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Ergodic quantum many-body systems satisfy the eigenstate thermalization hypothesis (ETH).
However, strong disorder can destroy ergodicity through many-body localization (MBL) – at least
in one dimensional systems – leading to a clear signal of the MBL transition in the probability
distributions of energy eigenstate expectation values of local operators. For a paradigmatic model
of MBL, namely the random-field Heisenberg spin chain, we consider the full probability distribution
of eigenstate correlation functions across the entire phase diagram. We find gaussian distributions
at weak disorder, as predicted by pure ETH. At intermediate disorder – in the thermal phase – we
find further evidence for anomalous thermalization in the form of heavy tails of the distributions.
In the MBL phase, we observe peculiar features of the correlator distributions: a strong asymmetry
in Szi S

z
i+r correlators skewed towards negative values; and a multimodal distribution for spin-flip

correlators. A quantitative quasi-degenerate perturbation theory calculation of these correlators yields
a surprising agreement of the full distribution with the exact results, revealing, in particular, the
origin of the multiple peaks in the spin-flip correlator distribution as arising from the resonant and
off-resonant admixture of spin configurations. The distribution of the Szi S

z
i+r correlator exhibits

striking differences between the MBL and Anderson insulator cases.

I. INTRODUCTION

Over the last decade, the Eigenstate Thermalization
Hypothesis (ETH) [1–7] has become the essential frame-
work for reconciling quantum dynamics with statistical
mechanics. In its simplest form, ETH posits that expec-
tation values of local observables in energy eigenstates
are smooth functions of the energy eigenvalue in the ther-
modynamic limit. This provides a mechanism for ther-
malization in isolated quantum systems. ETH can be
understood in terms of random matrix theory: ergodic
quantum systems are essentially well described by ran-
dom matrix ensembles at least where local observables
are concerned. This leads to the above smoothness con-
dition, and also predicts the correct scaling of statistical
deviations from it with system size [6, 8–10]. In par-
ticular, the expectation values of local observables have
gaussian distributions — the distribution shape is an im-
portant characteristic of ETH behavior [9].

It turns out that some disordered interacting systems
can avoid thermalization if disorder is strong enough.
Such a nonequilibrium phase of matter is called the Many
Body Localized (MBL) phase [11–27]. In this phase,
transport is completely halted and the system becomes a
perfect insulator. In particular ETH is not valid [19, 21].
The current theoretical understanding of the MBL phase
relies on the emergence of integrability via a complete
set of local integrals of motion (LIOM) [24, 28–31]. For
instance, this theory accounts for the failure of thermal-
ization, the area law of entanglement entropy in infinite
temperature eigenstates [32] and the logarithmic growth
of entanglement entropy after a quench [17, 33].

Even though the existence of the MBL phase is by now
well established in one dimensional systems, in both the-
ory [14, 24, 31] and experiments [20, 34], the nature of
the localization-delocalization transition remains an ac-

tive area of research. One outstanding question is the
universality of anomalous thermalization [35, 36], char-
acterized by sub-diffusive transport, close to the local-
ization transition coming from the ergodic side [37–48].
Moreover, there is evidence that distributions of diago-
nal matrix elements of the local (globally conserved) den-
sity develop heavy tails in this anomalous thermal phase
[49]. It has been suggested that the latter is connected to
the sub-diffusive transport and, in addition, could be de-
scribed by a modified version of ETH [35, 36]. However it
is not clear whether power law tails in the distribution of
local operators are a general feature of the sub-diffusive
regime.

In this work, we consider the probability distribu-
tions of local correlation functions in mid-spectrum en-
ergy eigenstates to determine their features in the er-
godic as well as in the MBL phase. While the gaus-
sian shape of these distributions is a central property of
pure ETH, their behavior is equally important to charac-
terize non-ergodic phases, in particular the MBL phase.
Considering the Heisenberg model with random on-site
fields, we present and analyze the distributions for two-
point operators: spin-flip and Szi S

z
i+r operators. Due

to the U(1) symmetry of the XXZ model, there are no
other non-vanishing two-point correlators. Furthermore,
we carry out quantitative quasi-degenerate perturbation-
theory calculations (around the limit of infinite disor-
der) to explain various features of the distributions in
the MBL phase.

The energy eigenstate distributions of spin-flip and
Szi S

z
i+r correlators considered in this paper are gaussian

for small disorder strengths but acquire significant weight
in the tails already for intermediate disorder W ≈ 2 <
Wc ≈ 3.7, Wc being the critical disorder strength to enter
the MBL phase. Despite the heavy tails in the thermal
regime, the variance of the distribution falls off with in-
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creasing system size for fixed W up to the critical value
Wc. Within the MBL regime, W > Wc, the variation of
the distribution with increasing system size is negligible
and the distribution has features not present in the ther-
mal regime. In particular, the spin-flip operator distribu-
tion exhibits a sharp peak at zero with smaller satellite
peaks on each side and further small peaks at the edge
of the distribution, ±1/2. Perturbation theory captures
the form of the large disorder distribution quantitatively.

Perturbative methods to describe localization-
delocalization phenomena in condensed matter physics
have a long history dating back to Anderson’s seminal
work and continuing today to address questions relating
to MBL [11, 14, 15, 24, 30, 50]. In the context of
MBL, two of the main questions were to systemati-
cally construct the local integrals of motion that are
thought to characterize the MBL phase and to estimate
the transition point between MBL and the thermal
phase. Both can be achieved by computing perturbative
corrections to the mutually commuting occupation
numbers at infinite disorder under the constraint that
the corrections themselves continue to commute [30].
This has to be done to infinite order within some suitable
approximation to capture possible delocalization. To
make sense of the perturbation theory, as in the case of
Anderson localization, there are resonances that lead to
naive divergences coming from states close in energy that
are mixed by hopping in the latter case and interactions
in the former. In both cases, the divergences may be
resolvable giving the perturbation theory a finite radius
of convergence. Resolving these divergences amounts to
diagonalizing the resonating configurations exactly.

The perturbation theory discussed in this paper is an
expansion in the hopping part of the Hamiltonian around
the infinite disorder limit. We carry out the expansion
to low orders to be quantitative at large disorder for our
finite system and to capture the main qualitative fea-
tures for smaller disorder within the MBL regime. In
the spirit of earlier works, we deal with resonances in
the non-degenerate perturbation theory by diagonalizing
exactly on the resonant subspaces.

In Section II we present the model and the local opera-
tors whose correlation functions we study. Section III fo-
cuses on the spin-flip operators across the whole phase di-
agram: first to nearest neighbor, then the further neigh-
bor spin-flip operator distributions. The form of the spin-
flip operator distributions in the MBL regime are ratio-
nalized within perturbation theory in Section III C. We
then turn to the 〈Szi Szi+r〉 correlators (Section IV) and
the corresponding connected correlators (Section IV B),
in both cases showing the development of heavy tails at
W ≈ 2.0 and the evolution of these distributions into the
MBL regime. We highlight the distinctive form of the
distributions in the Anderson localized phase and the dif-
ference with the corresponding MBL distributions (Sec-
tion IV C). Finally, we compute the distribution using
quantitative perturbation theory showing, once again,
that it captures well the form of the distributions at

strong disorder (Section IV D).

II. BACKGROUND MATERIAL

A. Model

We study the canonical XXZ model with random fields
hi along the z direction,

H =

L−1∑
i=0

J

2

(
S+
i S
−
i+1+ S−i S

+
i+1

)
+ ∆Szi S

z
i+1− hiSzi . (1)

This model – which is widely studied in the context of
MBL [17–19, 21, 22, 26, 28, 32, 33, 38, 41, 51–67] – can be
mapped to a spinless fermion model with nearest neigh-
bor hopping J/2, interaction term ∆ and on-site poten-
tial hi. In this paper, periodic boundary conditions are
set, J = 1 is fixed throughout the paper and the fields
hi are distributed uniformly in [−W,W ] with disorder
strength W . We focus mainly on the isotropic point
∆ = 1 (interacting spinless fermions) of the parameter
space. However in Section IV C we compare also to re-
sults for various ∆, including the point ∆ = 0 (free spin-
less fermions). The operators Sαi = σαi /2 are spin 1/2
operators, with α = 0, x, y, z and i is the site index.

The total magnetization M =
∑L−1
i=0 Szi along the

z direction is conserved. We therefore focus on the
largest magnetization sector M = 0 for even system
sizes L, corresponding to the Hilbert space dimension
dim(H) = binom(L, bL/2c). For each disorder realiza-
tion {h0, . . . , hL−1}, we obtain & 50 eigenstates clos-
est to the energy target (Emax + Emin)/2 (Emin being
the ground state energy and Emax the highest energy
of the sample) using a state-of-the-art shift-invert code
[21, 68]. We consider the probability distributions of
various eigenstate expectation values of local operators,
i.e. the diagonal matrix elements of these operators in
the eigenbasis of the Hamiltonian. Our results are his-
tograms over at least 103 disorder realizations for each
system size L and disorder strength W , we also calcu-
late the correlators for all sites i ∈ [0, L − 1] to improve
the statistics, since the average over disorder is transla-
tion invariant. The mid-spectrum states of this model
are known to exhibit two dynamical phases [19, 21]: at
low disorder (W . 3.7) they obey the ETH, while at
strong disorder (W & 3.7) all eigenstates are many-body
localized (MBL).

B. Operators

In previous works in the context of many-body local-
ization and the MBL transition, the distributions of lo-
cal operators were considered, mostly focussing on dis-
tributions of diagonal or off-diagonal matrix elements of
simple local observables such as the local magnetization
(or number density in the language of spinless fermions)
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〈n|Szi |n〉, where |n〉 is a central eigenstate of the Hamil-
tonian [35, 49]. In this work, we consider more compli-
cated operators given by two point correlation functions.
First, we consider the correlators

〈n|S+
i S
−
i+r/2 + h.c. |n〉 = 〈n|Fi,i+r |n〉 ,

i.e., the matrix elements of spin-flip operators Fi,i+r.
We also consider diagonal two-point correlators, namely
〈n|Szi Szi+r |n〉 and its ‘connected’ version

〈n|Szi Szi+r |n〉c = 〈n|Szi Szi+r |n〉 − 〈n|Szi |n〉 〈n|Szi+r |n〉 .

For r = 1, the first expression above corresponds to
the kinetic energy density, while the second expression is
the interaction energy density in the language of spinless
fermions. The connected correlator 〈n|Szi Szi+r |n〉c was
previously considered in Ref. 19.

III. EIGENSTATE EXPECTATION VALUES OF
S+
i S

−
i+r + h.c.

In Fig. 1 we show the probability distribution of eigen-
state expectation values of Fi,i+r = S+

i S
−
i+r/2 + h.c. for

a system of size L = 20 and different disorder strengths
W .

A. Nearest neighbor flip

We start by considering the special case r = 1, where
the operator Fi,i+1 corresponds to the kinetic energy per
bond. In the thermal phase at weak disorder, we expect
this operator to follow ETH and be distributed according
to a gaussian distribution, which is true to very good
precision.

We observe that at weak disorder (W . 2) and r = 1,
the mean of the distribution is slightly negative, a re-
sult of the fact that the eigenstates of the Hamiltonian
we consider are in the center of the spectrum, and cor-
respond to high but finite temperature due to the asym-
metry of the density of states (cf. Appendix B for an
analysis of the energy dependence). States correspond-
ing to strictly infinite temperature correspond to energies
given by Tr(HM=0)/dim(HM=0) = − L

4L−4 , where HM is
the Hamiltonian matrix in the zero magnetization sector.
Such states have a zero mean for traceless operators like
Fi,i+r. Zero mean distributions are recovered at inter-
mediate disorder where the asymmetry of the spectrum
is less pronounced and the energy of the eigenstates we
consider is indeed close to − 1

4 for large L.
At intermediate disorder W ≈ 2, we observe the de-

velopment of heavy tails in the distribution, very similar
to the situation for the distribution of 〈n|Szi |n〉 studied
in Ref. 49, confirming that the presence of such tails
appears to be a generic feature at intermediate disorder
in the thermal phase. We note that heavy tails are also
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FIG. 1. Probability density of eigenstate expectation val-
ues 〈n|Fi,i+r |n〉 for distances r = 1, 2, 3, 4. The histogram
was taken over & 50 eigenstates, > 1000 disorder realizations
and all positions i in the chain of length L = 20. In each
panel the histograms for the same set of representative disor-
der strengths W ∈ {0.4, 1.2, 2.0, 2.8, 3.6, 4.4} are shown with
the same color code (legend in lower right panel).

observed in the Szi S
z
i+r correlation function studied in

Sec. IV.

At strong disorder W > Wc in the MBL phase, we find
a strikingly different distribution of the spin-flip operator
expectation values Fi,i+1; it features a pronounced cen-
tral peak at zero, accompanied by two minima adjacent
to it, which are framed by two satellite peaks, before
the probability density p(〈n|Fi,i+1 |n〉) decays towards
the edges of its domain

[
− 1

2 ,
1
2

]
. We have found that

this intriguing shape persists at strong disorder and can
be explained using perturbation theory, a discussion of
which we postpone to the end of this section.

In Fig. 2, we analyze the system size dependence of the
probability density of the nearest neighbor flip operator
Fi,i+1 over the whole range of disorder strengths, com-
paring distributions for sizes L = 12, 14, 16, 18, 20. At the
weakest disorder W = 0.4, we find gaussian probability
distributions, with the variance decreasing exponentially
in system size L, as expected from ETH (cf. Fig. 3).
At intermediate disorder W = 2.0, the distribution is
no longer gaussian, but the variance still decreases ex-
ponentially with size. It appears that the heavy tails,
deviating from the gaussian shape, persist even at large
system size, following the same phenomenology observed
for the Szi operator in Ref. 35, 36, and 49.

To quantify departures from gaussianity, we compute
the excess kurtosis κ = (µ4/σ

4) − 3, (µ4 being the 4th
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FIG. 2. Finite size dependence of the probability density of
eigenstate expectation values of the nearest neighbor flip op-
erator 〈n|Fi,i+1 |n〉. As in Fig. 1, the histogram is taken over
& 50 eigenstates per disorder realization, > 1500 disorder re-
alizations and all positions i in the chain. The dashed blue
line shows the gaussian distribution computed with the mean
and variance belonging to the data L = 12, 20.

central moment of the distribution) and the Kullback-
Leibler divergence defined by

DKL ≡ −
∫

dxP (x) log

(
Q(x)

P (x)

)
(2)

where Q(x) is the reference gaussian distribution and
P (x) is the computed distribution of the correlator,
where the gaussian is defined by the mean and variance
of P (x). Results are shown in Fig. 4. Both quantities in-
dicate that the distribution is quantitatively gaussian for
W . 1.5 and that they become strikingly less gaussian
with a peak at about W = 2 that increases with system
size. Beyond the peak for larger disorder both measures
increase smoothly with little system size dependence, in-
dicating strongly nongaussian distributions in the MBL
phase.

In the MBL phase at strong disorder, there is no
discernible system size dependence of the distribution
(Figs. 2, lower panels, and 3), showing a pronounced
maximum at zero, framed by two symmetric satellite
peaks, which seem to get closer to each other at stronger
disorder.

B. Long distance flip

The flip operator of distant spins Fi,i+r, with r > 1 is
not a term of the Hamiltonian and could therefore behave
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F n
i ,i+4
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W

10−2σ

C n
i ,i+1

2 4 6

W

C n
i ,i+4

FIG. 3. Standard deviation of the difference between adja-
cent eigenstates of spin-flip operator (upper panels) Fni,i+r =
〈n+ 1|Fi,i+r |n+ 1〉 − 〈n|Fi,i+r |n〉 and connected z cor-
relation (lower panels) Cni,i+r = 〈n+ 1|Szi Szi+r |n+ 1〉c −
〈n|Szi Szi+r |n〉c, where we have used the shorter notation
〈n|Szi Szi+r |n〉c = 〈n|Szi Szi+r |n〉 − 〈n|Szi |n〉 〈n|Szi+r |n〉. In-
stead of the direct variance of the distributions, we consider
differences in adjacent eigenstates as in Ref. 49 to mitigate
the slightly different means of distributions at weak disorder
due to energy targets depending on the disorder realization
(cf. Appendix B).

differently. We have verified that this is so by examining
the energy dependence of the mean of the distribution
which is constant over a large range of energies for r > 1,
linear for r = 1, cf. Appendix B. For this reason, the
mean of the r > 1 distribution is close to zero at weak
disorder. At intermediate disorder, the distribution again
shows heavy tails, and, in general, the variance decreases
with longer distance between the operators, which we at-
tribute to decreasing long distance correlations. Most
interestingly, at strong disorder in the MBL phase and
at long distance, the peculiar satellite peaks of the distri-
bution at r = 1 disappear, leading to simple, yet heavy
tails. Additionally, we see that the standard deviation of
both correlation functions at larger distances decreases as
function of disorder (Fig. 3) and stay constant at r = 1.
In the limit W → ∞ the spins are uncorrelated so both
standard deviations will go to zero. In this range of dis-
order, the localization length is big enough for allowing
correlations at r = 1, hence we expect the standard de-
viation to start decreasing only at large enough disorder.

The absence of satellite peaks for r > 1, as well as most
of the other features in this and the preceding subsection,
can be understood through perturbation theory in 1/W ,
as we describe in the next subsection.
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FIG. 4. Upper panels: Excess kurtosis κ = (µ4/σ
4)−3 of the

distribution of diagonal matrix elements of (left) 〈n|Fi,i+1 |n〉
and (right) connected correlation 〈Szi Szi+1〉c. A vanishing ex-
cess kurtosis corresponds to a gaussian distribution. Lower
panels: Kullback-Leibler divergence of the matrix element
distributions with respect to a gaussian with same mean and
variance.

C. Perturbation theory analysis

We have postponed the discussion of the peculiar fea-
tures of the distribution of the nearest neighbor flip oper-
ator Fi,i+r in the MBL phase – a topic to which we now
turn.

In Fig. 5 we have a closer look at its distribution for
different (strong) disorder strengths. While the qualita-
tive features (central and satellite peaks) are independent
of disorder and apparently characteristic of MBL, there
is a quantitative evolution: the satellite peaks become
sharper and move towards zero as the disorder W is in-
creased (inset in Fig. 5). Furthermore, at very strong
disorder W > 10, additional peaks at − 1

2 and 1
2 develop,

which are not present at weaker disorder W . 6 (cf. Fig.
2).

As a first step towards a more quantitative analysis, we
consider the drift of the position of the satellite peaks as a
function of disorder. The lower left panel of Fig. 5 shows
the estimated peak positions, which are consistent with
a 1/W dependence, suggesting a perturbative analysis.

At very strong disorder, it is natural to treat the kinetic
term of the Hamiltonian as a perturbation of order 1/W .
Noting that the eigenstates of H/W are equal to those
of H, we cast the Hamiltonian in the form

H/W =
1

W

∑
i

Szi S
z
i+1+h̃iS

z
i +

1

W

∑
i

Fi,i+1 = H0+
1

W
V.

(3)

The scaled fields, h̃i, are now distributed uniformly in
a fixed range [−1, 1]. The eigenstates of the unperturbed
Hamiltonian H0 are product states and eigenstates of all
Szi operators and can therefore be enumerated by their
eigenvalues. The eigenenergies of H0 for each eigenstate
can be easily calculated using these quantum numbers.

Naive perturbation theory produces divergences when
the spacing between unperturbed energy levels goes to
zero. Such divergences – dubbed resonances – are un-
physical and are resolved by admixing clusters of nearly
degenerate states. Resonances are of great importance
in disordered systems and become increasingly so as the
system size increases. In order to incorporate the ef-
fect of resonances from the large disorder limit, we carry
out a mixed degenerate and non-degenerate perturbation
theory for the operator Fi,i+r. Details of the pertur-
bation theory are given in Appendix A. In addition to
the rather general discussion given in the appendix, we
note here various peculiarities of the perturbative calcu-
lation of 〈ñ|Fi,i+r |ñ〉 which simplify our task. In order
to obtain a matrix element 〈ñ|Fi,i+r |ñ〉 of an eigenstate
|ñ〉 of the perturbed Hamiltonian in perturbation theory,
we start with an eigenstate |n0〉 of H0. The matrix ele-
ment 〈n0|Fi,i+r |n0〉 is the zeroth order contribution and
is identical to zero because Fi,i+r is off-diagonal in the
z basis. It therefore contributes to the prominent peak
of the distribution of this matrix element at zero. More
precisely, for r = 1, states with | . . . 00 . . . 〉 or | . . . 11 . . . 〉
on the sites i and i+1 yield a zero contribution at zeroth
and first order in perturbation theory. This accounts
for half of the states so we expect the fraction of such
states to tend to 1/2 as W increases and this is indeed
what is found (Fig. 5 lower right panel). For r > 1, one
must go to higher order in perturbation to obtain any
non-vanishing contribution so the central peak is signifi-
cantly higher. To understand the satellite peaks, we have
to go to first order in perturbation theory (cf. e.g. Fig.
5).

The eigenstate |n0〉 is connected to a set of other eigen-
states {|k0〉} of H0 by the perturbation V . By this, we
mean that the 〈n0|V |k0〉 6= 0 for all |k0〉 in this set, while
matrix elements of V with all other states vanish. Let
us first deal with the case in which all energies Ek0 are
sufficiently different from En0 , such that in nondegener-
ate perturbation theory the denominators 1/(Ek0 −En0)
do not diverge. In this case, we obtain for the matrix
element 〈ñ|Fi,i+r |ñ〉 up to first order in 1/W :

〈ñ|Fi,i+r |ñ〉 =
1

W

∑
k0

〈k0|Fi,i+r |n0〉
〈n0|V |k0〉
Ek0 − En0

+ (k0 ↔ n0).

(4)

From this, we can now understand several features of
the distribution: if |n0〉 does not have eigenvalues of Szj
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FIG. 5. Upper panel: distribution of matrix element
〈S+
i S

−
i+1/2 + h.c.〉 at large disorder strength W ≥ 10, in the

upper right corner the local maximum of the distributions is
highlighted. Lower left panel: position of the local maximum
as function of the disorder strength. The red dashed line is the
exact maximum location extracted from first order perturba-
tion theory and given in Eq. 6. Lower right panel: weight
of the distribution at central peak

∫ ε
−ε dx p(x) and weight of

the right tail
∫ 0.5

ε
dx p(x) as function of disorder strength and

ε = 0.01. The weight of the peak at zero tends to 1
2

for strong
disorder as predicted by perturbation theory.

with opposite sign on sites j = i and j = i + r, the
matrix element 〈ñ|Fi,i+r |ñ〉 vanishes. This implies that
due to the incompatibility of V and Fi,i+r for r > 1, to
first order in 1/W all matrix elements vanish, which ex-
plains the different behavior of Fi,i+1 and Fi,i+r, r ≥ 2.
If the spins on sites i, i+ 1 have opposite Szj eigenvalues
(i.e. they are “flippable”), there is only one nonvanish-
ing term in the sum, in Eq. (4). The matrix element
〈n0|Fi,i+1 |k0〉 = 1/2 in this case giving

〈ñ|Fi,i+1 |ñ〉 =
1

2W (En0
− Ek0)

=
1

2W
(
h̃i − h̃i+1

) .
(5)

Since the on-site fields have a uniform distribution
bounded by h̃i ∈ [−1, 1], the expression in Eq. 5 can
be computed. We first note that the lower bound on
the matrix element is 1/4W as the maximum difference
in the fields is ±2. Now, rewriting x = 〈ñ|Fi,i+1 |ñ〉
as a random variable that takes values in the range
[−∞,−1/4W ] ∩ [1/4W,∞], its probability distribution
is:

P (x) =
4W |x| − 1

16W 2|x|3
, |x| ≥ 1/4W. (6)
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〈S+
i S−i+1/2 + h.c.〉
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p

W = 16.0

PT analytical
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PT
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〈S+
i S−i+1/2 + h.c.〉

W = 18.0

PT
L=30

L=40

L=50
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FIG. 6. Perturbation theory computation of 〈S+
i S

−
i+1/2 +

h.c.〉 compared the exact result (black). Upper and lower left
panels display the results for L = 20 and W = 10, 12, 16.
In the inset we can see that perturbation theory distribution
is disconnected (see main text). The red dashed line is the
analytical form of the probability distribution shown in Eq.
(6). Lower right panel: Perturbation theory results for L =
30, 40, 50, 60, 70.

The maxima of P (x) are located at x = ±3/8W To
summarize, first order nondegenerate perturbation the-
ory explains the presence and weight of the central peak
at zero, the presence and location of the satellite peaks
at O(1/W ), as well as the local minima separating these
peaks. The satellite peak stems therefore from the ad-
mixture of states which change their energy maximally
upon flipping of two neighboring spins. Fig. 6 shows plots
of the exact result (black) together with the distribution
Eq. (6) (red dashed) showing that the formula captures
the exact distribution very well (the delta peak at zero
with weight 1

2 is not shown in Fig. 6). To examine the
agreement in more detail, Fig. 5 shows the close corre-
spondence between the analytical calculation of the satel-
lite peak location and the exact result at least for larger
values of disorder. We notice that the perturbation the-
ory produces a higher central peak. This is caused by
the missing weight around the central maximum (see in-
set Fig. 5) due to the lower bound in magnitude of the
matrix elements 〈ñ|Fi,i+1 |ñ〉 up to first order (Eq. 5).

The distribution, Eq. (6), does not reproduce the small
peaks at the edge of the domain of the distribution, close
to ± 1

2 . To understand the origin of these peaks, we come
back to the consideration of the case that the eigenen-
ergy of the state with flipped spins Ek0 is close to the
energy of En0

, in which case we have a “resonance” and
nondegenerate perturbation theory breaks down. In this
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case, we have to use quasi degenerate perturbation the-
ory and include |n0〉 and its flipped partner |k0〉 in the
model space of quasi-degenerate states. Due to the con-
straint by the matrix elements of Fi,i+1 in the model
space, this is the only state which contributes to the
model space. The mixing of these two states leads to
the emergence of the peaks at ± 1

2 of the distribution. To
see this, we consider the zeroth order mixing of quasi-
degenerate states through a single spin flip term in the
Hamiltonian. This generates pairs of admixed states of
the form α| . . . 10 . . .〉+ β| . . . 01 . . .〉. The flip-flop opera-
tor expectation value is Re(αβ?).Since the perturbation
maximally mixes these quasidegenerate states α = ±β
and this accounts for the ±1/2 peaks.

Our numerical treatment of the exact mixing by quasi-
degenerate perturbation theory up to second order in
1/W captures also corrections to these features quanti-
tatively and we show the full distributions obtained from
it as colored solid histograms in Fig. 6. The perturba-
tion theory can be carried out for much larger system
sizes than treatable in shift-invert diagonalization and
show no visible system size dependence at strong disor-
der as shown in Fig. 6. We conclude that the parts of
the distribution of 〈n|Fi,i+1 |n〉 close to zero are due to
off-resonant mixing of flippable and not flippable states,
while the edges of the distribution close to ± 1

2 reveal the
effect of resonances. It should be noted that we do not
compute 〈ñ|Fi,i+r |ñ〉 at distances r > 1 because low or-
der contributions are trivial and higher orders in pertur-
bation theory make the numerical implementation hard
to deal with. Considering this, we restrict our perturba-
tion theory computations to operators with r = 1.

IV. EIGENSTATE EXPECTATION VALUES OF
Szi S

z
i+r

A. 〈Szi Szi+r〉 Correlators

We now turn to the Szi correlation function. Fig. 7
shows the probability distribution of energy eigenstate
expectation values of Szi S

z
i+r for a system of size L = 20,

r = 1, 2, 3, 4 and for different disorder strengths W . For
weak disorder W . 1.2, the distributions are gaussian in
accordance with ETH and the variance of the distribution
increases with disorder strength. As remarked in Sec-
tion III A and, similarly to the spin-flip correlators stud-
ied there, heavy tails are apparent for disorder strength
W = 2 in the thermal regime. Again, similarly to the
spin-flip correlators, the gaussian mean is displaced from
zero and the reason for this displacement is the same as
in that case (cf. Appendix B). As one expects in the ETH
regime, the variance of the distribution falls off inversely
in the Hilbert space dimension (exponential in L), which
is visible for the case of the connected correlator in Fig.
3 by the equidistant spacing of the standard deviations
for different system sizes on the semilogarithmic scale.

For strong disorder, deep in the MBL regime, the dis-

tribution is qualitatively different. The central peak is
still present but is obscured by a very broad distribu-
tion that extends out to the tails where there are more
pronounced peaks. There are again negligible differ-
ences between the distributions for different L within the
MBL regime. The presence of the outer peaks is sim-
ply explained from the strong disorder limit where eigen-
states of the Hamiltonian are also eigenstates of the local
Szi S

z
i+r operators with eigenvalue ±1/4. The fact that

the main new feature of the distribution appears in the
large W limit suggests that perturbation theory might
be as successful as it was for the spin-flip correlators. We
address this question in Section IV D.
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p
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r = 1 r = 2

−0.2 0.0 0.2
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i+r 〉

10−3
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100
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102

p

r = 3

−0.2 0.0 0.2
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i+r 〉

r = 4

W = 0.4

W = 1.2

W = 2.0

W = 2.8

W = 3.6

W = 4.4

FIG. 7. Probability density of eigenstate expectation values
〈n|Szi Szi+r |n〉 for distances r = 1, 2, 3, 4. The histogram was
taken over & 50 eigenstates, > 1500 disorder realizations and
all positions i in the chain of length L = 20. In each panel
the color corresponds to the disorder strengths as indicated
in the legend.

In order to remove the trivial contribution to the cor-
relation function coming from 〈n|Szi |n〉 expectation val-
ues, we discuss, in the following section, the connected
correlation function.

B. Connected Correlators

Fig. 8 shows probability distributions of the connected
correlation function for L = 20 and for different values
of W and Fig. 9 shows distributions for different system
sizes. For smallW , the expectation is that ETH is obeyed
and the figures demonstrate that, at least for W . 1.2,
the distributions are gaussian (Fig. 8) while the finite
size scaling is consistent with random matrix theory (cf.
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FIG. 8. Comparison of the distribution of connected corre-
lators 〈Szi Szi+r〉c in energy eigenstates for different disorder
strengths W . The histograms include data for different dis-
order realizations and all lattice sites i. For weak disorder
(W . 1.2) they display a gaussian distribution. For strong
disorder (W > 3.6) the distribution exhibits a sharp peak at
zero and and heavy tails, biased towards the negative side for
short distances r.

Fig 3). In the ETH regime, there is little variation in
the distributions for different r for a given system size
– one merely observes that the mean of the distribution
shifts towards zero from r = 1 to r > 1 as discussed
above due to the different energy dependence of different
r operators (cf. Appendix B).

For larger values of W , a sharp peak forms at zero and
persists deep into the MBL phase while the distributions
further depart from gaussianity by acquiring a distinctive
asymmetry with higher weight for negative values of the
correlator. For r = 1, the left-hand-side of the distribu-
tion acquires a shoulder down to −1/4 while the positive
side tapers off towards +1/4. For larger r the shoulder
is rounded on the left side, so that the asymmetry is less
pronounced. Our analysis in Appendix C confirms heavy
tails on either side at strong disorder.

In common with other distributions of matrix elements
of local operators there is little apparent variation be-
tween different system sizes in the MBL regime. In con-
trast, within the ETH regime for significant values of
disorder as exemplified by the W = 2 data, the central
width of the distribution narrows for larger system sizes
while weight at the tails remains.
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i+1〉
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FIG. 9. Comparison of the distribution of nearest neighbor
connected correlators 〈Szi Szi+1〉c in energy eigenstates for dif-
ferent system sizes. The histograms include data for different
disorder realizations and all lattice sites i. In the ETH (up-
per panels) phase the width of the distributions decreases with
system size L while in the MBL phase (lower panels) there
is no discernible dependence on the system size. The dashed
orange lines show gaussian distributions computed with the
mean and variance calculated from the data for L = 12, 20.

C. Anderson Insulator vs MBL

To understand the asymmetry of the distribution of the
connected correlator 〈Szi Szi+r〉c for small distances r, it is
useful to compare to the noninteracting limit. In Eq. 1,
∆ = 0 corresponds to the case of an Anderson insulator
of noninteracting spinless fermions. Fig. 10 shows the
connected Szi S

z
i+r correlator for ∆ = 0.0, 0.1, 0.2, 0.5, 1.0

and for W = 6 and r = 1, 2, 3, 4. We see that for distance
r = 1 the distribution of negative correlations has little
sensitivity to the value of ∆ while the weight of positive
correlations is exactly zero for the Anderson insulator,
giving a clear signature where MBL differs from the non-
interacting case albeit one where the asymmetry between
positive and negative weights persists to ∆ = 1.

We can understand the vanishing positive weight for
the Anderson insulating case for arbitrary r through a
straightforward application of Wick’s theorem since the
Anderson case ∆ = 0 is a free spinless fermion model
with a gaussian action. In fermionic language, the Ŝzi Ŝ

z
i+r

operator takes the form
(
c†i ci − 1

2

)(
c†i+rci+r − 1

2

)
. Us-

ing Wick’s theorem for ∆ = 0, we obtain in any eigen-

state of the Hamiltonian: 〈c†i cic
†
jcj〉 = 〈c†i ci〉〈c

†
i ci〉 −

〈c†i cj〉〈c
†
jci〉. It follows that the connected correlator is
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FIG. 10. Distribution of the connected correlator 〈Szi Szi+r〉c
for the disordered field Heisenberg chain with interaction
(∆ 6= 0, MBL) and without (∆ = 0, Anderson insulator) at
distances r = 1, 2, 3, 4 and strong disorder W = 6.0. Remark-
ably, in the Anderson insulating phase there is no positive
weight on the distributions.

〈n|Ŝzi Ŝzi+r|n〉c = −
∣∣∣〈n|c†i ci+r|n〉∣∣∣2, which is necessarily

≤ 0. This leads to the extreme asymmetry of the con-
nected correlator distribution at ∆ = 0.

We see in Fig. 10 that the asymmetry decreases as
r increases. This can be understood perturbatively, as
discussed in the next section.

D. Perturbation Theory

As in the case of the spin-flip correlator, the distribu-
tions of the Sz correlator are well reproduced at large W
by the perturbation theory discussed in Sec. III C and
Appendix A. This is demonstrated in Fig. 11 for the dis-
tributions of connected correlators with r = 1. Pertur-
bation theory also provides qualitative physical explana-
tions for the features reported in the last three subsec-
tions, as we elaborate below.

In the infinite disorder limit W → ∞, the correlators
〈Szi Szi+r〉 and 〈Szi 〉 are respectively ±1/4 and ±1/2 and
the connected correlator simply vanishes, contributing to
the sharp peak of the distribution at zero. Indeed, the nu-
merical data in Fig. 7, for large values of W , shows peaks
at the extreme values of the matrix elements. Similarly
the connected correlator distribution in Fig. 8 exhibits a
smooth decay of the central peak at zero towards finite
values of the connected correlator.

Inspecting the general expressions for matrix elements
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L = 40

FIG. 11. Comparison of the exact L = 18 distribution (ED)
of the connected Szi S

z
i+1 correlator at strong disorder to the

results from quasi-degenerate perturbation theory up to sec-
ond order in 1/W . All panels show the results in perturbation
theory up to second order, except for the yellow curve in the
lower left panel, which shows also only zeroth order degen-
erate perturbation theory results (mixing within the model
space), which appears insufficient to reproduce the full form
of the distribution. Lower right: Perturbation theory distri-
butions of the connected correlator for larger system sizes.

in mixed degenerate and nondegenerate perturbation
theory presented in appendix A, we observe that the ze-
roth order term coming from mixing within the model
space should account for some degree of broadening of
the peaks. The first order terms in 1/W trivially van-
ish, because the Szi S

z
i+r operator does not connect states

in the model space to those outside it, and this is why
we proceed to compute the second order contribution.
Fig. 11 shows that perturbation theory to second order
(yellow) compares very well to the exact finite size results
for L = 18 and large disorder W = 12, . . . 16 whereas the
zeroth order results (orange) fail to capture the smooth
falloff of the distribution to the left of the central peak.
We also show results for larger system sizes in Fig. 11,
which are not reachable otherwise and show that at large
disorder the distributions are essentially converged.

We show below that, while zeroth order (i.e., quasi-
degenerate) perturbation theory does not fully account
for the distribution shape of the connected correlators, it
does capture the asymmetry.

Zeroth order perturbation theory mixes quasi-
degenerate eigenstates of H0 connected by V =

∑
i Fi,i+1

– in other words states connected by flippable spins
| . . . 01 . . .〉 or | . . . 10 . . .〉 where the ellipses denote some
spin configurations. This means, starting from an eigen-



10

state |n0〉 of H0, we can expect mixing with the states
{Fi,i+1 |n0〉}, which are quasi-degenerate [69] with |n0〉.
This means that the model space is then spanned by

D = span (|n0〉 , {|i0〉 : |i0〉 = Fi,i+1 |n0〉 andEi0 ≈ En0}) .
(7)

Let us now try to understand why the distribution of
the connected correlator is asymmetric, starting from the
case r = 1. For simplicity, we consider the case of a two
dimensional model space, yielding a state (with |b|2 =
1− |a|2) of the form:

|ψ〉 = a |. . . σi−1σiσi+1σi+2 . . .〉+b |. . . τi−1τiτi+1τi+2 . . .〉 .
(8)

The connected correlator is then given by

4〈Szi Szi+1〉c = |a|2σiσi+1 −
(
|a|2 − 1

)
τiτi+1

−
[
|a|2σi −

(
|a|2 − 1

)
τi
] [
|a|2σi+1 −

(
|a|2 − 1

)
τi+1

]
.

(9)

Inspecting this expression shows that most combinations
of spin configurations σi,σi+1,τi,τi+1 yield vanishing con-
nected correlators and these contribute to the central
peak. The spin configurations on i, i+ 1 that yield non-
vanishing contributions are:

σiσi+1τiτi+1 ∈ {0011, 1100} :

4〈Szi Szi+1〉c = 1− (2|a|2 − 1)2 > 0.

σiσi+1τiτi+1 ∈ {0110, 1001} :

4〈Szi Szi+1〉c = (2|a|2 − 1)2 − 1 < 0.

This means we obtain two cases for positive correlators
and two for negative correlators. Evidently the case with
a flippable pair σi 6= σi+1 (yielding a negative correla-
tor) appears at first order in V , since the two states are
directly connected through V and are included in the
model space if they are quasi-degenerate, independent of
the state of the neighboring spins σi−1 and σi+2. The
case of an aligned pair σi = σi+1 (yielding a positive cor-
relator) is connected to its flipped partner state τi = −σi
and τi+1 = −σi+1 only in second order of V , including
a constraint on the neighboring spins σi−1 = −σi and
σi+2 = −σi+1. We note that in addition, an intermedi-
ate state with one spin flip has to be quasi-degenerate,
which is an additional constraint. For simplicity we have
left this state out of the discussion.

From these arguments, we conclude that the case of
admixed states which yield negative correlations is much
more probable than the case yielding positive correlations
due to their appearance at different orders in V and, ad-
ditionally, owing to constraints which reduce the number
of possibilities giving obtaining positive correlations.

We now understand that for the case r = 1, nega-
tive correlations are more probable than positive ones to
zeroth order in degenerate perturbation theory for two
reasons: negative correlations need only one order in V ,

while the appearance of positive weight requires two ap-
plications of V and only a specific set of spin configu-
rations can lead to positive correlations, thus reducing
their likelihood.

The same set of arguments can now be generalized to
the case r = 2. We see that in this case, we always need
to apply V twice to get nonzero (both positive and nega-
tive) correlations, however there are more possibilities of
having a flippable pair i, i+2 (necessary for negative cor-
relations), compared to the possibilities of getting a mix-
ture of |. . . 0x0 . . .〉 and |. . . 1x1 . . .〉 (necessary for positive
correlations), since in this case the flippability depends
on the state x of the middle spin i + 1. Therefore, also
in the case r = 2, the distribution of the connected cor-
relator is skewed towards negative correlations. In the
case of longer distances r > 2, these constraints become
increasingly weak (while requiring an order of V r to get
nonzero correlators), leading to more and more symmet-
ric distributions.

V. CONCLUSIONS

We have presented the exact energy eigenstate distri-
butions of spin-flip and Szi S

z
i+r correlators in the dis-

ordered XXZ chain across the many-body localization
transition. While – at very weak disorder – we find
gaussian distributions to very high precision, the dis-
tributions depart from gaussianity at intermediate dis-
order – still well inside the thermal regime – through
the appearance of heavy tails that persist into the MBL
regime. The presence of these tails correlates to the ap-
pearance of sub-diffusive behavior in transport properties
observed in previous studies [35, 36, 49]. In the entire
thermal regime, the variance of the correlator distribu-
tions falls off with increasing Hilbert space dimension as
one should expect for operators obeying ETH but sig-
nificant weight remains in the tails of the distribution
and measures of departures from gaussianity including
the Kullback-Leibler divergence and the kurtosis show a
peak for W < Wc that sharpens with system size. The
system size dependence of local operator distributions is
negligible inside the MBL regime where ETH fails.

For large disorder, we have carefully investigated the
distinctive forms of the correlator distributions, unrav-
eling various features of the distributions. We find that
strong disorder perturbation theory can reproduce the
full distributions in the MBL phase. We note that our
semianalytical perturbation theory scheme should be ap-
plicable to other models and could provide information
about the effect of resonances in different systems.

For the spin-flip correlator, the distributions are highly
structured with a central peak at zero, a pair of neighbor-
ing satellite peaks with disorder strength dependent po-
sitions at ±3/8W and further maxima at the edge of the
distribution at ±1/2. All these features are perfectly cap-
tured by a quantitative strong disorder perturbation the-
ory that also gives insight into their origins. In particu-
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lar, (i) the central peak comes from eigenstates where the
eigenstate carries no pairs of spins that are flippable by
the spin-flip operator, this accounts for 1/2 of all states
at strong disorder (ii) the satellite peaks at ±3/8W arise
from flipped pairs of spins that are maximally pinned
by the random field and therefore maximally off reso-
nant (iii) the ±1/2 peaks arise from resonances - strongly
admixed quasi-degenerate states. These extremal peaks
can only be captured by quasi-degenerate perturbation
theory. Overall, mixed quasi-degenerate and degenerate
perturbation theory unifies all contributions and yields
an unbiased result, matching the full exact distribution
almost perfectly.

The Szi S
z
j correlator distribution is more complicated

to analyze since we have to go to second order in 1/W in
our perturbative treatment. Our analysis reveals that for
short distances r = |i−j|, the correlator is predominantly
negative in the MBL phase, since eigenstates are biased
to contain mixtures of flippable neighboring pairs. This

leads to distributions skewed towards negative weights,
most strongly so for noninteracting Anderson Insulators,
where no weight for positive correlators is present due to
Wick’s theorem. Therefore, the Szi S

z
j correlator distribu-

tion reveals a strikingly different behavior generated by
interactions in the MBL case compared to the noninter-
acting model.
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Henrik P. Lüschen, Mark H. Fischer, Ronen Vosk, Ehud
Altman, Ulrich Schneider, and Immanuel Bloch, “Obser-
vation of many-body localization of interacting fermions
in a quasirandom optical lattice,” Science 349, 842–845
(2015).

[21] David J. Luitz, Nicolas Laflorencie, and Fabien
Alet, “Many-body localization edge in the random-field
Heisenberg chain,” Physical Review B 91, 081103 (2015).

[22] Rahul Nandkishore and David A. Huse, “Many-body lo-
calization and thermalization in quantum statistical me-
chanics,” 6, 15–38 (2015).

[23] Ehud Altman and Ronen Vosk, “Universal dynamics and
renormalization in many-body-localized systems,” Annu.
Rev. Condens. Matter Phys. 6, 383–409 (2015).

[24] John Z. Imbrie, “On Many-Body Localization for Quan-
tum Spin Chains,” Journal of Statistical Physics 163,
998–1048 (2016).

[25] Dmitry A Abanin and Zlatko Papić, “Recent progress
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Appendix A: Perturbation Theory

In this section, we give details of the Rayleigh-
Schrödinger perturbation theory that is used to obtain
the leading contributions in 1/W from the transverse ex-
change term V of the Hamiltonian to the energy eigen-
state expectation values of Szi S

z
i+r and spin-flip correla-

tors (see main text). We intend for this appendix and the
accompanying part of the main text to be self-contained
on the method but we refer the interested reader to Lind-
gren [76] for further details.

The Hamiltonian from Eq. (1) is rewritten H/W =
H0 + (1/W )V where

H0 =

L−1∑
i=0

(1/W )Szi S
z
i+1 − h̃iSzi (A1)

V =
1

2

L−1∑
i=0

(
S+
i S
−
i+1 + h.c.

)
(A2)

and h̃i ∈ [−1, 1] are normalized normal fields.
We wish to compute matrix elements of operator O

in the eigenstate basis where the eigenstates are com-
puted to some order in perturbation theory in 1/W . The
eigenstates of interest here are taken to be highly excited
states from the middle of the spectrum. We start from
the eigenstates |n〉 of H0, which are product states in the
Sz basis, their eigenenergies En0 is trivially obtained from
H0. To compute the corrections to the eigenvectors |n〉
perturbatively in 1/W we should bear in mind that the
energies of the product states are essentially randomly
distributed and will mix strongly under the perturba-
tion V if the states are quasidegenerate. Loosely speak-
ing, we would like to organize the perturbation theory so
that states coupled by the pairwise spinflips in the per-
turbation V that are separated by an energy ∆E > 1/W
are treated via non-degenerate perturbation theory while
clusters of quasi-degenerate states (with mutual energy
differences . 1/W ) are treated via degenerate perturba-
tion theory. We therefore use the formalism of a mixed
quasi-degenerate and nondegenerate perturbation theory
as described in Ref. 76.

We discuss how to organize this calculation up to order
1/W 2, keeping in mind our main goal: the computation
of energy eigenstate expectation values of local operators.

Let us focus on a single H0 eigenstate |n〉 in one dis-
order realization that has eigenvalue En0 . We compute
all other states {|m〉} connected to it by V and V 2,
i.e. 〈n|V |m〉 6= 0 or 〈n|V 2 |m〉 6= 0. Now, we de-
fine the model space, D, to consist of all states in this
set |m〉 (including the “parent state” |n〉), and with
|Ek − En| < α/W . We have experimented with the
threshold α to include states in the model space and the
results presented in the paper are essentially identical for
α ∈ [1, 3]. Let P be the projector onto the model space
D and Q = 1− P the projector on its complement D.

Suppose |Ψn〉 is an exact eigenstate of the full Hamil-
tonian that has a nonvanishing projector into the model

space |ΨD
λ 〉 = P |Ψλ〉. We introduce the inverse wave op-

erator Ω = Ω(0)+Ω(1)+Ω(2)+. . . that is expanded in pow-
ers of V . The action of Ω is to rotate a state in the model
space into the full space eigenfunction |Ψλ〉 = Ω |Ψ0

λ〉. So
now if we compute an eigenstate |vDλ 〉 of the effective
Hamiltonian

Heff ≡ PHΩ = H
(0)
eff +H

(1)
eff +H

(2)
eff + . . . (A3)

this is nothing but the projection of the exact wavefunc-
tion onto the model space. The eigenfunctions of Heff are
generally non-orthogonal and the effective Hamiltonian
non-Hermitian (albeit with real eigenvalues). To obtain
the eigenstates of H we lift them out of the model space
by acting with Ω: |Ψλ〉 = Ω |vDλ 〉. Note that |vDλ 〉 ∈ D
is a vector of dimension dim(D) � dim(H), whereas
|Ψλ〉 ∈ H is a vector in the entire Hilbert space H.

The problem is now to compute Ω(n). One may show
that [76]

Ω(0) = P (A4)

Ω(1) = S (V P) (A5)

Ω(2) = S
(
V Ω(1)

)
− S

(
Ω(1)V P

)
(A6)

where S is defined by

〈k|SA |m〉 ≡ 〈k|A |m〉
Em0 − Ek0

. (A7)

We now spell out the procedure for computing eigen-
state matrix elements of local operators to first and sec-
ond order in perturbation theory for mid-spectrum states
deep in the MBL phase.

The required steps are the following:

1. Select a random “parent state” |n〉, which is an
eigenstate of the unperturbed Hamiltonian H0. Its
energy En0 will typically lie in the middle of the
spectrum of H0.

2. Generate the “family” of states |m〉 connected to
|n〉 by the perturbation V (i.e. by neighboring pair-
wise spin flips).

3. Compare the energies of all states |m〉 with the par-
ent state |n〉, include |n〉 and all states |m〉 which
are quasidegenerate (energy difference < α/W )
with |n〉 in the model space D.

4. For each state |m〉 which is added to D, its family
has to be created and energy differences have to
be checked again, possibly including more states in
the model space D. States which are well separated
from the model space states are included in the
complement D.

5. Once this iterative process stops (for the spin-flip
operator expectation values further constraints can
be used, which simplify this), the effective Hamil-
tonian Heff ∈ Cdim(D)×dim(D) is calculated (see be-
low).
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6. Next the eigenstates of Heff are computed and we
pick one eigenstate |vD

λ 〉 at random.

7. In the next step, the eigenstate of Heff is promoted
to the full Hilbert space, using the perturbation ex-
pansion of the wave operator Ω up to the required
order. This step can be skipped using the expres-
sions derived below to directly obtain the eigenstate
expectation values of the operators we are after.

We note that since we are dealing with central eigenstates
of a quantum spin chain with a dense spectrum, there is
no separation of clusters of eigenvalues of H0 from other
parts of the spectrum. Therefore in principle the pro-
cedure above is not guaranteed to yield a model space
which is of smaller dimension than the full Hilbert space.
It turns out, however, that for the spin-flip correlator, ad-
ditional selection rules (i.e. the removal of terms yielding
zero contributions) guarantee a small model space. For
the Szi S

z
i+r correlators this is not true, and we typically

find much larger model spaces, which are however still
significantly smaller than the full Hilbert space.

Our procedure is designed to yield the minimal set of
states necessary to get the non-vanishing contributions to
matrix elements to a given order in perturbation theory.

1. Zeroth Order Perturbation Theory

The zeroth order effective Hamiltonian is nothing but

the projection H
(0)
eff = PHP into the model space. Its

matrix elements are therefore |m〉 , |m′〉 ∈ D:

〈m|H(0)
eff |m

′〉 = 〈m|H |m′〉 . (A8)

An eigenstate |vDλ 〉 of H
(0)
eff with eigenvalue λ then yields

the corresponding eigenstate in the full Hilbert space

|Ψλ〉 =
∑
|m〉∈D

〈m|vD
λ 〉 |m〉 =

∑
m∈D

vλm |m〉 . (A9)

From this, we may now calculate the zeroth order contri-
bution to the expectation value of an operator O:

〈Ψλ|O |Ψλ〉 =
∑

m,m′∈D

vλ,∗m′ v
λ
m 〈m′|O |m〉 . (A10)

2. First Order Perturbation Theory

The first order effective Hamiltonian is constructed as
follows

〈m|H(1)
eff |m

′〉 =
∑
k∈D

〈m|H|k〉〈k|V |m′〉
Em

′
0 − Ek0

+ . . . (A11)

where |k〉 lives in the complement space D and |m〉, |m′〉
live in the model space D.

To first order, the total effective Hamiltonian is then
given by

Heff = H
(0)
eff +H

(1)
eff ∈ Cdim(D)×dim(D). (A12)

The eigenstates |vλ〉 =
∑

D v
λ
m |m〉 of Heff with eigen-

value λ can now be lifted into the full space by acting
with Ω to first order: (Ω(0) + Ω(1)) |vλ〉. Thus:

|Ψλ〉 = |vλ〉+
∑
k ∈ D
m ∈ D

vλm
〈k|V |m〉
Em0 − Ek0

|k〉 . (A13)

Then the diagonal matrix elements of operator O are

〈Ψλ|O |Ψλ〉 =
∑

m,m′∈D

vλmv
λ ∗
m′ 〈m′|O|m〉

+
∑
k ∈ D

m,m′ ∈ D

vλmv
λ ∗
m′ 〈m′|O|k〉

〈k|V |m〉
Em0 − Ek0

+
∑
k ∈ D

m,m′ ∈ D

vλmv
λ ∗
m′ 〈k|O|m〉

〈m′|V |k〉
Em

′
0 − Ek0

(A14)

and we have omitted the one term that appears to order
1/W 2.

How do we decide which states should go into the
model space? In order to keep the perturbation con-
sistently of order 1/W we should, in principle, keep all
states with nonzero amplitude onto V |n〉 in the model
space where |n〉 is the state chosen initially. However,
the expression for the matrix element simplifies matters.
We consider operators O that are either diagonal in the
configuration basis or which flip a pair of spins amounting
to a single term in V . Then we are justified in restricting
the model space to |n〉 and O |n〉 if the latter lies within
an energy window of 1/W from |n〉.

3. Second Order Perturbation Theory

We now discuss the perturbative corrections to eigen-
states to second order in V . The first step in constructing
the eigenstates is to include terms to second order in the
effective Hamiltonian.

〈m|H(2)
eff |m

′〉 =
∑

k,k′∈D

〈m|H|k〉 〈k|V |k′〉〈k′|V |m′〉
(Em

′
0 − Ek0 )(Em

′
0 − Ek′0 )

−
∑
k ∈ D
l ∈ D

〈m|H|k〉 〈k|V |l〉〈l|V |m′〉
(El0 − Ek0 )(Em

′
0 − Ek0 )

.

(A15)

As above, the total effective Hamiltonian up to second
order is given by the sum of all lower order contributions
as

Heff = H
(0)
eff +H

(1)
eff +H

(2)
eff . (A16)
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Once we have computed the eigenstates of the effective
Hamiltonian to this order, we again lift them into the full
Hilbert space by operating on them with Ω(0) + Ω(1) +
Ω(2). The first two terms are reported above, the second
order contribution is:

Ω(2) |vλ〉 =
∑

k, k′ ∈ D
m ∈ D

|k〉 〈k|V |k′〉〈k′|V |m〉
(Em0 − Ek0 )(Em0 − Ek

′
0 )

vλm

−
∑
k ∈ D
l,m ∈ D

|k〉 〈k|V |l〉〈l|V |m〉
(El0 − Ek0 )(Em0 − Ek0 )

vλm.

Diagonal matrix elements may now be computed. In
full,

〈Ψλ|O |Ψλ〉 =
∑

m,m′∈D

vλmv
λ ∗
m′ 〈m′|O|m〉

+
∑
k ∈ D

m,m′ ∈ D

vλmv
λ ∗
m′ 〈m′|O|k〉

〈k|V |m〉
Em0 − Ek0

+
∑
k ∈ D

m,m′ ∈ D

vλmv
λ ∗
m′ 〈k|O|m〉

〈m′|V |k〉
Em

′
0 − Ek0

+
∑

k, k′ ∈ D

m,m′ ∈ D

vλmv
λ ∗
m′ 〈k′|O|k〉

〈k|V |m〉〈m′|V |k′〉
(Em0 − Ek0 )(Em

′
0 − Ek′0 )

+
∑

k, k′ ∈ D

m,m′ ∈ D

vλmv
λ ∗
m′ 〈m′|O|k〉

〈k|V |k′〉〈k′|V |m〉
(Em0 − Ek0 )(Em0 − Ek

′
0 )

−
∑
k ∈ D

l,m,m′ ∈ D

vλmv
λ ∗
m′ 〈m′|O|k〉

〈k|V |l〉〈l|V |m〉
(El0 − Ek0 )(Em0 − Ek0 )

+
∑

k, k′ ∈ D

m,m′ ∈ D

vλm′v
λ ∗
m 〈k|O|m′〉

〈k′|V |k〉〈m|V |k′〉
(Em0 − Ek0 )(Em0 − Ek

′
0 )

−
∑
k ∈ D

m,m′, l ∈ D

vλm′v
λ ∗
m 〈k|O|m′〉

〈l|V |k〉〈m|V |l〉
(El0 − Ek0 )(Em0 − Ek0 )

(A17)

Appendix B: Energy dependence of local operators

In the ergodic regime, the validity of the ETH implies
that energy eigenstate expectation values of local oper-
ators are equivalent to the thermal average at the tem-
perature corresponding to the energy eigenvalue:

〈n|O |n〉 ≈ Tr

(
e−β(En)H

Z
O

)
, (B1)
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FIG. 12. Spin-flip correlator and connected z correlation as
function of energy at distance r = 1, 2, 3, 4 in the ETH phase.
Both correlations increase linearly with energy at distance
r = 1. The spin-flip correlator is constant at larger dis-
tances r > 1 whereas the z correlation goes down slightly.
The dashed lines are the thermal expectation values in the
canonical M = 0 ensemble of the correlators 〈Oi,i+r〉β =

Tr
(

e−βH
Z

Oi,i+r
)

plotted vs. the expectation value of the en-

ergy 〈E〉β = Tr
(

e−βH
Z

H
)

for β ∈ [−1000, 1000].

where En is the energy density of the state |n〉 and β(En)
is the temperature chosen such that

Tr

(
e−β(En)H

Z
H

)
= En. (B2)

In Fig. 12 the expectation value of the spin-flip correlator
and the connected z correlation at distance r = 1, 2, 3, 4
are plotted as function of energy. The corresponding
thermal average matches the mean value of 〈n|O |n〉 .

We note that the thermal expectation values corre-
spond to the mean of the distributions we consider in
the main text. Since the correlators for r = 1 are terms
of the Hamiltonian, they exhibit a significant slope in
the middle of the spectrum, leading to the observed sen-
sitivity to the energy target. In the M = 0 sector
Tr(HM=0)/dim(HM=0) = −L/(4L − 4) which sets the
infinite temperature limit.

Appendix C: Heavy tails in the MBL phase

Some common features of the matrix elements distri-
butions of correlation functions in the MBL phase are the
sharp peaks at zero and the presence of tails. In Fig. 13
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FIG. 13. Probability distribution of the spin-flip correlator
〈n|S+

i S
−
i+r/2+h.c. |n〉 at distance r = 1, 2, 3, 4 for system size

L = 20 in the MBL phase. Putting aside the special features
at short distance r = 1, sharp peaks at zero and power law
tails elsewhere are the common feature. The disorder strength
dependence seems to be stronger at large distances.
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FIG. 14. Probability distribution of correlation function
〈n|Szi Szi+r |n〉−〈n|Szi |n〉 〈n|Szi+r |n〉 at distances r = 1, 2, 3, 4
for system size L = 20 in the MBL phase. The green and
yellow-red curves correspond to negative and positive values
of the correlation respectively. As seen in the main text, these
distributions are asymmetric around zero, though they seems
to have the same power law behavior on both sides.

and 14 such tails are highlighted for different distances
using a doubly logarithmic scale. They both show heavy
tails, which seem consistent with a power law behavior.
Since the connected Szi S

z
i+r correlator is asymmetric, we

show the positive part of the distribution separately from
the negative part in Fig. 14 (the sign of the negative part
is flipped to show them on the same plot).

Remarkably, the right and left hand tails of the con-
nected z correlation seem to follow the same power law
dependence despite their asymmetry, which is clearly vis-
ible in this representation.
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