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Abstract. Mechanochemically active enzymes change their shapes within every turnover cycle.
Therefore, they induce circulating flows in the solvent around them and behave as oscillating hy-
drodynamic force dipoles. Because of non-equilibrium fluctuating flows collectively generated by
the enzymes, mixing in the solution and diffusion of passive particles within it are expected to get
enhanced. Here, we investigate the intensity and statistical properties of such force dipoles in the
minimal active dimer model of a mechanochemical enzyme. In the framework of this model, novel
estimates for hydrodynamic collective effects in solution and in lipid bilayers under rapid rotational

diffusion are derived, and available experimental and computational data is examined.
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I. INTRODUCTION

Ligand-induced mechanochemical motions are typi-
cal for enzymes. Binding or dissociation of a ligand
(i.e., substrate or product) to such proteins, as well as
chemical reactions within the ligand-bound state, are of-
ten accompanied by conformational transitions in them.
Thus, these macromolecules would repeatedly change
their shapes in each next turnover cycle. The primary
role of mechanochemical motions is to enable and facili-
tate catalytic reaction events. In the enzymes that oper-
ate as protein machines or molecular motors and catalyt-
ically convert ATP or GTP, such motions are moreover
employed to bring about the required machine function
or to generate work.

Since enzymes are in solution, their active conforma-
tional changes are accompanied by flows in the fluid
around them. Such non-equilibrium flows can affect in-
ternal mechanical motions in the enzymes and also in-
fluence translational and rotational diffusion of such pro-
teins, as demonstrated by MD simulations for a model
protein ﬂ] and adenylate kinase ﬂj] It has been discussed
whether hydrodynamic self-propulsion of enzymes could
furthermore occur, in the models where either instan-
taneous transitions B, @] or ligand-induced continuous
conformational motions take place ﬂa—ﬁ]
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Lipid bilayers, forming biological membranes, be-
have as two-dimensional (2D) fluids on submicrometer
scales ﬂg, @] Biomembranes often include many active
protein inclusions, such as ion pumps or transporters.
Essentially, they represent protein machines powered by
ATP hydrolysis or other catalytic reactions in them.
Within each operation cycle, the shapes of their mem-
brane domains typically change, inducing 2D fluid flows
in the lipid bilayer around them [10]. As a result, active
protein inclusions might even propel themselves through
biomembranes [11].

Collective conformational activity of enzymes and pro-
tein machines leads to the development of non-thermal
fluctuating flows in solution or a lipid bilayer. Other
particles (i.e., passive tracers) are advected by these
non-equilibrium flows, and, as previously shown m], in-
creased mixing in such systems and diffusion enhance-
ment should therefore arise. Additionally, chemotaxis-
like effects in the presence of spatial gradients in
the concentration or the activity of enzymes can take
place ﬂﬁ] Remarkably, such phenomena persist even if
mechanochemical motions are reciprocal; they do not rely
on the presence of self-propulsion for proteins, which is
predicted to be weak [3-17).

Following the original publication , extensive fur-
ther research has been performed lg—%;% . The effects of
rotational diffusion and of possible nematic ordering for
enzymes were considered ﬂﬂ], the phenomena in biomem-
branes were extensively analyzed ﬂﬂ, @], and the theory
was extended to viscoelastic media as well ﬂﬂ, @] Re-
cently, it was shown that viscosity in dilute solutions of
mechanochemically active enzymes should become also
reduced ﬂﬁ] Multiparticle numerical simulations of ac-
tive oscillatory colloids, explicitly including hydrody-
namic effects, were furthermore undertaken and principal
theoretical predictions could thus be verified M]
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At low Reynolds numbers, the flow distribution pro-
duced by an object, changing the shape due to inter-
nal forces within it, can be characterized in the far field
as that corresponding to a hydrodynamical force dipole.
If the time-dependent stochastic force dipole of an en-
zyme is known, the collective hydrodynamic effects in
solution of such enzymes are predicted by the mean-field
theory ﬂﬂ] The difficulty, however, is that experimental
measurements and precise theoretical estimates for inten-
sities and statistical properties of the force dipoles corre-
sponding to actual enzymes are not available yet. Lack-
ing this knowledge, only rough quantitative estimates for
the considered collective hydrodynamic effects could be
made so far.

The aim of the present study is to theoretically inves-
tigate hydrodynamic force dipoles in the simple active
dimer model of an enzyme. The active dimer represents
a minimal model where ligand-induced mechanochemical
motions are reproduced |12, , ] The dimer consists
of two beads connected by an elastic spring whose nat-
ural length depends on the ligand state. Under persis-
tent ligand turnover, the dimer behaves like a mechan-
ical oscillator and, within a fluid, plays a role of an os-
cillating force dipole. Large-scale numerical simulations
of non-equilibrium colloids formed by such active dimers,
with hydrodynamic effects fully taken into account in the
multiparticle collision dynamics approximation m], have
been earlier performed; they could directly demonstrate
the diffusion enhancement in such systems @] The re-
lationship between this simple model and actual enzymes
has been previously discussed ﬂﬁ]

In the next section, the active dimer model is formu-
lated and its important statistical properties are intro-
duced. After that, we undertake an approximate ana-
lytical investigation of statistical properties of the force
dipoles corresponding to active dimers in Sec. [II] fol-
lowed by a numerical study in Sec.[[Vl Implications of our
results for hydrodynamical diffusion enhancement effects
in water solutions and in lipid bilayers are then consid-
ered in Secs. [V] and [VI] respectively. Based on the new
results, available experimental and computational data
is examined in Secs. [VII] and [VITIl The paper ends with
the discussion of the obtained results.

II. THE ACTIVE DIMER MODEL

The simplest mechanical system that gives rise to a
hydrodynamical force dipole is a dimer. It consists of
two beads 1 and 2 interacting via a potential u(r) that
depends on the distance r = |r; —r3| between them. The
forces acting on the particles are f; = —du/dry = f and
fo = —f. If the dimer is immersed into a viscous fluid,
the velocity V' of the hydrodynamic flow far enough from
the dimer is approximately given by ﬂﬁ]
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Va = a—Rvege.ym, (1)
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FIG. 1. (Color online) The turnover cycle and mechanochem-
ical motions in the active dimer model of an enzyme (see the
text).

where Gop(R) is the mobility tensor depending on the
position R of the dimer with respect to the observation
point, e = (1 —72)/r is the unit orientation vector of the
dimer, and m = fr is the magnitude of the force dipole.
Summation over repeated indices is assumed. The force
dipole is present only if there are non-vanishing net in-
teraction forces, i.e., if the distance between the particles
in a dimer continues to change.

The minimal active dimer model has been pro-
posed [12, 21] (see also review [23]) to imitate mechano-
chemical conformational motions accompanying a cat-
alytic turnover cycle in an enzyme. Its operation mech-
anism is illustrated in Fig. Il

Two identical beads (green) are connected by an elastic
link with a certain natural spring length ¢y and stiffness
ko. A substrate particle (red) arrives (A) and binds as
a ligand to the dimer by forming an additional elastic
link with stiffness x that connects the two beads (B).
The natural length /. of this additional link is taken to
be shorter than ¢y. Therefore, it tends to contract the
dimer until a new equilibrium conformation (C) with a
certain distance ¢; between the beads is reached. Once
this has taken place, a chemical reaction, that converts
the ligand from the substrate to the product, occurs and
the product (blue) is instantaneously released (D). Fol-
lowing the product release, the dimer is in the state E
with the spring length ¢; that is shorter than the natural
length ¢y. Therefore, the spring expands and the domains
move apart until the equilibrium state (F) is approached
again. After that, a new substrate can bind, repeating
the turnover cycle.

It is assumed that products are immediately evacuated
and therefore we do not consider reverse product binding
events. Moreover, possible dissociation events for the
substrate are neglected assuming that its affinity is high.

Note that, since the product is immediately released
once it has been formed, the ligand inside our model en-
zyme is always only in the substrate form. Therefore,
the dimer can be either in the ligand-free (s = 0) or the
ligand-bound (s = 1) states.



The elastic energies in these two states are

Bo(e) = (0 — fo)?, 2

where
A KOy~ 0)2, ky = o +
= 57 N — L) - R,
2o+ 7)1 1=ko
- kolo + kL.
ly = ko F (4)

and z is the distance between the beads.
The overdamped dynamics of the dimer in the ligand
state s is described by the Langevin equation

dx oF,
E =7 O +§(t)7 (5)

where 7 is the mobility coefficient. To account for ther-
mal fluctuations, this equation includes thermal noise,

(€(t1)&(t2)) = 2vkpT6(t1 — t2), (6)

where kg is the Boltzmann constant and T is the tem-
perature.

Stochastic transitions between the two ligand states
take place at constant rates vy and v; within narrow win-
dows of width p near x = ¢y and x = ¢;. If probability
distributions ps(z,t) are introduced, they obey a system
of two coupled Fokker-Planck equations

dpo 0 9%po
v %[”ﬂfo(fﬂ — Lo)po] + 'YkBTW
+ ur(z)p1(2) — uo(z)po(z), (7)
and
dp1 0 9’1
Bt = g vk(@ = G)pi] +vkeT 53
+ uo(x)po(z) — u1(z)p1(2), (8)

where ug(z) = vg for g — p < x < €y + p and vanishes
outside of this interval; ui(z) = vy for 61 — p < z <
{1 + p and zero outside the interval. Note that the rate
vy of substrate binding is proportional to the substrate
concentration.

If the transition windows are very narrow, i.e., p < £y
and p < f1, one can use the approximation

ug(x) = vod(x —Ly),  ui(z) =11d(x — l1), 9)

where vy = 2vgp and v = 2v1p.

Figure 2l shows the energy diagram of the model.
Within each cycle, the dimer dissipates in mechanochem-
ical motions the energy AF = AFEy + AE; which is fur-
thermore equal to the difference Fgu1, — Fproa of the en-
ergy Equn, = E1(o) — Eo(fo) supplied with the substrate

FIG. 2.
dimer.

(Color online) The energy diagram of the active

and the energy Eproa = E1(¢1) — Eo(¢1) removed with
the product. We have

AE = %(k0+k1)(€0 —0) (10)

The hydrodynamic force dipole of the active dimer is
m = ko(bp — x)x for s = 0 and m = ki (¢; — x)z for
s = 1. Note that therefore m < kof3/4 for s = 0 and
m < k162/4 for s = 1.

When the transition windows are narrow, the proba-
bility rate wy that substrate binding, i.e., a transition to
state s = 1, occurs per unit time in the state s = 0 is

approximately
ko
= ) 11
0= N ok T ()

On the other hand, the probability rate w; that product
release, i.e., a transition to state s = 0, occurs per unit
time in the state s = 1 is then approximately given by

k1
p— . 12
U= N ks T (12)

These equations are derived in Appendix [Al

Moreover, the characteristic relaxation times of the
dimer in the states s = 0 and s = 1 are, respectively,
7o = (vko) ™! and 7 = (vk1) L.

The parameter combinations womy and wim; play an
important role in determining the kinetic regimes. If the
condition wgry < 1 is satisfied, equilibration to thermal
distribution in the state s = 0 usually takes place before
a transition to the state s = 1, i.e., binding of a substrate,
occurs. If the opposite condition wy7y > 1 holds, such
transition takes place immediately after the transition
window at x = /gy is reached. If wym < 1, the equili-
bration takes place in the state s = 1 before a transition
to the state s = 0, i.e., the reaction and the product re-
lease, occurs. In the opposite limit with wym > 1, the
reaction takes place and product becomes released imme-
diately once the respective window at x = ¢; is reached.




Note that, because the rate wy is proportional to sub-
strate concentration, the condition wy7y > 1 corresponds
to the substrate saturation regime for the considered
model enzyme. The condition w;7; < 1 implies that the
enzyme waits a long time before the product is released.

III. APPROXIMATE ANALYTICAL RESULTS
FOR FORCE DIPOLES

At thermal equilibrium in the absence of substrate,
p1(xz) =0 and

_ ko ko 2
i) =g o |- grepe = 2] (13)

Since m = ko(fy — x)z, one can easily find the equilib-
rium statistical distribution for force dipoles by using the
condition P.q(m)dm = po(x)dz. Using, for convenience,
the dimensionless force dipole magnitude m = m/kol%
and dimensionless temperature § = kgT/kol3, we get

Rmﬁﬁ)—-—Egzg:zﬁag{exp[—égﬂ<+tiTE%V]
-%eXp[_g%(1-vﬁT?Zﬁb2]}. (14)

If § < 1, this distribution is approximately Gaussian and

localized at m =0, i.e.,
1 m?
——exp|—— | . 15
—ew(-37) (15)

Using the distribution (I4l), one finds that the mean
force dipole is

ch(ﬁﬂ =

(M)eq = —ksT. (16)

The correlation function C(t) = (Am(t)Am(0)) for vari-
ations Am = m — (m) of force dipoles is |20]

Coq(t) = kol2kpTe 11/ £ 2(kgT)2e~20M/70  (17)

where 79 = (vko) ™! is the characteristic relaxation time
for the dimer in the state s = 0.

As shown in Appendix [Bl the relation (m) = —kgT is
general and holds for the active dimer in any statistically
stationary state.

When the dimer is catalytically active, four character-
istic limits can be discussed.

A. The limit of wo7o < 1 and wim < 1

If the conditions wotg <« 1 and wim; < 1 are both
satisfied, binding of the substrate and product release
have large waiting times.

In this regime, there are two almost independent equi-
librium subpopulations of dimers in the states s = 0 and

s = 1. The relative weights of the subpopulations are
wy /(w1 + wo) and wp/(wy + wp). Therefore, all statis-
tical properties are given by the sums of contributions
from different states taken with the respective weights.
Particularly, the correlation function of force dipoles is

C(t) = ule [kofngTe_ltVTU + 2(kBT)2e—2\t|/To]
wo w1
wWo 2 —[t]/m1 2 —2\t|/ﬁ}
——— |k kT 2(kgT .
+’LU0—|—’LU1[11B€ +2(kgT)’e

(18)

We can use the above equation to determine the
non-equlibrium part of the fluctuation intensity of force
dipoles

(Am?) A = (Am?) — (Am?)eq. (19)

Because (Am?) = C(0), we have
Wo

Am)py = ————
(Am7)a wo + Wi

(k1l3 — kol3) ksT.  (20)
As follows from Eq. (7)), the equilibrium fluctuation in-
tensity is

(Am?*)eq = kolikpT + 2(kpT)?. (21)

Since the effective binding rate wgy of the substrate is
proportional to its concentration ¢, i.e., wg = ¢, Eq. (20)
yields the Michaelis-Menten form of the dependence of
(Am?) s on the substrate concentration.

Remarkably, the catalytic activity of the model enzyme
can thus lead not only to some enhancement, but also to
reduction of fluctuations of the force dipoles. According
to Eq. (20), reduction should be observed if k1% < kol3.
Under this condition, the ligand-bound dimer (s = 1)
is characterized by a lower fluctuation intensity of force
dipoles than the free dimer (s = 0).

B. The limit of woro > 1 and womo > 1

In the limit characterized by conditions wymy > 1
and wgty > 1, transitions take place once the respec-
tive transitions windows are entered. If additionally the
conditions kol3 > kpT and k1£3 > kpT are satisfied,
thermal fluctuations can be neglected and the dimer es-
sentially behaves as a deterministic oscillator.

Then, the solution can be obtained by integrating
Eq. (B) with appropriate boundary conditions. This
yields x(t) = €1 + (bg — f1 — p)e ¥/ for 0 < t < Ty
and 2(t) = Lo + (b1 — Lo+ p)e”E=TV/T0 for Ty < t < T.
Here, T is the oscillation period of the active dimer and
T is the duration of the cycle time when the dimer is in
the ligand-bound state s = 1. If transition windows are
narrow, i.e., the condition p < (¢y — ¢1) is satisfied, we
approximately have

Ty =7 1n (60 — 61) , (22)
P




and

Te=(r0+m)ln (%) . (23)

The respective time-dependent force dipole is m(t) =
ki(61 —x)x for 0 < t < Ty and m(t) = ko(lop — z)x
for 71 < t < T.. Hence, it is negative for s = 1 and
positive for s = 0.

The force dipole varies within the interval mpyi, < m <
Mmax, where the minimum value myi, = —k1€o(lo—¢1) is
taken at ¢t = 0, i.e., in the state s = 1 just after substrate
binding, and the maximum value Mmax = kol1(lo — £1)
is reached at t = 77, in the state s = 0 just after product
release (here we again assume that transition windows are
narrow). Note that, if thermal fluctuations were present,
the force dipoles could however have also taken the values
outside of this interval.

It can be checked by direct integration that the period-
averaged force dipole for the deterministic active dimer
is (m(t))aet = 0. The correlation function for the deter-
ministic oscillating dimer is defined as the period average

T
Caet(t) = Tic/o dhm(t + h)m(h). (24)

It is a periodic function on time.

The mean-square intensity of force dipoles is
(m(t)*)aet = Caet(0). In the limit p — 0, we approxi-
mately have

0000 = s [ (5] oty

x [ko (62 + 2600y + 302) + ki (362 + 2600y + ef)] . (25)

When kl ~ ko,
(m(t)?)det ~ kg

this equation yields the scaling

C. The limit of womo < 1 and w11 > 1

If the conditions womy < 1 and w7 > 1 are satisfied,
the model enzyme waits a long time for binding of a sub-
strate (because the substrate concentration is low), but
then it performs a rapid reaction cycle. An approximate
solution in this regime can be obtained if, additionally,
the conditions koﬁg > kpT and k102 > kpT are satis-
fied, i.e., that thermal fluctuations are weak. Moreover,
we shall assume that the transition window for substrate
binding is narrow, i.e., the approximation (@) holds for
ug ().

In this case, the dependence z(t) consists of a sum of
statistically independent rare pulses, each corresponding
to one reaction cycle:

o(t) =2t —ty), (26)

where z(t) = 01 + (bg — £1)e™¥/™ for 0 < t < Ty and
2(t) = Lo + (€1 — Lo)e~ =T/ for t > Ty, with T} given
by Eq. (22)). The pulses appear at random time moments
t; and the probability of their appearance per unit time
is wy.

Moreover, we also have

m() = 36— 1), 1)

where ((t) = k1(61 — z(t))z(t) for 0 <t < Ty and ¢(¢) =
ko(ly — z(t))=(t) for t > T7.

Hence, this represents a random Poisson process. Its
first two statistical moments are approximately (m(t)) =
0 and

() = o [~ o) = ity — )

x [k§ (€5 + 20oly + 30T) + koky (365 + 26001 + €3)] .
(28)

Taking into account Eq. (), it can be noticed that,
when k; ~ ko, the scaling (m?(t)) ~ ki/? should hold.

D. The limit of womo > 1 and wim < 1

Finally, the situation with womy > 1 and w173 < 1 cor-
responds to substrate saturation and a long waiting time
for the reaction and product release in the ligand-bound
state. A derivation, similar to that given above, shows
that, if kol3 > kT and ki3 > kgT, we approximately
have (m(t)) = 0 and

(m2(1)) = Sswrm(fo — 1)

x [K3(32 + 20001 + £3) + koks (£3 + 20001 + 363)] .
(29)

If we take into account Eq. ([I2)), it can be noticed that,
when ky ~ ko, scaling (m2(t)) ~ ki/? is again obtained.

IV. NUMERICAL SIMULATIONS OF ACTIVE
DIMERS

Before proceeding to simulations, the model was non-
dimensionalized. The dimensionless variables were ¢ =
t/10,@ = x/ly,m = m/(kol%). The dimensionless transi-
tion rates were vy = vg7p, V1 = v179 and the dimension-
less temperature was 0 = kpT'/(kol3). Stochastic differ-
ential equation (B]) was numerically integrated, comple-
mented by transitions between the ligand states.

In the simulations, we had ¢; = 0.55¢y, k1 = 2ko and
p = 0.01¢y. We have kept constant v, = 2, but varied the
parameter vy. Our intention was to numerically investi-
gate statistical properties of the active dimer approaching



04F T T T T 3

0.4
___08

04
00
-04

-0.8

FIG. 3. Time dependence of dimensionless force dipoles m =
m/(kot3) on time for (a) ¥ = 0.03 and (b) ¥ = 3. Dashed
lines show the lower bound mMmin = —0.9 for the deterministic
oscillatory dimer and the absolute upper bound mmax = 0.25
for force dipoles.

the deterministic regime. Therefore, a relatively low di-
mensionless temperature § = 0.0018 was chosen. Under
such choice, (m(t)?)get/(Am?)eq = 19.3 and wy = 0.27.

Note that, because of the last condition, there was a
significant random variation in the waiting times for sub-
strate conversion and product release. Moreover, waiting
times for substrate binding, characterized by the rate wy,
could also vary. These effects kept the model stochastic
even when thermal noise was small.

Figure Bl shows typical time dependences of the force
dipoles. In Fig.Bla), the waiting time for substrate bind-
ing is long. Therefore, the dimer spends most of the
time in the ligand-free state s = 0. Within the time
shown, only one turnover cycle has taken place. For the
force dipole, the cycle consists of a negative spike, just
after binding of the substrate, and the following posi-
tive spike, just after the product release. In Fig. Bl(b),
the substrate binding rate is increased. As a result, the
dimer is frequently cycling, already resembling an oscil-
lator. Nonetheless, the random variation of the times
between the cycles is relatively large.

Probability distributions of force dipoles are shown in
Fig. @ The black curve is the distribution for passive
dimers in the absence of the substrate, given by Eq. (I4]).
It represents a narrow Gaussian peak at m = 0. The
distribution at 99 = vy = 0.03 (red) is almost indistin-
guishable from it. The blue curve is the distribution for
active dimers corresponding to Fig. Blb). Now, the dis-
tribution is more broad and the central peak is smaller.
The tail on the left side from the peak and the shoulder
on its right side are due to the non-equilibrium activity
of force dipoles.

The dependence of the non-equilibrium part of the fluc-
tuation intensity of force dipoles, Eq. [I9), on the sub-
strate binding rate vy, proportional to substrate concen-
tration, is shown in Fig. It can be well fitted to the
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FIG. 4. Probability distributions of force dipoles m for passive
(black curve, vg = 0) and active (red curve, 0o = 0.03, and
blue curve, 9o = 3) dimers.
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FIG. 5. Dependence of the non-equilibrium part (Am?)a of
the fluctuation intensity of force dipoles on the substrate bind-
ing rate vy (dots). The solid curve is a fit to the Michaelis-
Menten function.

Michaelis-Menten function (the solid curve). The satura-
tion magnitude is close to the value of 0.033 predicted at
such parameters for the deterministic dimer by Eq. (25]).

Normalized correlation functions of force dipoles at dif-
ferent substrate binding rates are shown in Fig.[6l In the
absence of the substrate (for vog = 0) the dependence
is monotonous (it is given by Eq. (IT)). As the sub-
strate concentration is increased, damped oscillations in
the correlation function become observed, thus signaling
the onset of the active oscillatory behavior that prevails
over the thermal noise.

The correlation functions could be fitted (dashed
curves in Fig. []) to the dependence

1
C(t)/C(0) = p—— exp(—T|¢t]) cos(Qt| — ). (30)
Figure [[ shows how the dimensionless relaxation time
1/(T'm9), the dimensionless oscillation period 27 /(1)
and the phase shift a depend on the substrate binding
rate. The oscillation period under saturation conditions
is still larger than T, /79 = 5.7 for the deterministic dimer
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FIG. 6. Normalized correlation functions of force dipoles at
different substrate binding rates: vg = 0 (absence of sub-
strate, black), 9o = 0.03 (red), and 99 = 3 (blue). The corre-
lation function for passive dimers (black) is given by Eq. (IT).
Dashed curves are fits to the dependence (30]).
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FIG. 7. The dependences of the relaxation time 1/I" (circles),
oscillation period 27/ (triangles) and phase shift « (squares)
on substrate binding rate vg.

according to Eq. ([23]). This is because of an additional
waiting time for product release. The characteristic re-
laxation time is about 1/(T'rp) = 2.

It should be stressed that the form (B0) of the correla-
tion function would not hold in the deterministic limit.
Indeed, the oscillations stay harmonic in the limit of an
infinite correlation time. However, the deterministic os-
cillations are actually non-harmonic, as seen in Fig. [Bl

There are two effects that make the dimer model
stochastic, i.e., the thermal noise in the dynamical equa-
tion (Bl) and random transitions between the ligand states
s =0 and s = 1. When 6 — 0, the thermal noise van-
ishes, but random transitions between the states nonethe-
less remain. This second stochastic effect is responsible
for the decay in the correlation function. As shown in
Appendix [Cl the dependence of the correlation function
in Eq. (B0) corresponds to an approximate solution of the
master equations (@) and (8.

V. DIFFUSION EFFECTS OF ENZYMES IN
SOLUTION

The results of the previous two sections make it
possible to obtain more accurate estimates for diffu-
sion enhancement of passive particles in solutions of
mechanochemically active enzymes.

The change Dy in the diffusion coefficient of passive
tracer particles in a three-dimensional (3D) solution is
given by [12, [14]

n

Da=———(X— YXeq)- 1
A = G (¢~ e (31)

Here, n is the concentration of active enzymes, p is vis-
cosity, feut is a microscopic cut-off length and

X:/O dt C(t)o(t), (32)

where C(t) is the correlation function of force dipoles cor-
responding to the enzymes and o(t) is the orientational
correlation function for them. Moreover, X¢q is the equi-
librium part corresponding to C'(t) = Ceq(1).

Thus, to estimate the magnitude of diffusion enhance-
ment in solution, one needs to know the force-dipole cor-
relation function C(t) for the involved enzymes. In the
original publication Nﬁ], it was assumed that this corre-
lation function decays exponentially with the correlation
time of the order of the turnover time of the considered
enzymes. Moreover, the magnitude m of force dipoles
was only roughly estimated, by using molecular motors
as an example and taking m = FL where L is the size
of the motor protein and F' is its stall force. It remained
however not clear whether and to what extent such esti-
mates would generally hold.

Furthermore, it was assumed ﬂﬁ] that orientations of
force dipoles were randomly distributed, but remained
frozen in time. While this assumption may indeed be
satisfied, e.g., in the situations where enzymes are local-
ized within a polymer matrix, rotational diffusion of such
molecules has to be taken into account for water solutions
of enzymes. Later on, rotational diffusion was taken into
account and Eq. ([BI) was obtained [14]; nonetheless, in
the analysis ﬂﬂ], it was assumed that the property y was
known for the considered enzymes.

Below, we obtain quantitative estimates for diffusion
effects by using our results for model mechanochemical
dimer enzymes.

Generally, the orientational correlation function can be
approximated by an exponential form

o(t) = exp(—t/Trot), (33)

where 7,0t is the orientational correlation time.

Orientational correlation times depend on the shape
and size of proteins; they become increased in crowded
solutions of them ﬂﬂ@] Nonetheless, they would never
exceed a microsecond for typical enzymes.



On the other hand, the characteristic correlation time
for force dipoles is determined by processes of slow con-
formational relaxation involving relative domain motions
in such proteins. The time scales of such relaxation pro-
cesses would typically lie in the microsecond to millisec-
ond range. Since this is longer than 7, the correlation
function C(t) of force dipoles would not typically change
much within the orientational correlation time.

Below, we provide the estimates in the dimer model
assuming that the orientational correlation time is much
shorter than the correlation time for force dipoles. By
using Eq. @3) and putting C(t) ~ C(0) = (Am?) in
Eq. (32), we find that approximately

X — Xeq = Tmt<Am2>A. (34)

Hence, the change in the diffusion coefficient can be es-
timated as

TrotT

Dy = o
A 607 112l s

(Am?)A. (35)

This equation relates the magnitude of the diffusion
change Da to the non-equilibrium part (Am?)s of the
fluctuation intensity for hydrodynamical force dipoles of
enzymes.

First, we consider the limit woryp <« 1 and w1 < 1.
This holds when the model dimer enzyme has to wait
for a long time for binding of a substrate (because the
substrate binding rate wq is proportional to substrate
concentration ¢ and this concentration is small). More-
over, there is also a long waiting time for the product
formation (and release). Using Eq. (20), we find that, in
this kinetic regime,

_ TrotWoN
607 12 eyt (wo + w)

Da (k103 — kotg) ksT.  (36)

According to this result, not only diffusion enhancement,
but also diffusion reduction can be caused by active en-
zymes. The latter takes place if the condition k63 < kol3
is satisfied. In this case, the intensity of force dipoles in
the ligand-bound state is smaller than in the ligand-free
state.

Our numerical simulations at different substrate con-
centrations ¢ (i.e., at different substrate binding rates
wo proportional to ¢) have shown the Michaelis-Menten
concentration dependence of (Am?)a (see Fig. [H). This
agrees with the analytical results in Sec. [TIl where we
have found that (Am?) A is proportional to wg at low con-
centrations [cf. Eqs. (20) and (28))], whereas it becomes
saturated at high substrate concentrations [cf. Eqs. (25)
and (29)]. As follows from Eq. (35), a Michaelis-Menten
dependence on the substrate concentration should then
hold also for a change in the diffusion coefficient Daj.
Such concentration dependence of D was conjectured
in the previous study [12].

The maximum diffusion enhancement effect can thus
be expected under the substrate saturation condition and
if, additionally, there is no long waiting time for product

formation and its release, i.e., in the limit of worg > 1
and w7y > 1 in the subsection B in Sec. [Tl We can use
the results for this limit to estimate the maximum mag-
nitude of such effect and also to determine the conditions
under which it would be strong.

The maximum possible intensity for force dipoles is
then given by Eq. ([28)). Taking into account that sizes
ly and ¢; of an enzyme in its two ligand states cannot
differ much and also that the two stiffness constants kg
and k1 = ko + k cannot be largely different, this equation
can be approximately written as

(m®)des ~ Cokgla(lo — €1)?, (37)

where (y is a dimensionless factor of order unity that
also includes the logarithmic term. Note that this re-
sult corresponds to the deterministic limit when thermal
fluctuations are vanishingly small. Therefore, we have
<Am2>A,max ~ <m2>det-

An important property of an enzyme is the energy AE
supplied to it and dissipated in mechanochemical motions
in each turnover cycle. For considered active dimers, it
is given by Eq. (I0).

Suppose that the energy AF is fixed. Then, using
Eq. ([I0), we can determine the respective change in the

dipole length as
2AFE
by — 10 = . 38
0=t = (39)

Substituting this into Eq. (3T), a simple estimate can be
obtained:

<Am2>A,max = Cl kOK%AEa (39)

where (; is another dimensionless factor of order unity.
Substituting this into Eq. (33]), we find

CletnkQK%AE
DA,max - GOﬁﬂzécut (40)
Thus, the magnitude of diffusion enhancement under sub-
strate saturation conditions is proportional to the energy
AFE supplied to an enzyme and dissipated by it within
each turnover cycle.

According to the Stokes equation, rotational diffusion
coefficient for a spherical particle of radius R is

kT

Dro = 5_ p3°
C T 8TuR3

(41)

The orientational correlation time is 7yot = 1/Dyot. Note
that, since proteins are not spheres, but have more com-
plex shapes, their rotational times are shorter by up an
order of magnitude than given by this. To approximately
estimate Tyot = 1/Dyot for the dimers, we nonetheless
use this expression with R = £y, but shall keep in mind
that this overestimates the actual orientational correla-
tion time.



The equilibrium diffusion constant for spherical tracer
particles of radius Ry is

kT
Dt = . 42
B 67T/,LRQ ( )

Here, we choose ] the microscopic cut-off length as
Lewy = by + Ryo.
Substituting this into Eqs. (38]) and @), we find

i (25) () (5) (ste).
Dy kT kT l Ro+4y)’
where v = 47(3 /5 is a numerical factor of order unity and
¢ = n~1/3 is the mean distance in the solution between
two neighboring enzymes.

According to Eq. [@3]), the relative diffusion enhance-
ment gets larger for more exothermic enzymes, i.e., with
the higher energy AFE dissipated within a turnover cycle.
It also increases for more stiff enzymes, characterized by
a larger stiffness constant kg of the link connecting the
two domains. Moreover, the diffusion enhancement for
passive tracer particles is proportional to concentration
of the enzymes. Finally, the magnitude of relative diffu-
sion enhancement depends on the size Ry of the passive
particles, but this dependence becomes saturated for the
probe particles larger than the enzyme.

For numerical estimates, we consider exothermic stiff
enzymes with AE = 10kgT and kol?2 = 10kgT. Then,
the mean square-root intensity ((Am?)A max)"/? of active
force dipole, given by Eq. (39), is about 107° N-m. This
is about ten times larger than the previous estimate ﬂﬂ]
based on the stall forces for typical molecular motors.

As the enzyme concentration, we take n = 1 uM. This
corresponds to a non-crowded solution where the mean
distance between the enzymes is about ten times larger
than their size (¢ ~ 10£y). Moreover, we consider passive
particles with the sizes comparable to that of an enzyme
(Ro ~ £y). As follows from Eq. ([@3]), under these condi-
tions, the change DA max in the diffusion constant of such
tracer particles can be of the same order of magnitude as
the thermal diffusion constant Dt for them. At higher
enzyme concentrations, approaching the crowded situ-
ation, the non-equilibrium diffusion enhancement may
even dominate over thermal diffusion for passive parti-
cles of a protein size.

At the end of this section, we briefly discuss how the
diffusion enhancement would generally depend on the
orientational correlational time 70, not assuming that
it is much shorter than the correlation time for force
dipoles. If the approximation in Eq. ([B0) holds, diffusion
enhancement is determined by Eq. (BI]) where x is given
by Eq. (DI) in Appendix [Dl The diffusion enhancement
depends non-monotonously on the orientational correla-
tion time. It increases linearly with 7.o¢ at short times,
then reaches a maximum at 7,o; = (2 — I') 7! and finally
saturates at large orientational correlation times.

For example, if we take the values I' ~ 1/(27) and
O =~ 7/(31) corresponding to substrate saturation in

Fig. [ the maximum diffusion enhancement would be
reached at 7.y = 1.879 and, at the maximum, it will be
larger by about 30 percent than in the limit 7o > 7p.

VI. DIFFUSION EFFECTS OF ACTIVE
PROTEIN INCLUSIONS IN BIOMEMBRANES

It is known that, on the length scales shorter than the
Saffman-Delbriick length of about a micrometer, lipid bi-
layers behave as 2D fluids B] Similar to enzymes in wa-
ter solutions, active protein inclusions (such as ion pumps
or transporters) can cyclically change their shapes inside
a lipid bilayer within each ligand turnover cycle. Hence,
they behave as hydrodynamical force dipoles within a
fluid lipid bilayer. Therefore, diffusion enhancement is
expected ﬂﬂ] for biomembranes when non-equilibrium
conformational activity of proteins takes place.

A significant difference to water solution is that, for
the biomembranes as 2D fluids, hydrodynamic diffusion
enhancement effects are non-local. For such systems,

Eq. @) is replaced by [12, [14]
1
(X — Xeq) [ dr

32w,

Talo’

DA,aa’ (R) oD (R + I‘).

(44)

rd

Here, y is again given by Eq. (82) with o(¢) being the
planar orientational correlation function for protein in-
clusions. Moreover, pop is the 2D viscosity of the lipid
bilayer, related as psp = husp to its 3D viscosity usp
(where h is the bilayer thickness); nop is the 2D concen-
tration of active inclusions within the membrane.

For numerical estimates, we assume that active pro-
teins occupy a small circular region (a raft) of radius
Ry (shorter than the Saffman-Delbriick length) within
a membrane. Then, diffusion enhancement for a passive
particle of radius Ry located in the center of the disc

is ﬂﬂ, @]

na2p
Dy = CmT(X - ch)v (45)
Hap

where (, = (1/327) In(Ru /leut), beut = Ro+ Lo, and x is
given by the integral in Eq. (32)) where, however, o(t) is
the planar orientational correlation function for proteins
inside a membrane.

The viscosity psp of lipid bilayers is about 10% times
higher than that of water and, therefore, both transla-
tional and rotational diffusion is much slower in them.
From experiments, it is known that diffusion constants
for proteins in lipid bilayers are about Dt = 10710 cm? /s,
i.e., about 10? times smaller than in water for similar pro-
teins. One can therefore expect that rotational diffusion
of proteins in lipid bilayers would be slowed by about a
factor of 102 too, yielding orientational correlation times
Trot that might approach a millisecond.

On the other hand, in contrast to solution enzymes
that can be fast, with the turnover times of about 10 us



for, e.g., urease, cycle times of active protein inclusions
in biomembranes would typically be of the order of ten
milliseconds. Therefore, they are still longer than the
orientational correlation times. This means that Eq. (34)
shall still approximately hold.

The magnitude of diffusion enhancement in Eq. (@5)
can be determined by modeling protein inclusions as ac-
tive dimers that lie flat in the membrane. Then, the same
estimates for (Am?)a as above can be used. Combining
all terms, diffusion enhancement in Eq. (A5 for a passive
particle in the center of a protein raft approximately is

B ksT \° (AE\ (ko3
DA = VmTrot (h£2D,UJ3D> (kBT) (kBT ) (46)

where the dimensionless prefactor is v, = (3¢, and
lop = n;Dl/ % is the mean distance between inclusions in
the membrane.

To obtain a numerical estimate, the 3D viscosity of the
lipid bilayer is chosen as p3p = 1 Pa-s and the thickness
of the bilayer as h = 1 nm. For protein inclusions, we
assume that AE = 10kgT and kof3 = 10kgT. The ori-
entational correlation time is taken to be 7ot = 100 us
and the mean lateral distance between the proteins is
lop = 10nm. For such parameter values, the maximal
possible diffusion enhancement under substrate satura-
tion conditions is about Dy = 107 cm?/s. For compar-
ison, Brownian diffusion constants for proteins in lipid
bilayers are of the order of 1071% cm? /s and diffusion con-
stants for lipids are about 1078 cm?/s.

VII. ANALYSIS OF EXPERIMENTAL DATA

Diffusion enhancement has been reported in solutions
of several catalytically active enzymes, at the concentra-
tions varying between 1nM and 10nM [27-31]. With the
exception of aldolase [30] (for which, however, the en-
hancement could not be independently confirmed @]),
all these enzymes were exothermic and had high turnover
rates of about 10*s~!. The enhancement was reported
not only for the enzymes themselves, but also for inert
molecules (tracers) in solutions of them m, @] The en-
zyme concentration dependence of the diffusion enhance-
ment effects could not however be detected @]

It does not seem plausible that such experimental data
can be understood in the framework of the original the-
ory ﬂﬁ] and its subsequent extensions, including the
present work. The fact that a significant diffusion en-
hancement (by tens of percent) was observed already
at low nanomole concentrations can still be perhaps ex-
plained by assuming that, for some reasons, the force
dipoles of specific enzymes with high catalytic turnover
rates were exceptionally strong. However, the absence
of a dependence of the experimentally observed diffusion
enhancement on the enzyme concentration clearly contra-
dicts the theory ﬂﬁ] where diffusion enhancement arises
as a collective hydrodynamic effect.

10

Experiments on optical tracking of particles in ani-
mal cells [33] and in bacteria or yeast [34] have been
furthermore performed. They have shown that, when
metabolism was suppressed (by depletion of ATP), dif-
fusion dropped to undetectable levels ﬂﬁ, @] or it was
much slowed down and replaced by subdiffusion charac-
teristic for a colloidal glass ﬂﬂ] Strong reduction of dif-
fusion under metabolism suppression was moreover found
in various cytoplasm extracts @]

It should be also noted that diffusion enhancement has
been experimentally observed within chromatin in a liv-
ing biological cell [37]. This was explained by active op-
eration of molecular machines involved in transcription
and translation of DNA [3§].

The cytoplasm of a living cell represents a crowded so-
lution of proteins. In bacteria, the volume fraction of
proteins in cytosol is about 30 percent @], with the
highest concentrations of the order of 100 M reached
for glycolysis enzymes. Most of the enzymes in the cell
are mechanochemical, i.e., they exhibit conformational
changes in their catalytic cycles. Typical turnover times
of enzymes in a biological cell are of the order of 10ms.

According to the previous ﬂﬁ] and current esti-
mates, substantial diffusion enhancement due to hydro-
dynamic collective effects should thus be expected under
metabolism in the cytoplasm. There are, however, also
other mechanisms that can contribute to diffusion en-
hancement in the cells.

The cytoskeleton of animal cells represents an active
gel, with numerous myosin molecular motors operating
within it. It is known that the activity of the motors can
lead to development of non-equilibrium fluctuations in
the cytoskeleton which induce in turn fluctuations and
diffusion enhancement in the cytosol ﬂﬂ, @, ] The
skeleton of bacteria and yeast is however passive; more-
over, metabolic diffusion enhancement in such cells could
also be observed when their skeleton was chemically re-
solved [34]. Therefore, the active gel mechanism [40] can-
not account for the effects observed in them.

On the other hand, under high crowding characteristic
for cytoplasm, proteins are frequently colliding and di-
rect interactions between them often take place ﬂﬂ, ]
It is known that, for dense colloids, glass behavior can be
expected, with the transport and relaxation phenomena
strongly slowed down in them M] Indeed, such behav-
ior could be observed both in the cells M] and in the
extracts M] in the absence of metabolism.

It has been recently shown that, when the parti-
cles forming a glass-like colloid, cyclically change their
shapes, the colloid gets fluidized and classical transport
properties become restored m, @] Even in the absence
of hydrodynamic interactions, conformational activity of
proteins, at the rates of energy supply of about 10 kgT
per a protein molecule per a cycle, can lead to diffusion
enhancement by one order of magnitude m] This pro-
vides an additional, non-hydrodynamic, mechanism that
can contribute to the experimentally observed diffusion
enhancement in living biological cells.



VIII. ANALYSIS OF COMPUTATIONAL DATA

Large-scale computer simulations for colloids of active
dimers have been performed by Dennison, Kapral and
Stark m] In these simulations, the solvent was ex-
plicitly included and the multiparticle collision dynamics
(MPCD) approximation [22] was employed, thus allowing
to fully account for hydrodynamic effects.

To facilitate the comparison, we first give a summary of
the essential parameter values in the study m], using the
current notations employed by us. The natural lengths of
the dimer in two ligand states were ¢y and ¢; = £y/2, and
the spring constants were kg and k1 = 2ky. The dimen-
sionless spring constant k¢3/kpT, characterizing stiffness
of the dimer, was varied between 144 and 1440. The
energy AE = (1/2)(ko + k1)(€o — £1)?, supplied to a
dimer and dissipated by it as heat within a single cycle,
was changing therefore between 121.5 kgT and 1215 kgT.
The simulations were performed under substrate satu-
ration conditions. Product formation and release were
possible within a window of half-width p = 0.025¢y near
x = f1. The rate v; of this transition could be varied in
the simulations by a factor of 5.

The Langevin equation (B) with viscous friction and
thermal noise was not used. Instead, collisions between
the two beads of the dimer and the solvent particles were
explicitly taken into account in the framework of MPCD.
For a single passive dimer, the equilibrium correlation
function of force dipoles Ceq(t) was computed yielding
the correlation time for fluctuations of its force dipole;
this function could be well fitted to the theoretical de-
pendence in Eq. (I7). Note that, when kol%/kgT > 1,
the relaxation time 79 = (vko)~! of the dimer should
be close to this correlation time. Moreover, we have
71 = (vk1)™! = 79/2. Using such estimates, it can be
shown that wy 7 varied between 0.001 and 0.1 in the sim-
ulations @] Because substrate saturation was assumed,
conditions wyy > 1 and wym < 1 corresponding to the
limit D in Sec. [Tl were therefore approximately satisfied.

For single active dimers, correlation functions C(t) of
force dipoles were determined @] They showed damped
oscillations and were similar to the correlation function
for vg79 = 3 in Fig. [l The correlation times varied, but
remained of the same order of magnitude as the correla-
tion time of the passive dimer. The force-dipole intensity
(Am?) of active dimers was by about an order of magni-
tude larger than (Am?)e, for the passive ones. Depend-
ing on the parameters, it scaled as kf with the exponent
« in the range between 1.2 and 1.6, comparable with the
exponent of 1.5 in Eq. (29).

Orientational correlation functions o(t) were further-
more computed for single dimers m] Remarkably, it was
found that the orientational correlation time 7., was sen-
sitive to the conformational activity of the dimer, getting
shorter by about an order of magnitude when such activ-
ity was switched on. Nonetheless, in all simulations 7yt
was larger than the force dipole correlation time.

Multiparticle 3D computer simulations of colloids
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formed by active dimers were further performed [20]. In
the simulations, the truncated potential

u(r) = 4e [(?)48 - <i—j)24 + ﬂ , o (7)

for r < 21/24(2r() and zero otherwise, with € = 2.5 kgT
and rg = 1.075¢y, was used to describe steep repul-
sive interactions between the beads belonging to different
dimers. The interaction radius ro was chosen as defining
the radius of a bead.

Since distances £y and ¢; = 0.5{y in the open and
closed dimer conformations were both smaller than 2rg =
2.150y, large overlaps between the beads in a dimer were
present in the simulations. However, this did not affect
the internal dimer dynamics because there were no repul-
sive interactions between the beads in the same dimer.
Additionally, the simulated system included one passive
tracer particle of radius 0.5¢.

The volume fraction ¢ occupied by dimers was deter-
mined by taking into account the overlaps, but assuming
that all dimers were in the equilibrium open state with
the length of ¢y. Because, under substrate saturation
conditions, they were however mainly found in the closed
state with an even stronger overlap, such definition over-
estimated the actual volume fraction by a factor of up to
two.

Due to the crowding effects, diffusion of a passive par-
ticle in the system of inactive dimers decreased with the
volume fraction of them. The diffusion reduction at the
highest taken volume fraction ¢ = 0.266 was less than ten
percent, indicating that this colloidal system was still far
from the glass transition threshold [41].

When the dimers were active, diffusion of tracers was
increasing instead with the dimer volume fraction ¢. For
the most stiff active dimers with kof3/kgT = 1440 and
the kinetic regime with w7 about 0.1, relative diffusion
enhancement of D /Dt = 0.3 could be observed m] at
the dimer volume fraction of ¢ = 0.266. For the least
stiff dimers with ko¢3/kgT = 144, diffusion enhancement
by 5 percent was seen at ¢ = 0.133.

Thus, collective hydrodynamic effects of active en-
zymes on diffusion of passive particles could be computa-
tionally confirmed. To speed up the calculations, model
enzymes in the study @] were chosen however to be un-
usually rapid (with the turnover times shorter than the
rotational diffusion time) and unusually exothermic (with
the heat release of hundreds of kg7 per a turnover cycle).
It would be therefore important to undertake such simu-
lations also for the parameters closer approaching those
of the real enzymes.

IX. DISCUSSION

By using the minimal active dimer model as an exam-
ple, we have analytically and numerically investigated
hydrodynamic effects of mechanochemical enzymes. The



intensity and other statistical properties of their force
dipoles have been thus considered in different kinetic
regimes. Thus, detailed estimates for diffusion enhance-
ment in solutions of catalytically active enzymes under
the conditions of fast rotational diffusion have been ob-
tained. As we have found, higher diffusion enhance-
ment should be expected for more strongly exothermic
enzymes with more rapid mechanochemical motions as-
sociated with their turnover cycles.

Based on these results, currently available experimen-
tal and computational data has been examined. We have
concluded that, while the collective hydrodynamic effects
of diffusion enhancement have been principally confirmed
in the computational study @], further work is needed
to bring simulations closer to the parameter region cor-
responding to real enzymes.

On the experimental side, we have concluded that the
data on diffusion enhancement in weak nanomole solu-
tions of several fast exothermic enzymes cannot be ex-
plained in the framework of the theory [12] and alter-
native explanations for them should be sought. In ex-
perimental studies of diffusion phenomena in living cells
and in cellular extracts, additional work is needed to dis-
tinguish possible hydrodynamic contributions from the
effects of direct collisions between active proteins and
the resulting kinetic crowding effects. Large-scale nu-
merical simulations of crowded active colloids including
hydrodynamic interactions between the particles are to
be performed.

Finally, we point out that, although the effects of dif-
fusion enhancement are also predicted for biomembranes
crowded with active protein inclusions, experiments and
numerical multiparticle simulations of such phenomena
are still missing today. It would be interesting and im-
portant to carry out them.
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Appendix A

When transitions between the states s =0 and s =1
are rare, the solution of the master equations () and (g])
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can be approximately sought in the form

ps(ilf,t) = ﬂ-s(t)p('rvﬂs)a (Al)
where 74(t) is the probability to find the dimer in the
ligand state s and p(x,t|s) is the probability distribution
for distance = provided that the dimer is (permanently)
in the state s.

Substituting these expressions into Eqs. (@) and ()
and integrating over the variable z, one finds that the
probabilities 75 obey classical master equations for a two-
level system,

dm

d_to = W1T1 — WoTo, (AQ)
and

dm

d_tl = WoTp — W17 (A3)

Here wy and w; are effective rates of transitions be-
tween the states given by

wp = /_OO dx ug(z)p(z|s = 0), (A4)
and
wy = /jo dx uy (z)p(z]s = 1). (A5)

The involved probability distributions in the statisti-
cally stationary case are

N ko [ ko 2_
p(x|s =0) =4/ kT exp _ 2kBT(x ly) | (A6)
and
o o kl [ kl 2
plzls=1)= kT exp T (x —£y) (AT)

If the transition windows are narrow, approximations
@) can furthermore be used, so that we obtain

wy = vip(e = Ll]s =1).
(A8)

wo = vop(x = Ly|s = 0),

Thus, using the above expressions for distance distri-
butions, we finally get

[ ko
=2 — A
wo PYo kT’ ( 9)
and

k1
=2 . A10
e i P (A10)

In the steady state, the probabilities are

o= —1 m=—20 (A11)

, .
wo + Wi wWo + Wy



Appendix B

Let us consider the second statistical moment (x2). In
a steady state, its time derivative is zero. On the other
hand, by using Egs. ()-8 and integrating by parts, we
find

d(z?)
dt
= 27/_ dx {kow(fo —x)po(z) + krz(l1 — 90)1?1(95)}
+ 29kgT /700 dx {po(x) +p1($)}
= 2v(m) + 2vkgT = 0. (B1)

Thus, we straightforwardly obtain that, for an active
dimer in any statistically steady state, (m) = —kpT.

Note that here and also in the equations below, the
integration limits over z are taken as +co and —oo. The
actual limits are automatically selected by probability
distributions po(z) and p;(x).

Appendix C

Introducing

Pl

(o) = (2001, ()

we can write the system of two master equations (7)) and
@®) concisely as

dp N
= —_1 2
= o8 (C2)
where
i fioo fi01 )
L= "7 , C3
(LIO Ly (C3)
and
0 0?
LQO = ’}/koa (60 - ,T) ’kaTa B} + UQ(!T), (04)
and
N o 2
L= ’Ykl%(é T) — ”YICBTa 5 +ui(x), (C5)
and
i01 = —ul(x), ilO = —UO(.I). (06)

The general solution of Eq. (C2)) is

)= Ang{" (x)e
n=0

At 4 c.c. (C7)
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where \,, and q(f) are eigenvalues and eigenvectors of the
linear operator L,

f;q(") = )\nq("), (C8)

and decomposition coefficients A,, are determined by ini-
tial conditions.

Because the master equation must have a stable sta-
tionary solution, the operator L should always pos-
sess a zero eigenvalue \g = 0 and, furthermore, con-
dition ReA\,, > 0 should hold for all other eigenval-
ues n (cf. M]) Generally, the eigenvectors can be or-
dered according to the increase of Re A, (and therefore
we can enumerate the eigenvalues in such a way that
0 < ReA; < Reds < ReAs < ...). The stationary prob-
ability distribution p(z) coincides with the eigenvector
a9 (z).

The conditional probability G(x, s, t|xo, so) gives the
probability to find the dimer in various states (z,s) at
time ¢ provided that it was in the state (zq, sp) at time
t = 0. It represents a special solution of the master

equation (C2)) given by

G(z, s, t|xo, so) = Zan (20, 50)¢\™ (z)e™ >t + c.c.

(C9)

where ay, (29, so) are the coefficients of decomposition of
this initial condition over eigenvectors g™

The force dipole m depends on the distance x be-
tween the domains and on the dimer state s, i.e., m(t) =
m(xz(t), s(t)). Therefore, in the statistically stationary
state we have

(m Z / dxo/ dxm(xo, so)m(z, s)

s,50=0,1
X Dso (20)G(x,

By using Egs. (C39)) and (CI0Q), we find that, in the statis-
tically stationary state, the correlation function of force
dipoles is

Svt|I07SO)' (Clo)

n(fA"‘t| + c.c.

C(t) = (m(t)m(0)) — (m?) = Z B
. (C11)

where the complex coefficients B,, are

= > / da:o/ dzm(zo, so)m(z, s)

s,50=0,1

X Dso (@0)an (o, 50)¢{™ (). (C12)

If we retain in this decomposition only the first, most
slowly decaying term, this yields

C(t) ~ Bie MM 4 ce. = @e*mt| cos(Qt| — ).
cos «

(C13)



Therefore, the normalized correlation function is

t 1
0] = — e Tt cos(Qt| — a),
cos

(C14)

where I' = Re A1, © = Im A1, and By = C(0)e’/ cosa.

Our numerical simulations, described in Sec. [V] have
shown that, in the regimes approaching a determinis-
tic oscillatory dimer, the correlation functions of force
dipoles could be well fitted to the above dependence.
This suggests that contributions from the higher, more
rapidly decaying relaxation modes n > 1 have been in-
deed relatively small. As generally known @], noisy
oscillators possess a slowly relaxing mode that corre-
sponds to diffusion of the oscillation phase. It can be
expected that, under chosen conditions, such a mode has
been dominating the correlation functions for oscillatory
dimers.

14

Appendix D

Suppose that the force-dipole correlation function C(t)
and the orientational correlation function o(t) are given

by Egs. (CI4) and @B3). By taking the integral in
Eq. (32), we find

/7ot + T+ Qtana
X (U re + D)2 + 02

(Am?). (D1)

This yields a non-monotonous dependence of x on the
orientational correlation time. If the phase shift « is
small and can be neglected (cf. Fig. [), the maximum
value Xmax is reached at 7o = (2 —I')~! and we have

Xmax _ F2 + QQ

N 5T (D2)

where

Xoo = <Am2> y (D3)

2 +02

is the limit of ¥ when Tyo; > '™ and 7o > Q7.

[1] A. Cressman, Y. Togashi, A. S. Mikhailov, and R.
Kapral, Phys. Rev. E 77, 050901 (2008).
[2] C. Echeverria, Y. Togashi, A. S. Mikhailov, and R.
Kapral, Phys. Chem. Chem. Phys. 13, 10527 (2011).
[3] R. Golestanian and A. Ajdari, Phys. Rev. Lett. 100,
038101 (2008).
[4] R. Golestanian and A. Ajdari, J. Phys.: Cond. Matt. 21,
204104 (2009).
[5] M. lima and A. S. Mikhailov, EPL 85, 44001 (2009).
[6] T. Sakaue, R. Kapral, and A. S. Mikhailov, Eur. Phys.
J. B 75, 381 (2010).
[7] X. Bai and P. Wolynes, J. Chem. Phys. 143, 165101
(2015).
[8] H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009).
[9] M.-J. Huang, A. S. Mikhailov, R. Kapral, and H.-Y.
Chen, J. Chem. Phys. 137, 055101 (2012).
[10] M.-J. Huang, A. S. Mikhailov, R. Kapral, and H.-Y.
Chen, J. Chem. Phys. 138, 195101 (2013).
[11] M.-J. Huang, H.-Y. Chen, and A. S. Mikhailov, FEur.
Phys. J. E 35, 119 (2012).
[12] A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci.
USA 112, E3639 (2015).
[13] R. Kapral and A. S. Mikhailov, Physica D 318-319, 104
(2016).
[14] A. S. Mikhailov, Y. Koyano, and H. Kitahata, J. Phys.
Soc. Jpn. 86, 101013 (2017).
[15] Y. Koyano, H. Kitahata, and A. S. Mikhailov, Phys. Rev.
E 94, 022416 (2016).
[16] Y. Hosaka, K. Yasuda, R. Okamoto, and S. Komura,
Phys. Rev. E 95, 052407 (2017).
[17] K. Yasuda, R. Okamoto, S. Komura, and A. S. Mikhailov,
EPL 117, 38001 (2017).
[18] K. Yasuda, R. Okamoto, and S. Komura, Phys. Rev. E
95, 032417 (2017).

[19] Y. Hosaka, S. Komura, and D. Andelman, Phys. Rev. E
101, 012610 (2020).

[20] M. Dennison, R. Kapral, and H. Stark, Soft Matter 13,
3741 (2017).

[21] F. Kogler, Interactions of artificial molecular machines.
Diploma Thesis (Technical University of Berlin, 2012).

[22] R. Kapral, Adv. Chem. Phys. 140, 89 (2008).

[23] H. Flechsig and A. S. Mikhailov, J. Roy. Soc. Interface
16, 20190244 (2019).

[24] S. von Biilow, M. Siggel, M. Linke, and G. Hummer,
Proc. Natl. Acad. Sci. USA 116, 9843 (2019).

[25] Z. Bashardanesh, J. Elf, H. Zhang, and D. van der Spoel,
ACS Omega 4, 20654 (2019).

[26] G. Nawrocki, A. Karaboga, Y. Sugita, and M. Feig, Phys.
Chem. Chem. Phys. 21, 876 (2019).

[27] K. K. Dey, Angew. Chem. Int. Ed. 58, 2208 (2019).

[28] A.-Y. Jee, S. Dutta, Y.-K. Cho, T. Tlusty, and S.
Granick, Proc. Natl. Acad. Sci. USA 115, 14 (2018).

[29] M. Xu, J. L. Ross, L. Valdez, and A. Sen, Phys. Rev.
Lett. 123, 128101 (2019).

[30] P. Ilien, X. Zhao, K. Dey, P. J. Butler, A. Sen, and R.
Golestanian, Nano Lett. 17, 4415 (2017).

[31] C. Riedel, R. Gabizon, C. A. M. Wilson, K.Hamadani, K.
Tsekouras, S. Marqusee, S. Presse, and C. Bustamante,
Nature 517, 227 (2015).

[32] Y. Zhang, M. J. Armstrong, N. M. B. Kazeruni, and H.
Hess, Nano Lett. 18, 8025 (2018).

[33] M. Guo, A. J. Ehrlicher, M. H. Jensen, M. Renz, J. R.
Moore, R. D. Goldman, J. Lippincott-Schwartz, F. C.
MacKintosh, and D. A. Weitz, Cell 158, 822 (2014).

[34] B. R. Parry, L. V. Surovtsev, M. T. Cabeen, C. S. O’Hem,
E. R. Dufresne, and C. Jacobs-Wagner, Cell 156, 183
(2014).



[35] E. Fodor, M. Guo, N. S. Gov, P. Visco, D. A. Weitz, and
F. van Wijland, EPL 110, 48005 (2015).

[36] K. Nishizawa, K. Fujiwara, N. Ikenaga, N. Nakajo, and
D. Mizuno, Sci. Rep. 7, 15143 (2017).

[37] S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Proc.
Natl. Acad. Sci. USA 109, 7338 (2012).

[38] R. Bruinsma, A.Y. Grosberg, Y. Rabin, and A. Zidovska,
Biophys. J 106, 1871 (2014).

[39] A. Vendeville, D. Lariviere, and E. Fourmentin, FEMS
Microbiol. Rev. 35, 395 (2010).

[40] F. C. MacKintosh and A. J. Levine, Phys. Rev. Lett. 100,
018104 (2008).

15

[41] G. L. Hunter and E. R. Weeks, Rep. Prog. Phys. 75,
066501 (2012).

[42] Y. Koyano, H. Kitahata, and A. S. Mikhailov, EPL 128,
40003 (2019).

[43] N. Oyama, T. Kawasaki, H. Mizuno, and A. Tkeda, Phys.
Rev. Research 1, 032038 (2019).

[44] H. Risken, The Fokker-Planck Equation: Methods of So-
lution and Applications (Springer, Berlin 1989).

[45] Y. Kuramoto, Chemical Oscillations, Waves and Turbu-
lence (Springer, Berlin 1984).



