1}=\sum_{I} \frac{\mathbf{Z}_{I} \mathbf{Z}_{I}^{\dagger}}{\Omega_{I}^{2}-\omega^{2}}, \tag{S77}
\end{equation*}
$$

where $\mathbf{Z}_{I}=\binom{\mathbf{E}_{1 I}}{\mathbf{P}_{1 I}}$. The oscillator strength for the density-density response function which is related to the dynamic polarizability is given in Eq.(54) in the main manuscript.

## S5.1 Oscillator strength for the photon-matter response function

Next, we substitute the expression of the spectral expansion Eq. (S77) in Eq. (S76) and by substituting $\mathbf{P}_{1}$ in Eq. S40) yields

$$
\delta q_{\alpha, v}(\omega)=\sum_{I}\left\{\frac{2 \omega_{\alpha}^{1 / 2} M^{-1 / 2} \mathbf{Z}_{I} \mathbf{Z}_{I}^{\dagger} N^{1 / 2} S^{1 / 2}}{\omega^{2}-\Omega_{I}^{2}}\right\} v(\omega) .
$$

The oscillator strength is given by

$$
\begin{equation*}
f_{I, \alpha}^{p n}=2 \omega_{\alpha}^{1 / 2} M^{-1 / 2} \mathbf{Z}_{I} \mathbf{Z}_{I}^{\dagger} N^{1 / 2} S^{1 / 2} \tag{S78}
\end{equation*}
$$

Also, from Eq.(36) of the main manuscript and using the Lehmann representation of the response function $\chi_{n}^{q_{\alpha}}\left(\mathbf{r}^{\prime}, \omega\right)$ the response $\delta q_{\alpha, v}(\omega)$ is given by

$$
\delta q_{\alpha, v}(\omega)=\int d \mathbf{r}^{\prime} \sum_{k}\left[\frac{2 \Omega_{k}\left\langle\Psi_{0}\right| \hat{q}_{\alpha}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \hat{n}\left(\mathbf{r}^{\prime}\right)\left|\Psi_{0}\right\rangle}{\omega^{2}-\Omega_{k}^{2}}\right] \delta v\left(\mathbf{r}^{\prime}, \omega\right)
$$

The oscillator strength of Eq. (\$78) can be expressed as matrix elements of the internal pair $\left(\hat{n}(\mathbf{r}), \hat{q}_{\alpha}\right)$ as

$$
\begin{equation*}
f_{\alpha, k}\left(\mathbf{r}^{\prime}\right)=2 \Omega_{k}\left\langle\Psi_{0}\right| \hat{q}_{\alpha}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \hat{n}\left(\mathbf{r}^{\prime}\right)\left|\Psi_{0}\right\rangle \equiv f_{I, \alpha}^{p n} \tag{S79}
\end{equation*}
$$

## S5.2 Oscillator strength for the matter-photon response function

Following similar steps as above with Eq. (S68) we obtain

$$
\begin{align*}
& \mathbf{E}_{2}=-2 S^{1 / 2} N^{-1 / 2}\left[C-\omega^{2} \mathbb{1}\right]^{-1} M^{1 / 2} \omega_{\alpha}^{1 / 2} J_{\alpha}^{\prime}  \tag{S80}\\
& \mathbf{P}_{2}=-2 \omega_{\alpha}^{1 / 2}\left[C-\omega^{2} \mathbb{1}\right]^{-1} \omega_{\alpha}^{1 / 2} J_{\alpha}^{\prime} \tag{S81}
\end{align*}
$$

where $J_{\alpha}^{\prime}(\omega)=\frac{j_{\alpha}(\omega)}{2 \omega_{\alpha}^{2}}$ and $J_{\alpha}(\omega)=-J_{\alpha}^{\prime}(\omega)$. By substituting the spectral expansion Eq. S77 in $\mathbf{E}_{2}$ and further substituting in Eq. (S41) yields

$$
\delta n_{j}(\mathbf{r}, \omega)=-2 \sum_{i a, I} \frac{\Phi_{i a} S^{1 / 2} N^{-1 / 2} \mathbf{Z}_{I} \mathbf{Z}_{I}^{\dagger} M^{1 / 2} \omega_{\alpha}^{1 / 2} \Phi_{a i}}{\left(\Omega_{I}^{2}-\omega^{2}\right)} J_{\alpha}^{\prime}(\omega)
$$

Following a similar procedure as above, we express the density response to the external charge current as

$$
\delta n_{j}(\mathbf{r}, \omega)=\sum_{I}\left\{\frac{\Phi_{i a} S^{1 / 2} N^{-1 / 2} \mathbf{Z}_{I} \mathbf{Z}_{I}^{\dagger} M^{1 / 2} \omega_{\alpha}^{1 / 2} \Phi_{i a}}{\omega^{2}-\Omega_{I}^{2}}\right\} \frac{j_{\alpha}(\omega)}{\omega_{\alpha}^{2}}
$$

where $\Phi_{i a}(\mathbf{r})=\varphi_{i}^{*}(\mathbf{r}) \varphi_{a}(\mathbf{r})$ and the oscillator strength is given by

$$
\begin{equation*}
f_{I, \alpha}^{n p}=\frac{1}{\omega_{\alpha}} \Phi_{i a} S^{1 / 2} N^{-1 / 2} \mathbf{Z}_{I} \mathbf{Z}_{I}^{\dagger} M^{1 / 2} \omega_{\alpha}^{1 / 2} \Phi_{i a} \tag{S82}
\end{equation*}
$$

From Eq.(37) of the main manuscript and using the Lehmann representation of the response function $\chi_{q_{\alpha}}^{n}(\mathbf{r}, \omega)$, the response $\delta n_{j}(\mathbf{r}, \omega)$ is given by

$$
\delta n_{j}(\mathbf{r}, \omega)=\sum_{\alpha, k}\left[\frac{2 \Omega_{k}\left\langle\Psi_{0}\right| \hat{n}(\mathbf{r})\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \hat{q}_{\alpha}\left|\Psi_{0}\right\rangle}{\omega^{2}-\Omega_{k}^{2}}\right] \frac{\delta j_{\alpha}(\omega)}{\omega_{\alpha}}
$$

The oscillator strength of Eq. S82) can be expressed as matrix elements of the internal pair $\left(\hat{n}(\mathbf{r}), \hat{q}_{\alpha}\right)$ as

$$
\begin{equation*}
f_{k, \alpha}(\mathbf{r})=2 \Omega_{k}\left\langle\Psi_{0}\right| \hat{n}(\mathbf{r})\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \hat{q}_{\alpha}\left|\Psi_{0}\right\rangle \equiv f_{I, \alpha}^{n p} . \tag{S83}
\end{equation*}
$$

## S5.3 Oscillator strength for the photon-photon response function

We define a collective photon coordinate for the $\alpha$ modes $Q=\sum_{\alpha} q_{\alpha}$ (in analogy with $\left.\mathbf{R}=\sum_{i} e \mathbf{r}_{i}\right)$. By perturbing the photon field through the photon coordinate with an external charge current $j_{\alpha}(\omega)$, we induce a polarization of the field of mode $\alpha$ which we denote as $Q(\omega)=\sum_{\alpha} \beta_{\alpha}(\omega) j_{\alpha}(\omega)$. Where $\beta_{\alpha}(\omega)$ is the polarizability of field of the $\alpha$ mode. To first-order, the collective coordinate is given by

$$
\begin{equation*}
\delta Q(t)=\sum_{\alpha} \delta q_{\alpha}(t) \tag{S84}
\end{equation*}
$$

The field polarizability in frequency space can be written as

$$
\begin{equation*}
\beta_{\alpha}(\omega)=\sum_{\alpha^{\prime}} \frac{\delta q_{\alpha}(\omega)}{\delta j_{\alpha^{\prime}}(\omega)} \tag{S85}
\end{equation*}
$$

By substituting Eq. (S81) in Eq. (S42) and using the spectral expansion yields

$$
\delta q_{\alpha, j}(\omega)=-\sum_{I} \frac{2 \omega_{\alpha}^{1 / 2} \mathbf{Z}_{I} \mathbf{Z}_{I}^{\dagger} \omega_{\alpha}^{1 / 2}}{\Omega_{I}^{2}-\omega^{2}} J_{\alpha}^{\prime} .
$$

By substituting the above relation in Eq. (S85) we obtain

$$
\beta_{\alpha}(\omega)=-\sum_{\alpha^{\prime}} \sum_{I} \frac{2 \omega_{\alpha}^{1 / 2} \mathbf{Z}_{I} \mathbf{Z}_{I}^{\dagger} \omega_{\alpha}^{1 / 2}}{\Omega_{I}^{2}-\omega^{2}} \frac{\delta j_{\alpha}(\omega) / 2 \omega_{\alpha}^{2}}{\delta j_{\alpha^{\prime}}(\omega)}
$$

which simplifies to

$$
\begin{equation*}
\beta_{\alpha}(\omega)=-\sum_{I} \frac{1}{\omega_{\alpha}^{2}} \frac{\omega_{\alpha}^{1 / 2} \mathbf{Z}_{I} \mathbf{Z}_{I}^{\dagger} \omega_{\alpha}^{1 / 2}}{\Omega_{I}^{2}-\omega^{2}} \tag{S86}
\end{equation*}
$$

Eq. (S86) is the field polarizability analogous to the atomic polarizability tensor of Eq. (52) of the main manuscript. As in Eq.(53) of the main manuscript in which the molecular isotropic polarizability, $\alpha(\omega)$ is defined as the mean value of three diagonal elements of the
polarizability tensor, i.e., $\alpha(\omega)=1 / 3\left(\alpha_{x x}(\omega)+\alpha_{y y}(\omega)+\alpha_{z z}(\omega)\right)$, we analogously define an absorption cross section of the field given by

$$
\begin{equation*}
\tilde{\sigma}_{\alpha}(\omega) \equiv \frac{4 \pi \omega}{c} \mathcal{I} m \operatorname{Tr} \beta_{\alpha}(\omega) / 3 \tag{S87}
\end{equation*}
$$

For the oscillator strength, from Eq.(38) of the main manuscript and using the Lehmann representation of the response function $\chi_{q_{\alpha^{\prime}}}^{q_{\alpha}}(\omega)$ the response $\delta q_{\alpha, j}(\omega)$ is given by

$$
\delta q_{\alpha, j}(\omega)=\sum_{\alpha^{\prime}, k}\left[\frac{2 \Omega_{k}\left\langle\Psi_{0}\right| \hat{q}_{\alpha}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \hat{q}_{\alpha^{\prime}}\left|\Psi_{0}\right\rangle}{\omega^{2}-\Omega_{k}^{2}}\right] \frac{\delta j_{\alpha^{\prime}}(\omega)}{\omega_{\alpha^{\prime}}} .
$$

We find the oscillator strength

$$
\begin{equation*}
f_{I, \alpha}^{p p}=\frac{1}{3 \omega_{\alpha}^{2}}\left|\mathbf{Z}_{I}^{\dagger} \omega_{\alpha}^{1 / 2}\right|^{2}=\frac{2}{3} \Omega_{I} \sum_{\alpha^{\prime}} \frac{1}{\omega_{\alpha^{\prime}}}\left\langle\Psi_{0}\right| \hat{q}_{\alpha}\left|\Psi_{I}\right\rangle\left\langle\Psi_{I}\right| \hat{q}_{\alpha^{\prime}}\left|\Psi_{0}\right\rangle . \tag{S88}
\end{equation*}
$$

## References

(S1) Gilbert Grynberg, C. F., Alain Aspect Introduction to Quantum Optics From Semiclassical Approach to Quantized Light; Cambridge University Press, New York, 2010.
(S2) Ruggenthaler, M. Ground-State Quantum-Electrodynamical Density-Functional Theory. ArXiv e-prints 2015,
(S3) Ruggenthaler, M.; Tancogne-Dejean, N.; Flick, J.; Appel, H.; Rubio, A. From a
quantum-electrodynamical light-matter description to novel spectroscopies. Nature Reviews Chemistry 2018, 2, 0118.
(S4) Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 121957,
(S5) M. Marques, M.; Ullrich, C.; Nogueira, F.; Rubio, A.; Burke, K.; Gross, E. TimeDependent Density Functional Theory; Springer, Berlin, 2006.
(S6) Gross, E. K. U.; Dobson, J. F.; Petersilka, M. In Density Functional Theory; Nalewajski, R. F., Ed.; Springer, Berlin, 1996.
(S7) Petersilka, M.; Gossmann, U. J.; Gross, E. K. U. Excitation Energies from TimeDependent Density-Functional Theory. Phys. Rev. Lett. 1996, 76, 1212-1215.
(S8) Casida, M. Time-Dependent Density Functional Response Theory of Molecular Systems: Theory, Computational Methods, and Functionals. Recent Developments and Applications of Modern Density Functional Theory. 1996.
(S9) Jamorski, C.; Casida, M. E.; Salahub, D. R. Dynamic polarizabilities and excitation spectra from a molecular implementation of timedependent densityfunctional response theory: N2 as a case study. The Journal of Chemical Physics 1996, 104, 5134-5147.
(S10) Casida, M. E.; Salahub, D. R. Asymptotic correction approach to improving approximate exchangecorrelation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra. The Journal of Chemical Physics 2000, 113, 8918-8935.
(S11) Casida, M.; Huix-Rotllant, M. Progress in Time-Dependent Density-Functional Theory. Annual Review of Physical Chemistry 2012, 63, 287-323, PMID: 22242728.
(S12) Yang, Z.; Ullrich, C. A. Direct calculation of exciton binding energies with timedependent density-functional theory. Phys. Rev. B 2013, 87, 195204.

