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S1 – Experimental set-up 

Laser pulses with 5.5 mJ energy, 800 nm wavelength and 100 fs duration at 1 KHz repetition rate 

from a commercial Ti:Sapphire regenerative amplifier were split into three parts (80%, 15%, 5%).  

The 80% beam was used to pump a pair of two-stage optical parametric amplifiers (OPAs), seeded 

by the same white light continuum (WLC) and delivering phase-locked signal output pulses in the 

near infrared (300 µJ, 70 fs duration, tuned at 1.46 and 1.28 µm wavelength, respectively). The 

difference frequency generation (DFG) in a GaSe crystal between these signals delivered carrier 

envelope phase (CEP) stable [1] mid-infrared pump pulses of 130 fs duration, 29 THz center 

frequency, and up to 10 µJ energy. These pulses were transmitted through a pair of KRS-5 

broadband wire grid polarizers (used to vary their intensity) and focused at normal incidence 

onto the sample with a 150mm effective focal length off-axis parabolic mirror. The beam 

diameter at the sample position, measured by its transmission through a calibrated pin-hole, was 

about 240 µm, yielding to a maximum fluence of 13 mJ/cm2, corresponding to 8.68 MV/cm peak 

electric field.  

The 15% beam was used to pump a similar setup, with two OPAs seeded by the same WLC and 

tuned at 1.45 µm and 1.29 µm, respectively. The DFG between these signals produced mid-

infrared probe transients at 26.5 THz, with 100 fs duration and energy of 0.6 µJ. These were 

attenuated with a pair of gold wire grid polarizers and focused on the sample at 15 degrees from 

normal incidence. The probe spot size on the sample, also measured by its transmission via a 

calibrated pin-hole, was 170 µm. The reflected pulses were then collimated and steered towards 

the electro-optic sampling (EOS) setup [2], where their electric field profile could be measured. 

The optical path of the probe pulses between the sample and the EOS setup was long enough to 

prevent any possible scattered pump light from being detected, owing also to the very good 

sample surface quality. This was properly checked by running test measurements in which the 

probe pulses were blocked, and making sure that no signal was detected in the EOS. Figure S1-1 

shows a sketch of the measurement setup. 

The 5% beam was frequency doubled and used to pump a non-collinear optical parametric 

amplifier (NOPA) [3], delivering near-infrared pulses with a spectrum centered at 900nm, and 
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with a 60nm bandwidth. These pulses were then compressed down to approximately 20 fs 

duration by several bounces on a chirp-mirrors pair and used as a gate in the EOS setup. A 

schematic representation of the overall experimental setup including the generation of the 

pump, probe and gate pulses is shown in Fig. S1-2.  

To accurately measure the optical properties of the sample, a double optical chopping scheme 

was used [4]. This allowed for the simultaneous measurement of the equilibrium and pump-

induced reflected electric fields, and to calculate ∆𝐸(𝑡, 𝜏)/𝐸(𝑡, 𝜏), where t is the time delay 

between the pump and the probe pulses and 𝜏 the EOS time coordinate.  From this ratio, the 

complex reflectance ∆𝑟(𝑡,𝜔)/𝑟(𝑡,𝜔)  was calculated and added to the equilibrium one 

(retrieved from literature data [5]), thereby providing the complete optical properties of the 

sample as a function of both pump-probe delay and frequency. For more details on the data 

analysis, we refer the readers to Supporting Information S2. All the experiments were performed 

at room temperature. 

 

 

Figure S1-1 Schematic representation of the experiment geometry. Off-axis parabolic mirror (OAP), Electro 

Optic Sampling (EOS). 
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Figure S1-2 | Schematic representation of the set-up used to generate the pump, probe and gate 

pulses used in the experiment. Optical parametric amplifiers (OPA), white light continuum 

generation (WLC), difference frequency generation (DFG), experiment (EXP). 
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S2 – Data Analysis 

 

Figure S2-1 (a) Raw data. The dashed line represents the probe electric field 𝑬𝒐𝒇𝒇(𝝉) reflected from 

the sample at equilibrium. The red line represents the simultaneously measured change 𝚫𝑬(𝝉) 

induced by the pump pulse.  (b) Equilibrium (dashed line) and pump-induced reflectivity (red line) 

calculated from the data in panel a. 

The non-equilibrium reflectivity at any pump-probe delay time t can be calculated knowing the 

probe pulse electric field 𝐸011(𝜏) reflected from the sample at equilibrium (i.e. without pump) 

together with the pump-induced change	Δ𝐸(𝑡, 𝜏), where 𝜏 is the EOS time coordinate. The 

frequency resolved data 𝐸011(𝜔) and	∆𝐸(𝑡,𝜔) can be reconstructed by Fourier transforming the 

measured traces along the EOS coordinate 𝜏. The reflectivity is then calculated recalling 

that	 ∆4(5,6)
4788(6)	

= ∆:(5,6)
:788(6)	

, where 𝑟(𝑡, 𝜔) is the reflection coefficient. Because the equilibrium 

property 𝑟011(𝜔) is known, the pump-induced reflection coefficient 𝑟0;(𝜔) = 𝑟011(𝜔)(1 +
∆:(5,6)
:788(6)	

) can be calculated, as well as the reflectivity 𝑅0;(𝜔)=|𝑟0;(𝜔)|@. Figure S2-1a shows 

typically measured traces 𝐸011(𝜔) and	∆𝐸(𝑡,𝜔), leading to the non-equilibrium reflectivity 

shown in Fig. S2-1b. 

In our experiments, these two quantities were measured simultaneously using two lock-in 

amplifiers, so that the pump-induced change was being constantly referenced to the actual 

equilibrium reflected field. This automatically renormalized the measurements against thermal 
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or mechanical drifts of the sample, as well as against slow drifts of the probe pulses carrier-

envelope phase (CEP).  

The measurements were performed simultaneously chopping at different frequencies the pump 

and probe beams, with a chopper wheel with 5/7 ratio between the apertures in the inner and 

outer parts. The probe beam, impinging on the outer part of the wheel, was chopped at 500 Hz 

(half of the source repetition rate). The pump beam was impinging on the inner part of the wheel. 

In this configuration, 𝐸011(𝜏) is measured at 500 Hz, while Δ𝐸(𝜏) is measured at the difference 

frequency between the inner and outer wheel, which is 143 Hz. Because the response of the lock-

in amplifiers at the two frequencies is different, a calibration is required. Indeed, 𝐸011(𝜏) and 

Δ𝐸(𝜏) can be measured independently, chopping only the probe beam (without pump impinging 

on the sample) and only the pump beam, respectively. If these two measurements are done 

chopping the beams at the same frequency, the measured electric field profiles have the proper 

relative amplitudes. Thus, these measurements can be used to calibrate those resulting from the 

double chopping scheme. Figure S2-2a shows Δ𝐸(𝜏) measured chopping only the probe (red) 

and with the double chopping scheme (black). As expected, because of the different repetition 

rates, the magnitude of the two signals is different. Fourier transforming the two signals and 

measuring the amplitude of the FFT peak allows for extracting the calibration factor (2.72 in this 

case). The comparison between Δ𝐸(𝜏) measured with a single chopper (red) and after 

renormalizing the double chopping trace (black) is shown in Fig. S2-2b. The measurement of 

𝐸011(𝜏), being carried out at the same chopping frequency of 500 Hz in both cases, does not 

require a renormalization, as can be seen in Fig. S2-2c, where the signals measured with a single 

chopper on the probe beam (red) is compared to that measured with double chopping (black). 
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Figure S2-2 (a)  Δ𝐸(𝜏) measured chopping only the pump beam (red) and with the double chopping 
scheme (black). (b)  Δ𝐸(𝜏) measured chopping only the pump beam (red) and with the double 
chopping scheme after calibration (black). (c)  𝐸011(𝜏) measured chopping only the probe beam (red) 
and with the double chopping scheme (black). 

The measurements shown in Fig.S2-2 were all performed one right after the other, to minimize 

the detrimental effects on the calibration of mechanical drifts of the sample position or slow 

drifts of the probe pulses CEP.  

This calibration procedure was performed before every measurement, to obtain accurate 

amplitudes of  𝐸011(𝜏) and	Δ𝐸(𝜏), and therefore calculate a reliable absolute value of the non-

equilibrium reflectivity. 
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S3 – Phase dependence of the signal 

According to our model, the Born effective charge and the high frequency dielectric constant 

depend quadratically on the phonon coordinate Q. Their linear dependence on Q is not taken 

into account, as detailed in the Supporting Information S4, because it would correspond to 

symmetry forbidden terms in the Hamiltonian.  

More intuitively, if 𝑍∗ and 𝜀Dwere linearly dependent on Q, when the sample is excited by a laser 

pulse and the phonon coordinate oscillates around zero, their change would also average to zero, 

without leading to a net amplification process like the one presented in our work.  

Furthermore, if there was linear component in the pump-probe signal, the phase of the signal 

itself would be different if that of the pump was changed by π. Because to leading order the 

phase of the phonon coordinate Q and that of the pump pulse electric field are the same (bar a 

constant phase shift due to the pumping close to resonance), changing the pump pulse phase by 

π corresponds to changing the phonon coordinate oscillations also by π. Hence, the pump-probe 

signal would change phase when the delay between the pump and probe pulses are delayed by 

an odd multiple of π. 

Because the pump-induced ∆𝐸(𝑡, 𝜔) traces have been measured in 50 fs intervals, which 

corresponds to a 3π phase shift, if the signal was phase-dependent it would change sign every 

step. Indeed in our case the effect is phase independent, as shown in Fig. S3. 
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Figure S3 Measured pump-induced changes in the reflected probe electric field profile Δ𝐸(𝜏) for 
various pump-probe delays. The traces have been all normalized to their maximum value. 

This confirms that in our case the phase of the pump-probe signal is independent on that of the 

pump. 
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S4 – Model Hamiltonian and DFT calculations 

To explore the impact of the phonon excitation on the dielectric properties of 4H-SiC, we used 

an Hamiltonian which describes the general response of a charged oscillator, representing the 

infrared active phonon interacting with an electric field. The starting point is the harmonic 

Hamiltonian, which includes an interaction term between the electric polarization and the 

electric field as 

𝐻 =	
𝛺GH@

2 𝑄@ − 𝑷 ⋅ 𝑬			, (S4-1) 

with 𝑃 the electric polarization, 𝐸 the electric field, 𝑄	the oscillator coordinate normalized by the 

unit cell mass and volume, and 𝛺GH@  its frequency. There are two contributions to the electric 

polarization, which are of ionic and electronic origin, respectively.  From the modern theory of 

polarization [6] we can write the sum of both contributions as 

𝑷 = 𝒁∗𝑄 + 𝜖QR(𝜀STD − 1)
T

𝑬T		, (S4-2) 

Where, 𝜖Q is the vacuum permittivity, 𝜀STD the permeability tensor for infinite frequencies and 𝒁∗ 

the mode effective charge normalized by the unit cell mass and volume. The latter is related to 

the Born effective charge tensor by: 

𝒁∗ = ∑ ℤ;,ST∗
;,T 𝑄;,T/W∑ (𝑄;,T;,T 𝑄;,T)			. (S4-3) 

Here the subscript 𝑛 labels the ions in the unit cell and 𝑖, 𝑗 label the elements of the Born charges 

tensor, which is of 2nd rank.  𝑄;,T  labels the component 𝑗 of the phonon eigenvector of atom 𝑛, 

which is obtained from the diagonalization of the Harmonic Hamiltonian. Please note that in the 

harmonic case 𝒁∗ itself does not depend on the phonon amplitude but just on the normalized 

phonon eigenvector. We can combine the expressions above and obtain one expression: 

𝐻 =	
𝛺GH@

2 𝑄@ − 𝒁∗𝑬𝑄 −
1
2 𝜖QR(𝜀STD − 1)

T,S

𝐸T𝐸S			. (S4-4) 

We next simplify this equation by considering explicitly the physical situation of our experiment 

and 4H-SiC. Firstly, we note that the Born effective charges and the permeability tensor exhibit 
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only diagonal components for this material. Secondly, we consider specifically the polarizations 

of our pump and probe pulses which both exhibit an electric field given as 𝑬 = (𝐸, 0,0). 

Furthermore the double degenerate E2 phonon exhibits only components within the plane. 

Moreover, the two corresponding eigenvectors can be written as 𝑄]4@=(𝑄;4@, 0,0)) and 

𝑄@4@=(0, 𝑄;4@0).  Considering these points, we can simplify equation S4-4 to: 

𝐻 =	
𝛺GH@

2 𝑄@ − 𝑍∗𝑄𝐸 −
1
2 𝜖Q

(𝜀]]D − 1)𝐸@			. (S4-5) 

Please note that we are left with only scalar quantities and by the choice of the phonon 

eigenvector the oscillator charge becomes 𝒁∗ = (𝑍∗, 0,0). Finally, we remark that for 

convenience we drop the subscript of 𝜀]]∞ and replace it by 𝜀∞. 

For small phonon amplitudes the equilibrium optical properties are well described by this 

Hamiltonian. However, for large driving fields it has to be modified to take into account higher 

order effects. We therefore expand equation S4-5 up to 4th order considering all the symmetry 

allowed terms in 𝑄 and 𝐸. The new Hamiltonian reads: 

 
𝐻 = ^

𝛺GH@

2 + 𝜙𝑄@`𝑄@ − ^
𝜖Q(𝜀D − 1)

2 + 𝛽𝑄@ + 𝜉𝐸@`𝐸@

− (𝑍∗ + 𝛼𝑄@ + 𝜃𝐸@)𝑄𝐸		. 

(S4-6) 

Where 𝜙, 𝛽, 𝜉, 𝛼 and 𝜃 are dimensional constants that describe the strength of the nonlinear 

corrections. Please note that equation S4-6 has been written to highlight in parenthesis the 

corrections to the terms of equation S4-5.  

In the following, we utilize first-principle calculations to reconstruct the change in dielectric 

properties in 4H-SiC due to the direct phonon excitation. We therefore estimate the relative 

strength of the expansion coefficients from total energy density functional theory (DFT) 

calculations, which are mapped on Eqn. (S4-6). All these computations were carried out using 

DFT within a pseudopotential scheme as implemented in the Quantum Espresso code [7]. We 

used pseudopotentials generated by the projected augmented wave (PAW) [8] scheme for Si and 

C which contain as valence states the 3p2 3s2 and 2p2 2s2 electrons for each element, respectively. 

As numerical parameters, we applied a cutoff energy for the plane wave expansion of 75 Rydberg 
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and 400 Rydberg for the charge density. For all computations, we sampled the Brillouin zone by 

a 21x21x7 k-point mesh generated with the Monkhorst and Pack scheme [9] and reiterated total 

energy calculations until the total energy changed less than 10-10 Rydberg. 

The starting points of the computations are the ground-state dielectric properties of 4H-SiC. 

Before calculating phonon-modes and Born-effective charges of SiC, we structurally relaxed the 

unit-cell for forces and pressure below a threshold of 5 µRy/a0. During the minimization, we 

constrained the 4H-SiC to the experimentally determined [10] P63mc symmetry. The obtained 

structure parameters are listed in Tab. S4-1. 

 

 
Lattice constant  DFT Expt. 

a (Å)  3.06 3.08 

c/a  3.272 3.26 

Atom Wyckoff position DFT Expt. 

Si 2a 0.187 0.187 

Si 2b 0.437 0.437 

C 2a 0.000 0.000 

C 2b 0.250 0.250 

Table S4-1: Experimental [10] and calculated (DFT) lattice constants and atomic positions for 4H-SiC. 

The Wyckoff positions are given according to the P63mc space group. 

Starting from this structure, we performed density functional perturbation theory 

calculations [11] to determine the phonon frequencies, 𝜀D and the Born effective charges. The 

calculated frequency of the excited E2 phonon mode is 23.3 THz. The eigenvector of this mode 

displaces Si and C in opposite directions along the hexagonal a-axis. The normalized eigenvector 

of this mode corresponds to a displacement of Si and C about 6 pm and 12 pm, respectively. 
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Please regard this value as a reference, which has to be used in combination with the solution of 

Eqn. (S5-4) to determine the ‘’real’’ displacement of atoms induced by the application of an 

electric field pulse.  

Finally, to determine the coefficients in Eqn. (S4-6) we performed frozen phonon calculations 

including applied electric fields in the framework of the modern theory of electric polarization. 

We thereby displaced the structure along the E2 phonon eigenvector and computed the total 

energy for different applied electric fields. The phonon amplitudes ranged from -1 to 1 times the 

eigenvector and the electric field from -10 to 10 MV/cm. Finally, we did least mean square 

minimization of the resulting 2-dimensional energy landscape. Please note that the only 

parameters allowed to vary within the fit were the additional appearing coefficients in Eqn. (S4-

6). Tab. S4-2 summarizes the calculated coefficients, including the equilibrium properties. We 

further show in Fig. 4-1 the effective changes on the mode effective charge and 𝜖D as a function 

of the phonon mode amplitude Q. Please note that both quantities are associated with the leading order 

changes in the total energy as given in Tab. S4-2. 

To identify the most relevant changes in the energy landscape due to structural modulation we 

computed the total energy for an electric field of 8 MV/cm and the corresponding phonon 

amplitude. We then calculated the energy contribution of each term in percent, clearly showing 

the leading contribution of the 𝛼 and 𝛽 terms among the expansion ones.  
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constant coefficient value 
Relative energy 

contribution [%] 

𝛺GH  𝑄@ 23 THz 92.6 

𝜀D	 −𝐸@ 5.91 0.2 

𝑍∗W𝜇𝑉 −𝑄𝐸 2.62 e 6.7 

𝛼 −𝑄g𝐸 3.0	10i	𝑒𝑉/(𝑢
g
@WÅ	𝑀𝑉) 0.4 

𝛽 −𝑄@𝐸@ 1.75	10]]	𝑒𝑉/(𝑢	𝑀𝑉@) 0.1 

𝜃 −𝑄𝐸g 6.24	10]q	WÅ	𝑒𝑉/(𝑀𝑉g√𝑢) << 0.1 

𝜉 −𝐸q 3.26	10]g	𝑐𝑚	𝑒𝑉/𝑀𝑉q  << 0.1 

𝜙	 −𝑄q 1.2	10ug	𝑒𝑉/(𝑢@Å) << 0.1 

Table S4-2: List of the coefficients contained in Eqn. (S4-6) as computed from DFT total energies. 

Furthermore, we show the relative energy contribution from each term for an applied electric field 

of 8 MV/cm and corresponding Q phonon amplitude. 

a) 

 

b) 

 
Fig. S4-1: Modulation of the mode effective charge (a) and 𝜖D (b) as a function of the phonon mode 
amplitude Q for 4H-SiC. The range on the horizontal axis is comparable to the phonon amplitudes 
reached in our experiments.  
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S5 – Simulation of the nonlinear optical properties 

The time-dependent and frequency-dependent reflectivity, as well as the E and 𝑄 amplification 

shown in Fig. 5 and Fig. 6 of the main text were calculated solving  Maxwell’s equations in space 

and time with the one-dimensional finite difference time domain method (1D-FDTD) [12].  The 

discretization of time and space was done according to the Yee Grid [13], which is suitable for 

the solution of Maxwell’s equation in the absence of free charges, since it intrinsically satisfies 

the divergence equations ∇ww⃗ ∙ 𝐵w⃗ = 0 and ∇ww⃗ ∙ 𝐸w⃗ = 0. The curl equations were explicitly 

implemented in the FDTD loop, and perfectly absorbing boundary conditions at the end of the 

grid were used. Being the sample non-magnetic, the constitutive equation for the magnetic field 

was 𝐵w⃗ = 𝜇Q𝐻ww⃗ .  

Because these simulations are used to reproduce the sample optical properties, it is important 

to note that the Born Effective charge can be expressed in terms of optically measurable 

quantities such as the phonon eigenfrequency ΩGH, the static dielectric function 𝜀Q and the high 

frequency permittivity 𝜀∞	via the relation  𝑍∗ = ΩGHW𝜖Q(𝜀Q − 𝜀D), where 𝜖Q denotes the 

vacuum permittivity.  

The equilibrium optical properties of SiC were therefore introduced in our simulations through 

the constitutive equation	𝐷 = 𝜖Q𝐸 + 𝑃, with the polarization in the sample calculated as	𝑃 =

𝜖Q(𝜀D − 1)𝐸 + ΩGHW𝜖Q(𝜀Q − 𝜀D)𝑄.  

The values for ΩGH  (23.92 THz), the damping coefficient Γ (0.2 THz), and 𝜀Q (9.66) were extracted 

from a Lorentz fit to the static reflectivity data  [5], using as a fixed parameter the value of 𝜀D 

found in the literature [14]. Similarly, the dynamics of the phonon coordinate was introduced in 

the FDTD loop with the equation of motion	𝑄̈ + 	Γ𝑄	̇ + 	ΩGH@ 𝑄 = ΩGHW𝜖Q(𝜀Q − 𝜀D)𝐸. 

The non-equilibrium optical properties were calculated using the Hamiltonian shown in 

Supporting Information S4. Considering only the 𝛼 and 𝛽 expansion terms, which are shown to 

be the leading ones in Supporting Information S4, the Hamiltonian can be written (as a function 

of optically measurable quantities) in the form 
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𝐻 =
1
2ΩGH

@ 𝑄@ −
1
2 𝜖Q

(𝜀D − 1)𝐸@ − ΩGHW𝜖Q(𝜀Q − 𝜀D)𝑄𝐸 − 𝛼𝑄g𝐸 − 𝛽𝑄@𝐸@, S5-1 

  and the nonlinear polarization can be expressed as  

𝑃 = −
𝜕𝐻
𝜕𝐸 = 𝜖Q(𝜀D − 1)𝐸 + ΩGHW𝜖Q(𝜀Q − 𝜀D)𝑄 + 𝛼𝑄g + 2𝛽𝑄@𝐸, S5-2 

 

which is the equation implemented in the FDTD loop. The force acting on the oscillator 𝑄 derived 

from the same Hamiltonian is  

𝐹� = −
𝜕𝐻
𝜕𝑄 = −ΩGH@ 𝑄@ + ΩGHW𝜖Q(𝜀Q − 𝜀D)𝐸 + 3𝛼𝑄@𝐸 + 2𝛽𝑄𝐸@, S5-3 

and therefore the equation of motion for the phonon coordinate becomes  

𝑄̈ + 	Γ𝑄	̇ + 	ΩGH@ 𝑄 = ΩGHW𝜖Q(𝜀Q − 𝜀D)𝐸 + 3𝛼𝑄@𝐸 + 2𝛽𝑄𝐸@, S5-4 

which was discretized and implemented in our FDTD simulations. 

To simulate the non-linear pump-probe response of the sample, sets of three simulations were 

performed for each pump-probe delay. The first simulation was considering both the pump 

(strong) and the probe (weak) field impinging on the sample, and the reflected field 𝐸��	was 

being recorded. A second and a third simulation were then performed, considering only the 

pump and only the probe field, respectively, therefore calculating the reflected fields 𝐸���� and 

𝐸�:0�� . 

The field reflected from the sample in the pumped state was then calculated as	𝐸H; = 𝐸�� −

𝐸����, after making sure that the probe field was weak enough not to drive the system in a 

nonlinear regime. This was done checking that the reflectivity calculated from 𝐸�:0��  was 

identical to that calculated without nonlinearities.  

The reflected field from the unperturbed sample was then calculated as 	𝐸H11 = 𝐸�:0�� . 

From these fields it was possible to obtain ��
:
= 47�u4788

4788
 and calculate the reflectivity in the same 

way as detailed in Supporting Information S2 for the experimental data.  
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The direct comparison of the EOS traces measured experimentally and simulated with the 

procedure presented here is reported in Fig. S5, showing good agreement. 

 

Figure S5 Direct comparison of the experimental (panel a) and simulated (panel b) probe electric field 
reflected from the sample at equilibrium (black lines) and pump induced changes at the maximum of 
the pump-probe response (red lines) for a pump peak electric field of 5.9 MV/cm. 
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S6 – Independent modulation of 𝒁∗ and 𝜺D 

The modulations of 𝑍∗ and 𝜀D cannot be disentangled experimentally, because they involve 

similar contributions to the energy of the system and therefore happen simultaneously. 

However, the separate effects of the two nonlinearities can be explored by activating them 

independently in the simulations. 

The modulation of the Born effective charge is expected to add a 3𝜔 component to the driving 

term in the ions equation of motion and can be expected to induce amplification, as discussed in 

the main text of the paper. The results of simulations in which only 𝑍∗is modulated (α ≠ 0, β = 0) 

are reported in Fig. S6-1 and support this hypothesis. 

 

 
Figure S6-1 Effects on the non-equilibrium reflectivity (a) and phonon coordinate oscillations (b) due 

to the modulation of the Born effective charge alone.  

Figure S6-1a shows the time dependent and frequency dependent reflectivity R for an applied 

peak electric field of 8.7 MV/cm, where the value of α was chosen to reach a maximum 

reflectivity of 1.15, to mimic the experimental results. The color plot in the upper panel of Fig.S6-

1a shows areas in which the reflectivity is increased above one, highlighted in red by the color 

scale. However, the frequency cut at the maximum of the pump-probe response depicted in the 

lower panel shows a different behavior with respect to the experiments. Here, the reflectivity is 

mostly increased at Ω�H= 29 THz rather than in the center of the reststrahlen band. Nonetheless, 

the reflectivity increasing above one is concomitant with an amplification of the phonon 

coordinate oscillations, as reported in Fig. S6-1b. This simulation supports the hypothesis that 
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the 𝑍∗ modulation can lead to an amplification of the optical phonon, but does not reproduce 

well the measured reflectivity features. 

The modulation of 𝜺D alone, on the other hand, is expected to turn the ions equation of motion 

into that of a parametric oscillator, which is also supporting the parametric amplification of the 

phonon coordinate oscillations. This hypothesis is supported by the results of simulations in 

which only 𝜺D is modulated (α = 0, β ≠ 0), reported in Fig.S6-2.  

 

 
Figure S6-2 Effects on the non-equilibrium reflectivity (a) and phonon coordinate oscillations (b) due 

to the modulation of 𝜀D alone 

Also here the value of β was chosen to reach a maximum reflectivity of 1.15 for an applied peak 

electric field of 8.7 MV/cm. The color plot showing the time and frequency dependent reflectivity 

in the upper panel of Fig. S6-2a also shows areas in which the reflectivity is increased above one. 

In this case, however, the frequency cut at the maximum of the pump-probe response depicted 

in the lower panel shows a different behavior, with the reflectivity mostly enhanced around ΩGH= 

24 THz. The phonon coordinate oscillations, reported in Fig. S6-2b, are amplified also in this case. 

The simulations reported here show that the modulations of 𝑍∗and 𝜺D taken singularly, albeit 

causing the increase of reflectivity above one and the amplification of the ionic motions, cannot 

properly reproduce the experimental results. This is consistent with our model, in which both 

these modulations need to be taken into account, as they entail same order of magnitude 

contributions to the energy density. 

 



20 
 

S7 – Frequency dependent pumping efficiency 

 

 

Figure S7-1 (a) Maximum value reached by the phonon coordinate Q as a function of the pumping 

frequency.  (b) Frequency dependent light penetration depth.   

Figure S7-1a shows the pump frequency dependent maximum phonon amplitude 𝑄 in SiC, 

considering the bandwidth of the pump pulses used in our experiments. The plot shows that 𝑄 

has an almost flat response in correspondence with the reststrahlen band. Two relative maxima 

are evident within such broad peak, one at 24 THz, corresponding to ΩGH, and one at 29 THz, 

corresponding to Ω�H  . The first maximum is due to the mechanical response of the phonon 

oscillator, which at ΩGH, is driven exactly at resonance. Hence, for a constant force on the 

atoms, the largest motion is found at this frequency. The second maximum, on the other 

hand, is due to an increase of the electric field E in the sample given by the zero crossing of 𝜀:  

happening at Ω�H. In this case, even if the mechanical oscillator is driven farther from resonance, 

the very large driving force is responsible for the high amplitude reached by 𝑄, which is 90 % of 

that at ΩGH. The large bandwidth of the pump pulses is then responsible for the merging of these 

two effects in the broad profile of Fig. S7-1a. To determine the frequency at which the effect of 

the pump pulses on the probe is maximized, the value of 𝑄 discussed so far has to be combined 

with the light penetration depth inside the sample, shown in Fig. S7-1b. At Ω�H  the large 

amplitude driving of 𝑄 is combined with a penetration depth of around 4 μm, thus leading to a 

higher amplification of the probe pulses, and thus to a better signal to noise.  
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For this reason, the pump pulses in our experiments were tuned at 29 THz, as shown in figure S7-

2. 

 

Figure S7-2 Spectrum of the pump pulses used in the experiments.   

  



22 
 

References 

[1] G. Cerullo, A. Baltuška, O. D. Mücke, and C. Vozzi, Laser Photonics Rev. 5, 323 (2011). 

[2] A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 33, 2767 (2008). 

[3] C. Manzoni, D. Polli, and G. Cerullo, Rev. Sci. Instrum. 77, 23103 (2006). 

[4] K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. Uhd Jepsen, Opt. Express 17, 21969 (2009). 

[5] W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 127 (1959). 

[6] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997). 

[7] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. 
Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. 
Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. 
Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and 
R. M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009). 

[8] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 

[9] J. D. Pack and H. J. Monkhorst, Phys. Rev. B 16, 1748 (1977). 

[10] J. M. Bind, Mater. Res. Bull. 13, 91 (1978). 

[11] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001). 

[12] A. Taflove and S. C. Hagness, Artech House 1038 (2005). 

[13] K. Yee, Antennas Propagation, IEEE Trans. 14, 302 (1966). 

[14] L. Patrick and W. J. Choyke, Phys. Rev. B 2, 2255 (1970). 

 


