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Abstract

The possibility that human activities, through the use of land for agriculture, deforest-
ation and emission of pollutants into the atmosphere, may alter the climate of the
earth has been long recognised. Also, in recent times, the possible magnitude of those
changes and their relevance for human societies has turned into a major social con-
cern. Consequently great efforts have been made to understand the mechanisms gov-
erning climate change, both in its physical and social dimensions, and to design socio-
economic actions that would prevent its adverse consequences.

In order to pursue this two-fold effort, the most widely accepted scientific paradigm
consists in the use of mathematical models of diverse complexity that describe the
coupled system climate - society. At present there are yet many uncertainties and
imperfections in our knowledge of the system, but delaying political action until
uncertainties are solved could have important consequences. Furthermore the system
being considered is stochastic in nature and its natural variability may interact with
and mask the causal relation between human activities and climate change.

In this work we aim at a preliminary study of the potential effects of climate’s natural
variability and imperfect knowledge in the design of policy action directed to reduce
greenhouse gas emissions. To this end the robustness of a structural climate - econ-
omy coupled model is tested against different assumptions related to the variability of
climate and the uncertainties of the system. The model adopts the form of a stochastic
optimal control problem, in which an optimal greenhouse gas emission policy is
sought that minimizes a stylized cost function that comprises both the damages
caused by climate change and the socioeconomic costs of reducing emissions.

Results show that although some of the basic results of deterministic models remain
valid, natural variability of climate may play an very important role in the design of
climate protection policies, specially if it is coupled to the man-made greenhouse
effect. Specially adaptation and flexibility emerge as central issues. Unfortunately,
both the nature and magnitude of this coupling are highly uncertain and thus the
results should be further tested.

Also uncertainties related to the magnitude and timing of climate change but most
importantly to the magnitude and nature of the economic damages generated by it,
may play a major role in the design of climate policies. It turns out that values and
ranges of the relevant parameters of the model are very poorly known, and strong
assumptions are needed to assign values to them. These assumptions are in turn
highly dependent on beliefs and political agendas. As a result, the often invoked pre-
cautionary principle has to be characterised with more detail, as to where the major
uncertainties are perceived and the relative values of different parts of the coupled
system.



Much work needs to be done yet, in order to elucidate the nature and characteristics of
climate variability and its interaction with climate change. Also the values and uncer-
tainty ranges of parameters relevant to the design of climate policies have to be further
narrowed in order to state the nature and magnitude of their influence in the policy
process.
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CHAPTER 1 Il’lﬂ'OdMCtiOﬂ

1.1 General framework

One of the main issues in the present debate about climate change is the design of ‘cli-
mate protection’ policies. That is, the design of measures to counteract the increase of
the atmospheric concentration of greenhouse gases (GHG) and, most importantly, the
possible effects of that change on the biosphere and on human societies. To achieve
this goal, the most widely used tool has been the construction of models to perform
cost-benefit analysis. The cost of reducing or stabilizing GHG emissions is evaluated
against the possible damages caused by a global change in climate. One of the essen-
tial characteristics of the climate-society-biosphere interaction is the wide range of
time scales involved and the presence of feedbacks and delayed responses, so that the
models should be, from the beginning, dynamic (as opposed to static equilibrium
models). These modelling exercises fall within the generally accepted scientific para-
digm for the interaction of the environmental and socioeconomic systems, which can
be, in principle, described with Global Environment and Society (GES) models (see
Hasselmann 1991, Hasselmann et al. 1997) whose main subsystems and interactions
are schematically depicted in figure 1.

It is usually assumed that society has reached an agreement on the definition of
global welfare (as well as its distribution among the different participants of the agree-
ment), so that a maximization task can be defined and implemented as a problem that
involves a single decision maker. The definition of global welfare is the role of the
decision makers in figure 1. Ideally, once this definition is set, models of both relevant
subsystems, i.e. climate-global change and society-economy, can be coupled and used
as constituent elements of the maximization task. Unfortunately there are no realistic
models available. The optimization task, in addition, typically requires the iterated
integration of the models and is therefore resource consuming.
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FIGURE 1. Schematic representation of a Global Environment and Society (GES) model
(adapted from Hasselmann, 1991).

The usual approach in the cost-benefit analysis consists in the use of a standard
economic model (the neoclassical growth model or a general equilibrium model), to
which a simplified box-type climate model is added. Both modules (climate and econ-
omy) are then coupled through two links: the build-up of GHG in the atmosphere as a
result of economic activity and the loss of output and welfare due to a modified cli-
mate (see for example Nordhaus (1994), Peck and Teisberg (1992), Nordhaus and
Yang (1996), Tol (1997)). The degrees of complexity and aggregation vary with the
models but they all share some common assumptions:

« Damage costs originated by a possible climate change are expressed as a function
of global surface temperature increase since pre-industrial times (more generally, a
function of the changes in whatever variables are used to monitor climate state);

» The only source of change in the climate system is the enhanced greenhouse effect
(that caused by anthropogenic GHG emissions, rather than the natural one, corre-
sponding to preindustrial concentrations of GHG). The climate system is assumed
to be in an equilibrium state (no natural variability), deviations from which are
originated by human activity;

o There is a one-to-one known causal relation between different parts of the system
(emissions-temperature increase, temperature change-damages, abatement policy-
costs, etc.).



Some fundamental problems appear, though, in this approach. Processes and inter-
actions are not well known. Our knowledge of the climate system is far from perfect
and predictions of future climates, based on General Circulation Model (GCM)
results, uncertain (IPCC (1996a) condenses present knowledge, giving, along with the
results and predictions, some uncertainty ranges). On the economic side there is, for
example, the ongoing discussion about the costs of emissions-reduction (e.g. top-
down vs. bottom-up models). Finally the damages caused by a change in climate con-
ditions are very difficult to evaluate, and estimations, to the present date, are merely
speculative. Also, by its nature this problem requires to plan and forecast the future,
so from the point of view of modelling (or of deciding) we do not have a world (e.g.
an experiment or a laboratory) to compare with. Most importantly, because of the long
time scales involved in some climate processes (for example ocean uptake of CO, or
heat) it is necessary to extend the analysis long into the future. The future is, though,
uncertain, and the assumption that the structure of the world (markets, international
relations) and societal values will remain as we know them, might prove wrong.
Objectives are not always well defined, because of different national interests and
social values, i.e. a societal agreement on global welfare has not been reached. As a
result, ‘climate protection’ is not a well defined task. Second, the climate-socioeco-
nomic coupled system is not deterministic, but rather stochastic. It has its own natural
variability that will (at least) add to human-made changes. Thus its future evolution,
as well as the effects of policies implemented, is not certain.

As a result, the schematic GES modelling approach is plagued with uncertainties,
that arise from the non deterministic nature of the system at hand (what we will call
stochasticity of the system) as well as from the imperfect knowledge of the system
(what we will call uncertainty). We can schematically categorise uncertainty in three
essentially different groups:

 the climate uncertainty, that has its origin in the imperfect knowledge of the state
of the system (basic theoretical principles are known but uncertainty appears due to
the huge range of space and relevant time scales)

« the valuation of costs, where basic principles are not always well defined or
known, nor the interactions between the subsystems involved,

» the perception problem, where different views (from national interest to moral
judgements) are intertwined with the process of valuation and policy adoption.

On the climate side, there is an ongoing scientific debate including a number of
issues related to global change and the physics of climate, although there is a general
agreement that the first principles and laws governing it are well known, and the dis-
crepancies between models would be due to different parametrizations and resolution.
In the climate change debate (and more precisely the greenhouse (GH) effect) there is
high uncertainty concerning the different feedback mechanisms that would enhance
the direct radiative effect of GHG (clouds, water vapour). Also, for a variety of rea-
sons, some subsystems are not easily modelled, contributing to the differences
between models (e.g. precipitation, oceanic circulation, criosphere). Finally some
more fundamental questions arise as to whether climate models are capable of pre-
dicting future climates far away from present conditions. Another interesting and rele-
vant debate is that of the attribution of a possibly observed climate change to a
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particular cause. The two main difficulties in this attribution are first the detection of a
change (there are still some issues concerning the observed record of global tempera-
tures, like the disagreements between land based observations and satellite observa-
tions, or the possibility of spurious trends in both time series) and the attribution or
the discrimination between possible causes (natural variability, solar forcing, aerosols
or a combination thereof). In this regard, the fact that climate has its own internal var-
iability, that is not the result of an external forcing, and which has to be told apart
from the anthropogenic climate change, is of critical importance.

A second and different level of uncertainty is found in the definition and model-
ling of the interaction between the climate and economic subsystems, i.e. the defini-
tion of a damage function (relating a certain change in climatic conditions to a loss of
economic efficiency, output, welfare or utility) and the definition and characterization
of socioeconomic instruments and mechanisms that would prevent such effects. Cli-
mate change is either perceived as an externality not accounted for in existing eco-
nomic models or as a factor that directly reduces the efficiency or output of the
economic subsystem under consideration. The precise mechanisms through which
these effects take place are though not well characterised, and the scientific commu-
nity has not agreed upon a consistent description. Nor are the effects of the possible
intervention measures (e.g. taxes, carbon permits) completely known or predictable.

Finally, the assumed agreement on a global welfare definition is far from being
realised in reality. Several actors involved (i.e. interest groups, nations, economic sec-
tors, etc.) have different views of the climate-society interactions and the possible
courses of action to influence it, that are shaped not only by the diverse economic and
political interests but also by cultural, religious and moral beliefs. Some issues have
taken much attention both in the public and the scientific arena, like intergenerational
equity, the regional distribution of the burden of a climate protection policy, the
appropriate rate of discount of the future or the economic valuation of human life. All
of them share the characteristic that moral or subjective elements are intertwined with
the objective valuation, and the descriptive and prescriptive parts of the economic
analysis cannot be readily differentiated. A further source of uncertainty originates in
the poor definition of the problem itself in many instances. For example, the word
‘sustainability’ (or the related terms sustainable development, self regenerating sys-
tem and carrying capacity of the earth) is used without clearly specifying what it
refers to, although there are several precise definitions of the concept (not all of them
convergent). See Hasselmann (1998).

To come around these difficulties, usually a set of possible future scenarios is
tested (sensitivity analysis), but the range of policies obtained for the different possi-
ble states of the world is large enough to make models almost useless as policy instru-
ments. Also, when considering a not fully known future, a version of the
precautionary principle is often invoked (but not quantified): in the presence of uncer-
tainty, policies (or more aggressive policies) should be adopted to protect climate.
Otherwise uncertainty and stochasticity are basically ignored or treated as a second
order problem. It is known, though, that in a decision process, uncertainty has a two-
sided effect: first, uncertainty biases the cost benefit analysis, even for a risk neutral
planner, toward policy adoption when uncertainty lies mainly on the effects of not tak-
ing action against increasing emissions/concentration (which are always costs, nega-
tive income), i.e. the precautionary principle; second, it delays the decision on an
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irreversible action if the passage of time is likely to bring new information. Thus
uncertainty may play a central role in the dynamics and timing of a possible climate
protection policy.

1.2 Objectives of the study

The objective of the present work is basically two-fold: first we try a closer scrutiny of
some of the basic assumptions fundamental to the present scientific paradigm, spe-
cially a) the concept of a cost function, that accounts for the economic consequences
of climate change, and b) the consideration of uncertainty and stochasticity as second
order effects. These issues, among others, are at the heart of the discrepancies
between poles of the climate change debate. Second, we attempt to contribute further
to the study of the role of uncertainty and stochasticity in the design of climate protec-
tion policies.

To this end we will, in turn, cover two main issues: the characterization of the wel-
fare optimization problem as one of sequential optimal decision (i.e. a stochastic
dynamic control problem) and the application of that analytical framework with the
use of a structural coupled climate-economy model. These objectives will be realized
through the detailed description of the modules (climate and climate costs) integrating
the model and a collection of experiments to study the effect of stochasticity and nat-
ural variability of the system on the policy design and the possibility of including
uncertainty in the decision process, beyond the if-then recipes provided by the sce-
nario analysis.

The solution of the model will rely heavily on the well developed theory of Sto-
chastic Optimal Control (SOC), that has found numerous applications in economic
theory. Classically, three related problems are identified:

o Estimation of the state of the system from measurements

¢ Optimization or optimal control of the system given an appropriate objective func-
tional

o Identification of the system, i.e. definition and estimation of the model parameters,
functional forms and interrelations that integrate the model.

Mainly the first two tasks will be considered, combined in the form of the optimi-
zation of a stochastic system with imperfect knowledge of the state. The problem of
identification will not be treated strictly in the framework of stochastic optimal con-
trol, but rather the model will be derived from first principles without explicitly
including an endogenous learning process in the model (see chapter 2).

The rest of the work is organised as follows: chapter two presents the general
framework within which the following sections develop. The design of optimal cli-
mate protection policies is formulated as a sequential optimal decision problem in
which the relevant subsystems are a stochastic climate and a simplified economy.
Also some of the basic assumptions, mainly concerning the cost function, are revised
and explained. In chapter three these theoretical principles are realized in a structural
simple model. Chapters four and five apply the model to two sets of experiments, to
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study the roles of stochasticity and uncertainty in the optimal control problem respec-
tively. Both chapters show a selection of representative examples that highlight the
major features relevant to the problem, rather than an exhaustive description of all
experiments done. Chapter six concludes.




CHAPTER 2 General description of
the problem

2.1 Characterisation of climate policy design as a stochastic
optimal control problem

This chapter will present some general ideas and the framework within which the rest
of the work will develop. The question of how much to curve the predicted future
GHG emissions in order to avoid the negative consequences of global climate change,
is formulated in the form of a cost-benefit analysis, that studies and balances the costs
of reducing GHG emissions, resulting from human economic activity, against those
originated by climate change, resulting from the build up of those gases in the atmos-
phere. The study of the interaction between different natural systems and human soci-
eties from an economic point of view has received much attention in recent years, and
issues like environmental economics or integrated assessment of climate change have
become separate fields of study on their own right. In particular, the economics of the
GH effect have been intensively studied and a number of models have been designed
to investigate the problem as a cost-benefit analysis (see for example Nordhaus
(1991), Nordhaus (1994), Tahvonen et al. (1994), Peck and Teisberg (1992), Manne
and Richels (1995), Hasselmann et al. (1991), Wigley et al. (1996), Tol (1997)). Also
the applicability and its limits of standard economic techniques like cost-benefit anal-
ysis, and other methodological issues have been studied (Munda (1996), Risbey et al.
(1996), O’Neill et al. (1997)).

We also introduce the basic fact that the system being modelled is stochastic in
nature rather than deterministic, and that the knowledge available is not complete, and
sometimes scarce. As a consequence, stochasticity and uncertainty become constitu-
ent elements of the problem, and the model includes both elements from the begin-
ning adopting the form of a stochastic optimization. Also many authors have
recognised the importance of uncertainty and, to a lesser extent, stochasticity in the
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GH problem (Peck and Teisberg (1993), Peck and Teisberg (1995), Baranzini et al.
(1995), Yohe (1996)).

As a result of the stochastic nature of the problem, the nature of the decision proc-
ess also changes, in that flexibility, understood as the ability of the policy maker to
react to the continuously incoming information, becomes a relevant issue. Climate
policies have to be revised continuously and adapted to the actual value of the sto-
chastic variables in the system. Previous work has been done in this direction: Grubb
et al. (1995) analyse adaptability and inertia in the energy sector; Lempert et al.
(1996) use a model in which once during the planning period the emission-reduction
policy is revised; Fisher and Hanemann (1990) use a simple model to study the prob-
lem of information flow in environmental protection.

In this chapter thus, we aim at a consistent characterisation of the climate protec-
tion policy design as a Stochastic Optimal Control (SOC) problem, which lets us
include uncertainty and stochasticity in our model as constituent parts. We use the
mathematical structure of Dynamic Programming (DP) to quantify and specify a basic
mode] and the different policy options available to the decision maker.

2.2 The basic model

As stated in the introduction, the basic question facing us is the design of policies to
minimize the impacts of a possible climate change resulting from economic activity
(and its associated emission of GHG). The main elements of our system are:

» The climate system (atmosphere, oceans, cryosphere)
» The economic-social system (markets, social preferences)
» Their mutual interaction (CO, build-up, damages)

e The decision process: definition of objectives and choice/implementation of poli-
cies

We use a highly aggregated model to represent the complex system described
above. Due to the inherently global nature of the greenhouse warming problem, we
consider an aggregated economy described by a global welfare (utility) function W,
thus ignoring the problems of reaching an agreement on the definition of W, and the
distribution of costs and benefits associated with climate change. This function fol-
lows a Business as Usual (BAU) path disturbed by climate costs C, which come from
the damage and adaptation costs due to climate change and from the economic meas-
ures needed to abate emissions and avoid that change. That is

W =Wgip-C

The decision process is summarized in the objective of maximizing welfare and
the choice of some protection policy (that in our case will be the choice of a GHG
emission policy). This policy is summarized by the vector of control variables u.
Since Wpgy,; is exogenously given, the maximization of W is equivalent to the minimi-
zation of C. Since the variables describing the system are not deterministic but ran-
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dom, the objective is properly formulated as the maximization of expected welfare
(neither damages nor the costs or effects of our policy options are known with cer-
tainty) maxE{W} = min‘E{C}. The operator Zis the expected value defined on the
set of random variables described below. Notice also that cost-benefit analysis repre-
sents to a certain extent an arbitrary choice of the function to be optimized, but can be
regarded as an objective comparison tool, that under certain conditions (monetariza-
tion or transformation into utility units of all the assets in our system) provides the
means to attach relative value to different policy options. In a similar way the choice
of the expected value of total utility (or costs) as the argument for the minimization
process provides a natural way of comparing outcomes of different options when the
system contains stochastic components. One can also attempt to optimize other func-
tions of the costs as defined above as long as certain basic conditions are fulfilled and
they have a meaning (can be interpreted in terms of economic or physical quantities).
For instance, if we are concerned with undesired-low-probability outcomes, we might
minimize the variance of costs (or more properly the variance of deviations from a
prescribed path). Alternatively, we can maintain Z{.} as the optimization criterion,
but use a different function of C as the argument, so as to make it, for instance, more
risk averse.

The climate system is monitored through a low-dimensional system of (prognos-
tic) state variables x (more precisely their deviations from an equilibrium state),
which summarize the relevant features of the high dimensional complete climate.
There are basically two sources for internally generated climate variations: non-linear
interactions and integration of noise (von Storch and Hasselmann, (1994)). In general
a simple climate model is required for our problem, which is unable to reproduce
those non-linear interactions, so we will focus our analysis on the variability gener-
ated by the integration of noise. In our general framework noise represents both
weather (fluctuations with characteristic times much shorter than the system of inter-
est) and external natural forcing like variations of the solar constant or vulcanism.

Following Hasselmann (1976), (part of) the variability of a complex system can be
explained as the response of its slow varying components to the stochastic forcing that
the fast varying components constitute. We assume that the climate system can be
broken down in two subsystems x (oceans, cryosphere) and y (atmosphere) with very
different characteristic times 7,>>7,. We are not interested in short time weather fluc-
tuations, but rather on long term variations, so we centre our attention on the set of
variables x. Their evolution is described by

x(t) = f(xy)

y() = g(x,y)
where in the second set of equations x is usually regarded as a constant term (as in
weather models) and in the first, an averaging operation is carried out, so that
x(t) = (f(x,y)) depends only on the statistical properties of y. While that is right in
an average sense (would deliver the mean evolution of the slow varying components),
is not right for one particular realization of the climate evolution. Rather we have an
equation

x(t) = (f(x, y) +wlx,y)
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where w is a term with zero mean that for time scales relevant for x can be regarded as
white noise. Furthermore if x represent deviations from an equilibrium state x,, and
for integration times short enough compared to T,, we can write the equations as

X(t) = f(x) +w(xp)

where in f the averaging operation is carried out and the statistics of y already
expressed as functions of x, and w is a stationary random process with statistics
depending only on the reference state x;. We can broaden this definition of the ran-
dom forcing to include other types of external influences not necessarily related to the
internal dynamics of the system, but also acting as a stochastic forcing for the climate
system (solar cycles, vulcanism, other GHGs), and drop the assumption that w is a
white noise, substituting it by a more general red noise forcing.

Additionally, there may be external deterministic forcing, that in our case is the
human interaction with the climate system. This anthropogenic influence is repre-
sented by the set of control variables u, so that the complete climate equation is

xX(t) = f(x,u, t)y+w

(the dependence on the reference state is not explicitly written any more, but the
explicit time dependence indicates that some elements may be non-stationary).

The second problem we shall study is the imperfect knowledge of the modelled
system, i.e. the uncertainty on the system, that translates into the fact that the model
coefficients are not known with certainty. We assume that the climate evolution equa-
tions are known, i.e. the dynamics of the system, but not the particular values of the
coefficients. We model this fact by considering those coefficients as random variables,
that can be summarized in the random vector 7. The equations now are

X(t) = f(x,u,mt)+w

(note that in general 7 enters the equations in a non-linear fashion). These are the
equations of motion of the system.

Note that these two types of stochastic forcing are conceptually different: w is a
true random variable, whereas 7 is a set of unknown parameters that let itself be mod-
elled as a random variable.

The mutual interaction between climate and economy is described by the cost
function, which is expressed as the sum of time specific costs

¢ = [Teyar = ['(D(r) + Gyt

where D are damage costs and G the abatement costs.

Damages are a function of the deviations x of climate from the reference state and
possibly their rate of change. Abatement costs are a function of the control (usually
the rate of reduction of emissions relative to the BAU path) and its rate of change

D
G

D(x, x, 1)
G(u, u,t)

10



The damage function

We have now defined all the elements necessary to solve our model as a stochastic
optimal control problem in which we look for the optimal policy # *(¢) that minimizes
C subject to the equations of motion for x, namely

minf{fc(x, u, t)dt}

subject to the equations

x(1) = f(x,u,m,t)+w

so that both problems (intrinsic stochasticity and imperfect parameter knowledge) are
part of a general set of problems of finding optimal control policies when stochastic
elements are involved, i.e. stochastic optimal control.

Finally, since decisions are met in discrete time intervals, and for calculus pur-
poses, the model will be solved in the discrete form

minf{zf:ci}

Xiv1 = filxpupm)+w;

where subindex i indicates time period.

2.3 The damage function

In this section we briefly analyse the main features and caveats of the cost function
introduced in the previous section. As we have seen, it consists of two separate contri-
butions: the costs of reducing carbon emissions below the levels that would be
reached if the socioeconomic system would follow its BAU path, and the damages
caused by climate change. The first contribution can be estimated and explained with
the tools of economic theory, and is a well defined quantity. We will thus focus on the
second one. The definition and estimation of the damages caused by climate change,
and the design of a damage function, need contributions from several fields of knowl-
edge like the physics of climate, biology, sociology or economics. Also, knowledge
on impacts and costs of climate change, and their dynamics, is still in a very prelimi-
nary stage, and thus many interesting practical an methodological questions arise in
the process of defining and quantifying the damage function. As we have seen in the
previous section, a functional relation between the state of the climate and the socioe-
conomic system is a natural requirement for the cost-benefit analysis of the problem
of designing optimal climate control policies. It provides an objective means to
directly compare the economic effects related to the environment, that result from a
given course of action i.e. a given climate protection policy. The choice of an optimal
policy is then dictated by the comparison of the (expected) cost of adopting that pol-
icy (cost of abatement measures, introduction of new technologies) and the benefits
derived from it (damages avoided and, arguably, secondary or indirect benefits).
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To put this approach into perspective it is important to mention the on-going
debate about cost-benefit vs. cost-effectiveness (or cost oriented vs. target oriented
approaches; see for instance Tahvonen et al. (1994), Nordhaus (1997)). The former
approach, as explained above, compares net costs against net benefits derived from a
particular policy option. The latter sets exogenously an objective (typically a concen-
tration or emission threshold that should be met or not surpassed) and tries to find the
most (cost-) effective way and instruments to reach that objective. Both approaches
are in fact very closely related to each other. Advocates of the cost-effectiveness
approach argue that a cost-benefit approach might result in solutions (policies) that
are not acceptable according to some previously established criteria, like sustainabil-
ity or equity. Also the functional relation between climate and economy is hard to
define and very uncertain, and has a certain degree of arbitrariness, in that monetariza-
tion of many assets is not straight forward or unique (for instance leisure or human
life, to which cultural values are attached). For the same reasons, the definition of
optimality of a particular policy would also be arbitrary. On the other hand, the cost-
effectiveness approach sets the task of defining and justifying a particular objective to
be met, process in which we also introduce high uncertainty and arbitrariness. Notice
that in this choice we are implicitly defining a cost functional in the sense defined
above and making a definition of optimality. Also the definition of objectives is often
dictated by cost benefit analysis in one way or another.

It must be noted that both approaches serve different purposes and provide
answers to different questions. Cost benefit analysis enlightens the basic properties of
the system mainly from an economic perspective, and aids in setting typical and
extreme values on the relevant parameters of the system. In the cost-benefit approach
we hope we can improve our knowledge on the system and accordingly improve our
choice possibilities. In the end, though, the action to be taken would respond to a
political decision, which will be guided by different criteria than scientific knowledge
or economic optimality.

The Damage function

As was already mentioned, a damage function, relating the state of the climate system
to the socioeconomic impacts resulting from climate change is a natural requirement
of the cost-benefit approach. Unfortunately, only point estimates of damages caused
by an equilibrium climate are available at present, rather than a function that
expresses damages as a function of a dynamic (not necessarily in equilibrium) climate
state. We can schematically describe the process of constructing such a function in the
following steps:

« First, point estimates for damages are derived using an equilibrium climate and
comparing to a pre-defined reference socioeconomic state.

» Next, we may derive a functional relation between the economic system and differ-
ent equilibrium climates.

 Since in a dynamic optimization problem we are typically not in equilibrium we
may attempt at finding a relation between the economic system and the instantane-
ous climate state.

12
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A large number of impact studies have been published that investigate the relation
between climatic variables and economic factors, that vary in the regions, sectors and
variables considered and resolution (see for example Cline (1992), Fankhauser
(1995), Tol (1996) for valuation of costs associated to the greenhouse effect; also for
an extensive review and lists of references, including impact an costs for different
socioeconomic sectors and regions, see IPCC (1996b), [IPCC (1996c¢)). All of them
share some basic assumptions and methodology: typically a climate scenario derived
from a GCM experiment is applied as external forcing to a model representing some
sector of the socioeconomic system (agriculture, energy production, health/disease
spread, coastal systems, etc.), or impacts are estimated based on expert opinion. For
the climate scenario definition, some variables are chosen that are relevant to the soci-
oeconomic model, as well as the appropriate resolution both temporal and spatial. The
outcome of these modelling exercises is the reaction of the particular socioeconomic
subsystem to a different (from present) equilibrium climate or a particular realisation
of a transient climate, i.e. the first step in our idealised process.

Further, some authors (see for example Nordhaus(1993), Tahvonen et al. (1994),
Tol(1996), Hasselmann et al. (1997)) postulate a simple (polynomial) function that
expresses global damages as a function of some proxy climate variable, usually glo-
bally averaged surface temperature, based on the equilibrium damage estimates. We
will also follow this approach, expressing damages as a function of globally averaged
surface temperature and its rate of change, and using the previously mentioned point
estimates to give values to the parameters of the function. It is important to keep in
mind some fundamental assumptions implicitly made in this definition:

« Using a single variable, in our case globally averaged surface temperature, as
proxy to represent climate change, amounts to considering all changes in climate
simultaneous. A more complete function should include not only temperature, but
also other relevant climate variables like sea level rise, soil moisture, precipitation,
etc., which exhibit significant time lags with respect to surface temperature. This
de-aggregation of the damage function would allow for a more detailed description
of damages, not only in terms of timing, but also of magnitude.

» Also when using point estimates to build the damage function, we assume that
equilibrium values are a good proxy for a transient climate change. The differences
between transient and equilibrium values may be, though, significant. For instance,
at the time of CO, doubling, only 50% to 80% of the equilibrium warming is real-
ised in transient climate change experiments (IPCC (1996a)).

» Impacts and damages follow instantaneously and necessarily to a certain climate
change. In reality significant time lags may also occur between climate change and
climate impacts and damages. For instance forests or population migrations may
take some time to react to climatic conditions. Also the damage function does not
properly include adaptation of natural and socioeconomic systems to climate
change. Numerous examples show, however, that adaptation to climatic conditions
may play a decisive role in the climate-economy interaction (see for instance
Fischer et al. (1996), Schelling (1991)) being able to offset or cancel the effect of
climate change or even reverse the sign of damages.

13
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All this simplifying assumptions suggest ways in which our definition of damages
may be improved and fields in which further research is needed. Current contributions
to these questions include for instance Fankhauser and Tol(1996), in which several
dynamical aspects of the damage function are investigated. Concerning the role of
adaptation as a strategy to cope with climate change, it has been argued that it may
play a much more important role than thought until now, not only because mitigation
efforts may fail according to their own goals, but because adaptation may, in its own
right, be an efficient course of action to deal wit the problem at hand. For an excellent
analysis of the subject see Pielke (1998).

It must be noted that the climate system has its own natural variability, both inter-
nally and externally generated, i.e. the climate state changes over time without the
need of an anthropogenic forcing. We will further use the damage function above,
thus assuming that natural changes and anthropogenic forced ones have the same
characteristics, in terms of time scales and spatial patterns (differing possibly in inten-
sity), and cannot be distinguished from each other. Incidentally, this also means that
climate policies can control not only man-made changes, but also, with the same
instruments, natural ones. In other words, we are assuming a way of partially control-
ling the climate system, which raises some interesting technical and ethical questions.

A final point arises from the economic side when considering a climate with natu-
ral variability. Damages are measured as losses compared to a reference socioeco-
nomic-climatic state, i.e. it is assumed that under pre-industrial climatic conditions
the socioeconomic system has fully adapted to its environment, and hence deviations
from those conditions originate economic losses. If we consider natural variations of
climate, though, we have to state precisely what these conditions are, not only in
terms of the mean state but also in terms of its variability in the relevant time scales.
Interannual variability, phenomena like El Nifio or the Little Ice Age, all affect the
socioeconomic system, or parts of it, in a variety of ways and time scales, from varia-
tions on agricultural yields to population migrations, and in general force human soci-
eties to adapt. In connection to this point it has to be further investigated if natural
variations of climate have a comparable or relevant influence on growth or produc-
tion, and to what extent, as the man-made changes, both in the short time scales (some
studies have looked at short time seasonal and daily variability and its effect on plant
growth and agricultural production, see for example Abrol and Ingram (1996); Dalton
(1997) examines the welfare effects of climatic variability) and longer ones.

Since we will use a very aggregated and simple damage function, that cannot dis-
tinguish these different characteristic times nor resolve the different socioeconomic
subsystems, we use the instantaneous climate state as the argument for the damage
function. Since we describe the problem using a mathematical model that is discrete
in time, instantaneous means actually averaged over the time step length of the model.
This means that the damage function will take into account variations on time scales
of the length of the model time step, and ignore variability in shorter time scales. Typ-
ical time steps used in economic models are 10 to 20 years, thus not capturing varia-
tions over shorter periods. For our integrations we use At=1yr.

Also in defining the damage function we arbitrarily choose the mean climatic
preindustrial conditions as the point for which damages are zero, i.e. as our reference
state. Notice though that the actual climate state will seldom be found in that particu-
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lar state. On the other hand, if natural variations are relatively small, this choice of a
reference state will be a good approximation.

2.4 Definition of optimal strategies

The two main elements that will characterize different policy options are information
flow and flexibility, the latter understood as the possibility of postponing decisions
and adapt or change policy options in the course of time. We will face then a sequen-
tial decision process. Information will, in turn, appear in two forms: a) knowledge of
the state of the system x; and b) of its statistical properties summarised by the transi-

tion probabilities P(x;, ;[x;,....x(). As a starting point we will assume that the state of

the system, x, can be measured with certainty and is known at current time (although
not in the future, since it is a random variable); also, the system

i+1 = fi(xpu; ;) +w; has the Markov property (knowledge of the state at time i

is equivalent to knowledge at all times before i and ), i.e. all we need to describe the
system is the initial probability distribution P(x,)) and the one step transition probabil-

ities P(x;, ;lx;). This is a very general formulation, since all random sequences that

depend on their finite past can be transformed into Markov sequences by means of
state augmentation, adding x;_;,..., X;_y as new dummy state variables. By augmenting

the state we can thus deal with some problems including, for instance, higher order
derivatives in the equations of motion or in the cost functional (see also Appendix B
for the application to our model). We may also find situations in which the transition
probabilities P(x;, ;lx;) contain unknown elements, that we represent by a set of

parameters 0 (and 2 as A0)) which can also be characterised as random variables. We
will assume that any new information concerning 6 will come from external processes
or actions, i.e. learning is exogenous. Therefore, in our experiments information avail-
able either does not change with time (if P(x;, ;|x;) is known exactly), or comes from

external sources, but the information set at time i is not affected by our choice of con-
trols or by the state (x; and u; contain no information on 0). A system in which the

properties of the random components are perfectly known (thus leaving no room for
learning) is called a purely random system. A system in which some of the parameters
have unknown statistical moments, and in which learning is endogenous, is called an
adaptive system. In these systems (that will not be treated in this work), we can
improve our knowledge on A(6) in a bayesian way by measuring the state, past con-
trols and disturbances. In our model, we deal with a purely stochastic system, but the
probabilities 7 are allowed to change according to factors outside the model, that have
to be exogenously specified. It is important to note that information will become
available (either in the form of the exact value of the state or the reassessment of the
probability distribution ) progressively in time, so that flexibility translates basically
into the ability of using new information as it comes including it in the optimal policy.

In the following we define a strategy as a rule, i.e. a function that tells us what to
do depending on available information (state of the system, statistics of stochastic
components). On the other hand, a policy or a decision is a particular realization of

X
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the strategy for a determined set of values of their arguments. In the following para-
graphs we precisely define the different types of strategies available to the decision
maker, depending on the possibility of postponing decisions and the use of informa-
tion.

Closed Loop or Feedback Strategies

A closed loop (CL) or feedback strategy is a set of functions (F, ..., F) that specify

a policy at each time period as a function of the information available at that time,
ie.

u; = Fi(x;)

The strategy (F,*, ..., Fy*) that minimizes the given cost functional is then the opti-
mal strategy, and u*; gives the optimal policy corresponding to a particular realization
of the random elements.

In the CL strategy, the planner takes full advantage of present information availa-
ble about the climate-economy system and of the perspective of attaining new infor-
mation in the future. He also has the possibility of postponing emissions reduction
decisions, so that the optimal control for time i can be decided at that time. This situa-
tion is schematically represented in figure 2.

Closed Loop Strategy

exogenous
information

. 18W Slaie
clim-econ
system J :

Co . policy for
state == optlfmz.atlon
criterion period i

(augmented)

FIGURE 2. Schematic representation of the closed loop (CL) strategy. The structure showed
repeats itself at each time step, at which the state of the system is measured, and knowledge
revised in view of other external sources of information. An optimal policy is then selected
according to the strategy given by F, that, when applied, generates the next system’s state.

Notice that the optimization criterion includes all costs in the relevant time inter-
val (i.e. does not act myopically considering at time 7 only costs at that time). In this
way the optimization criterion box contains a rule that prescribes the proper action in
view of present state and exogenous information at time i. Notice though that this rule
takes into account both future costs and the fact that new information will become
available in the future (the rule is typically obtained applying DP; see Appendix A).
To obtain the optimal rule F we use the recursive expression (given by the DP algo-
rithm; it is the discrete version of Bellman’s equation)

cL . cL
Ji () = min, E{c;+J; [ fi(x upl}
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where we define J; as the cost fo go function at time i, i.e. the total optimized costs
from time i to the end of the planning horizon. Also a subindex i in the expected value
function indicates that expected value is performed with (conditional to) the informa-
tion available at time i, and c; represents the instantaneous costs at time i. The CL
optimal strategy adopts the form u*; = F*;(x;), i.e. is a function of present (aug-
mented) state and time. In words, at each time i we choose the policy u*; that mini-
mizes the sum of present costs and minimized future costs.

Since the state x; and the exogenous information will only become available at
time i, the optimal policy u*,, i=I,...,N, is also a random variable that will be known
only at time i, i=1,...,N.

The planner can also act myopically, by ignoring the possibility of attaining new
information in the future, i.e. uses new information as it arrives at each time step, but
assumes no new information will come in the future (not even the knowledge of the
present state of the system). We call this course of action, following the usual notation
of optimal control theory, an Open Loop Feedback strategy (OLF) (notice though that
is a closed loop strategy, in that it specifies the optimal policy as a function of present
available information). In this case, the planner calculates a whole time-dependent
policy u*;, i=j,...,N, from which only u*,, i=j will be applied. Then, at time i+/ the
process is again carried out, all decisions are calculated till time N in view of new
information but only the i+1 decision is applied.

Open Loop Feedback Strategy
_exogenous
+|nformatlon

optimization policy for all periods ito N

state=ji- rort
(augmented] Crierion
apply policy i exogenous
PP P y information
/i N\stateoptimization|PONSY for

\_ s S criterion  [fall Beriods i+1
' = to

FIGURE 3. Schematic representation of the OLF strategy. As opposed to the CL strategy, the
possibility of obtaining information in the future is ignored. Consequently a whole time-
dependent policy {u; j=i,...,N} is calculated, but only u; is applied. The modular structure

depicted repeats itself at each time step.

Once more the planner has a rule that tells him what to do in view of present infor-
mation. In this case, however, the rule ignores at each time the perspective of attaining
new information in the future.

The OLF strategy is obtained with the formula

N
OLF .
‘]i (xi) . mlnui,._..uNZf{ch}
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that is, replaces J;, ; by its estimate using information available at time i. At time { all
remaining decisions until time N are calculated, but feedback takes place in that only
u; is applied, and at time i+/ all remaining decisions are recalculated with the new
information available.

In both the CL and OLF strategies the economic system represented by the control
variables is assumed a certain degree of flexibility, i.e. is capable of reacting to present
conditions and/or changes in the climatic-economic coupled system, by changing pol-
icies, introducing regulations or tuning existing ones (e.g. fuel taxes or agricultural
adaptation). On the other hand including the rate of change of the control in the abate-
ment costs represents the fact that the economy is not without memory, and past
actions, to a certain degree, influence present ones. In this sense, capital accumulation
or public perception play an important role.

Open Loop Strategies/Policies

The planner may also utterly ignore future available information (for instance if he
cannot or will not postpone decisions until the corresponding time period) and take all
future decisions in view of information available at initial time. He uses the open loop
policy (OL), that specifies all future actions as a function of initial state and time.
Notice that in this case OL strategy and policy are the same, since the information
available is all known at initial time. In this case there is no distinction between strat-
egy and policy or, properly, an OL policy is a particular case of the CL case, in which
the functions u=F(x) are constant functions, i.e. independent of x.

Open Loop Strategy
exogenous
information

o . . . . N
state !,“*“' optlmlzatlonl po"cy for all perIOds ’-to- - o e e ’
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FIGURE 4. Schematic representation of the OL policy. At initial time a time-dependent policy
{u; j=i,...,N} is calculated, and then applied independent of the state of the system or other

incoming information.

The decision rule is generated through

N
oL .
JO ('xo) = mlnul, ey MNEO{ Z Cl}
)
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so that all decisions are taken simultaneously.

Finally, the decision maker can ignore stochasticity and substitute all random vari-
ables with a best guess estimate (which does not have to be the expected value, but,
for example, a median if he assumes the distribution non symmetric), thus using an
open loop deterministic solution (OLD). He then uses a deterministic rule

N
oD . =
‘]0 (XO) = mlnul, e, MN{ 2 ci}

i=1

where ¢ designs the costs as a function of the best guess values of the parameters (and
similar changes in the equations of motion).

These OL policies resemble the actual decision making process: decisions are
based mainly on best guess estimates and are expressed in form of fixed emissions
reduction objectives (see for instance the type of policy agreements reached in the
Kyoto conference, 1997). This approach also rises important questions about the irre-
versibility of these kind of measures, as opposed to more flexible/less distortion-
inducing instruments.

Relation between Open Loop and Closed Loop Policies

In a deterministic optimization problem CL and OL policies are identical and can be
derived from one another. Starting for instance with the OL policy, that specifies the
optimal control path u*(z) as a function of time, we can integrate forward the equa-
tions of motion

X = f(x,u*, 1)

and obtain an optimal state path x*(z). There is though a one to one relationship
between u*(t) and x *(z) (this is not true for any other control u(z), since a state x(t) can
be reached in general with infinitely many feasible controls, only one of which is opti-
mal) so that we can solve for u*(z) to obtain u*(¢t)=F*(x,t). Conversely, if we start
with the CL relation u *(¢)=F*(x,t), we can integrate the equations of motion f{x,$) to
obtain x*(z) that, when substituted in F'* delivers the control as a function of time
only.

The central point here is that in order to calculate the present optimal solution we
need to know not only the present, but, most importantly, the future (in order to decide
an optimal emission policy now, we need to know the present state of climatic and
economic variables, but also how will the climate system react or, for instance, the
price of reductions in the future). In a deterministic problem, though, all information
ever to be available is contained in the equations of motion and the cost functional,
which are known from the start.

In this respect, the OL approach transforms the dynamic problem into a “static”
one, in which controls at different times are regarded as independent decisions, and
the equations of motion as restrictions on the state variables. On the other hand, in the
CL approach, the recursive DP algorithm (or, for that matter, the Maximum Principle)
transmits backwards the information contained in f and the cost functional.
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In a stochastic problem, the situation changes, in that the future is not known and
cannot be known by integrating the equations of motion. Now OL and CL policies are
in general different and must be obtained from different methods. The former will
specify an optimal control as a function of time and initial state. It is an irreversible
policy, fixed in time. The CL policy will specify the optimal control at each time as a
function of present information, which is typically the present state of the system and
transition probabilities P (perfectly known in a purely stochastic system). Each of the
policies is optimal within the class of policies to which they belong, but CL policies
deliver equal or smaller total costs (the option of ignoring information is also availa-
ble in the CL strategy).

In this case, the DP algorithm can transmit backwards part of the information
about the future which is necessary, namely the statistical properties of the random
variables and the deterministic elements, but cannot transmit the other part, the partic-
ular realization of the random variables. Thus, the form of the function ¢*(x,?) can be
calculated based on the information available at initial time, but the argument x(z) will
be known only at time ¢. This separation is possible because the state x(¢) contains no
information on the statistical properties of the system. On the other hand, the OL pol-
icy necessarily ignores all future information.
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CHAPTER 3 Design of a simple
structural climate-
economy model

3.1 Introduction

In this chapter we will apply the formalism described in chapter 2 to derive a coupled
structural climate-economy model. In doing so, we will be able to identify where the
major uncertainties of the model are, which will be used later (chapter 5) to study
their role in the decision making process. In particular we find the best guess values
and ranges for some of the parameters that have the greatest influence in the optimal
emissions policy. We also describe the stochastic component of the climate model that
will be the basis for the experiments of chapter 4. Finally a summary of the sensitivity
analysis is presented that highlights the major features of the deterministic optimal
solution of the model and defines a baseline run, to which the other experiments are
compared.

For the experiments performed in this work, a simple integrated coupled climate-
economy model is used that includes climate change and its interaction with human
activities, based on the models of Tahvonen et al. (1994) and Hasselmann et al.
(1997). The main characteristics on the economic side are an exogenously determined
growth rate in the absence of abatement or damages, and an also exogenous b.a.u.
emission path. Climate is monitored through atmospheric carbon concentration and
globally averaged surface temperature, both measured as deviations from the prein-
dustrial state. Total discounted costs, defined as the sum of time-specific damages (D)
and abatement costs (G) are minimized through the whole planning horizon

J = minf{'[:(D(t)+G(t))e_8tdt} (EQ 1)

subject to the equations
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dF (1) = Edt
dC(t) = (bF +BE — 6C)dt + dw® (EQ2)
dT(t) = (WC - oT)dt + dw"

where

2 s 2 r
G =v5(p +(@p)IWpe"  p=1-=

o=l 2+ (e

m

(EQ 3)

F{(t) represents the cumulative CO, emissions up to time #, C(¢) is the atmospheric
carbon concentration relative to preindustrial time (ca. 1860), 7(7) is the globally aver-
aged surface temperature deviation relative to preindustrial time and EV is the business
as usual emission path. p is the percentual reduction in emissions relative to E’, and
we further define 3, = §-r as the effective discount rate. Notice that 6, is chosen to be
negative (i.e. d<r), meaning that the future is perceived as less valuable than the
present, and ensuring that the integral in equation 1 converges. Both damages and
abatement costs are expressed as a [r)ercentage loss of the undisturbed (no damages or
abatement) output Uye'’. w€ and w! are white noise processes with known statistical
properties (Gauss-Markov random processes with known mean and variance). In
addition to the additive noise forcing, some of the parameters are also considered to
be random variables, to account for the poor knowledge on their value. We have
included in D, for the sake of completeness, the rate of change of surface temperature,
but, as we shall see, this term is only of secondary importance relative to the tempera-
ture related one.

We face the control of a linear stochastic system with quadratic criteria. An inter-
esting interpretation of the model is that we try to keep the system as close as possible
to a certain predetermined state (in our case the state is zero deviation from preindus-
trial conditions, but the model can be readily extended to minimize (x-x)Q(x-x) where
x is our time dependent desired state) with admissible amounts of control. The quad-
ratic dependence ensures that large deviations from the desired state, i.e. deviations
from the preindustrial climatic state, are highly penalized compared to smaller ones.
Also high amounts of control, which means high reductions of the carbon emissions
with respect to the b.a.u. baseline, are penalized. Such models are usually termed lin-
ear-quadratic controllers in the SOC literature.

Note that the economic part of the model has been strongly simplified: there are no
dynamics in the economy, but rather an exogenous growth rate r is given. That means
global output grows at that exponential rate, and costs, which are a percentage of out-
put, too. All other constituent parts of the economy are left out and only costs of
reduction and damages are considered.
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3.2 The climate model

The climate model will be derived in two separate steps: first the functional forms and
parameters are derived as if they were deterministic and then the stochastic compo-
nent is added. This approach will suffice for our purposes.

The response x(t) of a complex system to a known forcing y(t) (if perturbations are
small enough) can be accurately modelled in the following way

x(t) = [ Ga-ymar = [ LR -vde

where x is a vector of climate variables, describing the climate state, y is a forcing
vector and G(t) the linearized impulse-response function, i.e. the response of the sys-
tem to a d-type forcing, and G(t)=dR/dt, where R(t) is the linear transient response to a
step function forcing (both y(0) and ®(0) are zero).

This response can be expanded as a linear superposition of individual modes

G(1) = Ag+ 3 A"

i=1
A;
1:

m
R (1) 2 (1-¢"
We are interested in deriving the equlvalent model in differential form, which can be
easily done by performing the derivative of x(#) and using the expansion of G(¢). For
our purposes, as we shall see below, the first few modes of the expansion will be
enough. Notice that both integral and differential versions of the model are totally
equivalent: the expansion of G as a sum of exponential functions is equivalent to the
choice of a set of linear differential equations, and the number of individual modes in
the expansion of G to the number of equations.

We apply this formalism to the climate state vector, considering each component
of the vector separately, the atmospheric concentration of carbon as a response to the
anthropogenic emissions and the surface temperature change as a response to the con-
centration (it is assumed that with no anthropogenic forcing the system is in equilib-
rium with C(t)=0 and 7{(z)=0)

) = [ Gelt-DBEM

t
T(t) = jo G (t—T)UC(T)dT
where a constant 3 has been introduced to transform units (from GtC to ppm) and

functions G are dimensionless. Forcing on temperature is thus assumed to be a linear
(rather than logarithmic) function of C. After taking derivatives we obtain
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C(t) = bF(t)+BE(t)-oC(t)
T(t) = nC(t)—oaT(r)
b = @B o = L o = L

Tci Ea Ez
since G(0)=1 (initially all emissions are retained in the atmosphere) and A7;=0 (sur-
face temperature returns to its preindustrial equilibrium state if concentration forcing
is removed). Notice that after the anthropogenic carbon emissions have been set to
zero, a fraction Ay of the emitted CO, will remain in the atmosphere (A is the
asymptotic fraction), i.e. C does not return to its preindustrial equilibrium state after it
has been perturbed.

A generalization of this model including a more accurate representation of the cli-
mate system, by retaining further terms in the exponential expansion of the Green’s
functions G and Gr is straightforward, resulting in a set of additional variables (and
their corresponding linear differential equations). These variables can be physically
interpreted as different parts of the carbon concentration and temperature going into
different reservoirs with corresponding characteristic times. For CO,, reservoirs are
sinks in which carbon is sequestered at different rates (ocean, biosphere), and for tem-
perature different thermal reservoirs (mixed layer, deep ocean). Also the formalism
can be applied to other climate variables relevant to the interaction with human sys-
tems, such as sea level rise or precipitation changes.

Numerical values

The coefficient values of the approximation for the Green’s functions can be empiri-
cally fitted to both observational records and the output of dynamical 3-dimensional
carbon cycle models. The value of B (the conversion ppm/GtC ratio) is set to 0.47
after Meier-Reimer and Hasselmann (1987).

In the carbon cycle model we have basically two free parameters to determine:
Acp, the fraction of the emitted carbon that stays asymptotically in the atmosphere,
and o, basically the rate at which CO, is sequestered from the atmosphere. T, is the
e-folding time, i.e. the time necessary to reduce atmospheric concentration to 1/e of
its initial value. Notice that in our simple approximation we have retained only one
exponential term, thus reducing the dynamics of the carbon cycle to two sinks with e-
folding times infinity and T.;; in the complete model, or in an approximation that
retains more exponential terms several sinks with corresponding time scales come
into play, so that T, represents an average sink.
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FIGURE 5. a) Response function to an emissions pulse for exponential fit for the model of
Maier-Reimer (1993), plus models C0, C1. b) Temperature response to a sudden doubling of
CO, concentration.

Estimates of A vary between 14% in the inorganic ocean carbon cycle model of
Maier-Reimer and Hasselmann (1987) and 7% in the more recent organic carbon
cycle model of Maier-Reimer (1993). We fix the value of Ay to the latter more recent
estimate of 7% and fit ¢ to the observed record of CO, emissions and atmospheric
concentration, yielding a value of 0.021 yr.'1 (or corresponding e-folding time of T
=47.2 yrs.). The model resulting from the fitting exercise is named CO. Due probably
to the fact that the short historical record does not capture the full time dependent
dynamics of the system, we obtain too low a value for T;, and carbon is sequestered
too fast from the atmosphere (see figure 5 a). For example, CO underestimates the
remaining atmospheric fraction of CO, after 100 yrs. in about 40% compared to the
model of Maier-Reimer. In a second exercise, the value of ¢ for fixed A was fitted to
the exponential approximation of the full model of Maier-Reimer, yielding a value of
0.0055 yr.™! (or 1y = 181.6 yrs.).The resulting model is Cl(figure 5 a).

TABLE 1. Parameter values for both carbon cycle models C0 and C1.

Model Aco(%) b(ppm/GtC) s(yr. D) Tc1(yrs.)
Co 7 6.9x10% 0.021 47.2
Cl1 7 1.8x104 0.0055 181.5

Not surprisingly, model CO performs slightly better when reproducing historical
concentrations (figure 6 ¢) and rates of atmospheric storage. For conditions character-
istic of the decade 1980-1989, we obtain a mean rate of atmospheric accumulation of
4.75 GtClyr. (2.23 ppm/yr.) for model CO and 6.5 GtC/yr. (3.05 ppm/yr.) for model
C1, compared to the 3.3 £ 0.2 GtC/yr. (1.55 £ 0.01 ppm/yr.). from IPCC (1995a), or
the 4.6 £ 1.7 GtC/yr.(2.16 + 0.80 ppm/yr.) if the part going into the terrestrial sink is
considered. Remember that the models used to fit the coefficients of C1 include only
the ocean sink. Note also that the uncertainty concerning the absorption by the land
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biosphere is very high. On the other hand, CO offers a worse fit to other more complex
models for longer time scales that are relevant in the optimization problem, in which
the atmospheric carbon concentration is underestimated (see figure 5 ¢, and compare
to Maier-Reimer and Hasselmann (1987), where their model is forced with a logistic
emission scenario that injects around 5000 GtC into the atmosphere in roughly 400
y1s.). These differences are the result of reducing the dynamics of the carbon cycle,
for which only one average sink is considered, and highlight the different time scales
that are important in the problem at hand, showing that for the climate system scales
of several hundred years have to be taken into account.

The temperature model has also two free parameters to be fitted: W, the radiative
forcing of atmospheric carbon and «, the relaxation term that measures the time
needed by the climate system to return to an equilibrium state after it has been forced
out of it. Notice that we have chosen a linear model for simplicity, but a better approx-
imation would be a logarithmic dependence of the radiative forcing on atmospheric
carbon concentration, specially for the long time scales and high concentrations con-
sidered.

Both p and o were fitted to the (smoothed) observed temperature and CO, atmos-
pheric concentration records, obtaining oe = 0.03 (for an e-folding time of 33.33 yrs.)
and p= 0.00045. A crucial assumption is being made for this fit that the upward trend
in the observed temperature record is due to the increase in atmospheric concentration
of CO,.This amounts to considering the detection-attribution problem solved; the
form of the equations, i.e. the assumption that higher concentration of GHG in the
atmosphere will result in higher atmospheric temperatures can be justified in terms of
physics first principles, although the amount of warming, i.e. the climate sensitivity, is
contingent to uncertain issues like feedback mechanisms.

Again, due to the shortness of the observed record, the resulting model, TO,
projects a very high climate sensitivity (defined as the equilibrium warming due to a
doubling of the carbon concentration) of 4.2 °C, already on the upper range of IPCC
projections (figure 5 b). The equilibrium temperature in our model is given by the
equation

_ MU

where C; is the doubled concentration (in our case is 280 ppm over preindustrial
value). For sensitivity studies, two other temperature models where constructed nor-
malizing them to give the same equilibrium temperature 7, and calculating respec-
tively the necessary w and o0 when the other is that of TO. The corresponding models
are shown in Table 2 for a value 7,=2.5 °C, corresponding to IPCC’s best estimate.

TABLE 2. Parameter values for global temperature models T0, T1 and T2.

Model w(°Clppm)  ofyrs.”T) t, (yrs.) T,(°C)
TO 0.00045 0.03 33.3 4.2
Tl 0.00045 0.05 20.0 2.5
T2 0.00030 0.03 33.3 2.5

26




The climate model

Emissions Cumulative Emissions
8 T T T T T ¥ 200
6 | 1 150
5
34 g 100 |
O
2 ¢ 1 50
0 s ' 1 ' i 0 —t i i ! 1 I
1860 1900 1940 1980 1860 1900 1940 1980
year year
Concentration Temperature
360 . - - . - 7 0.8 - : . .
i / — co-
340 B observed / 06 i _ gng-?
—— CO
£ - ——cCt 7 0.4 | i l
S 320 10 H ‘ ‘i" I[ 1
| ool Rl
300 | 0-0 ’q“ N i Hl
280 : : i : : : -0.2 ' : : ' :
1860 1900 1940 1980 1860 1 900 1940 1980
year year

FIGURE 6. Observed emissions (a) and corresponding cumulative emissions (b), concentration
(c) and temperatures (d) for all climate models.

Figure 5 b shows the corresponding curves for a sudden doubling of carbon con-
centration. It can be seen that the critical quantity is the climate sensitivity, the indi-
vidual values of p and o being not so relevant (see also figure 8).

All combinations of carbon cycle and temperature models where tested for differ-
ent carbon emission paths. Figure 6 shows that all model combinations are consistent
with the observed records of both concentration and temperature. On the other hand,
the longer experiment depicted in figure 7, forcing with logistic emissions, shows the
marked differences between the models. It must be noted though that the high concen-
trations and temperature reached in the logistic emissions experiment fall far outside
the linearization limit of the system (concentrations reach maximum values between
two and four times present day values). Also the linear forcing of concentration on
temperature overestimates the climate response to GHG emissions. Nevertheless, this
simple climate model captures the main features, and most importantly, the dynamic
evolution depicted by more complex models, and clearly shows, as already mentioned
above, that time scales of several hundred years (longer than the ones considered in
many impact studies) are relevant in the climate system.
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FIGURE 7. Logistic emissions (a) and corresponding cumulative emissions (b), concentration
(c) and temperatures (d) for all climate models.

3.3 A stochastic climate model

In this section we will describe only the stochastic forcing related to the natural
variability of the climate, i.e. what we described in the introduction as stochasticity of
the system. The other form of stochastic forcing, namely the uncertainty associated to
the parameters of the model, will be described in chapter 5 and the probability distri-
butions associated will be derived.

A vector of noise processes [0, wC, wT] can now be added to the climate model,
that will act as stochastic forcing. Note that the simple model adopts the form of a sto-
chastic one (see for example Hasselmann (1976)), in which both wC and w' are noise
processes independent of the state of the system, with zero average and constant vari-
ance. In the absence of external forcing, i.e. if man made emissions are zero, and
assuming white noise forcing, the system in equations 2 corresponds to a multivariate
first order Gauss-Markov process (an AR(1) process) with the matrix of coefficients
given by
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dx = Axdt +dw A=|C 0
n —o

so we have a stable process with preindustrial state as mean state and a constant vari-
ance due to the noise terms.

Notice that this simple stochastic model is able to produce its own internal varia-
bility without external forcing, i.e. periods of higher or lower temperature and carbon
concentration than the constant mean. The size and length of these periods depend on
the parameters of the model (feedback/relaxation and coupling between both varia-
bles) as well as on the variance of the noise term.

Observed Climate Variability

All parameters in these equations have been derived in the previous section except for
the variance of the climate variables. The reconstructed records of annual CO, con-

centration show that this quantity has remained remarkably constant for several centu-
ries before preindustrial times, at the level of about 280 ppm. Also since the beginning
of industrialization both reconstructed and observed time series show a smooth
monotonously increasing curve (except for annual cycle, which gets smoothed out for

At>1lyr), so we set wC=0. Variations on lon ger time scales will not be considered here
(for example, there is an estimated difference of around 80 ppm between present con-
ditions and the last glacial period). On the other hand, surface temperature records as
reconstructed from paleo-climatological data show significant variability basically in
all time scales relevant to our problem (see for instance Harrington (1987), for a
review of causes). The observed record of annual mean surface temperature anomalies
presents also significant variability, both in the annual and decadal scales.

To estimate XT, the covariance of globally averaged surface temperature, we may
make use both of modelled and observed data. On a time scale of one year we make
use of the 1260 years of modelled data from the coupled run ECHAMI/LSG experi-
ment (see J. von Storch et al. (1997)) and the Jones and Briffa observed surface tem-
perature data set to obtain (both give similar values) a standard deviation of globally
averaged surface temperature of 0.2 °C. Note that in both cases it can be argued that
the time series is not stationary: the ECHAMI1/LSG experiment presents in the first
500 years lower temperatures that indicate that the model may not be in stationary
state yet; in the observed record it may be argued that the human influence, through
greenhouse warming, is already present in the data (remember that we have used that
time series to estimate the values of o and W, assuming that the anthropogenic GH
effect was responsible for the warming in recent years).

On the other hand, models are thought to underestimate natural variability (see for
example Barnet et al. (1996)), and the observational record is too short for that pur-
pose. As an alternative we may look at longer reconstructed historical records. Crow-
ley and Kim (1996) propose a tentative 0.5-0.6 °C as a value for trough-to-peak range
on the temperature record since the 15th century to preindustrial time, and 0.8-0.9 °C
if we also include the period after 1850 (actually those numbers are given as a range
of variations rather than a mean of those variations). Temperature reconstructions
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from ice cores also show radical changes in temperatures (several °C), possibly of
hemispheric or global extent, taking place in the time scale of a human life-time or
less (IPCC (1996a)). Barnet et al. estimate that model runs (MPI and GFDL) underes-
timate variability (standard deviation) on the decadal-centennial time scale by a factor
of 3-4. Also Hegerl et al. (1996) estimate that on time scales of years to decades vari-
ability is underestimated by a factor of 1.5 to 2 (notice also that these control runs
made with GCMs only contain variability originating in the internal dynamics of the
model, leaving all other sources of change, like changes in solar input, constant). For
sensitivity studies we apply the correction factor proposed by Barnett et al. to obtain
standard deviation of globally averaged surface temperature of 0.6 °C.

Model Values

First we assume that the globally averaged surface temperature, in the absence of
anthropogenic forcing can be modelled by a stationary AR(1) process

T(t+1) = 0T (1) +w (1)

where w is white noise, with the value of the feedback parameter ¢ = 1 — otAt previ-
ously adjusted for our model. Then, temperature at each year is the realization of a
random variable with constant expected value and variance. Thus we can infer the
variance of the noise term, since because of the stationary character we have
" = Var(r) = ——3'"
1-¢
With this relation we obtain a standard deviation for w’ of 0.05 °C, for o =0.03 and a
time step of one year, corresponding to a standard deviation for temperature of 0.2 °C
or 0.14 °C for a standard deviation for temperature of 0.6 °C.
The de-correlation time of our modelled AR(1) process is

where X7 = Var(wT)

_1+9
Ty = mm

For the parameter values above we obtain, for a time step of one year, T = 65.7 yrs.
(this long decorrelation time represents the fact that at the surface, atmospheric proc-
esses are largely related to the slower ocean (see J. von Storch et al. (1997)). Last,
note that these values are derived quantities, that depend on the feedback (memory)
parameter ¢, which in turn is representative of the model’s climate sensitivity. For
example, the decorrelation time reduces to Ty = 39 yrs. for oo = 0.05 yrs.'l , showing
that for a less sensitive climate deviations from the mean have a shorter duration.

For an AR(1) process x, variability in time scales of one year and longer ones are
related through

Var(x) _ .
Var(z) Vs
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where x is the N year mean of x. If x is white in a period of one year, then N=N’; if
not, as in our case (where x is the mean surface temperature), N’'<N. We see that vari-
ability (standard deviation) of N-year means and of yearly values are proportional
(with a factor A/ﬁ') so that variability decreases as N, the time scale observed,
increases. The climate system though does not show this simple behaviour, and exhib-
its significant variability in longer time scales. Also, in the analysis above, we have
only considered internal natural variability, the one resulting from the integration of
weather forcing that can be assumed as uncorrelated (white) in time, and not other
factors that contribute to the variations in climate like variations of the solar constant
and vulcanism.

To include these effects we generalise the stochastic forcing w. In order to repre-
sent variability in longer time scales and to take into account the fact that the other
forms of noise may not be white, we let w have a memory, i.e. we force the climate
system with red noise of the form w(z+1) = ¢, w(¢) + &, where  is a white noise
process. In this way we have an extra parameter ¢, which lets us vary the characteris-
tics of the noise without changing the climate sensitivity of the model, represented by
o. Parameter values are chosen again by fixing xT and letting the covariance of the
white noise forcing adjust for different values of the memory term ¢,,.

Climate catastrophes and surprises

Another possibility that has been suggested is that of climate catastrophes and sur-
prises, i.e. a possible evolution of the climatic system that would lead to much more
drastic changes in climatic conditions than predicted as best guess values. The three
major studied catastrophic possibilities (IPCC (1996¢)) are the runaway GH effect (in
which feedbacks would enhance anthropogenic GH effect), disintegration of the ant-
arctic ice sheet and structural changes in the ocean circulation. In contrast to the sto-
chastic forcing described above, in order to model these effects we have to choose a
probability distribution for w that reflects somehow the characteristics of this new
one: low probability of occurrence but major changes in the climate system. Unfortu-
nately knowledge in this area is rather scarce. Manabe and Stouffer (1993) predict a
shut-down of North Atlantic circulation in their 4xCO, experiments. Other authors

(sec Jones (1991) for a review) have suggested the possibility of a ‘natural salt-oscil-
lator’ in which ocean circulation would be naturally shut on and off following small
changes in salinity. Evidence is though scarce and controversial, and the mechanisms
controlling such changes are not well understood. Also there is a great controversy
regarding the nature and sign of the feedback mechanisms that enhance GH effect
(mainly water vapour and clouds).

To account for these possibilities we change the nature of the stochastic forcing.
Instead of a series of small shocks added continuously, the noise forcing will consist
of jumps occurring with very small probability but high amplitude. Also they will
have the important characteristic of being influenced by anthropogenic climate
change.
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3.4 The cost function

Next we couple the climate model above to a highly aggregated cost function, repre-
sentative of the economic impact of both the climatic change associated to the
enhanced GH effect and the economic measures implemented to prevent that change.
As stated in section 2, we assume for our model the existence of a globally averaged
welfare function W that, in the absence of abatement measures or climate associated
damages, follows an undisturbed growth path, the BAU path. Climate change origi-
nates deviations from this path through damages, i.e. economic losses related to the
new and/or changing climatic conditions. We further assume that climate change,
originated by the enhanced GH effect created by the anthropogenic carbon emissions,
can be countered by the introduction of emission control policies that will reduce the
accumulation of GHG in the atmosphere. These policies, though, imply in general the
introduction of technological innovations and structural changes that need initial
investments (and possibly initial reductions of present resource/energy consumption
levels) and thus originate abatement costs (except for the debated ‘no regrets’ or ‘free
lunch’ policies). The mission of the planner is thus that of balancing damage and
abatement costs in order to minimize total aggregated cost or, equivalently, maximize
total global welfare.

Also, according to the general model of section 2, and at a comparable level of
aggregation as other models cited in the literature (see Nordhaus (1991) or Tahvonen
et al. (1994)), total costs are expressed as a weighted sum (integral) of time-specific
costs. Damages are a function of global climate, that in our model is solely repre-
sented by the globally averaged surface temperature 7, and its rate of change (to
account for parts of the earth-biosphere that react sensitively to rapid changes in cli-
matic conditions, like certain ecosystems). Abatement costs are expressed as a func-
tion of the emissions reduction rate relative to a pre-specified BAU emissions path, p,
and its rate of change, the latter accounting for the extra costs incurred by introducing
fast distortions of the BAU path. Both damages and abatement costs are expressed as
a percentage of global integrated total production. We choose a quadratic form for
both components of the cost function, that also has the property of penalizing higher
deviations from initial climatic state and higher reduction rates over smaller devia-
tions or amounts of control. The cost function is given by equation 3.

The critical values T,, and T,, define an elliptical window (corridor) in (7T, T')
space characterized by costs equal to yYp% of global output whenever T, or T,, are
reached. Notice that since damage costs are modulated by a factor yp,, the actual val-
uesof T, and T, are not critical, but only their relative value.lTypical values cited
in the literature are 7, ~3°C and T, ~0.01to 0.03°Cyr ~ but their ratio is
highly uncertain. Also, we apply the same factor yp to both 7, and T',,, but actually
the contribution of the rate of change of climate is probably much less important than
that of the temperature itself (the factor yp, applied to 7', would be correct if we were
to use T, alone as a proxy for climate change).

Abatement costs are defined as a quadratic function of the reduction in emissions
relative to a prescribed BAU path and its rate of change (thus penalizing fast devia-
tions from the b.a.u. path). Again, the dynamical element is left out, in that a fixed
proportion of total output is needed to achieve a percentage reduction. This proportion
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cannot be improved in our model by means of technological development or other-
wise. Also costs are given as long term costs, meaning that the economy has full time
to find its new equilibrium state (prices in a general equilibrium model) corresponding
to the new lower level of emissions. It has been argued that short term costs would be
much higher, specially for high reduction rates, since fast distortions of the economic
system are more costly (see Nordhaus (1991)). In order to account for the extra costs
incurred because these distortions the term ap is introduced (in a dynamical economy
model this economic inertia is originated through the capital stock). The coefficient a
is set to a value of 50 years, which means that a change of 2% in the reduction rate
from previous year (per unit time) causes costs equal to an instantaneous total shut
down of emissions (p=1).

Some generally accepted features of abatement costs are represented: the first
units of reduction are relatively cheap, and additional units become increasingly
expensive. On the other hand, total shut down of carbon emissions amounts for a rela-
tively small percentage of total economic output (precisely Ys). Another economic
question is the assumption that damages grow at the rate of growth of the economy:
the rationale behind that would be that the same hurricane will cause more damages
in, for example, civilised areas (Miami) that in desert (not inhabited) ones, so that
damages for equal temperature are higher the richer you are. On the other hand, the
same level of physical damages can be covered with a smaller fraction of your total
production if you are richer, adaptation possibilities are more and cheaper (insurance,
medical care, aid for extreme events, migration possibilities,...). In other words, while
damages increase at a rate of r, we could let yp decrease at an equivalent rate, since
richer countries would be far better prepared, in the event of a catastrophe, than poorer
ones, which has been used as an argument for economic development as a climate-
related policy (see Murota and Ito (1996)).

Finally, we have to estimate the relative value of Y5 to yp, i.e. the relative impor-
tance of damage and abatement costs. We assume that if the benchmark values
T, and T, arereached, costs are incurred equivalent to a reduction rate of 50% at
an increased rate of 1% per year. A simple calculation delivers a ratio Y /yp of 1/2.
Notice though that this value is calculated relative to the benchmark values of the
damage function, so that the actual ratio of costs to damages depends also on
T, and T,,.

m

3.5 Uncertainty in the coupled climate-economy system

Once an agreement on the global welfare function has been reached, the major obsta-
cles in the design of an optimal climate protection policy are the complexity of the cli-
mate-economy system and its uncertainty. The latter is not only a consequence of the
former, but results also from the fact that many of the subsystems involved have only
recently been studied, and are still poorly known. It is therefore of crucial importance
to characterise uncertainties as one of the major forces driving the present debate on
climate change. In this section we discuss what are the major unknown factors in the
coupled climate economy system. This unknowns will translate into a set of repre-
sentative values and ranges for the parameters in our model and, eventually (chapter
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5), in the estimates of uncertainty that we will use to run the stochastic model. The
last section in this chapter and chapter 4 will also make use of these values to perform
sensitivity analysis to investigate the characteristics of the modelled system. Finally,
in chapter 5 we will turn again to the different definitions of the global welfare func-
tion to investigate the implications of assuming a globally agreed optimization crite-
rion.

The Climate System

Probably the most important uncertainty in our present knowledge of climate change
is the role of the different feedback processes that take place in the atmosphere. These
feedback processes are mainly:

e Albedo (part of the incident solar radiation reflected back to space) resulting from
a reduced snow cover in a warmer climate.

» Water vapour, the main GH gas in the atmosphere and hence responsible for much
of the natural GH effect, whose atmospheric concentration also could increase if
global temperatures do.

e Clouds. Cloud cover is expected to increase in a warmer climate, and although this
would also increase planetary albedo, the infrared effect (absorption and re-emis-
sion of radiation coming from the earth) is expected to outweigh that effect.

Global warming resulting from direct CO, radiative effects for a doubling in
atmospheric concentration has been estimated to be 0.5 -1.2 °C (see Lindzen (1994)).
The predicted warming of 1.5-4.5 °C results then from the additional effect of these
feedback mechanisms. Unfortunately the magnitude and sign (specially for clouds) of
the feedbacks are very uncertain.

A further crucial element is the role of the ocean in global warming. It carries and
exchanges with the atmosphere heat, moisture and carbon in huge quantities, not only
through physical processes (transport) but with a variety of chemical and biological
processes. It has been suggested though that the oceans may have a much more com-
plex and variable behaviour than previously thought, and present understanding of the
ocean circulation is inadequate. As a result forecasts, specially over the long term
(decades or more) relevant for climate change, are not reliable (Wunsch, (1994), Wun-
sch, (1998)).

As a result, the total climate sensitivity has been estimated by IPPC to be in the
range of 1.5-4.5 °C, with a best estimate value of 2.5 °C, although it is difficult to state
how likely it is to find a value outside this ranges or the significance of the best guess
estimate. For a comparison between GCMs that reviews both parameters relevant to
our model (radiative forcing and climate sensitivity) see Cess et al. (1993). Jacoby and
Prinn (1994) offer an excellent review of the uncertainties involved in climate model-
ling and Shackley et al. (1998) for an interesting insight in the issue of flux correction.

There is also an on going debate about the reliability of the data sets of globally
averaged surface temperature. Most relevant are the discrepancies between land based
measurements and satellite or balloon measurements. The land-based instrumental
record of surface temperatures shows a net warming since preindustrial times of about
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0.3 to 0.6 °C, that seems to be lacking in the other time series. Christy (1994) con-
cluded that satellite measurements of infrared radiation from the earth do not confirm
that warming trend, suggesting that the patterns of global warming may have a more
complex structure than previously thought.

The Carbon Cycle

There are also major uncertainties in our understanding of the carbon cycle in the
atmosphere-biosphere-ocean system, both concerning sources and sinks. Future
anthropogenic emission scenarios need assumptions about population and economic
growth, energy use and energy efficiency, alternative energy sources, agriculture and
land use. As a result, these scenarios are very uncertain and cover a wide range of dif-
ferent futures. Predictions for carbon emissions in year 2100 range from 5 to 35 GtC/
yr. for scenarios 1S92c and IS92e (IPCC (1996a)). A representative review of these
scenarios can be found in IPCC (1996a) and a critique of them in Gray (1998).

Also the fluxes between atmosphere, ocean and biosphere are uncertain. Further,
both natural sources and sinks for carbon are affected by climate conditions (tempera-
ture, soil moisture, etc.). Most representative of these uncertainties concerns the ter-
restrial sink, the one that should explain the present imbalance in the global carbon
budget between predicted airborne concentration and the observed one. IPCC esti-
mates already cited, amount to 1.3 = 1.5 GtClyr. (to be compared to the estimated 7.1
GtC/yr. anthropogenic emissions). Similarly, emissions due to the changes in tropical
land use and deforestation show also high uncertainty, being estimated to be 1.6 + 1.0
GtCl/yr. Using these and more recent figures, Gray (1998) concludes that the 90%
confidence limits for the accumulation rate of CO, in the atmosphere are 72% of the
central figure for the period 1980-1989. This value would be 143% for the 95% confi-
dence limit.

The Climate Change Costs

In chapter 2 of this work we reviewed some of the most relevant issues concerning the
estimation of the damages associated to a global climate change. The preliminary
stage of our understanding and the complexity of the system make it an extremely dif-
ficult task to properly define and quantify both the impacts of climate on the socioeco-
nomic and natural systems and the costs resulting from them. Not surprisingly it is
equally difficult to identify and quantify the major uncertainties.

A major contribution to the climate change costs uncertainty comes of course
from the lack of knowledge on the process and interactions between climate and the
rest of nature and human societies. Also the valuation of costs inherits the uncertain-
ties that affect both the predicted climate change (both global and, most important,
regional) and the impacts of climate change. Finally, in the valuation of factors like
leisure, human life, intrinsic value of species, etc. often subjective and moral consid-
erations overwhelm the objective analysis. Turning again to the dynamical aspects of
evaluating costs, not only estimates are presented as a function of a static climate
change, but also for static societal values.
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To summarise these uncertainties, table 3 shows the percentual contribution to
total damages from different damage categories and for the most popular damage esti-
mates (adapted from IPCC (1996c¢)). We see that there is barely agreement between
the authors, with values different by a whole order of magnitude for the same catego-
ries. Also, the inclusion of factors like adaptation or CO, fertilization may radically
change the damages estimates. See for instance Fischer et al. (1996) in which climate
change impact on agriculture depends sensitively not only on the GCM from which
climate scenarios are derived, but also on CO, fertilization, which may completely
offset the effect of climate change on yield, and adaptation level, which also may
reverse the sign of the impact. In view of table 1, it is actually rather surprising that
these estimates converge to a common value of around 1-2% of global output for a
standard warming of 2.5 °C corresponding to carbon concentration doubling (Smith
(1996) normalises these estimates for the US to come up with an estimate of less than
1% loss of global output). Different estimates are also mainly based on personal
beliefs, which differ widely among scientists (see Nordhaus 1994).

3.6 Baseline run and comparative dynamics

In this section we will describe the most salient features of the optimal solution for the
deterministic version of the model. Also we will try to identify its main sensitivities to
different parametrizations and assumptions. For a thorough sensitivity analysis of a
similar model see Hasselmann et al. (1997). The main differences with that model are:

» The more complete version of the carbon cycle model, which is used in the integral
form and approximated by a higher number of exponential terms. Compared to that
model, carbon is sequestered too fast from the atmosphere.

» A different BAU emission path.

o The use in Hasselmann et al. of differentiated discount rates for damages and
abatement costs, the former not being discounted. We will turn below to this point.

Baseline Run

We define a baseline run characterized by models CO and TO in the climate side and
the parameters in the cost function depicted in table 4. The value of 9, the rate of time
preference, and r, the undisturbed growth rate, are combined to give the effective dis-
count rate 8, The value of r is set to 0.02 (notice that the particular values of & and r
irrelevant for the optimization process, but only their difference matters; also the glo-
bal output at initial time U, is a multiplicative constant applied to the cost function as

a whole, so it does not affect the optimal emission path either).
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TABLE 3. Percentual contribution to total damage from different damage categories

DAMAGE CLINE FANKH. NORDH. TITUS TOL
CATEGORY (2.5°C) (2.5°C) (3°C) 4°C) 25°C)

AGRICUL- 29.0 12.1 1.98 0.86 13.5
TURE
FORESTS 5.4 1.1 small 31.3 -
SPECIES 6.5+ 12.1 - - 6.7
LOSS
SEA LEVEL 11.5 12.95 21.98 4.1 11.5
RISE
ELECTRIC- 18.3 - 1.98 4.0 -
ITY
NON-ELECT -2.13 - s . =
HEATING
HUMAN small - - » 16.2
AMENITY
HUMAN LIFE 9.5 16.4 - 6.8 50.4
MIGRATION 0.82 1.0 - - 1.35
HURRI- 1.4 0.3 5 - 0.4
CANES
LEISURE 2.8 - ® - -
WATER SUP- 11.5 225 - 8.2 -
PLY AVAILAB
WATER SUP- - - - 23.4 -
PLY POLLUT
AIR POLLU- 5.6 10.5 - 19.6 -
TION (Og)
MOBILE AIR - - - 1.8 -
CONDITION

We have chosen a common discount rate for both elements of the cost function,
damages and abatement costs, although it has been argued that damages should not be
discounted since they belong to a different type of goods or assets that cannot be read-
ily monetarised. See Hasselmann et al. (1997) and the editorial comments By Nord-
haus (1997), Brown (1997) and Heal (1997) for a more in-depth analysis of this point.
A related point to be noted is that the model has comparable damages and costs, i.€. in
the model abatement costs and damages due to climate have very similar values for
our choice of coefficients. That is the reason why there is an interesting trade off
between both. If abatement costs were much higher than damages, the solution would
be very small reductions; if it were the other way around, the solution would be a
large reduction rate (or eventually shut emissions down). Notice though that this
equality is arbitrarily forced: we choose coefficients that make damages and abate-
ment comparable, but there is few data to prove or disprove this either way.
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Design of a simple structural climate-economy model

All experiments start in 1995 and are integrated for 1000 years. The BAU emis-
sion path adopts the form of the logistic function already described in the previous
section. This scenario follows a slightly faster emissions profile than, for instance,
IPCC 92a, reaching values of about 28 GtC/yr. by the end of the next century (com-
pared to roughly 20GtC/yr for IPCC 92a). BAU emissions grow for a period of around
170 years and a maximum of around 30 GtC/yr., decreasing then progressively for
another two centuries, after which they stabilize at zero value. The total amount of
carbon emitted is 5000 GtC (see figure 7).

We have chosen a value T, = e, meaning zero damages related to the rate of
change of climate for the baseline run, since experiments done with different ratios of
T, /T, show that the main effect of including the rate of change of temperature in
the damage function is that of increasing damages, and hence reduce emissions, not
changing though the main characteristics of the optimal solution (choice of values
often cited in the literature for T, shows also that the contribution to the damages
coming from the rate of change of temperature is typically much smaller than from
temperature).

TABLE 4. Cost function parameters for the baseline run

Parameter Value Units
o 0.03 yr’l
Yo 7.4 %
YD 3.0 %
a 50 yr

- 3 °C

e oo °Clyr.

Sensitivity analysis

The basic features of the deterministic model can be summarized in the following
points:

o The relevant time scales in the climate system extend over several hundred years,
much longer than the ones usually considered in climate change studies. Both the
carbon cycle and the thermal inertia of the atmosphere ocean system need probably
centuries to stabilize after the predicted CO, emissions have been reduced or stabi-
lised. Accordingly, climate change impacts and costs may also extend over a long
future, and thus optimal climate protection policies need to take into account this
long term future. This has to be contrasted with the comparatively short time scales
(years to decades at most) in which the socioeconomic system can be predicted or
modelled.
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e The form of the BAU emissions scenario conditions the form and timing of the
optimal emissions path specially in the long term. It is assumed that in the future
emissions will reduce to zero even in the absence of an agreed climate policy. Con-
sequently, optimal emissions will reduce necessarily to zero and the only relevant
feature to be considered is the new equilibrium state reached by the climate sys-
tem. In our case, BAU emissions start to decay in about 170 years and reduce to
zero after approximately 400 years, so that these two dates become the relevant
scales also for the rest of the system. Uncertainty is though very high, as to the
time evolution and quantity of future emissions.

 In all cases, optimal emissions paths increase for some decades before they start
decreasing, rather than prescribing immediate drastic reductions. This suggests
(see also Hasselmann et al. (1997)) that the optimal climate policy should proceed
progressively with small initial reduction rates, thus taking full advantage of tech-
nological development and with a progressive transition to non-carbon intensive
energy production. This also confirms results from other authors (Nord-
haus(1993)).

» The details of the optimal emissions path are sensitive to the evolution of the cli-
mate system. Figure 8 shows the optimal emission path and associated climate
response obtained for different combinations of the carbon cycle/temperature mod-
els. Changes in both models have similar effects on the optimal solution: smaller
emissions for parameter combinations resulting in higher temperature responses,
either from high accumulation rates of carbon in the atmosphere (and correspond-
ing radiative forcing) or from high sensitivity of temperature to radiative forcing;
since only temperature enters the cost function, it cannot distinguish the origin of
the temperature variations, whether they are related to high carbon concentrations
or to high sensitivity of surface temperature. Also, in the temperature model the
climate sensitivity, i.e. the ratio p/q, is the important quantity rather than the par-
ticular values of p and .

e Also the ratio of damages to abatement costs influences greatly the optimized
emissions. The value of yp (or the ratio of Yp/Ys;), as expected, controls the amount
of optimal reduction by altering the relative cost of emission-reduction to damages.
In the baseline we have chosen damages in the high end and abatement costs in the
low end of estimates (see also IPCC95). See figure 9.
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FIGURE 8. Optimized emissions (a), concentration (b), temperature change (c) and total costs
(d) for different carbon cycle-temperature model combinations.

The baseline optimal emission path obtained and its associated climate response
are depicted in figure 8. Emissions increase initially staying close to the BAU path,
but with increasing reduction rates, reaching a maximum of 12 GtC/yr. in roughly 80
years. Thereafter emissions decrease continuously, eventually (after 300 years
approx.) following again the BAU path as it approaches zero. The initial fast reduction
in emissions after the maximum value is reached is followed by a period of slower
reduction, which is determined by the fact that the BAU emissions start themselves
going down, so that an equivalent level of emissions can be achieved with a lower
reduction rate, i.e. at a lower cost. In terms of the reduction rate relative to BAU, the
optimal path is reached with reductions increasing progressively to a level of about
70% in about 130 years (the date at which BAU emissions are maximum). The corre-
sponding climate response is characterised by carbon concentrations and temperatures
pretty much following the emissions path, and reaching maximum levels of 550 ppm
and 4°C respectively. Asymptotically, a new equilibrium climate is reached at 360
ppm and 1.2 °C. Optimal costs (not discounted) reach a maximum value of about 8%
of global integrated output and asymptotically stabilise at 0.3%, associated to the new
equilibrium climate state
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FIGURE 9. Optimized emissions (a), concentration (b), temperature change (c) and total costs
(d) for different values of yp,.

Emission profiles for different parameter assumptions are shown in figures §, 9
and 10, for different climates and damages/abatement costs ratios. They range from
relatively close to the BAU path, reaching annual emissions of around 18 GtC at the
peak, and corresponding to medium climate sensitivity (AT, =2.5 °C) and carbon
model CO, to high reduction levels up to 99% of the BAU for high sensitivity (AT,
=4.2 °C) and model C1. Notice that temperature evolution is remarkably similar for
the different climate model combinations (as opposed to the carbon concentration). In
all cases high reductions are followed by a period of stabilised or even increasing
annual emission rates, determined by the fact that BAU emissions start themselves
going down, and at lower BAU emissions level higher reduction rates, and thus abate-
ment costs, are needed to obtain an equivalent level of emissions.
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FIGURE 10. Reduction rate (a), reduction rate’s rate of change (d), optimal emissions (¢) and
corresponding climate response (d-f) for different values of the economic inertia a.

Irreversibility

As we shall see through the reminder of this work, some of the fundamental charac-
teristics of the problem of designing optimal control problems can be described in
terms of its irreversibilities. Basically, irreversibility is two-fold, becoming apparent
both in the climate system and in the economic system. On the climate side the irre-
versibility reveals itself in the long residence time of GHGs in the atmosphere and the
thermal inertia of the atmosphere-ocean system already described in the previous sec-
tions. This phenomena are captured in the climate equations describing atmospheric
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concentration of CO, and globally averaged surface temperature. On the economic

side, abatement capital irreversibility has been identified as a major feature (Kolstad
(1994), Kolstad (1996), Baranzini et al. (1995)), i.e. abatement measures need initial
investments that cannot be readily undone or redirected. This two types of irreversibil-
ities are at the heart of the climate change debate, and different (opposed) views
stress, accordingly, one or the other type.

The cost function described in equation 3 takes the latter form of irreversibility
explicitly into account by including a term which is a function of the abatement rate’s
rate of change, p . This term induces extra costs when changes in the reduction policy
are introduced, i.e. once engaged in a particular policy there is an incentive to main-
tain it. Large values of the economic inertia result in reductions taking place at a later
date, although since BAU emissions decrease also, high reduction ratés far in the
future have a relatively small effect on total emissions.
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CHAPTER 4 Optimal emission policies

for an stochastic climate
system

4.1 Introduction

As already has been explained in previous chapters, one of the salient features of the
earth’s climate is that it presents natural variations of relevant magnitude in basically
all time scales. Briefly, these variations can be attributed to internal dynamics (non-
linear interactions, integration of weather noise) or to external forcing (sun-spot cycle,
vulcanism, Milankovitch cycle). These natural variations will be added to the man
made induced ones, in particular the GH effect caused by anthropogenic emissions of
carbon dioxide (and other GH gases).

From the point of view of designing climate protection policies three main charac-

teristics are crucial to describe climate variability:

Its smoothness, i.e. whether variations take place over a long time at a slow rate or
if they happen abruptly. Variations between the little ice age and present (or prein-
dustrial) climate conditions have occurred smoothly over the last several centuries;
on the other hand ice-core temperature reconstructions seem to show changes of
hemispheric extent and of several degrees C, happening in a human life-time.

A second important characteristic is the magnitude of the variations.

Finally, we consider the influence of anthropogenic forcing on natural variability. It
has been speculated that global warming will change not only the mean state of the
climate, but also its variability in several time scales (interannual, decadal),
although it is not clear in which direction or the magnitude of this effect (see IPCC
(1996a)). We also mentioned before the possibility that global warming could trig-
ger sudden climatic changes like the shut down of the conveyor belt or the melting
of the ice sheets.

A number of experiments were designed according to these characteristics of cli-

mate variability. Smooth variations of global temperature were simulated by adding
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small shocks that take place at each time step and are integrated by the climate sys-
tem, generating low-frequency variations. Cases are considered in which these shocks
are independent of the current temperature and in which their statistics are a function
of average surface temperature, to simulate the influence of global change on the vari-
ability of climate. These smooth variations will be analysed in sections 4.2 and 4.3.
Climate catastrophes and surprises are simulated with a forcing term consisting of cli-
mate shocks with very low probability of occurrence but very high amplitude. This
amplitude is furthermore a function of the already existing global temperature. The
effect of climate surprises is analysed in section 4.4. Throughout the chapter all
parameters of the model are supposed to be known, except in the sensitivity analysis,
for which parameters take different but fixed and known values.

To characterise the effect of natural climate variability on the design of climate
protection policies we will study the optimal carbon emission reduction rate. The
associated costs will be compared to the expected costs resulting from applying the
deterministic best guess policy, i.e. the emission reduction policy that would be opti-
mal if the problem had no stochastic component. We define the quantities

AJ] = ]OD_JCL

AT, = JOL _ 4CL

AJ,; is the difference between the expected integrated costs associated to the determin-
istic policy (JOD ) and the optimal costs resulting from the CL policy (JCL). AJ, repre-
sents thus the extra expected costs resulting from ignoring stochasticity of the climate
system in the design of climate policies. AJ, is the extra costs that can be avoided by
the choice of the best optimal policy, the cost of irreversibility. For a more intuitive
analysis we express them as percentages in the following form

oD CL
apy =100
e
OL CL
AJP, = *"—Agj— X 100
1

We further define a third quantity AJp as the difference between the expected costs
associated to a deterministic policy (J°P) and the deterministic estimate of the costs
(JPET). Notice that when calculating JRET stochasticity is fully ignored. AJp, repre-
sents the estimation error that we make by ignoring stochasticity of climate change in
the calculation of climate protection costs. We have then

oD DET IOD—JDET
AJD=J —J or A]PD:-‘TXIOO

J

Notice that these quantities are expected values.
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General results

We can summarise the main results of this chapter in the following points:

The first important consequence of climate’s natural variability is that optimal
costs are higher than in the deterministic case, i.e. by considering the stochastic
problem as a deterministic one we underestimate the real value of the objective
function. This is a general result of stochastic optimal control, and other authors
have also recognised and studied this fact in regard to climate change; see Dalton
(1997). Notice that even in the absence of human intervention that drives the cli-
mate system out of its equilibrium state, damages are not zero, since global tem-
perature has in general a value different from its mean, which we have used to
characterise that equilibrium state. The error in the estimate of climate change
costs made if natural variability if climate is ignored may be very big.

Part of the extra costs induced by climate variability can be avoided by the choice
of policy instruments that allow for flexibility and react to the changing conditions
of the climate system. We see then that minimal expected costs are achieved with a
CL strategy, one that interactively takes into account the present state of the cli-
mate vector and reacts to it. The use of OL policies deliver higher optimal costs
than that of CL. This is also a general result of SOC (it can be shown that the set of
feasible policies available for OL policies is a strict subset of that for CL, so that
for the latter case we can find at least as good a minimum, or possibly a better one,
as for the former).

The optimal climate protection strategy is in general a combination of adaptation
and prevention. OL policies can prevent some of the potential effects of climate
natural variability and its combined effect with climate change. Additionally, the
choice of CL policies allows for the updating of emission strategies to the particu-
lar realization of the climate vector, i.e. allows for adaptation to present conditions.
The relative importance of this two mechanisms depends on the particular nature
of the processes studied (feedback between climate change and natural variability,
climate surprises).

Since the climate system is unknown a priori, so too is the optimal CL reduction
rate (the optimal policy) that minimizes expected costs, so that flexibility, the abil-
ity to adapt our decisions to present conditions, in the choice of a climate protec-
tion policy becomes a relevant issue. Also, in general, information ‘degrades’ with
time, so that the further we look into the future, the wider the range of values where
we find the optimal reduction rate. This effect is countered in our case by the fact
that the BAU emission path becomes zero in the finite future, thus making the opti-
mal reduction rate also zero with certainty.

The coupling between natural variability and climate change may have a dramatic
effect on the optimal GHG emission path. Although the precise nature (or the sign)
of this coupling is not yet well understood, this feedback mechanism is identified
as potentially very important, since natural variability may a) enhance or counter
the GH effect and b) be enhanced through the interaction with global warming.
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Further research is necessary to understand the interaction between climate varia-
bility in different time scales, specially those relevant to the socioeconomic system,
and climate change.

¢ A second potentially important effect is the risk of climate catastrophes or sur-
prises that would be triggered by global warming, like sudden changes in the ocean
circulation or the melting of the ice sheets. A form of the precautionary principle
applied to this problem suggests that if the risk of climate catastrophes is signifi-
cant, GHG emissions should be also significantly lower to prevent them. Similarly
to the previous point, the knowledge on the potential catastrophes and their impacts
is still scarce and speculative, and further research is needed to investigate the rela-
tion of these sudden changes to the climate system and their role within it.

e As a first approximation we consider climate variability is independent of climate
change, i.e. the noise forcing is independent of everything else. If noise is inde-
pendent of the state of the system, the OL policy is the same as the deterministic
policy, i.e. certainty equivalence prevails. This fact is due to the linear-quadratic
structure of the model, and we can interpret it as a first order approximation, i.e. to
first order, if natural variability is not affected by climate change, the OL policy
will not take stochasticity into account.

A very important assumption in our model, specially if climate surprises are
expected, is that damages occur simultaneously with the changes in the state of the
system. That means that adaptation cannot be very efficient (i.e. CL policies do not
avoid that much cost), specially when noise has no memory (is white), since by the
time we adapt damages already took place, and the new state is not related to the one
we already know. In this sense, information gathering is more important the higher the
memory of natural variations, since the present state contains more information on
future states of the climate system.

Additionally, the variability of the system is probably underestimated in the
model, in that the equations of motion represent only the physical climate system. In
general, the economic system should be represented also by a suitable set of state var-
iables with their corresponding natural variability (business cycles, technological
improvement), probably with a more complicated structure than additive noise. The
role of adaptation and the flexibility associated are underestimated, leaving abatement
of CO, emissions as the only policy option.

The ratio of natural variability to man made changes is very important in our
results. In the baseline run described in section 4.2 we assume that natural excursions
from the mean are small in magnitude compared to the expected amplitude of anthro-
pogenic climate change. The mean value of these excursions is taken to be 0.6 "C in
the baseline scenario, to be compared to the critical value of T, = 3°C in the cost func-
tion. As a consequence, damages due to natural fluctuations of the climate system are
comparatively small.

48



Optimal emission policies in the presence of climate natural variability independent of climate change

4.2 Optimal emission policies in the presence of climate natural
variability independent of climate change

In this section we will describe the effect of natural climate variability that is unaf-
fected by climate change, or in general by the particular state in which the climate
system is, on the climate protection policy problem. Natural climate variability is sim-
ulated by adding in each time step small random temperature shocks. We will attend
to two main characteristics: the amplitude of the shocks and their memory, i.e. their
persistence over several time periods of the model.

We define a baseline set-up characterised by the parameters of the deterministic
baseline run (i.e. the one without stochastic forcing described also in chapter 3). The
baseline stochastic forcing is a white noise term added to global temperature and char-
acterised by

E{w,} =0 X =21x107°°C

which corresponds to a standard deviation of global mean surface temperature of 0.6
°C. The random variables w; are further assumed to be normally distributed and inde-
pendent from each other at each time i.

As explained in chapter two, this white noise forcing represents the effect of the
fast varying components (weather) of the climate system. We also add a more general
type of stochastic forcing that represents not only the internal dynamical forcing, but
also the effect of other external forcings not related to the emission of CO,, like the
variations of the solar constant, the effect of other GHGs, vulcanism or longer term
variability (thermohaline circulation), that may not be fully deterministic in nature or
that are unknown to us. This other (possibly external) influences are modelled by forc-
ing the climate model with red noise: an autoregresive process of order 1, i.e. AR(1)
process, whose characteristics can be manipulated without changing the sensitivity of
climate to carbon concentration in the atmosphere. The forcing adopts thus the form

wip = o,w+ &

where now & is a white noise Markov process with zero mean and constant variance.
The redness of the noise can be controlled with the parameter ¢,, (the white noise
forcing case corresponds to the extreme case ¢, = 0), so that we can easily vary both
the natural variability of our climate system (changing xT) and the characteristics of
the stochastic forcing. Note that adding red noise may transform the problem in one in
which perfect information does not prevail any more, if we suppose that w 1s not read-
ily observable.

Table 5 gives a key to the experiment names for this section. Experiment names
starting with W indicate white noise is used, whereas those with R are for red noise,
for which the central case is characterised by ¢,,=0.99. Suffix 0 indicates central case,
and otherwise parameters are changed one at a time, assuming they are independent
from each other, and experiment names are indicated by the first latin letter of the
parameter name
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TABLE 5. Key to experiment names

Experiment
name Parameter Value

F1 0,, =0.999

F2 ¢, =0.9

S1 Std(T)=1°C

S2 Std(T)=2 °"C

AL2 o =0.02 yrs. .

M3 u = 0.0003 °C/ppm
Gl Yp=1%

G6 Yp = 6%

A0 a=0yrs.

Optimal Emissions Policy

The inclusion of natural variability in the system to be optimized has the consequence
that CL feedback policies and OL irreversible ones are not equal any more. CL poli-
cies deliver at least smaller expected costs than OL, since they take advantage of all
information available. Furthermore, since the optimal CL emission policy is a func-
tion of the system’s state, which is a random vector variable, it is itself random, and
cannot be known with certainty beforehand, and rather has to be characterised through
some of its statistical properties: expected value and variance, both as time dependent
functions. In our case, due to the linear-quadratic structure of the model, and the char-
acteristics of the noise forcing (zero mean and additive), the so called certainty equiv-
alence prevails, and the OL reduction rate is identical to the optimal policy for the
corresponding deterministic problem (although not the optimal costs). Also, for the
same reasons, the expected CL reduction rate is identical to the OL or deterministic
one, although not the actual reduction rate, that will be chosen in accordance to the
particular realisation of the climate system that we find. Notice, though, that certainty
equivalence is only a first order approximation, resulting from the linear-quadratic
structure of the model and the independence of noise and system’s state, and will not
prevail if some of the fundamental assumptions named does not hold.
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FIGURE 11. Optimal expected emission policy and corresponding expected climate response +-
one standard deviation for different stochastic climate experiments.

In order to characterise the differences between the future OL and CL reduction
rates we will use the standard deviation of the reduction rate as seen from initial time.
Since the noise forcing will introduce small variations at each time step, that will be
integrated by the climate system, this quantity will inform us of where, on average,
can we expect to find the actual optimal reduction rate in the future. Or, in other
words, how good an approximation is the OL policy to the best optimal policy, if irre-
versibility in the policy adoption process is unavoidable or desired. Notice that a sec-
ondary consequence of the carbon emissions being a random variable is that even the
climate components that are deterministic in nature (atmospheric concentration) turn
into random variables, and their future evolution is not known with certainty.
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FIGURE 12. Carbon emissions +- one standard deviation for experiments with central additive
noise (both white and red) and different values of other parameters in the model.

Figure 11 shows optimal policy and climate response for different values of the
amplitude and memory of the stochastic forcing (experiments WO,RO,RS2) and the
margins given by one standard deviation of the control. We see that the effect of the
noise forcing in the optimal CL policy for both central cases, white and red noise, is
rather small (in the case of WO both the mean and the curve with added standard devi-
ation cannot be told apart), although, as expected, when noise is correlated the effect
is greater, since deviations of climate from the mean are longer lived, which allows for
the optimal emission path to follow those deviations without the extra costs associated
to rapid changes of the reduction rate. The range within which we know the future
optimal emission path varies between a modest maximum of 0.2 GtC/yr., about 2% of
expected emissions, for the standard deviation of the emissions in the case of WO, to a
value of around 3 GtCl/yr., around 25% of expected optimal emissions, for red noise
forcing and a high natural variability of the climate system.

The other factor that influences the CL policy is the economic inertia: for an eco-
nomic system with no inertia (a = 0) the effect of the noise forcing is noticeable even
for small climate variability and white noise. The rest of the parameters of the climate
model and the cost function do not affect the results explained above: small influence

52



Optimal emission policies in the presence of climate natural variability independent of climate change

of climate variability on CL climate policy and influence of noise’s memory (see fig-
ure 12).

Due to the inertia of both the climate and the economic systems, the effect on the
CL policy of the introduction of stochastic forcing makes itself noticeable first at the
end of the next century. That means that the OL policy will be a good approximation
to the CL one for a long time into the future, so that this form of climate variability
may be regarded in the short term as a second order effect. Notice finally that since the
BAU emissions path is zero in the future, so too are the optimal emissions, with cer-
tainty (for very small BAU emissions any deviation from it would require a very high
reduction rate and corresponding abatement costs).

We see then that flexibility (CL policy, economic inertia) and information flow (in
the form of the system’s state) are the main issues that influence the effect of natural
variability of climate on the optimal policy. On the other hand, notice that the main
features of the optimised emissions are mainly controlled by the deterministic GH
effect, because we choose values of the climate natural variability that are small com-
pared to the projected anthropogenic GH effect.

Optimal expected costs

Because certainty equivalence holds, and the open loop and deterministic policies are
equal, the values of JOP and JOL are identical, and AJP, is therefore always 100%,
which shows that in this case the choice of CL policies, i.e. flexibility, is important.
Also the value of AJP,, the extra costs originated by choosing an OL policy rather
than the CL one, is rather small. Its value is mainly influenced by the availability of
information, i.e. by the assumption that the noise forcing is observable. If it is not, the
extra costs originated by the choice of a deterministic policy increase, though still
having a modest value (see figure 13, top panel).

Much of the analysis of AJp can be simplified by explicitly calculating the value
of this quantity, which can be expressed as

YpUo T 8.(i—1)At
= zxe ( )

2 1
T, i

AT},

where i indicates time step and x: is the covariance of temperature as seen from ini-
tial time (i.e. X:O using the notation introduced in Appendix B). From this expression
it is clear that tLe two parameters that affect AJp, are the relative cost of damages to
abatement and the natural variability of climate. The value of AJp can be thus seen as
the expected damage costs due to the natural variability of climate. As expected, this
value is directly proportional to Yp, the percentual loss of welfare due to a given cli-

mate change.
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FIGURE 13. Values of AJP;, the extra costs caused by choosing the best guess deterministic

policy over the CL policy, for the various experiments in which stochastic forcing is
independent of the state of the climate system.

The other parameters in the cost function relate to the abatement costs G and thus
do not affect AJp (remember that the OL policy prescribes a set of actions for the
whole planning horizon that are not affected by the presence of noise, so that the
abatement costs incurred are not affected).

On the climate side, both the amplitude of X eq and the time evolution of ) affect
the value of AJp. The dependence on the amphtude of X eq 18 pretty straight forward
to explain: the bigger natural variations of chmate the higher the costs assocmtcd to
them. The influence of the time evolution of )T (basically the speed at which %! eq
reached) is determined by the assumption of perfect information, which implies 1he
cliorilate state at initial time is known with certainty, i.e. Xojo = 0. We can then choose
uy  optimally (will be the same as the CL policy), but progressively climate moves
away from its expected value, eventually reaching its equilibrium variability. In other
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words, when designing the OL policy we can single out time step 0, when we know
the state of the climate system with certainty, from all other times i>0 when that is not
the case. In this sense, ¥;, measures the speed at which the climate system moves
away from its expected valjue given the initial state is known, and the further away, the
less optimal ug)l‘ is, 1.e. the higher the costs. To further study this artificial depend-
ence on the initial conditions, we may consider the case in which at time zero we
know the mean state of the climate system and x5 = xeTq. In this case, the value of
AJp simplifies, up to a constant, to a product of °,, times Yp, and the optimal costs
increase. Under these conditions, the particular details of the noise are irrelevant
(white or red). The time evolution of xT (the speed at which reaches xTeq) can be
influenced either by the value of o or that of ¢,,. In both cases, small values of o and
large values of ¢,, result in slower excursions from the mean climate and accordingly
smaller costs. For u small, AJP; increases since the radiative forcing is smaller, so
that the deterministic part of costs is also smaller.

Values for AJPp are condensed in figure 13, bottom panel. The value of xTeq is the
most influential quantity and sets the upper bound for the values of AJPp, that vary
between a modest 2.8% for the baseline white noise scenario to a 30% for the rather
unrealistic value of Var(T) = 2°C. The addition of red noise translates into smaller
expected costs, since climate moves away more slowly from its expected value. The
effect is important, reducing the value of AJPp in almost half for the baseline
¢,,=0.99. The influence of Y, on AJPp, is less than linear, since higher damage costs
originate also higher values of JPET the deterministic part of the costs, resulting in a
modest 4% value of AJPp, for the high damage estimate(yp=6%). This shows again
that, in the baseline scenario, the major contribution to the total costs comes from the
deterministic anthropogene-induced climate change rather than the natural fluctua-
tions of climate. To put this numbers in perspective, notice that total integrated costs
for the baseline white noise case amount to roughly 3.8% of total integrated undis-
turbed output.

4.3 Optimal emission policies in the presence of climate natural
variability coupled to climate change

One possible effect of global warming is that the natural variability of the climate sys-
tem also changes as a result of GHG forcing, so that if warmer conditions due to glo-
bal warming should prevail, also a new equilibrium climate variability would be
found. On long time scales (centuries to millennia), ice core and other proxy data
indicate that glacial periods are associated with higher variability and interglacial,
warmer, periods with smaller variability (see McManus et al. (1999) and the refer-
ences therein). In shorter time scales and recent times, there are no conclusive argu-
ments to prove or disprove the hypothesis that a warmer climate would be a less
(more) variable one or with less (more) damaging climate events: observed climate
time series do not show significant trends in the statistics analysed and models run
with various GHG forcings also show no coherent results. Some experiments seem to
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show slight decreases in annual-decadal variability associated with ENSO-like phe-
nomena, whereas others indicate an increase in variability of precipitation and tem-
perature specially in the tropics.

Also the feedback between natural variability of climate and climate change
would work in both directions, i.e. climate change may also be affected by natural
variations. Simulations indicate that decadal and longer time scale variability affect
the particular realisation of climate change, both in terms of the rate at which it takes
place and the patterns realised, and for some phenomena natural long-term variations
are as large as the GH induced mean changes (IPCC (1996a)).

We simulate these effects by including a feedback between the noise forcing term
w and the state of the climate system, in our case monitored through surface tempera-
ture

w = f(T,8)

where £ is white (uncorrelated) noise.

Changing the mean of the stochastic forcing

We first assume a linear relationship
w=A,T+E

where £ is white (uncorrelated) noise, with zero mean and variance X. We then have

E{w} = A, E{T} Var{w} = Aix  +3

This feedback between the state of the system and the stochastic forcing has the effect
of displacing the mean value of the latter by an amount A,,7, rather than change its
variance, which is independent of the state of the system. This effect is indicated sche-
matically in the diagram below. Under these conditions the probability that the sto-
chastic forcing w is positive (or negative, depending on the sign of A, becomes
higher, thus further contributing to the increase in global temperature (or counteract-
ing it if Ay;<0).

» W

In more physical terms this situation could be exemplified by an intensification of
large scale processes like El Niiio, that would become more intense and frequent in a
warmer world. The case of a negative A, would mean the opposite effect, i.e. more
intense and frequent cold La Nifia events as a result of global warming.
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We assume that noise is affected instantaneously by the system’s state, without
any time lag. Then we can reduce the system to a new AR(1) process

Tiv1 = 0+ AT +E;

with parameter ¢+A,, (parameter ¢ was defined in chapter 3 as ¢ = 1- 0A?).
In the absence of external anthropogenic forcing the system reaches a stationary
state characterised by

-
1-(0+A,)

We use the second relation to derive the value of Ag by fixing the other elements in the
equality. Being an AR(1) process, if there is an external constant forcing @, the sys-
tem 1s stationary with

E{T} =0 Var{TY=y =

2,

P T A

and the same variance as in the absence of forcing. The mean and variance of the new
climate equilibrium state will then be a function of the coupling between stochastic
forcing and state Ay, but the variance is independent of the state and its mean value.
Ay represents then the coupling between temperature and the stochastic forcing, and
for Ay, = 0 we get the system from section 4.2, with noise independent of the cli-
mate’s state. For the system to be stable, A, has to meet the conditions

0+ Ay <1 orequivalently 0 <A, <o
-0 <Ay <0

for a positive and negative feedback respectively. Table 6 indicates the experiment
names (Noise Temperature Coupling-Mean-Positive/Negative) and the vale of A,.
Also shown are T,, the equilibrium temperature at doubled carbon concentration, and
the values

A E N

A
Ap = —2x 100

JE

which are the amount that we displace the mean value of the noise, in °C (A,,) and as
percentage of the noise’s standard deviation (Ap, basically the inverse of the coeffi-
cient of variation) respectively. In all cases %! has the central value of 0.6 °C.
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FIGURE 14. Expected carbon emissions and climate system evolution for NTM experiments, in
which the mean of the stochastic forcing of climate is coupled to present climate state.

TABLE 6. Key to experiment names

Experiment
name

NTM_P1
NTM_PO
Baseline

NTM_NI1
NTM_N2
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Ay T, ['C]
0010 63
0005 54
0 42
-0.01 32
-0.02 2.5

A, [(C]

0.063
0.027

-0.018
-0.050

Ap [%]
50.0
20.3

-18.8
-26.7
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FIGURE 15. Cost analysis for NTM experiments in which the mean of the stochastic forcing of
climate is coupled to present climate state.

The main effect of the coupling through A, is effectively enhancing (or counter-
acting, if Ay, < 0) the greenhouse effect with a positive (negative) feedback. As a con-
sequence carbon emissions are curved, compared to the baseline, to prevent the extra
warming induced through the feedback process. If Ay, < O the effect is obviously the
opposite, since the coupling acts as a stabilizing process counteracting GH warming
more the higher the warming gets, and thus allowing for higher emission rates.

The effect of the noise-state coupling in the optimal emission policy is quite dra-
matic, and a comparatively small displacement of the noise forcing causes a strong
effect on the emissions policy. Shown in Figure 15 are the optimal emissions and
expected climate evolution for the experiments summarised in table 6. For example, a
value of A, of 0.005 (experiment NTM_PO) means a displacement in the noise forc-
ing’s mean of only three hundredths of a degree for equilibrium temperature T,, but
causes this equilibrium temperature to rise from the baseline 4.2 °C to 5.4 °C. Accord-
ingly, carbon emissions are 15-20% less at the end of next century and through the
following one. The equivalent negative feedback (A, = -0.01, experiment NTM_N1)
displaces the mean of the noise forcing by two hundredths of a degree, and lowers T,
to 3.2 °C. Carbon emissions are 33% higher than the baseline by year 2100.

Total extra costs originated by ignoring the stochastic component of the climate,
AJP/, also reach significant values (up to 32% of optimal CL policy costs for a strong
negative coupling of climate and noise). On the other hand the part of those costs that
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are avoided by an interactive CL policy is only very small. This is also explained
through the fact that, in this form of coupling, the main effect is that of enhancing
(counteracting) the GH warming, an effect that can be taken into account by an OL
policy. Meanwhile, short term temperature variations are still small and with no mem-
ory, so that the CL policy cannot do much more to avoid the extra originated costs.
The bottom panel on figure 16 shows that the error in the estimated costs made by
ignoring stochasticity is also important.

Changing the variance of the stochastic forcing
Assume now w adopts the form

w; = AgT € +m;
where £ and 1} are white noise processes and additionally

Z{&i, n,-} =0 Var{&l-} = Var{n;} = X

i.e. they are independent from each other and we have assumed for simplicity that
they have equal variance. Under these conditions we have

E{w} =0 Var{w} = (1 + AXE{TY +x )=

This effect is represented in the schematic diagram below. The mean value of the
stochastic forcing remains unchanged and equal to zero, but the spread of its distribu-
tion increases if global temperature increases.

Going back to our El Nifio analogy, this situation corresponds to that in which
both warm and cold episodes would be more intense, but their relative frequencies
remain unchanged.

The resulting stochastic system differs from the well studied AR(p) processes ana-
lysed in the previous section. In the absence of external anthropogenic forcing the sys-
tem reaches a stationary state characterised by

>
1- (0 +AL%)

£{T} = 0 Var{T}=y =
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We will use the second relation in a similar way to the previous sub-section to derive
the value of Ag by fixing the other elements in the equality. Similarly to an AR(1)
process if the system has an external constant forcing @, it is stationary with

S(1+ [AGE{T}T)
1-(0°+AE)

E{T} = Var{T} =

—0
[-¢
Notice then that the equilibrium variance of the system is a function of its mean state.
Thus if a different mean climate equilibrium is reached it will be associated with a
higher variability. Also the mean state is actually independent of the coupling between
state and stochastic forcing Ag.

In order for the system to be stationary both in mean value and variance the condi-
tions to be met are

0 +AE< 1

since the condition 0<0 is already met. For simplicity, we consider only the case of a
positive coupling, i.e. the case in which a warmer climate is associated with higher
natural variability.

Table 7 describes the set of experiments done with this set up. Experiment names
indicate Noise Temperature Coupling-Variance-Low/High preindustrial climate vari-
ability Std(T). Column three shows the value of kg, the factor by which climate varia-
bility, monitored by Std(T), is multiplied for equilibrium T, temperature (equilibrium
temperature cor:‘g}spgqc}igg to double carbon concentration). It can be easily shown
that kg = (1 -AGT5) " “.

TABLE 7. Key to experiment names

Experiment

name Ag kg Std(T)
NTV_LO 0.5 2.33 0.6 °C
NTV_L1 1.0 4.32 0.6 °C
NTV_HO 0.5 2.33 1.0°C
NTV_H1 1.0 4.32 1.0°C

As opposed to the NTM experiments, the effect of the coupling of climate state
and stochastic forcing through Ag, is that of increasing the amplitude of XT leaving
the mean state unchanged. Thus, similar to section 4.2, the extra costs AJP; are
mostly originated by the short term fluctuations of global temperature, and their value
is small compared to the deterministic part: remember that the threshold climate
change value in the cost function is 7,,= 3°C. On the other hand, and for the same rea-
sons, the CL policy can avoid a greater part of those costs by adapting to the climate
fluctuations hence increasing the value of AJP,.
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FIGURE 16. Optimal expected emission policies and corresponding expected climate response
for NTV experiments, in which the variance of the stochastic forcing of climate is coupled to
present climate state.

Nevertheless, since the variability of climate can be influenced by choice of the
emission policy, the latter is affected by the coupling Ag, and emissions are curved to
avoid high values of 7 (see figures 16 and 17). The optimal policy is again a combi-
nation of adaptation and prevention.
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FIGURE 17. Cost analysis for NTV experiments in which the variance of the stochastic forcing
of climate is coupled to present climate state.

4.4 Climate catastrophes and surprises

An issue that has raised much interest is the possibility that the climate system reacts
to an external forcing in either unlikely but possible ways that would have cata-
strophic effects, or in unexpected or unpredictable ways. IPCC (1996a) identifies
three major types of possible catastrophes resulting from GHG-induced global warm-
ing: a) runaway greenhouse effect, i.e. the possibility that positive feedbacks enhance
the GH effect producing much larger warming than predicted by best guess studies; b)
disintegration (melting) of the antarctic ice sheet; c¢) changes in ocean currents (e.g.
shut down of the Gulf Current). All these events have small but unknown probability
of occurrence. Also the changes in climate associated with them both in global and
regional scales are basically unknown. Finally, the economic effects, i.e. the damages
associated with a catastrophic climate change are only a matter of speculation, and
only few studies have tried to characterise them (for a brief review of present knowl-
edge on the matter see IPCC (1996¢)).

We make a preliminary attempt at modelling the effect of such catastrophic possi-
bilities in the design of optimal emission reduction policies by introducing a different
stochastic forcing. The basic assumptions of the model are kept, in particular the dam-
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age function, i.e. we assume that we can represent such catastrophic economic effects
just by increasing the argument of the damage function. For example the (remote)
possibility of a much colder climate in northern Europe, as a consequence of the shut
down of the Gulf current, is modelled within our assumptions with a high value of
global surface temperature, that causes high damages when introduced in the cost
functional. We make otherwise no attempt to model the particular nature or effects of
each of the catastrophes described above. Also catastrophes occur always in the direc-
tion of high damages, i.e. we do not consider feedbacks that would act to counter cli-
mate change.

From the point of view of our model, there is a constant probability that at each
time step a catastrophe, i.e. a sudden jump in global temperature and its associated
damages, occurs, but the magnitude of the catastrophe is proportional to the already
existing climate change.

We implement a stochastic forcing of the form

0O wp. =
e = kT, wpl-m

so that, in this formulation, we have two free parameters to set, namely the probability
of finding a jump at any given time, 7, and the amplitude of the jump, k. For a given
value of the global temperature we have

E{w|T;} = (1-mkT,  Var{w,|T;} = n(1-m)k’T;

We already noticed that the fact that damages and abatement are of similar magni-
tude is very important for the optimal reduction path, and also the fact that abatement
is typically only a small percentage of total output. When we allow for these surprises,
we let damages be typically much greater than abatement costs with the resultant bias
toward policy adoption.

In order to assign values to both parameters in the probability distribution of the
random forcing it is useful to consider first the probability 7 of finding a jump at any
given time. Independent from the value of %, the set of random forcings
{wil 1 <i< N} has a binomial distribution with parameters (1-1) and N, where N is
the number of time steps that we take into consideration. We can then easily derive the
expected number of jumps to be found I'1

IT = N(1-m)

We see then that even for a relatively small probability 7 of finding a jump at each
time step, the expected number of jumps will be high, since it increases rapidly (line-
arly) with the length of the planning horizon. Or, in more physical terms, the probabil-
ity of finding a climate catastrophe increases rapidly with the length of the period
taken into consideration. We can further pursue this simple analysis for very small
probability 7 of finding a jump in any year. We can then approximate the distribution
by a Poisson distribution with parameter I/, and can be easily shown that the proba-
bility of not finding any such jumps in a period of N’ years is e . If we find,
for instance 1 jump on average every 1000 years, i.e. [1=1, the probability of not find-
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ing any jumps in a particular 1000 year period is 1l/e, i.e. around 1/3 (and, conse-
quently, the probability of finding at least one jump is about 2/3). Notice also that for
our analysis we assume without further consideration that catastrophes (jumps) at dif-
ferent time periods are independent from each other (the probability of finding a jump
at any time period is independent from previous jumps that may have taken place
already).

The value of k determines the amplitude of the jump that will take place, by multi-
plying the already realised climate change. Since the noise vector w is added to the
global surface temperature, a value k=] means a sudden doubling of current temper-
ature (in general, for k- arbitrary, we have a k+1 fold increase of the current temper-
ature). Table 8 gives a key to the experiments done using this model set up. A value ©t
= 0.999, corresponds to [T = 1, i.e. the case in which we find, on average, one jump
every 1000 years.

TABLE 8. Key to experiment names

Experiment

name kc e 1
CCS_PO 1 0.995 5
CCS_P1 1 0.990 10
CCS_KO 1 0.999 1
CCS_K1 3 0.999 1
CCS_K2 5 0.999 1

The first relevant feature of these set of experiments is that the expectation of a
future climate catastrophe that can be triggered through climate change, will bias the
optimal climate policy towards higher reductions. Thus we have a way of quantifying
the precautionary principle, stating how much more aggressive our policy has to be as
a function of the perceived probability and magnitude of a climate catastrophe. The
expected CL equals, though, the OL policy, so that we cannot say betorehand how
both will differ. The CL policy will react with more aggressive reductions after the
jumps take place, but we do not know when this jumps will occur and consequently
we do not know their amplitude either. In both sets of experiments it is to be noted
that the finiteness of the BAU emission path that is zero after approximately 400 years
greatly conditions the results, since, independent of the probability that a climate
jump might take place, the optimal emissions will be zero after that date. In practical
terms, the number of such jumps that may have an influence in policy adoption is
reduced.
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FIGURE 18. Optimal expected emission policies and corresponding expected climate response
for climate surprise experiments and different values of parameter 7.

We can interpret these results in terms of risk, which combines both the probabil-
ity of a catastrophe and its amplitude. Thus, situations in which either of them is small
(small probability of a jump or small amplitude) will be perceived as low risk situa-
tions, since even high amplitude jumps, when weighted with the corresponding low
probability, deliver a low risk and corresponding relatively low costs.

Figures 18 and 19 show the optimal emissions policy and the associated climate
response for the sets of experiments specified in table 8, for different values of the
multiplying constant k- and probability me. The risk of a climate catastrophe may
have a noticeable effect on the emissions policy. It is important to notice that the
response to this risk is conditioned by the asymmetry of the noise forcing, i.e. we can
only have positive jumps that originate high costs, and not events that would act to
counter anthropogenic climate change, as opposed to sections 4.2 and 4.3 in which
natural variations of climate could act to counter anthropogenic GH effect. Results are
also very sensitive to both the perceived probability of a catastrophe and its amplitude.
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FIGURE 19. Optimal expected emission policies and corresponding expected climate response
for climate surprise experiments and different values of parameter k.

Figure 20 shows the values of AJP; and AJP, for these experiments. Both these
values have moderate values even for high risk situations (experiments K2 and P1) in
which either the probability of a catastrophe or its amplitude are high. On the other
hand, the value of AJPp, is rather high, specially for high risk. This is a consequence
of the assumption that jumps, an the associated costs incurred take place instantane-
ously, i.e. unpredicted catastrophes are instantaneous and originate very high costs
that cannot be avoided any more, so that adaptation is not very effective. This shows
that climate catastrophes can be very expensive, so that the precautionary principle
applies, and restrictive emission policies are necessary to prevent high risk outcomes.
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FIGURE 20. Cost analysis for climate catastrophes and surprises experiments.

4.5 The role of information gathering

As explained above, the advantage (which translates in smaller costs) of the CL pol-
icy, lies in the possibility of continuously gathering information and updating emis-
sion reductions in view of the present climatic conditions. Hence, a relevant change in
the structure of the problem takes place in that the timing of the decision process and
the possibility of postponing actions become a relevant issue. As a consequence, part
of the costs caused by changing climate conditions can be avoided by choice of an
interactive feedback policy (i.e. AJ, is a strictly positive quantity). In this sense we
can interpret AJ, as a measure of the value of information on the climate system,
although its particular value is conditioned by several assumptions and model param-
eters and by the fact that the highest costs are caused by the deterministic GH-induced
climate change. We have seen that even for the choice of a OL policy the information
available is important. In this case, the only information relevant (or available) is the
initial state of the system.

Also we have introduced time correlated (red) stochastic disturbances, but kept the
assumption of perfect information, i.e. we have assumed that the noise forcing vector
w is observable (although not the value of ). We may now relax this assumption and
suppose that we do not have access to the value of the random forcing at each decision
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period: it is easy to imagine this set up, in which for instance the solar constant or the
concentrations of other greenhouse gases are not readily measurable. We can still use
the mathematical tools of DP, although the linear feedback that relates the optimal
reduction rate to the present climatic conditions, has to be substituted by a feedback
on our estimation of the climate state (for details see appendix B). Under these condi-
tions, both the values of JOL and JL increase due to the error in the estimation of the
climatic state (notice that for JOoL only the estimation of the initial state matters,
whereas for J°I we have to continuously estimate the present value of the climate
state). On the other hand the former value increases more than the latter, and as a
result, the value of AJP; increases dramatically, showing that if information is scarce
the use of whatever knowledge is available becomes ever more important. Figure 13
illustrates these results.

We can further pursue these considerations and analyse the structure of the opti-
mal policy. We can decompose the optimal feedback policy into a proportional and an
integral part (see appendix B)

i-1
u¥ = LKy + L Y, Kiojyij

j=0
where y is the vector of observations and K the gain matrix of the Kalman filter
(matrices X are also derived in appendix B, and are functions of K and of the coeffi-
cients of the problem at hand). This decomposition shows that at any time period, the
optimal reduction rate will be a function not only of the present measurements, but
also the past information will be used. The relative importance of both terms is a func-
tion of the quality of the measurements, i.e. of how well we know the state of the sys-
tem (in the extreme case of perfect observations, X is the identity matrix and the
integral part reduces to zero).
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CHAPTER 5 Optimal emission policies
for an uncertain climate
economny system

5.1 Introduction. Optimal emission policies under uncertainty

High uncertainty is present basically in all elements of the coupled climate-society
system. Even where functional forms are available, that describe the corresponding
subsystems, the particular values of the parameters or coefficients of their mathemati-
cal description still present high uncertainty. Also in the introduction it was briefly
discussed how we find three basic levels of uncertainty: the climate system, whose
physical laws are thought to be well known (we may include here, to a certain extent,
economic models); the interaction between climate and socioeconomic structures,
which are not always properly defined or known; and the perception of the global
warming problem, as a result of different cultural values and economic and political
interests. We can identify these three forms of uncertainty easily in our simple struc-
tural model, matching them to its three major elements: the equations of motion, that
describe only the climatic evolution; the cost function that includes the economic
damages caused by climate change and the costs of avoiding carbon emissions; and
the choice of the relevant parameter values and probability distributions relevant to
the problem. In the rest of the chapter we will make no methodological distinction
between all three forms of uncertainty. We assume all functional forms are known,
and only the coefficients are uncertain.

A number of authors have characterised the design of optimal carbon emission
policies as highly irreversible, arguing that climate protection policies, once started,
cannot be easily revised or abandoned. A representative example is the model of
Baranzini et al. (1995), in which carbon emissions reduction policies are studied as an
option value problem, and one of the main questions studied is that of the optimal date
of intervention, i.e. the date at which the application of a particular given policy
option becomes optimal. Similarly other studies (Nordhaus (1993), Peck and Teisberg
(1993)) try to solve the dilemma of ‘act now’ vs. ‘wait and see’ as a policy option, i.e.
the effect of postponing the application of a particular policy action.
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Another interesting approach to this problem is the use of montecarlo techniques
(Tol (1997), Peck and Teiberg (1993)) that let us test different scenarios, i.e. different
realizations of the unknown parameters, and possibly assign them probability distri-
butions. In particular we can estimate the expected value of perfect information, i.e.
the difference between the expected total costs incurred when policies have to be
defined under uncertainty and the corresponding value if all elements of the model
were known with certainty. This value serves as an upper limit to the value of infor-
mation under different sets of assumptions, that are not so restrictive as that of assum-
ing perfect knowledge of the system. As we shall see this value depends strongly on
the probability distributions assigned to the uncertain elements of the model and thus
perception of the global warming issue becomes a relevant element of our model.

We aim at studying the effect of uncertainty in the deterministic policies designed
with available integrated GES models, similar, for instance, to SIAM (Hasselmann et
al. (1997)). We also test the robustness of these policies against uncertainty. We test
thus the validity of the best guess approach and its robustness against possible futures.

In order to solve the problem of finding an optimal emission policy under uncer-
tainty, we will transform the problem, through state augmentation, into a deterministic
one. In the following we define a state of the world as a particular realization of the
parameter values that are not known with certainty, i.e. a particular point in our
parameter space I'(8) € R” (where 6 is a p-dimensional vector of unknown parame-
ters). We further assume that each component in 6, i.e. each uncertain parameter, can
only take a finite number of values with fixed and known probabilities, that are
described by the probability function A6). Under these conditions we define the prob-
lem

. 0
mznfT(e){J(x ,u)}

xivr = f G )

where Zgg) is the expected value taken over the probability distribution associated to
the different states of the world, and superindex 6 indicates the particular state of the
world. Notice that instead of the original system of equations of motion, we have a set
of systems, one for each state of the world. Additionally we impose the condition that
the optimal control be equal across all states of the world.

In this formulation of the problem we restrict ourselves to the study of OL irre-
versible policies, thus ignoring the effect of incoming information about the system’s
state (if there is an stochastic component in the climate system) on the optimal emis-
sion path. Note that this form of endogenous learning is not the main mechanism, and
at any rate not the only one, through which knowledge of the parameters in our GSE
models (and the laws governing the coupled system) will be improved. While direct
observation of the state of the system is essential in understanding and improving our
knowledge, specially in the climate subsystem (detection and attribution of climate
change is probably the most relevant case), the description and characterization of the
interactions and parameter values needs and uses other sources of knowledge besides
direct observation of the climate state variables. Rather, external actions, like basic
research or technology development, will bring information about our system exoge-
nously. We do not attempt to model the optimal investment in technology or basic sci-
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ence, which is for itself a different field of study, and restrict ourselves to the OL
solution of the model, i.e. we consider information available does not change in the
course of time.

Other authors have also approached the problem of finding an optimal climate pol-
icy under uncertainty and the irreversibilities involved in global change. Kolstad
(1994, 1995) presents a stochastic model with learning in which the effect of uncer-
tainty and learning rate on the climate policy at initial time is analysed. Welsch (1995)
and Eismont and Welsch (1996) analyse the problem of finding optimal GHG emis-
sions under ambiguity, defined as the situation in which the probability distributions
assigned to the unknown parameters are themselves unknown and subject to revision.

Climate Policy under Uncertainty and Adaptation

Our approach to the design of optimal policy aims at analysing the effect of uncer-
tainty in a set up where learning and adaptation (understood as the revision of climate
policy in view of new information available in the future) are not possible. It has been
widely recognised, though, that the expectation of acquiring information in the future
and the structural changes that the socioeconomic system will undergo in the future
may play a major role in the policy decision process, rendering irreversible policies
suboptimal. Questions of the form ‘act now’ vs. ‘wait and see’ implicitly assume deci-
sions are irreversible. Allowing for adaptation raises a different set of questions,
namely that of what to do now, in view of the information available to us, and how to
implement policy options and instruments in a way that lets us remain as flexible as
possible.

Webster and Reiner (1998) argue the need of flexibility in any response to climate
change, since uncertainty is unavoidable. Valverde et al. (1998) present a framework
for sequential climate decisions under uncertainty. Lempert et al. (1996) present a
model in which a rudimentary form of adaptation is allowed, and the optimal emis-
sion policy is revised once during the planning period. They also find that policies in
which adaptation is allowed are more robust, i.e. generate smaller expected costs, than
those in which adaptation does not exist.

The problem described above can, in principle, also be treated within the mathe-
matical framework of SOC (see also appendices A and B). By means of state augmen-
tation we can treat the set of unknown parameters 0 as a new set of state variables
with the equation 0;, | = 0,, since the parameters are unknown but do not change
with time. The problem becomes one of imperfect information, since the parameters,
that are now treated as new state variables, cannot be measured. The transition proba-
bilities necessary are now P(x;, 1, 0, 1| y', u'), where y represents the measurements
available to the planner. Similar to the problem presented in chapter 4 in which perfect
information was not available (red noise stochastic forcing not measured), these tran-
sition probabilities are not known with certainty and have to be estimated from the
information available, namely those state variables that can be measured and past con-
trols. In this kind of problem the control vector serves a dual purpose (Kumar and
Varaiya, (1986): first, the control can alter the evolution of the state variables x in the
future; on the other hand can also alter the information available on them. This dual
aspect of the control makes problems in general more difficult to solve, since both
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have to be balanced, i.e. the problems of identification and control have to be solved
simultaneously in what is called adaptive control. Both bayesian methods (that
assume a prior distribution for the parameters, and actualise it in view of new infor-
mation) and non bayesian methods (that assume no prior knowledge of the probability
distribution, and use techniques as maximum likelihood estimators to incorporate new
information) can be used. The problem of adaptive control of an stochastic system in
the form described above, becomes then one of imperfect information and highly non
linear. Though no new basic or theoretical principles have to be invoked to solve such
a problem, we loose the ability of finding an analytical form for the optimal policy,
and the derivations of the necessary probability distributions have to be carried out
numerically and is not trivial, with the subsequent loss of clarity and the imbalance
between the conceptual nature of the model and the mathematical structure needed.
As a result, this solution approach is of limited value for our present work, and will
not be further developed.

5.2 Experiment design and general results

For our analysis in the following sections we will characterise uncertainty through the
parameters o, representative of the climate sensitivity; Yp, the percentual damages due
to a climate change; and a, the inertia in the economic system. Furthermore, we will
assign probability distributions to these parameters, that will in turn take different val-
ues to take into account not only the corresponding sensitivity analysis, but also the
problem of perception. The experiments described below show that the inclusion of
uncertainty in the model can have a very important effect in the design even of irre-
versible policies, since they will try to avoid undesirable or dangerous outcomes asso-
ciated to some possible futures. It turns out though that our particular description
(parametrization) of the uncertainties has an overwhelming effect on the system’s
response for parameter and uncertainty ranges consistent with present knowledge of
the system.

The first necessary step is to identify and quantify the probability distributions
assigned to the uncertain parameters. It has to be mentioned that just like the estima-
tion of best guess values for these parameters, the estimation of their extreme values
or possible ranges and, most importantly, the probabilities of finding each of them, is
a task that finds itself in its very beginning, and a great deal of speculation is needed
in the absence of experimental evidence or consistent modelling efforts. See Jacoby
and Prinn (1994) and Webster and Sokolov (1998) for a description and quantification
of uncertainty in climate change predictions. In the following the states of the world
are particular realizations of the parameter values that are not known with certainty,
1.e. a particular point in parameter space I'(yp, a, o) C R3.

We will assume that all three parameters are independent from each other so that
their corresponding probability distribution can be expressed as

P(YD: a, OC) = Py(YD)Pa(a)P(x(O(‘)
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Furthermore we will consider two different specifications for this probability distribu-
tions, depending on whether they are symmetric or not. Notice that the use of a non-
symmetric probability distribution implies that the most probable and the expected
values are not necessarily the same any more. The objective function, though, is
defined as the expected value of total costs, and due to the linear-quadratic formula-
tion of the model, we will only find in its solution the expected value and the variance
of the stochastic parameters; the different probability distributions will thus manifest
themselves through these two quantities.

First we will assume that the individual probability distributions P,, P, and P, are
symmetric. We will follow a rather simple approach in order to quantify mean and
variance of the parameters: first we identify a maximum and minimum value which in
turn specifies the mean. Next, the standard deviation is derived assuming that the
parameter is drawn from either a normal distribution (for a low estimate of the vari-
ance) or a uniform distribution (for a high estimate). In the first case, i.e. normal dis-
tribution, the extreme values are taken to be the 3¢ values of the distribution. Typical
values for the uncertain parameters have been already used for the sensitivity analysis
in the previous chapters, so that we will use them to characterise the probability distri-
butions.

Non symmetric distributions are assumed to take the form of a Gamma distribu-
tion with density

?,(0) = 1 g ek

T(n+ 1)K+

where 1/T'(n + l)kgl *Disa normalizing constant to ensure that the integral of the
density Py equals 1, and O represents one of the three uncertain parameters. Some
interesting values are easily calculated for this distribution

arg[max{Py(0)}] = nky
E{0} = (n+ L)k (EQ 1)
Var{®} = (n+ 1)k,

where we can fix either the value of maximum probability or the expected value of the
parameter and adjust kg accordingly (notice that the value of 0 corresponding to the a
maximum probability density cannot be directly interpreted as the one having maxi-
mum probability, since in a continuous distribution the probability of occurrence of
any particular value is zero; we take it though as the limiting case of a corresponding
discrete distribution in which the maximum frequency of the parameter is found in the
neighbourhood of that value). As an example, figure 21 shows the density and distri-
bution functions for o.
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FIGURE 21. Density and distribution functions for Gamma-distributed parameter ¢ and for
different values of n and k, (* the value corresponding to arg{max[?(c)]}).

We can interpret the different distributions as representing the degree of certainty
we have in our estimates of the parameters. A uniform distribution represents a very
poor knowledge of the relative probabilities for different states of the world. On the
other hand, a normal distribution assumes a relatively high confidence on the best
guess estimate. In the gamma distribution, higher values of n correspond to smaller
probabilities of high values of the parameter and higher probability of finding the best
guess.

Note that we have two different situations, depending on whether uncertainty is
found in the cost functional or the equations of motion. In the former case the
expected value operation in the cost functional already takes care of the uncertainty in
the parameters, so that what we are doing is redefining a cost function that includes
the statistical properties of the perceived probability distributions. On the other hand,
if uncertainty is found in the equations of motion, we need to augment the problem to
take into account the set of possible states of the world. By chance in our model the
whole economic part is contained in the cost functional, and the climate model in the
equations of motion, so that these two situations will correspond to economic and cli-
mate uncertainty respectively.

Also, since we only consider OL policies, we will only analyse the value of AJp,
the error made in the estimation of costs if uncertainty is ignored.
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General results

As the experiments in the next sections will show, uncertainty plays a major role in
the design of an optimal policy and the estimation of expected costs associated to cli-
mate change. Deterministic policies that ignore uncertainty may then perform not
very well, in an average sense, when tested against a range of possible states of the
world, i.e. possible realizations of the unknown system. Accordingly, the approxima-
tion of treating uncertainty as negligible is inappropriate to design robust climate pro-
tection policies that will perform optimally under a wide range of different worlds. In
this sense also adaptation an flexibility, both in policy options and institutions, will
play a major role. We could try if-then recipes and find an optimal policy for each pos-
sible state of the world, but uncertainty is likely to persist, so we have to look for
robust policies across all possible states of the world. We can summarise other general
results in the following points.

» Experiments show that the particular parametrization of uncertainty is also very
important, and results are sensitive to the probability distributions used. Much
research is necessary to characterise and quantify uncertainty in climate change not
only in the form of best guess and extreme values but also with probability distri-
butions. The first step would be then to reduce ‘uncertainty on uncertainty’.

» Although the precautionary principle is frequently invoked to ask for prompt action
to reduce GHG emissions to prevent global warming, results show that the out-
come of the precautionary principle depends on the particular parametrization of
uncertainty used. Depending on where uncertainty is placed (e.g. the damages of
global warming or the costs of emissions reduction), and the particular distribution
attributed to the uncertain parameters (e.g. high or low probability of high climate
sensitivity or of high economic inertia), the optimal policy will react accordingly
with higher or lower reduction rates. We should then formulate precisely the pre-
cautionary principle in terms of the particular estimate of uncertainty at hand.

e We can characterise the forces dominating the present social debate about global
change, with the use of cultural theory, in terms of their attitudes toward nature and
uncertainty. We use a simplified description of the views of nature to identify three
typified attitudes: industrialist (global warming is not a big threat), environmental-
ist (global warming is a major threat and uncertainty not relevant) and hierarchist
(global warming is a potential threat, but uncertainties are important). In the origin
of the disagreement there are: a) scientific uncertainty that allows for wide range of
beliefs and b) different interests, lengths of planning (political, economic, social),
and priorities (e.g. short term development of underdeveloped countries vs. future
generations).

» Optimal emission policies and climate costs depend sharply on the particular view
of nature adopted, and thus the assumption of an international agreement affects
the optimal emission path. Also the economic value of information depends on the
attitude towards nature.
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5.3 Uncertainty in the costs of climate change

The value of yp, the percentage loss on global output due to a benchmark (7;,,) climate
change, has been estimated to lie between a negligible value and 21%, with a mean of
3.6%, for a global warming of 3 °C taking place by year 2090 (see Nordhaus (1994)
and IPCC (1996c¢)). Cline 1992 estimates losses of around 6% of global output for
long term warming (10 "C). We choose the values 0% and 6% as extreme values for
the symmetric distribution of yp, for a mean value of 3%, already used as baseline
value in the previous chapters. Notice, though, that there is a great deal of arbitrari-
ness in this choice, and the wide discrepancies suggest that in this case the uniform
distribution for the parameter is not a bad choice. The gamma distribution will take
the best guess value of 3% as the most probable one, and adjust ky accordingly for dif-
ferent values of n.

The values for a are difficult to estimate, since the term (ap)? was introduced in a
rather artificial way to represent the effect of processes like capital accumulation/
depreciation, technological progress or information diffusion. It is thus not easy to
relate the simple value of the parameter to the real processes and complicated links
taking place in the real world or in more complicated models. We choose tentatively
the extreme values of O, for a very fast reacting and technologically oriented eco-
nomic system (representative of the bottom-up modelling strategies), and 100 years
for a slow reacting one (typical of top-down models). A review of existing literature
(see IPCC (1996c¢) for an extensive one) reveals that also in the economic costs of
emission abatement measures, as well as the particular details of the costs functions,
there are great uncertainties. The gamma distribution will use the best guess value of
50 yrs. as most probable one.

Table 9 summarises the values of these two parameters and the probability distri-
butions associated with them.

TABLE 9. @) Parameter probability distribution estimates: maximum, minimum, mean, and
standard deviation both for normal and uniform distributions. ) Parameter probability
distribution estimates: expected value and standard deviation for Gamma distribution and
different values of n.

a) Min. Max. Mean Std(A) Std()
Yp (%) 0.0 6.0 3.0 1.0 1.7
a (yrs.) 0.0 100.0 50.0 16.7 28.9
b) Z{0} Std{6} kg
Yp(%) | n=1 6.0 4.2 3.0
n=2 4.5 2.6 1.5
n=3 4.0 2.0 1.0
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b) {0} Std{6} kg

a(yrs.) | n=1 100.0 70.7 50.0
n=2 75.0 433 25.0

n=3 66.8 334 16.7

Climate change costs in our model depend in a linear fashion on yp. That means
that the extra costs, positive or negative, associated to higher or lower values of yp,
than the mean, are equal. On average, then, positive and negative values of the extra
costs will cancel each other. As a consequence, after applying the expected value
operator, we have only the mean value left, and the particular probability distribution
chosen or its variance are irrelevant.

If the probability distribution is symmetric, also expected value and most probable
one are equal, so that the optimal policy in this case is identical to the best guess pol-
icy, i.e. our baseline emission path. What we have is a situation in which values of the
parameter higher than the mean are equally probable as lower ones and excess costs
associated with higher or lower values are equal (except for the sign), so that out-
comes with higher costs cancel out exactly those with lower costs when taking
expected value. On the other hand, if there is a significant probability that damages
are very high, i.e. if yp is gamma distributed, the optimal policy will curve emissions
to prevent incurring in the high costs associated to those potentially dangerous states
of the world. Notice that in our particular case the long tail in the distribution of yp
implies that high damages of climate change are more probable than low ones. Figure
22 shows the different optimal policies associated to different uncertainty estimates of
YD-

For the economic inertia a the situation is different, since costs have a quadratic
dependence on it: the expected costs associated to states of the world with a higher
than the mean are higher, more than linearly, than the corresponding for smaller val-
ues of a (i.e. E{a’}= E{a}’+Var{a} >GE{a}2). As a consequence, the optimal policy
reacts with smaller reduction rates (abatement measures are effectively more expen-
sive). Figure 23 shows the optimal emission policies associated to different estimates
of uncertainty for a. Since the effect of the economic inertia on the model’s optimal
emissions is only small, also uncertainty has a moderate effect on the optimal solu-
tion.
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FIGURE 22. Optimal emissions policy and corresponding climate response for parameter vy,

uncertain. Values are shown corresponding to a gamma distribution described in table 9 and
for different values of n. Notice that for symmetric distribution of yp, we obtain exactly the

baseline emission path.

These results illustrate an application of the precautionary principle: the expecta-

tion that undesirable states of the world may be realised, calls for prevention. They
also illustrate the fact that depending on the sign of the costs associated with those
states of the world (high climate damages or high abatement costs) emissions will be
curved in one direction or the other. The effect on the optimal policy may be signifi-
cant, as shown in figures 22 and 23. Ignoring uncertainty leads also to a severe under-
estimation of the expected costs associated to climate change.
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FIGURE 23. Optimal emissions policy and corresponding climate response for parameter a
uncertain. Both symmetric and gamma distributions for different values of n are shown

Finally, the degree of confidence that we have in the estimate of the most probable
value has also an important effect on the optimal policy and costs. If knowledge on
the parameter distribution is very poor, the effect of uncertainty in the optimal emis-
sions and the error in the estimation of costs are higher (although this effect disap-
pears in the case of Y uncertain, due to the linear dependence of costs). Furthermore,
if the probability of finding dangerous states of the world is significant (n low in the
gamma distribution) emissions are significantly changed and the error in the estima-
tion of costs is high. This effects are smaller the higher the value of n, i.e. the better
we know the value of the parameters.
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FIGURE 24. Values of A/, for different assessments of uncertainty for parameters Y (upper
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5.4 Uncertainty in the climate system

IPCC (1996a) estimates that the sensitivity of the earth’s climate, i.e. the equilibrium
temperature increase due to a doubling of atmospheric CO, concentration is in the
range of 1.5 °C to 4.5 °C, with a best guess value of 2.5°C (these estimates have been
extensively reviewed, discussed and cited in the literature). To account for this range
of values in our climate model, we assume that the radiative forcing, represented in
our global temperature equation by parameter U, is constant and known, so that we
modulate climate sensitivity of the model through o, the relaxation term in the tem-
perature equation (representative of the time needed by the climate system to return to
an equilibrium state once it has been driven out of it). Notice then that our best guess
value of o = 0.03 “C/yr. represents already the upper bound of these estimates, corre-
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sponding to a climate sensitivity of 4.2 "C. We choose for the symmetric distribution
extreme values of 0.13 (1°C) and 0.028 (4.5°C). The gamma distribution uses the
baseline best guess of 0.03 "C/yr. as the most probable value. An extra experiment is
performed, named L5, with a most probable value of 0.077 “C/yr. (1.6 °C) and n=1.

Table 12 summarizes these parameter values

TABLE 10. a) Parameter probability distribution estimates: maximum, minimum, mean, and
standard deviation both for normal and uniform distributions. b) Parameter probability
distribution estimates: expected value and standard deviation for Gamma distribution and
different values of n and k,. Experiment names are shown in brackets.

a) Min. Max. Mean Std(A) Std()
a(°C/yr.) 0.130 0.028 0.049 0.028 0.016
(1.0°0)¥ | @550 | 2.6°C)@
b) {0} Std{0} | kg
o n=1 0.060 0.042 | 0.030
CClyr) | w® | (@2.1°c)@
n=3 0.040 0.020 | 0.010
wL3)? | 3.2°C)@
n=1/2 | 0.090 0.073 | 0.060
@w4H® | (1.4.°C)\%
n=1 0.145 0.109 | 0.077
L3)? | 0.9 °C)®

(a)Corresponding value of the climate sensitivity for a fixed value of p=0.00045
(b)Experiment name

Much of the analysis made in the previous section for the uncertainty in the costs
of climate change, can be applied here. Both the estimate of the most probable value
and the confidence on its knowledge are the decisive elements in the model. The fact
that our baseline set up assumed a value of climate sensitivity already on the high end
of estimates is important, since the most probable value associated to the symmetric
distributions is quite far from the baseline. As a consequence, the optimal policy devi-
ates significantly from the baseline solution. Also the error in the estimation of costs
is very high, although we can interpret much of this effect as the error in the estima-
tion of the best guess value, rather than the effect of the uncertainty itself. The latter
effect can be better seen in experiments L1, L.3 and L4, in which differences between
optimal policies and costs are due exclusively to the uncertainty in the confidence on
the knowledge of o, i.e. the spread of its distribution.
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FIGURE 25. Optimal carbon emissions for parameter o. under different assumptions of
uncertainty: uniform distribution (U), normal distribution (N) and gamma distribution with
different values of n and k, (L1-L5).

Again, we see that we have a way of quantifying the precautionary principle. If
climate is not likely to be sensitive, i.e. if high values of o have significant probability,
emissions will be higher. Notice though that if confidence in the most probable value
is high and the distribution is symmetric, i.e. if the distribution is normal, emissions
are higher than in the low confidence (uniform distribution) case, since, in the latter
case, states of the world with high sensitivity have a higher relative probability of
occurrence. In the gamma distribution experiments L1, L2 and L3, we also see that for
higher value of n, states of the world with higher climate sensitivity have a higher rel-
ative weight and emissions are further reduced.

The high values of AJPp indicate that deterministic policies ignoring uncertainty
might ignore a very big part of the expected costs, i.e. might be very far away from the
optimal solution,
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FIGURE 26. Values of AJPy, the error in the estimation of expected costs if uncertainty is
ignored, for different assessments of uncertainty for parameters 0.

5.5 The perception problem. Expected value of perfect
information

One of the assumptions made throughout this work is that an international agreement
is reached among all actors (countries, interest groups, economic sectors) to define the
welfare function that the central planner maximizes. Dropping this assumption trans-
forms the problem into a multi-actor optimization problem, in which several of the
actors try to maximise their own welfare functions, that can be treated in the frame-
work of game theory (for a description of some of these questions with a similar
model as the one used here, see Hasselmann (1996)). One has then to characterise the
corresponding welfare functions and actors playing the game attending to different
criteria: different countries with the corresponding economic parameters, energy pro-
ducers vs. energy consumers, environmental-ecologist groups vs. industry groups.

In order to approach the perception problem in relation to global warming we will
adopt a simplified description of the different attitudes of mankind towards nature, or
different views of the natural system, that has become some what standard in the cli-
mate policy debate (see van Asselt and Rotmans (1996), Paoli (1994), Pendergraft
(1998)).

Figure 17 illustrates these different views that can be grouped in four idealised
conceptions of nature. Nature is seen as a ball in a potential well. The industrialist
perceives the well as having infinite walls, so that no matter how large the perturba-
tion of the system is, it will eventually return to its original state, i.e. considers that
nature, the earth, has the ability and capacity of coping with any human interference.
In this sense does not conceive human interaction with nature as a problem. On the
other end of the spectrum, the environmentalist sees the well as a positive potential,
i.e. a hill rather than a well. Any perturbation, no matter how small, will drive the sys-
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tem out of its unstable equilibrium state, to which it is impossible to return. Nature is
perceived as very sensitive to human activities and permanently on the verge of disas-
ter. Third the hierarchist conceives the system as a finite well: nature can take some
man-made perturbations, but only up to a limit, after which catastrophic consequences
are to be expected. Finally, the fatalist considers the problem as being out of our
hands, since nature will follow its course independent of any actions that mankind
may take. Since our interest is in the design of climate protection policies, we will
centre our experiments in the first three groups (in the fatalist’s view, no policy inter-
vention would make sense, since one cannot predict its effects, supposing it has any
effect).

Environmentalist

Industrialist- Nature ephemeral

Nature benign

0O

Fatalist- Hierarchist-
Nature Capricious  Nature Perverse/Tolerant

FIGURE 27. Schematic representation of the different views of nature (adapted from van Asselt
and Rotmans (1996)).

Using the characterisation of uncertainty of the previous section through parame-
ters Yp, a and o we can also describe these different views of nature. In general, the
industrialist will be characterised by small values of yp (little effect of human activi-
ties on the climate system), and moderate to high values of economic inertia a (costs
of perturbing economic growth would be high). On the other extreme, the environ-
mentalist would be characterised through high values of yp, (very sensitive nature) and
rather small values of a. Both these views of nature would assign to the unknown
parameters relatively small variance since they both consider their beliefs as almost
certainly true. Finally, the hierarchist would model the system with moderate mean
values of the parameters with rather high variance, to account for the high uncertainty
involved. Table 11 summarises the probability distributions that each of the views of
nature assigns to the uncertain parameters. For the sake of simplicity we assume all
distributions are Gaussian.
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TABLE 11. Characterization of the different views of nature through probability distributions.

Industrialist Environmentalist Hierarchist
Mean Stdev. Mean Stdev. Mean Stdev.
Yp (%) 1.0 0.6 6.0 0.6 3.0 1.7
a (yrs.) 100.0 9.6 20.0 9.6 50.0 28.9
a (°Clyr) 0.12 0.005 0.03 0.005 0.049 0.016

Parameters are chosen somewhat arbitrarily, to illustrate the differences in beliefs
and interests that are still consistent with accepted parameter ranges and the effects
they may have on the optimal emission path (figure 28). We see then that this views of
the world, that though very simplified, represent the main positions dominating the
man-nature interaction debate, dominate also the behaviour of the model, specially
the optimal emission path. In particular the way in which we quantify uncertainty, the
relation between the best guess values and the spread of their distribution, the expec-
tation of low probability-high impact states of the world (that translate into non-sym-
metric distributions, with long tails) have pivotal importance for the results.
Remember once again that the parameter combinations chosen to represent this ideal-
ised views of nature fall fully in the presently accepted ranges considered as possible.
Consequently, quantitative predictions on future optimal emission policies or more
generally climate protection strategies, specially ones looking far into the future,
should be interpreted cautiously.

The value of AJPp, represents, according to each view of nature, how wrong is the
baseline policy when calculating the costs of climate change (figure 29). Also here
differences are important, resembling the positions in the social debate about climate
change. The industrialist considers almost all costs calculated by the baseline are arti-
ficial, i.e. an artifact of wrongly estimating the state of the world. The environmental-
ist finds costs have been underestimated and the issue of climate change has not been
properly prevented. Finally, in the hierarchist point of view the baseline calculations
overestimated total climate costs, mainly as a product of choosing too high a value of
the climate sensitivity.
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FIGURE 28. Optimal emissions policy and corresponding climate response for the different
simplified views of nature,

The expected value of perfect information

As we have seen in this section, the particular believes of the planner as to the preci-
sion of his knowledge on the socioeconomic system, translated into its particular real-
isation of a probability distribution for the uncertain parameters, has a big influence
on the design of an optimal climate policy. A related consequence is that information
or the resolution of uncertainty have different values depending on the particular view
of nature.
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FIGURE 29. Values of AJPy), the error in the estimation of expected costs if uncertainty is

ignored, for different assessments of uncertainty according to the three views of nature:
industrialist (IN), environmentalist (EN) and hierarchist (HI).

Decision analysis provides a general paradigm to calculate the economic value of
information. We define the Expected Value of Perfect Information as

EVPI = Ep0){J (1)} = Ep){Jo(1)}

Epp)1s the expected value taken over the probability distribution associated to the dif-
ferent states of the world, and subindex 6 in the second term indicates the particular
state of the world. The EVPI is then the difference between: a) the expected costs
resulting if a single optimal policy has to be chosen under uncertainty and b) the
expected costs resulting if the state of the world was known beforehand and an opti-
mal policy could be calculated for each state of the world. EVPI is a non-negative
quantity, since the previous knowledge of the state of the world allows the decision
maker to tailor an optimal policy to the state at hand thus finding a better optimum,
i.e. smaller costs.

We express the expected value of perfect information as a percentage of the costs
if the state of the world is known.

EVPI
Ep(0)176(Ug) }

This quantity is easily calculated for the different views of the world presented in the
: . i D . : :
previous subsection (notice that EpoylJ (1) b = J in our formulation).

EVPI, =
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FIGURE 30. Expected value of perfect information (EVPI) according to each of the views of
nature: industrialist (IN), environmentalist (EN) and hierarchist (HI).

Figure 30 shows the EVPI for the industrialist, environmentalist and hierarchist views
of nature and illustrates an interesting, although expected, result. The economic value
of information is much higher for the hierarchist view of nature than for any of the
other two, that are characterised by a high confidence on the own beliefs on nature
(and thus assign much smaller covariance to their estimates of the state of the world’s
probabilities).

This results let us further characterise the attitudes of the different views of nature
toward uncertainty and information and to explain their optimal policies in terms of
these quantities. The industrialist, as we saw before, does not consider global warm-
ing a major threat, and information on the possible uncertainties has not much value.
As a result, its optimal policy deviates only little from the BAU emission path. On the
other extreme of the spectrum, the environmentalist believes that global warming is a
major problem resulting in high costs; information is also not very valuable, since the
system is thought to be well enough understood. Accordingly, the course of action
proposed is to intervene aggressively to counteract and prevent global change, and not
pay much attention to solving the uncertainties involved. Finally, in the hierarchist’s
view, global change might suppose a major threat, but uncertainties are considered
high. The resulting optimal policy acts carefully reducing emissions moderately to
prevent climate change. Also, the economic value of information is high, so that a part
of the efforts and resources devoted to the problem of global change should be
directed toward achieving a better understanding of the socioeconomic system, that
would allow for a better and less costly design of a climate protection policy.
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One of the major tasks facing us is the design of climate protection policies to prevent
the welfare losses related to a possible future climate change. To that end, GES mod-
els, trying to capture the essential phenomena and dynamics involved in the coupled
climate-economy system, are used. One of the essential characteristics of the problem
is that policy design has to be done under great uncertainty. Among the many sources
of uncertainty, two essentially different origins were identified: first, the inherent sto-
chasticity of the climate system (and of the coupled climate-economy system) that
generates from its internal dynamics; second, the uncertainty associated with the
imperfect knowledge of the system and in part introduced in the modelling process
through the necessary simplification and aggregation. Although the major assump-
tions and elements of the deterministic GES models can be kept, some structural
changes are needed, most importantly the redefinition of the objective function (max-
imizing of global welfare) in order to have a well formulated problem: in our case the
redefinition reduces to maximization of the expected welfare or minimization of
expected climate protection costs.

In order to further study and quantify these effects, a simple structural coupled cli-
mate economy model is constructed. Together with the uncertainty introduced in the
modelling process, the model includes a stochastic climate module, capable of gener-
ating 1ts own natural variability, and inherits the major uncertainties in the system that
still remain unsolved. Many of the mechanisms generating natural climate variations
are still unknown or not well understood and the model adopts accordingly several
configurations to cover different possibilities:

» Natural variability independent of the climate state: this form of variability can
have its origin both in internal dynamics and non linear interactions, and on exter-
nal sources like variations of the energy input from the sun or vulcanism.
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 Natural variability coupled to the climate system, in particular to global warming;
the natural and anthropogenic variations of climate influence each other in a feed-
back process.

» Climate catastrophes and surprises: this is a special form of climate variability in
which variations of the climate system take the form of sudden, large amplitude
changes, possibly triggered by global warming.

Also, knowledge of the climate system and most importantly, its interactions with
the socioeconomic system, in the form of GH effect and the impacts of the associated
global warming, is still incomplete and debated in many areas. We identify three dif-
ferent categories in uncertainty:

e Uncertainty in the climate system. The main unknowns are the feedback mecha-
nisms related to albedo, water vapour and clouds, that would enhance (or counter)
global warming. Also, the role of the ocean in global warming is a crucial element.

» Uncertainty in the socioeconomic system. Most important to our work are the
impacts and costs caused by climate change, summarised in the cost function.
Knowledge in this field is still fragmentary and controversial.

« Differences in perception of the nature-society interaction, i.e. the perception prob-
lem. Notice that while the other two sources of uncertainty can to a great extent be
reduced through research, this latter form may not, since differences in the views
of nature are not only based on scientific knowledge, but on cultural and moral val-
ues and in different interests.

Since the mechanisms involved in natural climate variability and the sources of
uncertainty are far from being completely understood or solved, much research has to
be done to improve our knowledge, and only their potential effects can be roughly
estimated. In general, we argue that both natural climate variability and uncertainty
may not be second order effects, and the design of optimal climate control policies
has to take both of them into account in order to come up with realistic solutions to
the global change problem. The effect of both phenomena can be important and ignor-
ing them might render policy efforts sub-optimal or even not feasible.

The Precautionary Principle is often invoked to ask for more restrictive GHG
emission policies if high impact outcomes of climate change are possible. It turns out
that it is necessary to quantify in more detail what high impact means, in terms of
whether the major uncertainties are in the impacts of climate change or in the costs of
abatement measures. This is in part due to the use of the expected value in the expres-
sion of climate costs, that weights different outcomes with their corresponding proba-
bilities, so that low probability events mean in general low risk. This raises questions
as to the appropriateness of using the expectation of costs as a decision criterion, since
it smooths out risks in the averaging process. Other useful criteria might try to avoid
high impact outcomes independent of their probability or may weight risk in different
ways.
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6.1 Climate policy and climate natural variability

The presence of natural climate variability and its interaction with climate change
highlights the importance of adaptation as a climate policy option. Since the future
evolution of the climate system is not known with certainty, emission policies do their
best when the actual evolution of climate is taken into account. This can be translated
into the optimality of choosing flexible policies and institutions, rather than fixed irre-
versible ones. Also, due to the coupling between natural climate variability and cli-
mate change and to the memory of the system, the optimal policy is in general a
combination of adaptation and prevention, since part of the effects of climate varia-
tions can be known beforehand.

The coupling between natural climate variability and climate change is identified
as a potentially very important mechanism. Results vary depending on the sign and
nature of the coupling, but they could have similar magnitude to the estimated deter-
ministic GH effect.

The expectation of climate catastrophes and surprises triggered by global warming
may, in some cases call for much more restrictive emission policies than if variations
of climate conditions are smooth. This is an expression of the Precautionary Principle,
advising to avoid high impact climate events even if they have relatively low probabil-
ity of occurrence. We can quantify this effect as a function of the risk of a catastrophe,
that includes both the probability of a climate surprise and its magnitude.

In addition, ignoring climate variability and its interaction with climate change
can lead to a severe underestimation of climate costs. The expected climate protection
costs are higher for the stochastic system than for the corresponding deterministic
one. The extra costs have their origin in the error in estimating the system’s future
state; part of these costs cannot be avoided, since the particular realization of the sto-
chastic components (climate natural variability or business cycles) cannot be known
in advance, but another part can be, by means of observing the system and adapting to
it.

6.2 Climate policy and uncertainty

Since uncertainty is high and likely to persist, we need to design robust policies that
perform well in a variety of possible states of the world. These might differ signifi-
cantly from any deterministic policy based on best guess estimates of the uncertain
elements and ignoring otherwise uncertainty. Once again, failing to recognise this
effect might lead to the application of policies that are suboptimal when their result is
averaged over the different possible states of the world. Furthermore, under uncer-
tainty, adaptation will probably play a major role as a policy option. Notice that uncer-
tainty can be solved by means of research and improved scientific knowledge, so that
the future is likely to bring progressively new information on the climate-society
interactions. In this sense the importance of choosing flexible policies and institutions
to cope with global warming has to be stressed again.

The adoption of optimal policies to protect climate has been characterized as
highly irreversible. Due to the inertia of the climate system, global warming is also a
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highly irreversible effect. These two forms of irreversibility, in combination with
uncertainty, request a response in opposite directions: the former would lead to a
delay in the adoption of a climate policy, specially if the passage of time is likely to
bring information, whereas the latter would require aggressive action to avoid the
build-up of GHG in the atmosphere and the long term consequences of global warm-
ing. Both effects, characterised in our model through the economic inertia of the sys-
tem and the climate sensitivity, have a relevant effect in the optimal emission policy
and costs.

The optimal climate policy will probably be a combination of adaptation and pre-
vention, in order to avoid undesirable high impact outcomes of our policy and at the
same time improve the design of policies and institutions in view of the new informa-
tion available in the future, new scientific knowledge, the actual climate evolution,
technical possibilities and different social or political values. Notice that this adapta-
tion will eventually take place anyway, and what becomes important will be the cost
of abandoning or modifying already existing policies. Thus, together with the evalua-
tion of the possible future evolution of the coupled system, the flexibility of the
actions undertaken, the degree of irreversibility in the system and the flow of informa-
tion become the relevant issues.

Results show that the way in which we quantify uncertainty, i.e. the choice of par-
ticular probability distributions and parameter values for them, plays a very important
role in the final outcome. This is a point in which much work has still to be done,
since, at present, knowledge on parameter mean values, extremes and probability of
occurrence is fragmentary and not always convergent. Quantification of the precau-
tionary principle depends strongly on our beliefs on how the system works and how
well we know it. Overall, it is our view of nature, that translates in our estimation of
parameter values and functional forms, that dominates the particular outcomes of our
modelling efforts.

With the help of Cultural Theory, three relevant simplified types were identified,
with which the present dominant positions in the global change debate can be
described: the industrialist, for whom climate change is not a relevant issue; the envi-
ronmentalist, which considers nature fragile, and global warming a major threat; and
the hierarchist, for whom nature is able to adapt only to a certain point, and global
warming is a potential threat. Different views of nature can be characterised not only
through the mean values of the uncertain parameters, but also through their attitudes
toward uncertainty and the value of information. Both the industrialist and the envi-
ronmentalist consider their beliefs to be almost certainly true, and therefore do not
consider uncertainty to be relevant or information valuable. On the other hand the
hierarchist recognises the uncertainty involved in the problem and considers informa-
tion to be very valuable, since it would help to appropriately tailor a climate policy to
the real world.
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6.3 Outlook

As we have seen throughout this work, there are many interesting and open questions
concerning the design of optimal climate protection policies. A high level of uncer-
tainty is present in all subsystems and a better understanding of the climate and socio-
economic systems and their interaction is necessary to attempt their control. An
assessment of uncertainties, not only in the form of extreme and mean values, but
with probability distributions is necessary. Also, structural uncertainties, the ones
related to the functional forms and the nature of the interactions between systems (not
only parameter values for processes whose basic dynamics are understood) are very
high and need to be reduced. In particular, the cost function, relating climate change
and its impact on socioeconomic systems needs to be improved. In this sense it would
be necessary to enhance the definition of impacts and damages to include both natural
variations of climate and a dynamical component, in which adaptation would proba-
bly play a major role.

In addition, the interactions of climate change and climate variability have been
identified as potentially being important in the global warming problem. The mecha-
nisms generating climate variability and their changes in response to anthropogenic
induced change are not yet well understood. Similarly, only little is known about the
possibility of sudden catastrophic changes, whether influenced by human actions or of
natural origins, and only some speculations are available. A better understanding of
these processes is necessary in order to asses their potential effect on the global
change process.

On the socioeconomic side too, several lines of research are already active. As we
have seen the attitude of the central planner toward nature is decisive in the policy
making process. Different views of nature are present in the present social debate and
policy making process, and are influenced by both the scientific uncertainty and dif-
ferent beliefs and interests. A better understanding of the reasons behind these dis-
crepancies and the interactions of different attitudes in a game theoretical framework
is needed. Also other optimization criteria should be further investigated, which
would specify different attitudes toward risk and uncertainty, and study the effect of
these differences in the policy making process. Finally, the effects of learning and the
acquisition of information are further influential issues in the global warming prob-
lem.
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Appendix A: Dynamic Programming

The principle of optimality and the Dynamic Programming
Algorithm

Let the problem to be solved be the maximization of

J = 0(x;,1) +j;1(x, u, t)dt

with the equations of motion

x = F(x,u,t)

The DP algorithm makes use of the well known principle of optimality, that states that
an optimal policy has the property that whatever the initial state and decision are, the
remaining decisions constitute an optimal policy with regard to the state resulting
from the initial decision.

u*(t) given

In the schematic figure above, let AB be the state variable path corresponding to a cer-
tain optimal policy u*(z) for t,<t<t,. The principle of optimality tells us that the
same optimal policy will be applied if we start the problem at any point directly on the
trajectory AB, for instance O = (X', t'), i.e. that u™(z), ' <t <t , is the optimal policy
for the problem starting at that point.

We may now present our optimal solution in two different ways. The open loop solu-
tion specifies the optimal control u*(z) for all times as a function of initial time and
state (x,tp), and proceeding forward to a point in the final hypersurface Q(xj{ tf), tf)=0,
which is the locus of points that we can reach with feasible controls. According to the
principle of optimality, the problem starting at any point (x(¢), ¢) in the optimal trajec-
tory has the same optimal control, but if we want to know the optimal solution to a
problem starting at a point not in that trajectory, we have to solve a new optimal con-
trol problem starting at that point.
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In many cases though, we may want (or need) to know the solution to the problem
starting at many different points (x, ¢) and ending at the given final hypersurface, so
that we have to calculate a whole family of optimal paths. We may think of the opti-
mal policy u*(t) as associated to the point (x, ) of the corresponding trajectory, and
since in general only one optimal path to the final hypersurface will pass through that
point, a unique optimal control is associated with it so that we can
writeu®* = u*(x,t).

which is the optimal feedback control law or closed loop solution, that gives the opti-
mal control as a function of present state and time.

A good example that illustrates these ideas is a thermostat, with which we try to keep
the temperature of a room as close as possible to a given value. Given an initial value
of the temperature and time (7},?,), we can determine the set of actions u(z) (when to
turn on or off the radiator) for the whole intervalz, <t <t¢,, i.e. the open loop policy.
Nevertheless, since we don’t know exactly when do we want to start heating or the
temperature at that moment, it would be desirable to have an optimal rule that tells us
what to do for each possible state (7, ¢). In other words, we want to express the control
as a function of the state, i.e. calculate the closed loop policy (we incorporate a ther-
mometer that measures the room temperature and possibly find a rule that minimizes
(T-T ,5ireq))- Another case in which we need the control in a closed form is that in
which the evolution of temperature is not fully deterministic (for instance if it depends
on the weather outside the room), i.e. it is not certain what is the future effect of
present actions.

Notice that in the deterministic case, for a given initial state and time, both the closed
and open loop solutions are identical.

The dynamic Programming algorithm.

Let the problem to be solved be

N-1
Jo(xg) = minfw{gN(xN) + 2 8i(xp U Wi)}
i=0

subject to

X1 = filxpu,wy) X, given

Let J;*(x;) be the optimal integrated costs for the problem starting at time i and state x;
(then the solution of the problem at hand is J,*(x()). Now, according to the principle
of optimality the solution to the problem starting at (i+1, x;, ;) is J;; ;*(x;, ;). The dif-
ference between the two can only come through the intermediate function that adds
g{x; u; w;), so that we have
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which the fundamental recurrence relation.

Another way to see this: he functions J*(x;) represent the cost to go, the optimal (min-
imum) costs from time i to the end of the planning horizon once the optimal policy
u* i =0,...,,N—1is chosen. Suppose we are in stage i, and have reached state x;
applying u;, j= 1,...,i-1. The cost to go at this stage is, by definition, the sum of the
instantaneous costs g, plus the costs to go at stage i+

JX(x) = minuifw{gi(xi, u, w;) + % (fi(x up w)) }

which is again the fundamental recurrence relation.

The boundary condition for this recurrence relation is given by the function gp(xy),
1.e. we start the relation with

JN(xN) = gN(xN)

and proceed backwards applying the recurrence relation.

At each time step, the condition of minimum will let us eliminate %; from the recur-
rence relation, solving it as a function of x;, and then solve the corresponding equation
for J. We may think of the DP algorithm as a set of problems of increasing length. The
boundary condition is nothing else than the problem of length zero starting at the last
stage of the problem. Going one step backwards, we apply the recurrence relation at
stage N-1, solving the problem of length 1: assuming u,_, known, find u,_; to mini-
mize

Iy 1y ) = min, E gy _((y_puy_pwy_ ) +In(Fy_1(-))}

The condition of minimum allows us to eliminate uy_; as a function of x_;, and sub-
stitute it in this equation. In practice we have to solve the minimization task numeri-
cally, so we have to calculate Jy_; for all possible values of x,._; (or a finite number of
them in a discretized mesh), obtaining a different value of Jy_; and uy_; for each of
them. Also, the set of possible values of x is at each time (at time O the only possible
value is x and at time N the set of possible values is the terminal hypersurface Q(xy,
N)=0). We then repeat the process for each stage of the problem (possibly interpolat-
ing J;, ;, for the set of feasible values of x;).

The optimal policy is obtained by integrating the process forward: we start at x,,
apply u, which is fully determined since the initial state is unique and advance the
state one time step with f). We measure the resulting x;, choose the corresponding u;
and advance the state. Notice that we find the optimal policy interactively, i.e. we can
wait until time i to decide control u;.

Finally note that we are using the Markov property for our system: the whole history
of the system, (x,..., X;, #g,..., #;_;) can be described with only (x;, u;_;), i.e. knowing
last state and control is equivalent to knowing all previous states and controls. This is
actually not a very severe restriction, since, as stated in the main text, any system
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depending on its finite history can be described as a Markov chain by means of state
augmentation.
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Appendix B: Numerical solution of the model

Discretization of the model. Linear-Quadratic Controller.

In order to solve the model, a discrete version of it is constructed. The discretization
scheme is very simple, with first derivatives approximated with a first order difference
equation and the integral replaced by a summation

i=1

The equations of motion are

F, = Fl-+EiAt
Ciyy = bFAt+BEAt + (1 - GANC, +w'
Tiv1 = RCAL+(1-0ANT; +w,

where initial conditions are given and subindex i stands for time.

The infinite horizon problem will be divided into two separate tasks: a transient period
up to time step N (that will be the main objective of our study) and an asymptotic part,
from N up to infinity. We assume that at some future date, GHG emissions will stabi-
lize at a finite level (or zero), and that will determine the date N.

Defined are also

Q
I

. E.
2 2.2 rlA
i = Y6, +a p)Uge™ Pi = [1‘_;}

. 2
T.N\2 T .
Di = YD[(T'_IJ +[#j ]ererl
M M

We will now re-write our model in a slightly different form, through state augmenta-
tion, in order to present it as an autonomous linear controller with quadratic criteria,
whose solution can be found analytically and relatively easy implemented (there is
extensive literature concerning the solution of linear quadratic gaussian (LQG) prob-
lems, mainly due to the ease of their solution and implementation). To that end we
need to express the cost functional in terms of the state variables only and make the
problem autonomous. Both transformations can be made augmenting the state (i.e.
introducing new (diagnostic) variables or renaming existing ones).

To eliminate the derivative of T from the cost functional, we define damage costs pre-
cisely as
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T N2 (AT./An? irA AT, T,-T,_,

. . . 1
We can now augment the state by introducing a new state variable Y; = T, _;.In
terms of the new variable the damage costs are

T.N\2 .
D, = YD[(T_‘) +%((Ti)z+(Yi1)2—2TiY[1)]UOe”At
M7 (T uAr)

Also the term including the derivative of the control can be transformed using the
approximation of the derivative as a finite difference. We obtain

) 2

2 2.2 2 a 2 2 2a
p;+a’p; = p;| 1+——|+a"pi-1+ 5PiPi-1

(A1) (A1)

We introduce a new state variable Y 12 = p;_,» and the obvious reformulation of the
cost functional.

Second, note that since our control is the reduction rate p, but in the equations of
motion we have the emissions directly, there is a known vector time-dependent func-
tion in the equations of motion (basically the BAU emission path)

b b b
E; = (1-p)E; = E; —p;E;

4

To make the problem autonomous we introduce a new state variable
23
Y =0,7°0)=1orY, =Y,V =1
so that the time varying function is part of the time dependent matrix of coefficients.

We can summarize these transformations as follows: define the vectors

x; = [Fi G T e i Yﬂ w; = [0 w w! 00 0] U = p;
(where the apostrophe denotes transposition) and matrices

10 0 00 EAt _EVAt

bAt (1-GA7) 0 00 BE Al —BEYAt
Ai=10 pAt (1-aA)00 0 B;=| o0
0 0 1 00 0 0
0 0 0 00 0 1

L0 0 0O 00 1 | 0 |

The cost functional is characterized through
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00 0 0 0 0 P a’ |, o
00 0 0 0 0 N TV
OOY—§+ .YD 2 .—YDQ 0 0 [ 0 1
Ty (TyAt) (TyAl) :
-i8,A
Qr' = 00 _YD YD 0 0 er l t 0
5 2 . 2 —
(Tudt)”  (TyAt) v,=| 0 |Uge™™
2 2
a —ay
00 0 0 Y5 -
(A1) (Ar)
00 0 0 0 0 | 0

where R; is a positive definite matrix and Q; is positive semidefinite. x; is a vector of
state variables and u; a vector of control variables.
With this notation we can write our model as

N-1

i=1

| Qi Vi

with the equations of motion

Xjp1 = Ax;+Bu+w; Xy given

w is a vector of purely random Gauss-Markov processes characterized by

E{w;} =0 E{w/w;} = Z8;; (EQ 1)

and matrices A and B are random and independent of w.

Notice that with the new definition of the state vector, the optimal solution will
depend on the state of the climate (¥,C,T) but also on the past state and controls (YI ,
Y?) and on external forcing (¥).

The term x',,Q,x, represents the value of the world (total discounted integrated
costs from time N to infinity) after the last stage in the decision process. Since in all
experiments the BAU emission path reduces to zero at a date prior to stage N, imply-
ing that the control and the associated abatement costs also vanish (and provided dis-
counting, and considering that we use the model as a tool to compare different policy
options, rather than to calculate reliable costs estimates), we choose to ignore the
costs originated by the new climatic equilibrium state and its variations (i.e. we let
x'yQOyxy represent the damage costs at time N).

The expected value operator in the cost functional includes all sources of uncertainty,
both stemming from the additive white noise w and from the uncertain parameters
both in the equations of motion and the cost functional itself, but since the parameters
in the equations of motion and the cost functional are independent, the expected value
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over O, R and V can explicitly be taken care of beforehand, reducing these matrices to
deterministic ones.

We can now calculate the CL and OL policies applying the DP algorithm and a modi-
fied version of the Merriam’s Parametric expansion idea respectively.

Closed Loop Solution. Dynamic Programming.

The optimal CL solution of the model is obtained applying the DP algorithm outlined
in appendix A and given by the following expressions

N-1
Ji(x) = X Kxi+ Y, EAW K, 1wk
j=i
with matrices

L= «BEK \Bi+R) (BiKi A +V')
K, = AK; 1A+ Q- P; Ky = Qy
Py = (A'K; B+ V))(BK;, B; "‘Ri)—l(B'fo,» 1A+ V)
In particular for our problem, and after transforming the noise-related term
N-1 N-1

Jo(xg) = x'oKyx, + 2 E{w ;K;, 1w;} = x'oKoxo + 2 Tr(K;,1%)
j:O j=0

Open Loop Solution. Merriams Parametric Expansion

In order to find the open loop feedback solution (from which the last stage is the open
loop solution) we will use a stochastic version of Merriam’s parametric expansion
method (see Aoki...).

The cost functional above can be expressed as follows

N N
Jo = 2 W, = 2 E{x;Q0;x;+u' Ru,+2x',V.u,}
i=0 i=0 W
The cost to go functions are then defined as J,, = z W,;.
which can be rewritten as i=k
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Jp = E{xX Qpxp + u Rpuy +2x, Viup +J, (1}

This difference equation is satisfied by a quadratic form in x, uy,...,upy_;, and wy,...,
Wy.7- SO we can write

N N
J, = z{x'kH(k)xk 2 w Z(Kyw+ > u S (k)u; +2xk2T(k)u}

i,j=k Lhj=k i=k

with appropriate matrices H, Z, S and T (where already the fact that £{w /=0 has ben
used to leave out all terms linear on w).
Now, for time step & the condition of minimum implies

ou,

i

ZM Sk +x Ty(k) = 0 i=k .. ,N-1

j=k

which delivers u; among others.

In order to derive the matrices H, Z, S and T, we substitute the quadratic form above in

the difference equation for J;,; to obtain and make use of the fact that
Xp+1 = Apxp + Biuy, +w, to eliminate xg, ; from the equation above and obtain

H(k) = Q, +A" H(k+1)Ag H(N) = Qy
Sw(k) = R+ B H(k+1)B, Syn(N) = Ry
S (k) = 2B T(k+1) i>k

S;(k) = S;(k+1) i j>k
T (k) = V, + A H(k+1)B, Ty(N) = Vy
Zy (k) = H(k+1)
Z(k) = 8,Z,(k+1) i, j>k

which recursively gives the matrices of the expansion. They can be calculated for all &
off-line, since they only depend on the parameters of the problem (note that subindi-
ces indicate the dependence on the different controls, whereas index k in brackets
indicate the stage at which we start calculating the problem; for instance the matrix
( k) is the form (we have (N-1 —k)2 from them for each step k) that multiplies controls
u; and uj, i.e. the control vectors for time i and j, when we start calculating at time &
(the open loop solution has £=0, i.e. the open loop solution is the solution to the last
step for the open loop feedback solution).
We can use this method to find the solution for the deterministic problem in open
form, if we choose to ignore uncertainty or randomness.
Finally the boundary conditions for these recurrence relations are the same as for the

CL problem.
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Expected evolution of the optimally controlled system

It is of great interest to calculate the expected evolution of the controlled system. We
will study the evolution of the expected mean and covariance (which in the gaussian
additive noise case characterise completely the system). For simplicity we will con-
sider the case in which matrices B; are deterministic and known. Since we have
assumed that the parameter matrices A; are random and independent of everything
else (in particular have no time correlation) we have

X = K,)—c

i+1 i

where X;

E{xi|x0} . Also we have

T
Xiv1 = AXA; +Z+N;
where x; = E {xi|x0} and N, is a diagonal matrix whose elements are
okl 2
kk _
N,' = E\P [(xi) +X,‘]

=1

and WX is the covariance of element (k[ ) of matrix A;. We have assumed that parame-
ters in A; are independent from each other.

The case of non-perfect information

Suppose now that we relax the perfect information assumption, i.e. instead of measur-
ing the state x exactly we receive at each time step the p-dimensional vector z. For
simplicity suppose that both are related through

Zi = ﬂxi+vi

v is a vector of purely random Gauss-Markov processes characterized by
E{v;} =0 E{v,v;} = Rd;;
and w and v are independent from each other.
Let us also define the quantities
k .
Xijk = f{xi|z } k<i
_ T| k :
Xk = B9 (g =205 (o6 = X;1) IZ k<i
Under this conditions, and for the cost functional given above the optimal control is

u; = Lif{xi|zl} = Ll
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where 7' =(z;, ..., Zy) , and L; the same as given above.
The estimate of x; can be easily implemented using the Kalman filter

E{x)2} = a0+ Kz = Hay_y)

where the matrix %; is given by X, = x,.“}[T'J{_].

Notice that the experiments described in section 4.1 in which a red noise stochastic
forcing which cannot be measured is added can be solved using these equations, once
it is reduced to the proper form using state augmentation.

Also the decomposition of the control into a proportional plus an integral part can be
carried out using the expression of the estimate of x given by the Kalman filter as

Wip1 = U-KH)A;+BLYU+ Kz = SiBy+ K24

and applying the expression recursively

1
Mivt = KiZigy+ D SienS; K2
j=0

Notice that in this case the optimal control does not have the markov property any
more.
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