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To distinguish the labels of equations and figures in
the Supplemental Material from those of the main text
we add “-I” to the latter.

I. DERIVATION OF NEGF EQUATIONS IN HF
BASIS

The starting point is the equation of motion for the
Green’s function G(z, z′) with times z, z′ on the Keldysh
contour. For the Hamiltonian in Eqs. (1-I) and (2-I) it is
convenient to write G and the correlation self-energy Σ
in a block form

G(z, z′) =

(
G(z, z′) ∆(z, z′)
∆̄(z, z′) C(z, z′)

)
, (1)

Σ (z, z′) =

(
ΣG(z, z′) Σ∆(z, z′)
Σ̄∆(z, z′) ΣC(z, z′)

)
, (2)

where G is a matrix with indices in the bound sector,
C is a matrix with indices in the continuum sector and
∆, ∆̄ are the off-diagonal blocks. The blocks of the
self-energy have the same structure. For the self-energy
we make the following approximation

(i) All self-energy diagrams containing ∆ or ∆̄ propa-
gators are set to zero (see below for the justification).

From the approximation (i) it follows that Σ∆ = Σ̄∆ =
0 and that the Hartree-Fock (HF) potential has indices
only in the bound sector since the Coulomb integrals in
Ĥeq have at most one index in the continuum. The ex-
plicit form of the HF potential is

VHF,ij(z) = −i
∑
mn

Gnm(z, z+)wimnj , (3)

where wimnj ≡ 2vimnj − vimjn.

The equations of motion for the different blocks of G
then read (in matrix form)[

i
d

dz
− hHF(z)

]
G(z, z′)− (E(z) · d) ∆̄(z, z′)

= δ(z, z′) +

∫
dz̄ ΣG(z, z̄)G(z̄, z′) (4)

[
i
d

dz
− E

]
∆̄(z, z′)− (E(z) · d)G(z, z′)

= δ(z, z′) +

∫
dz̄ ΣC(z, z̄)∆̄(z̄, z′) (5)

[
i
d

dz
− E

]
C(z, z′) = δ(z, z′) +

∫
dz̄ ΣC(z, z̄)C(z̄, z′) (6)

where in Eq. (4) we have defined the nonequilibrium
single-particle HF Hamiltonian

hHF = h+ VHF + E · d, (7)

and in the last two equations we have defined the matrix
Eµν = δµνεµ. The blocks of the dipole matrix are un-
ambiguously determined by the contractions and we do
therefore use the same symbol for all four blocks. Notice
that no coupling with the electric field appears in Eq. (6)
since we set dµµ′ = 0 in Eq. (2-I).

Next we observe that if the energy-window of the
photoelectron does not overlap with that of the Auger
electron then we can make the approximation:

(ii) ΣC(z, z̄)∆̄(z̄, z′) ' 0.

With the approximation (ii) we easily integrate Eq. (5)
and obtain

∆̄µj(z, z
′) =

∑
n

∫
dz̄ C0

µ(z, z̄) (E(z̄) · dµn)Gnj(z̄, z
′),

(8)
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where C0 is the solution of Eq. (6) with ΣC = 0. Since
E is diagonal so is C0.

Inserting Eq. (8) into Eq. (4) we get[
i
d

dz
− hHF(z)

]
G(z, z′) = δ(z, z′)

+

∫
dz̄ [ΣG(z, z̄) + Σion(z, z̄)]G(z̄, z′), (9)

where we have defined the ionization self-energy

Σion,ij(z, z̄) ≡
∑
µ

(E(z) · diµ)C0
µ(z, z̄) (E(z̄) · dµj) .

(10)
The diagrammatic representation of the ionization self-
energy is displayed in the bottom diagram of Fig. 1(b)-I
where, to avoid a proliferation of different symbols, we
used G0

µ instead of C0
µ (in the main text we also used

Gµν instead of Cµν). Notice that Σion vanishes for times
at which the external pulse is zero.

We now have to specify the approximation for the cor-
relation self-energy. For weakly interacting closed sys-
tems (no continuum states) the self-consistent second-
Born approximation (2B) has been shown to be accu-
rate in several nonequilibrium situations [1–10]. The
very same approximation describes Auger scatterings
provided that we also consider interaction lines with one
index in the continuum [11, 12]. We therefore approx-
imate ΣG and ΣC as the sum of the 2B diagrams. It
is easy to show that for a G initially block diagonal (no
electrons in the continuum in the ground state) the off-
diagonal blocks remain zero for all times in the 2B ap-
proximation. This justifies the approximation (i).

The 2B diagrams for ΣG can be split into diagrams
with interaction lines having all indices in the bound sec-
tor (v) and diagrams with interaction lines having one
index in the continuum sector (vA):

ΣG = Σc + ΣAuger. (11)

Using the Feynman rules, see top and middle panel of
Fig. 1, one finds

Σc,ij(z, z
′) =

∑
mn,pq,sr

virpmwnqsj

× Gmn(z, z′)Gpq(z, z
′)Gsr(z

′, z), (12)

and

ΣAuger,ij(z, z
′) =

∑
mnpq

∑
µ

Gmn(z, z′)

×
[
Cµν(z, z′)Gpq(z

′, z)(vAiqmµw
A
νnpj + vAiqµmw

A
nνpj)

+ Gpq(z, z
′)Cµν(z′, z)vAiνpmw

A
nqµj

]
. (13)

The correlation self-energy Σc is also given in the top
diagram of Fig. 1(b)-I.

The 2B diagrams for ΣC do instead contain only vA

interaction lines since both indices of ΣC are in the con-
tinuum sector. From the bottom diagram of Fig. 1 one

+
v v v

v

+

⌃c,ij =
i ij j

i ij j⌃Auger,ij =
vA vA vA

vA

+⌃C,µ⌫ =
vA vA vA

vA

µ µ⌫ ⌫

FIG. 1: Self-energy diagrams with indices in the bound sec-
tor for intramolecular scattering (top) and Auger scattering
(middle). Self-energy diagrams for Auger electrons (bottom).

finds

ΣC,µν(z, z′) =
∑

mn,pq,sr

vAµrpmw
A
nqsν

× Gmn(z, z′)Gpq(z, z
′)Gsr(z

′, z). (14)

For a short and weak laser pulse the off-diagonal
matrix elements of C are small. We therefore make the
approximation

(iii) Cµν ' δµνCµ in ΣAuger

Implementing (iii) in Eq. (13) and extracting the
lesser/greater component we get precisely the self-energy
in Eq. (5-I).

To summarize, with the approximations (i-iii) the
equations of motion become[
i
d

dz
− hHF(z)

]
G(z, z′) = δ(z, z′) +

∫
dz̄ Σ(z, z̄)G(z̄, z′)

(15)

[
i
d

dz
− E

]
C(z, z′) = δ(z, z′) +

∫
dz̄ ΣC(z, z̄)C(z̄, z′)

(16)

where in Eq. (15) we have defined

Σ ≡ Σc + Σion + ΣAuger. (17)

Taking the adjoint of Eqs. (15,16), summing the re-
sulting equations to Eqs. (15,16) and evaluating the re-
sult in z = z+ = t we get the equation of motion for
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the density matrices ρij(t) = −iGij(z, z+) and fµν(t) =
−iCµν(z, z+):

ρ̇ = −i [hHF, ρ]− I − I†, (18)

ḟµν = −i(εµ − εν)fµν − J µν − J ∗νµ, (19)

where

I(t) =

∫ t

0

dt̄
[
Σ>(t, t̄)G<(t̄, t)− Σ<(t, t̄)G>(t̄, t)

]
, (20)

J (t) =

∫ t

0

dt̄
[
Σ>C(t, t̄)C<(t̄, t)− Σ<C(t, t̄)C>(t̄, t)

]
. (21)

Equations (18,19) do not close on ρ and f since the
right hand side depends on G and C calculated at differ-
ent times. To close the equations we make the General-
ized Kadanoff-Baym Ansatz [13] (GKBA). According to
the GKBA we can replace all G≶ and C≶ appearing in
I and J with

G≶(t, t̄) = ∓
[
GR(t, t′)ρ≶(t′)− ρ≶(t)GA(t, t′)

]
, (22)

C≶(t, t̄) = ∓
[
CR(t, t′)f≶(t′)− f≶(t)CA(t, t′)

]
, (23)

where ρ< = ρ, ρ> = 1 − ρ and similarly f< = f , f> =
1 − f . For the retarded/advanced Green’s function we
consider the HF approximation according to which

GR(t, t′) = [GA(t′, t)]† = −iθ(t− t′)T
[
e−i

∫ t
t′ dt̄ hHF(t̄)

]
,

(24)

CR
µν(t, t′) = [CA

νµ(t′, t)]∗ = −iδµνθ(t−t′)e−iεµ(t−t′). (25)

Since hHF is a functional of ρ we see that Eqs. (18,19)
become nonlinear integro-differential equations for ρij(t)
and fµν(t). Notice also that in the equation for ρ the
dependence on f is only through the diagonal elements
fµ ≡ fµµ appearing in ΣAuger, due to the approximation
(iii). If we set µ = ν in Eq. (19) then for the right
hand side to depend only on fµ we have to make the
approximation

(iv) fµν = δµνfµ in J

which is consistent with the approximation (iii).

It is easy to show that in this way the equation for ρ
becomes the first of Eqs. (4-I) and that the equation for
fµν becomes Eq. (9-I), which for µ = ν reduces to the
second of Eqs. (4-I).

II. NEGF@GRID VERSUS COUPLED NEGF
CALCULATIONS

To assess the accuracy of the approximations made at
the level of the Hamiltonian with Eqs. (1-I,2-I) and at the
level of NEGF with (i-iv), we considered a 1D atom on
a grid. In the grid basis the total Hamiltonian in second
quantization reads

Ĥ(t) =
∑
mn
σ

ψ†σ(xm)h(xm, xn)ψσ(xn)

+
1

2

∑
mn
σσ′

ψ†σ(xm)ψ†σ′(xn)v(xm, xn)ψσ′(xn)ψσ(xm)

+ E(t)
∑
m
σ

xmψ
†
σ(xm)ψσ(xm). (26)

where the one-particle Hamiltonian h(x, x′) and the in-
teraction v(x, x′) are defined in the main text. The
equation of motion for the density matrix in grid basis
ρ(xm, xn, t) = G(xm, z;xn, z

+) in the 2B approximation
is

ρ̇(xm, xn, t) = −i
∑
p

[hHF(xm, xp, t)ρ(xp, xn, t)

−ρ(xm, xp, t)hHF(xp, xn, t)]

−Ig(xm, xn, t)− I∗g(xn, xm, t). (27)

In Eq. (27) we have the HF Hamiltonian in grid basis

hHF(xm, xp, t) = h(xm, xp)+VHF(xm, xp, t)+δmpE(t)xm,
(28)

with HF potential

VHF(xm, xp, t) = 2δnm
∑
q

v(xm, xq)ρ(xq, xq, t)

− v(xm, xp)ρ(xm, xp, t), (29)

and the collision integral in grid basis

Ig(xm, xn, t) =
∑
p

∫ t

0

dt̄
[
Σ>g (xm, t;xp, t̄)G

<(xp, t̄;xn, t)

Σ<g (xm, t;xp, t̄)G
>(xp, t̄;xn, t)

]
,

(30)

with the 2B self-energy

Σ≶
g (xm, t;xp, t̄) =

∑
rs

v(xm, xr)v(xp, xs)

×
[
2G≶(xm, t;xp, t̄)G

≶(xr, t;xs, t̄)G
≷(xs, t̄;xr, t)

− G≶(xm, t;xs, t̄)G
≷(xs, t̄;xr, t)G

≶(xr, t;xp, t̄)
]
. (31)

The NEGF@grid results have been obtained by solving
Eq. (27) with lesser/greater Green’s function evaluated at
the GKBA level. Except that for the 2B approximation
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to Σg, no other approximation has been made. For a
system with Ngrid points this require to propagate and
store matrices Ngrid ×Ngrid.

In order to apply the coupled NEGF scheme based on
Eqs. (4-I) we first solve the self-consistent HF problem
and extract the equilibrium bound eigenfunctions ϕi(xn)
and continuum eigenfunctions ϕµ(xn) of energy εi and
εµ respectively. The HF eigenfunctions are then used to
calculate the matrix elements in the bound sector of the
one-particle Hamiltonian

hij =
∑
mn

ϕ∗i (xm)h(xm, xn)ϕj(xm), (32)

the dipole operator

dij =
∑
m

ϕ∗i (xm)xmϕj(xm), (33)

and the Coulomb repulsion

vijpq =
∑
mn

ϕ∗i (xm)ϕ∗j (xn)v(xm, xn)ϕp(xn)ϕq(xm).

(34)
The continuum HF eigenfunctions are used to calculate
the bound-continuum matrix elements of the dipole op-
erator

diµ =
∑
m

ϕ∗i (xm)xmϕµ(xm), (35)

and the Coulomb repulsion responsible for Auger scat-
terings

vAijpµ =
∑
mn

ϕ∗i (xm)ϕ∗j (xn)v(xm, xn)ϕp(xn)ϕµ(xm).

(36)
With this information we approximate the original

Hamiltonian in Eq. (26) in accordance with Eqs. (1-I,2-I),
i.e.,

Ĥ(t) =
∑
ij
σ

hij ĉ
†
iσ ĉjσ +

1

2

∑
ijpq
σσ′

vijpq ĉ
†
iσ ĉ
†
jσ′ ĉpσ′ ĉqσ

+
∑
µσ

εµĉ
†
µσ ĉµσ +

∑
ijpµ
σσ′

vAijpµ

(
ĉ†iσ ĉ

†
jσ′ ĉpσ′ ĉµσ + h.c.

)

+E(t)
∑
ij
σ

dij ĉ
†
iσ ĉjσ + E(t)

∑
iµ
σ

(
diµĉ

†
iσ ĉµσ + h.c.

)
, (37)

where ĉiσ (ĉµσ) are annihilation operators for an electron
in the HF orbital ϕi (ϕµ) with spin σ. Of course, had we
included in Eq. (37) the off-diagonal one-electron terms
containing hiµ, hµµ′ and dµµ′ and the interaction terms
containing vijµµ′ , viνµµ′ and vν′νµµ′ we would have got
the same Hamiltonian as in Eq. (26) but in the HF basis.

With the approximate Hamiltonian in Eq. (37) we
solve the coupled NEGF equations (4-I) which, we em-
phasize again, have been derived by making the addi-
tional approximations (i-iv) of the previous section. The

agreement between the full-grid simulations and the sim-
ulations based on Eqs. (4-I) indicate that the latter are
enough to capture qualitatively and quantitatively the
physics of the Auger decay.

We observe that in the grid simulations the self-energy
Σg contains all possible scatterings, including those con-
tained in the self-energies Σc and ΣAuger of the coupled
NEGF scheme. Furthermore, in the grid simulations no
ionization self-energy appears since the photoionization
is accounted for by explicitly including all grid points
(even those far away from the nucleus). In other words,
all elements ρ(xm, xn, t) are coupled and propagated in
time.

III. CI VERSUS COUPLED NEGF
CALCULATIONS

To further check the quality of the NEGF Eqs. (4-I)
we have also solved the time-dependent problem using a
Configuration Interaction (CI) expansion.

The neutral 1D atom described in the main text of the
paper has four electrons, two in the core and two in the
valence levels. We are interested in suddenly removing a
core electron of, say, spin down, and in studying how the
system evolves with the Hamiltonian in Eq. (37). For the
CI expansion we use the following three-body states

|Φx〉 = ĉ†c↑ĉ
†
v↓ĉ
†
v↑|0〉, (38)

|Φg〉 = ĉ†c↑ĉ
†
c↓ĉ
†
v↑|0〉, (39)

|Φµ〉 = ĉ†c↑ĉ
†
c↓ĉ
†
µ↑|0〉, (40)

describing the initially photoionized state (Φx), the
cationic ground state (Φg) and the Auger states (Φµ).
We expand the state of the system at time t according to

|Ψ(t)〉 = ax(t)|Φx〉+ ag(t)|Φg〉+
∑
µ

aµ(t)|Φµ〉, (41)

and impose the initial condition ax(0) = 1 and ag(0) =
aµ(0) = 0. Using the fact that in the HF basis hHF is
diagonal, it is easy to show that the cationic ground state
decouples and the dynamics is governed by the equations
below

iȧx = Exax +
∑
µ

vcµvvaµ, (42)

iȧµ = vcµvvax + Eµaµ. (43)

The three-body energies are

Ex = 2εv + εc − vcccc − 4vcvvc + 2vcvcv − vvvvv, (44)

Eµ = εµ + 2εc − vcccc − 4vcvvc + 2vcvcv, (45)

where the HF energies of the core and valence levels are
given by

εc = hcc + vcccc + 2vcvvc − vcvcv, (46)

εv = hvv + vvvvv + 2vvccv − vvcvc. (47)



5

0 100 200 300 400 500 600 700 800
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
n

A
u

ge
r

CI
NEGF

0 50 100 150 200 250

t(a.u.)

−8

−6

−4

−2

0

2

4

∆
n
c,
v nc(t)@CI

nv(t)@CI
nc(t)@NEGF
nc(t)@NEGF

FIG. 2: Auger wavepacket (top) and variation of the occu-
pations of the core and valence levels (bottom) in CI and in
coupled NEGF. Same parameters as in top panel of Fig. 4-I.

The energy εAuger = εµA of the Auger electron is de-
termined by the condition EµA = Ex which yields

εAuger = 2εv − εc − vvvvv (48)

as it should. The red-shift vvvvv is due to the repul-
sion of the two holes in the final state. In order to cap-
ture this red-shift using Many-Body Perturbation The-
ory (MBPT) one should go beyond the 2B approxima-
tion for the self-energy and consider the T -matrix ap-
proximation in the particle-particle sector [14, 15]. We
observe, however, that for weakly correlated molecules,
like organic molecules and biomolecules, the magnitude
of the valence-valence repulsion is typically less than 1
eV; hence, neglecting this repulsion does not substan-
tially affect the dynamics during the first ten of fem-
toseconds or so.

For the 1D atom the valence-valence repulsion is
mainly responsible for reducing the speed of the Auger
electron. The form of the Auger wavepacket as well as the
time-dependent behavior of the refilling of the core-hole
are not altered if we set vvvvv = 0 in Eq. (44). For a fair
comparison with the coupled NEGF Eqs. (4-I) we there-
fore solve Eqs. (42,43) using E2B

x = Ex + vvvvv in place
of Ex. In Fig. 2 we compare the Auger wavepacket (top
panel) and the occupation of the core and valence lev-
els (bottom panels) calculated using CI and the coupled
NEGF equations (4-I). Also in this case the agreement is
rather satisfactory.

The analytic calculation can be carried on further if
we assume that the broadening

Γ(ω) = 2π
∑
µ

|vcµvv|2δ(ω − εµ) (49)

is a weakly dependent function of ω for ω ' εAuger. In
this case it is straightforward to show that the amplitudes

FIG. 3: Auger wavepacket (in arbitrary units) for Γ = 0.05
and εAuger = 1 after a time t = 50 from the sudden removal of
a core electron. Top: nAuger(r, t) in 1D. Middle: rnAuger(r, t)
in 2D. Bottom: r2nAuger(r, t) in 3D.

aµ are given by

aµ(t) = −vcµvve−iEµt
ei(εµ−εAuger+iΓ/2)t − 1

εµ − εAuger + iΓ/2
(50)

which coincides with Eq. (11-I). The occurrence of rip-
ples on the tail of the Auger wavepacket stems from the
structure of the aµ’s. In fact, the ripples are independent
of the dimension of the system and of the details of the
continuum states in the vicinity of the nucleus. As an
example, let µ = p be the momentum in D dimension
and let us use planewaves ϕµ(r) = ϕp(r) = eip·r for the
continuum states. We further consider a free dispersion
εµ = εp = p2/2 and, for simplicity, an Auger interac-
tion vcµvv = vcpvv independent of p so that aµ = ap
depends only on the modulus p = |p| of the momentum,
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see Eq. (50). Then, the Auger wavepacket is spherically
symmetric and its density is given by

nAuger(r, t) =

∣∣∣∣∫ dDp

(2π)D
ap(t)e

ip·r
∣∣∣∣2 . (51)

In Fig. 3 we show nAuger(r, t) for Γ = 0.05 and an
Auger energy εAuger = 1 after a time t = 50 from the
sudden removal of the core electron. The figure shows
nAuger(r, t) in 1D (top), rnAuger(r, t) in 2D (middle) and
r2nAuger(r, t) in 3D (bottom). In all cases we appreci-
ate the occurrence of ripples although they tend to get
smeared out as the dimension increases.

IV. DESCRIPTION OF ANIMATIONS

The animation continuum occupations.mp4 shows the
evolution of the occupations fµ of the continuum HF
states for the 1D atom driven by the external laser pulse
of Eq. (8-I). Same parameters as in the bottom panel of
Fig. (2-I).

The animation Auger wavepacket.mp4 shows the evo-
lution of the Auger wavepacket as obtained by solving
first Eqs.(4-I) and then Eq. (9-I). Same parameters as in
the top panel of Fig. 4-I.
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