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Abstract - We review the results of our research on damage mechanisms in materials irradiated with
femtosecond free-electron-laser (FEL) pulses. They were obtained using our hybrid approach, X-ray-induced
thermal and non-thermal transitions (XTANT). Various damage mechanisms are discussed with respect to the
pulse fluence and material properties on examples of diamond, amorphous carbon, Cgq crystal, and silicon. We
indicate the following conditions: those producing thermal melting of targets as a result of electron-ion energy
exchange; non-thermal phase transitions due to modification of the interatomic potential; Coulomb explosion
due to accumulated net charge in finite-size systems; spallation or ablation at higher fluences due to detachment
of sample fragments; and warm dense matter formation. Transient optical coefficients are compared with
experimental data whenever available, proving the validity of our modeling approach. Predicted diffraction
patterns can be compared with the results of ongoing or future FEL experiments. Limitations of our model and

possible future directions of development are outlined.
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1 Introduction

In the past decade, advances in extreme ultraviolet and
X-ray laser science, in particular, the intense development
of free electron laser (FEL) facilities [1-6] have enabled
time-resolved experiments, utilizing these unique radia-
tion sources. A number of experiments probing X-ray
induced dynamics at the femtosecond timescales have
been performed, see, e.g., [7—10].

FEL-induced ultrafast excitations of solids and phase
transitions are nowadays crucial for understanding
phenomena in various research fields, including solid-
state physics [11-13], bio-physics [14-16], physical chem-
istry [17,18], plasma and warm dense matter (WDM)
[19,20]. It is also invaluable for theorists to support their
efforts to develop reliable simulation tools [21-24].

Often advanced simulation tools for treating FEL-
excited matter are based on the density functional
theory molecular dynamics (DFT-MD) schemes, see, e.g.,
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[23,25-27]. Various improvements upon the standard DFT
packages are being tested, such as incorporation of core-
hole excitations [28], or attempts to reconcile bound and
free electrons into a unique formalism [29-32]. However,
important non-adiabatic effects governing electron-ion
(electron-phonon) energy exchange are difficult to incor-
porate into ab initio simulations. The state of the art in the
solid state community is so far an approximate treatment of
electron-phonon scattering, valid only near the room
temperature of atoms [33,34]. In the ab initio femto-
chemistry, advanced techniques allow for a treatment of
non-adiabatic electron—ion coupling [35]. Attempts have
been made to introduce similar methods into the solid-state
models [36]. But, at present, there is no standard
methodology enabling to incorporate electron—ion interac-
tion and the resulting energy exchange within ab initio
approaches for highly excited many-body systems.
Molecular dynamics (MD) methods with classical
potentials or force fields are among the most commonly
used numerical tools for large-scale simulations in the
solid-state modeling, see, e.g., [37-39]. Utilization of

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses /by /4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:nikita.medvedev@fzu.cz
https://www.edpsciences.org
https://doi.org/10.1051/fopen/2018003
https://www.4open-sciences.org
http://creativecommons.org/licenses/by/4.0

2 N. Medvedev et al.: 4open 2018, 1, 3

classical interatomic potentials makes MD simulations
very efficient and capable of treating large systems [39,40].
However, such methods require predefined force fields,
whose applicability is limited to solids under low electronic
excitation. A few attempts have been made to develop
potentials depending on electronic temperature and/or
number of excited electrons, e.g., [41,42].

Classical Monte Carlo (MC) methods are often applied
to simulate FEL-induced transport of electrons, photons
or other particles in matter [43]. MC methods are suitable
for simulating behavior of high-energy classical particles,
whereas the propagation of low-energy particles involves
strong quantum-mechanical effects which can hardly be
treated. This limits the applicability of asymptotic-
trajectory MC schemes.

Apart from the integral methods, differential methods
are also used to treat systems with electronic excitations.
Models operating with ensembles instead of individual
particles can be derived from the Liouville equation. They
are typically based on the single-particle distribution
equations, such as kinetic equations and collision integrals
[44,45]. Kinetic equations are capable of treating non-
equilibrium evolution of solids. However, they are usually
relying on a free-electron approximation or on a predefined
band structure of a material [46]. In addition, the electron—
ion coupling, defining energy exchange between the
electronic and the atomic system, is one of the least
known key parameters in these approaches.

The next level of approximation is hydro- [47-50] or
thermodynamic methods [51,52]. The most commonly
used is the two-temperature model (TTM), which treats
electrons and phonons as separate interacting subsystems
in local equilibrium. Thermodynamic approaches are
widely used due to their simplicity, but are limited to
equilibrium conditions (see, e.g., review [53]). TTM is
inapplicable under non-equilibrium within electronic or
atomic systems; in such cases, kinetic methods must be
employed.

Hybrid approaches are an actively developing field in
numerical simulations. A hybrid approach combines two
or more simulation techniques into a unified model. In
such combinations, various approaches strengthen and
complement each other, compensating mutually for their
shortcomings, in particular, with respect to the overall
computational efficiency. A proper combination of differ-
ent models can alleviate limitations of each individual
approach, thereby significantly extending the applicabili-
ty of the combined model keeping the implementation
simple enough. For example, a combination of the TTM
with molecular dynamics, TTM-MD [54], was a major step
that allowed to simulate experimental data on laser
irradiation of solids with a high accuracy [55]. Also,
MC-MD combination allowed to treat accurately both
atomic and electronic kinetics in case of plasmas [56].

In this paper, we review our hybrid approach designed
to treat solids under FEL irradiation. We demonstrate
that such an approach is capable of capturing the essential
stages of the material evolution under femtosecond X-ray
irradiation, starting from photo-induced non-equilibrium

electron kinetics on femtosecond timescales, and progress-
ing later towards atomic dynamics of thermal and non-
thermal damage formation up to ps timescales. Thermal
phase transition is a result of a kinetic energy exchange
between hot electrons and atoms (e.g., electron-phonon
coupling), occurring due to non-adiabatic coupling
between the two systems. Non-thermal phase transition
is a consequence of the changes of the potential energy
surface for atoms due to the electronic excitations (e.g.,
non-thermal melting [57,58]).

In what follows, we present a detailed analysis of
different damage channels in various carbon and silicon
allotropes. Those materials are widely used in FEL-related
optical elements, such as, e.g., X-ray mirrors. Their
radiation tolerance plays a crucial role for this application.
Our results indicate that different allotropes of carbon and
silicon follow different damage mechanisms under FEL
irradiation.

With X-ray FELSs, one can experimentally observe the
evolution of diffraction patterns from irradiated samples
with femtosecond resolution (e.g., Ref. [14,59]). Such a
scheme is particularly interesting, because it can resolve
the changing molecular structure of the sample, resulting
from its progressing damage. Thus, throughout the paper,
we present diffraction patterns calculated for each
material and damage channels discussed. At the end, we
discuss the applicability of the presented hybrid approach
and possible pathways of its further development.

2 Model
2.1 Hybrid approach

Our recently developed hybrid code X-ray-induced
thermal and non-thermal transitions (XTANT) [60] is a
combination of a few different schemes interconnected and
executed in parallel. These approaches include: (a) MC
module tracing X-ray photon absorption, high-energy
electron and core hole kinetics; (b) a module describing the
evolution of the low-energy electrons, using rate equations
and thermodynamic modeling (in a similar manner to the
TTM); (c) the Boltzmann collision integral module
following the non-adiabatic electron—ion energy exchange;
(d) transferable tight binding (TB) model for calculations
of the transient electronic band structure and atomic
potential energy surface; and (e) MD simulation tool to
follow atomic motion. The scheme showing the intercon-
nection of the most important modules is presented in
Figure 1. This diagram also indicates data flows between
different modules at each time-step of the simulation.
They will be described below in more detail.

The chosen combination of approaches relies on the
fact that the time-dependent electron distribution func-
tion, f.(E;,t), affects atomic motion. That is because
transient electron distribution enters equations for the
atomic potential energy surface (cf. Eq. (10)). To
efficiently trace the evolution of the electron distribution
function in time, we notice that the typical transient
electron distribution after X-ray irradiation has the shape
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Fig. 1. Schematics of the modular structure of hybrid code
XTANT. Arrows indicate data flows between different modules
of the program.

of the so-called ‘bump on hot tail’ [61]. It combines (i) a
(nearly) thermalized fraction of low-energy electrons
within the valence band and the bottom of the conduction
band, and (ii) a high-energy non-equilibrium tail contain-
ing a few highly energetic electrons left after photoioniza-
tion and Auger decays. It has been proven theoretically
that such a transient electron distribution is typical in
various materials after an FEL pulse [61-64]|. Recently,
predictions on the electron distribution function in FEL-
irradiated aluminum from reference [63] were confirmed
experimentally in reference [65].

This particular shape of the electronic distribution
function allows to simplify the model by combining two
efficient approaches for low-energy and high-energy
fractions of the electronic distribution function. It is used
in the presented XTANT code as described in detail in
Section 2.2.

Our hybrid model was specifically designed to follow
the processes occurring in a solid target under irradiation
with a femtosecond free-electron laser pulse. It is
applicable in a broad range of photon energies: from
extreme ultraviolet (XUV, photon energy above a few tens
of eV, depending on material) to hard X-rays (~40keV
photon energy) [13,60,66-68].

2.2 Creation and kinetics of high-energy electrons
and core holes modeled with MC method

For the modeling of photon absorption, the kinetics of
high-energy electrons, and Auger decays of core holes, we
apply an event-by-event individual-particle MC scheme
[43,69,70]. For XUV and X-rays at fluences currently
accessible at FELs, single photon absorption is the
dominant interaction channel [71]; other interaction
channels such as elastic scattering, multiphoton absorp-
tion and inverse Bremsstrahlung (in XUV regime) are at
least by two orders of magnitude less probable. An
absorbed photon initiates the release of a high-energy
photoelectron, and leaves a core hole in an atom.

In the presented approach, the choice of whether the
photoabsorption occurs by an excitation of an electron
from the valence band or a deep shell is made, using the

subshell photoabsorption cross sections taken from the
EPDL97 database [72]|. Atomic cross sections for photo-
absorption are applied, which are a good approximation
for core shells. For the valence band, the photoabsorption
cross section is obtained from the experimental optical
coefficients [73].

The released photoelectron has initial kinetic energy
equal to the difference between the photon energy and its
ionization potential, I,. lonization potentials for core
shells are taken from the atomic EADL database [74],
whereas for the valence or conduction band photo-
absorption, the TB calculated transient energy levels
are used (Eq. (9) in Sect. 2.4).

High-energy electrons, i.e., those populating states at
energies above a certain energy threshold, are treated as
classical individual particles within the MC routine. In the
presented calculations the threshold is chosen to be
E...=10eV, counted from the bottom of the conduction
band. Electrons with lower energies are attributed to the
‘low-energy’ domain (see Sect. 2.3) [75]. Alternatively, the
threshold can be chosen as equal to the uppermost energy
level of the conduction band produced by the TB
calculations. Influence of the cut-off value on the results
was analyzed in reference [66], showing almost no effect on
the results, if varied by a few eV around the 10eV value.

Each high energy electron can scatter inelastically on
the atomic core-shells, if its kinetic energy is higher than
the respective binding energy, E. > I;; otherwise, only the
scattering on the valence-band electrons is possible. The
electron mean free paths are estimated via the scattering
cross sections, o( E,), within the first Born approximation
in terms of the complex dielectric function (CDF), e(w,, )
[70,76,77]:

. 2 q+ _
do;(Ee,hawe) _ 2e 2na/ @Im( 1 ) 1)
d(hwe) mh*v - g €(we, q)

with g, = /2mh? (VE.+VE. —hw,) [70]. Here the
cross section also depends on the energy hw, gained by
the secondary electron in a collision, and is integrated over
the transferred momentum ¢; e denotes the electron charge;
m,is the free electron mass; n,is the atomic density; & isthe
Planck constant; and v is the incident electron velocity
corresponding to the kinetic energy FE.. The CDF is
parameterized for each shell of each element; all the
parameters and accuracy checks of the cross sections can
be found in reference [77]. The calculated electron inelastic
mean free paths showed a very good agreement within a few
percent with the NIST database [78] and available
experimental data for electron energies above ~50eV.
When a high-energy electron collides with the valence
or deep shell electrons, the probabilities for these collisions
are estimated using the scattering cross sections from
equation (1). The initial energy of the secondary electron
emitted during an inelastic collision is calculated from the
energy conservation, i.e., it equals to the difference
between the energy lost by the incident electron and the
binding energy of the level from which this electron is
being ionized. If the energy of any electron falls below the
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EL., this electron is removed from the MC domain and
added into the low-energy domain. Detailed description of
this inter-domain energy and particle exchange is
presented in Section 2.3.

The elastic scattering of electrons on ions is modeled
using Mott’s cross section with modified Moliere screening
parameter [43]. However, this interaction channel produ-
ces only a minor energy loss for electrons (and correspond-
ingly negligible energy increase for atoms) [60,66,79]. Most
of the energy transfer to the ions is produced by low-energy
electrons via non-adiabatic coupling, as will be described
in detail (Sect. 2.3).

After a photoionization or impact ionization of a core
shell, a hole is left behind. Predominantly, for light
elements, this hole will decay via Auger processes [80]. We
use the Poissonian probability distribution to model
Auger decays. The characteristic hole decay times are
taken from the EADL database [74]. When a core hole
relaxes during an Auger process, one electron is promoted
from an upper shell or the valence band into high energy
states of the conduction band, leaving another hole. In case
of the valence band, the energy level from which the Auger
electron is emitted is chosen randomly among all currently
populated levels E;. The Auger electron receives the excess
energy and is then treated in the same way as other
secondary electrons.

The MC tracing of photons, electrons, and core holes is
split into time steps dt equal to the MD time steps. The
number of iterations of the MC subroutine is proportional
to the photon energy. This is necessary in order to obtain
sufficient statistics to follow accurately small numbers of
high-energy photo-electrons. E.g., for intermediate pho-
ton energies of a few keV, each time step of MC is iterated
for more than 30000 times for reliable statistics.
Trajectories of all electrons are propagated simultaneous-
ly during each iteration. The calculated electron distri-
butions are then statistically averaged.

As we assume homogeneous excitation, we neglect a
contribution of electron transport and heat diffusion to the
overall electron kinetics. This can be justified as an X-ray
irradiation homogeneously heats up the sample down to a
few micrometers depth within the laser spot of typically a
few microns size. The approximation of homogeneity
allows us to use periodic boundary conditions, but
excludes from our considerations the thin near-surface
layer, from which the high-energy electrons could escape
outside the material. To account for the effects of electron
emission whenever needed, we artificially remove an
electron from the simulation box after a certain number
of collisions, introducing charge non-neutrality. This
charge non-neutrality then contributes to additional
Coulomb forces acting on atoms (Sect. 2.4).

2.3 Low-energy electrons and non-adiabatic coupling
modeled with rate equations including Boltzmann
collision integral

At each time step, we track how the electrons are
distributed between the high- and low-energy domains.

The total number of low-energy electrons, NV, and their
energy, ELOW, are calculated knowing how many electrons
were excited to the high-energy domain by the incoming
photons from the laser pulse, N, by the secondary
electron collisions, Ny, by Auger decays of core-shell
holes, N, and by electron emission in case of thin films,
Nen- Electrons which are excited to the energy
levels above the cut-off energy, are transferred to the
high-energy domain and treated with the MC algorithm
(Sect. 2.2). Vice versa, when an electron from the high-
energy fraction loses its energy below the cut-off energy,
it joins the low-energy domain. Thus, the total number
of low energy electrons is calculated as:

low o low high o
rr = 0 Mt e

where Nsigh(t) denotes the fraction of high-energy elec-
trons that fell into or were excited off the low-energy
domain, as counted within the MC module. The total
number of electrons in high- and low-energy domains,
including those originating from core-shell ionizations and
electron emissions, is conserved.

The total energy of low-energy electrons, ELOW, is
calculated with an equation similar to (2), in the following
way:

E(t 4 dt) = ]%OW t) + EME (1) 4+ Bip(t) + Ea(2)

el—ion )

where ELOW is the total energy of low-energy electrons;
EM&%(¢) is the energy brought in or out by high-energy
electrons that fell into or jumped off the low-energy
domain (e.g. by photoabsorption); Ei,, is the energy
delivered during the impact ionization events by the high-
energy electrons; F, is the energy delivered by Auger
decays of core-shell holes that involve valence or conduc-
tion band electrons; and §F,;_;,, is the energy transferred
to (or from) ions.

The energy flux between the electrons and ions at each
time step in equation (3) can be calculated via a collision
integral If’;at as:

8Beion = » I5;"E; (4)

]

where the summation runs over all the electronic orbitals
for transitions between each pair of levels [68], and I ;™
used in this work is the Boltzmann collision integral:

P { [N 2 — fB)) — (B2 — f(E:)Gu(E: — Ey),
T\ D)2 — £(E)Gu( B — B — fo(E))(2 — f.(E)),

for ¢ > j,

for i < j,
(5)

where w; ;is the rate for an electron transition between the
energy levels ¢ and 7 f.(FE; is a transient electron
distribution function (normalized to 2 due to spin
degeneracy); and G (E) is the integrated Maxwellian
function for atoms [67]. One could, in principle, use the
transient atomic distribution function obtained from the
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MD simulations, but due to a relatively small number of
atoms in the supercell, the fluctuations do not allow us to
obtain a smooth function. This, in turn, would introduce a
numerical dependence of the energy transfer rate on the
number of atoms. For this reason we approximate the
atomic distribution in equation (5) as an equilibrium one,
using a Maxwellian function.

The following expression suitable for finite-difference
implementation for the transition probability is used [68]:

wiy = (GO +8)) = (ile+80li(0))/21 . (©)

where [i(t)) and |j(t)) are eigenstates of the system
Hamiltonian.

Note that this expression for the transition rate only
reduces to the Fermi’s Golden Rule in case of periodic
atomic vibrations (phonons), and at long timescales in
comparison to a duration of each individual act of
scattering [68]. None of these assumptions holds true at
subpicosecond timescales in case of irradiation with
femtosecond laser pulses; thus, more general expression,
equation (6), has to be used in this case.

Knowing the total energy and number of the low-
energy electrons at each time-step, we can estimate their
temperature and chemical potential. They are calculated
from the Oth and the 1st moments of the Fermi
distribution function by solving the inverse problem [81]:

Eeut Eeut 9
W= 35 = 3 7
Emin Epin 1 + eXp((E - M)/TC)
Eeut Ecut
2F;
ELOW = E fe ! , 7
Zm;. %14‘6}@((& —w)/Te) 0

where the summations include all energy levels, E;
corresponding to the current band structure of the
material (that evolves in time), and E;, is the lowest
energy level of the valence band. These energy levels are
calculated with the TB method (Sect. 2.4, Eq. (9)). The
factor 2 in the Fermi-distribution function f,( E;) accounts
for the electron spin; w is the transient chemical potential
of the electrons and T, is their temperature (in energy
units). We solve the system of equation (7) for the known
values of N and E¥ at each time step by the bisection
method. In this way, we find the transient values of u and
T. [60,66].

Note that, in principle, the model does not require the
low-energy electron distribution to necessarily obey the
equilibrium Fermi function. It can work for any transient
non-equilibrium distribution function, such as provided
by the Boltzmann equation [45,82]. For example, we
tested the possibility of independent Fermi distributions
of holes in the valence and of electrons in the conduction
band in GaAs [83]. For this case, the system of equation (7)
can be written for each band independently, and each

band can independently exchange the energy with the
high-energy electrons in the MC domain. The work on this
scheme is in progress, and will not be discussed in the
current paper. Correspondingly, below we assume instant
low-energy electron thermalization within the entire low-
energy domain (Eq. (7)), which significantly simplifies the
calculations.

2.4 Transferable tight binding molecular dynamics

To trace material modifications on the level of both
electronic and atomic processes, we employ tight-binding
molecular dynamics [84-86]. This method relies upon
transferable TB Hamiltonian to evaluate electronic energy
levels (band structure) and the interatomic potential
energy surface. Transferable TB means that for given
atomic species the parameterizations of the hopping
integrals and the repulsive potential are constructed to
reproduce several material phases.

The transferable TB Hamiltonian is written as follows
[84-86]:

H = HTB + Erep({rij})v HTB = ZHiﬂjV’

jnv
Hinjy = €in 8i 8pu + 1} (1 = 835) (8)

where FE,({;}) is the repulsive part describing the
effective repulsion of atomic cores and Hrg is the
attractive part calculated with the TB Hamiltonian.
The TB part is constructed of the on-site energles €5y, and
the pairwise overlap integrals, t;’; , within the sp® basis set.
Those are parameterized functions, which for the case of
carbon-based materials can be found in reference [84], and
for silicon in reference [85].

In the case of an orthogonal Hamiltonain parameteri-
zation, the electron energy levels are obtained by a direct
diagonalization:

E; = (i|H({ Rat(t)}) |1). (9)

The potential energy surface ®({ r;; } , t), needed as an
input to the equations of motion for atoms, can be derived
from equation (8) within the Born-Oppenheimer (BO)
approximation from the Hellmann—Feynman theorem as
follows:

D({ri;(t) Zfe Ei, t)Ei + Erep({rij})- (10)

Here, f.(E; t) is the transient electron distribution
function indicating fractional electron population
numbers on the transient energy levels FE; given by
equation (9).

Additional terms beyond the BO approximation result
from the energy transferred from the electron in non-
adiabatic transitions between the energy levels mediated
by the atomic displacements [68]. This transferred energy
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is then distributed among all the atoms in the simulation
box by the appropriate velocity scaling. The calculation of
such energy transfer was described in Section 2.3.

The typical laser spot radius for an FEL laser is of the
order of a few micrometers, and a photon penetration
depth may be also on a few micron scale. This volume
corresponds to at least a few billion atoms. Thus, we can
choose only a small simulation box (supercell) inside the
laser spot with a size much smaller than the laser spot, and
apply periodic boundary conditions. The periodic bound-
ary conditions in XTANT can be introduced in two ways.
First, we can keep the super-cell vectors constant during
the simulation, modeling the NVE ensemble (i.e. constant
volume simulation). Alternatively, within the Parrinello—
Rahman method [87], we can account for the changing
geometry of the supercell. It is traced via additional
variables entering the Lagrangian of motion [86,87], for
the NPH ensemble (i.e. assuming constant pressure
simulation). We use the velocity Verlet algorithm for
propagating atomic coordinates and velocities in time [60].
The applied time-step is usually 0.01 fs, ensuring a stable
numerical scheme [68].

For the van der Waals forces acting on carbon atoms in
case of Cgg crystal or graphite, we employ additional
semiempirical Lennard—Jones (6-12) potential, softly cut
at short and large distances [88]. Soft cut-off at short
distances ensures that it does not overlap with the short-
range forces treated within the TB approach.

In case of charge non-neutrality, which may occur in
thin films after electron emission (see Sect. 2.2),
unbalanced positive charge is then accounted for as
an additional fractional charge equally distributed
among all the atoms in the simulation box [88]. It
produces additional long-range Coulomb potential,
which is not accounted for in the TB.

2.5 Data analysis based on optical properties,
autocorrelations and diffraction patterns

Throughout the paper, we define the absorption dose
as the absorbed energy per atom at the depth, d, equal to
the attenuation length of the considered photon, A (i.e.

d=21):
g X bV Y

where D, is the absorbed dose (eV/atom); F' is the
incoming fluence into the material; R is the reflectivity of
the sample at the wavelength of the incoming pulse; n,; is
the atomic density. For comparison with experiments, one
may use equation (11) to evaluate the incoming fluence
from a given dose. Such a connection assumes linear
photoabsorption (without multiphoton effects), which is
generally a good approximation for photon energies above
a few tens of eV, typical for current FELs.

Knowing atomic positions and the supercell vectors
from the MD module, one may obtain powder diffraction

patterns with available software. We calculate the
patterns with help of the Mercury software [89],
renormalizing them to the area under the peaks instead
of the highest peak height.

We obtain the vibration spectrum from the time
evolution of the atomic velocities vj(t) in excited
solids, with consideration of the large amplitude motion
[90-92].

I(Ta w) =Fi [I(Tv t)] ((,())

Nat
= 915{]\; Xk: (05 (0) v (t 4 t) exp(—at®) ) }(w),

(12)

where %, denotes the Fourier transform; N, is the number
of atoms, and the parameter « is chosen to suppress the
autocorrelation function within 200 fs to effectively select
the vibrational modes that are present within a given time
interval 7 to ~7+200fs. In this way, the temporal
evolution of vibrational modes can be revealed by their
frequencies and amplitudes. In particular, it allows to
trace disappearance of a harmonicity in the atomic
motion, indicating loss of the structure in the crystal,
i.e., phase transition to a disordered phase.

Transient optical properties of materials, such as
reflectivity or transmissivity, can also be measured in
pump-probe experiments with a time resolution down to
101s [9,10,93]. Thus, along with diffraction patterns the
latter can be used for comparison between the experimen-
tal and simulation results. Within the linear response
theory, optical properties are defined by the CDF. The
random phase approximation (RPA) provides the follow-
ing expression for the dielectric function (the Lindhard
formula) [94,95]:

S“ﬂ(a)) =1+

e2 2 —
h ZFVW fe(Ev) fe(Eﬂ) (13)

m.2Qeg = E?Zw ho — Eyp +iy
Here, E,, = E, — E, is the transition energy between two
eigenstates |n) and |v); f.(E,) and f.(E,) are the transient
occupation numbers of the corresponding states (electron
distribution function) as defined above; F,, are the
diagonal elements of the oscillator strength matrix
[95,96]; € is the volume of the supercell; and €, is the
vacuum permittivity in SI units.

A particular choice of the (small) parameter y does not
affect the results beyond the broadening of peaks in the
CDF [97]. The dependence of the results on y was
investigated in detail in reference [98].

Thereal, ¢, and imaginary, ¢”, parts of the CDF define
the components n and k of a complex index of refraction
n(w) = n + ik by relations:

HQZE( &2 4 g2 —|—8/>,

2
kQZ%(\/S/Z—FE”Q—E/). (14)
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Using Fresnel’s and Snell’s laws, the reflectivity
coefficient can be expressed as follows [99]:

n_ cosf — Vit — sin?0|? (15)
cosf + Va2 — sin%0 ’

where 6 is the angle of incidence of the probe pulse.

The transmission coefficient of the material also
depends on the material thickness d and the wavelength
of the incident probe pulse A. In the case of a bulk or a thick
layer of a material and ultrashort probe pulse, we assume
the first ray propagation with no interference effects
included from multiple reflections on the material
boundaries [96,99]:

4cos OVTE — sin2f-e—i ZV sin’o |2
T = 7
(cosd + Vi? — sin? 0)*

(16)

The absorption coefficient can then be obtained from
the normalization condition:

A=1-T-R. (17)

3 Results
3.1 Low fluence

3.1.1 Non-thermal graphitization of diamond

In a series of papers, we modeled diamond under
femtosecond FEL irradiation in a wide range of photon
energies, using XTANT code described above
[10,13,66,75,100]. We showed that at the absorbed doses
above the damage threshold of ~0.7-0.75eV/atom,
diamond undergoes a non-thermal solid-to-solid phase
transition into graphite phase on an ultrashort timescale

of ~150fs. An average dose of above 0.7eV per atom in

diamond leads to the excitation of over 1.5% of electrons

from the bonding states of the valence to the antibonding
states of the conduction band. This is sufficient to trigger
the graphitization.

Non-thermal graphitization of diamond proceeds in

the following steps [100]:

— Initial electronic excitation occurs during the FEL pulse.
In case of X-ray pulses, photoelectrons relax to the
bottom of the conduction band within a few up to a few-
tens of femtoseconds (depending on the photon energy,
see, e.g., [77]) via collisional processes and Auger
recombinations of K-shell holes. During this step, low-
energy electrons in the valence and the bottom of the
conduction band receive energy from the high-energy
electrons, and are starting to exchange it with the
lattice.

— Electronic excitation triggers a band gap collapse (see,
e.g., [100]). It occurs within ~50 fs (for soft X-rays) after
the pulse maximum of the FEL pulse at the time instant
when the density of conduction band electrons over-
comes the threshold value of ~1.5%, as mentioned
above. This is accompanied by the interatomic sp” bonds
breaking [100]. For higher photon energies, the electron
cascades last longer, thereby delaying all the ensuing
processes [75].

— These processes are followed by the atomic relocation
(occurring at ~150-200 fs), which significantly changes
the material properties: from insulating diamond to
semi-metallic graphite. The electronic density in the
conduction band further increases, leading to the final
irreversible atomic relocation [100]. In this rearrange-
ment, atoms settle at the new positions corresponding to
overdense graphite.

All these stages can be seen in Figure 2 showing atomic
snapshots in diamond under irradiation with an FEL pulse
with the absorbed dose of 0.8 eV /atom, photon energy of
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Fig. 3. Calculated vibrational spectrum from the autocorrelation function of swarm of trajectories: (a) vibrational spectrum
for various time delays t after the pump pulse; (b) autocorrelation function for various time delays 7, where the time ¢ is defined

in equation (12).

47.4eV, and FWHM pulse duration of 52.5fs. One can
clearly observe the formation of the graphite planes. Note
that the overdense graphite planes are changing orienta-
tions at the edges for a sufficiently large simulation box: in
this figure 512 atoms in the box was used, whereas for
216 atoms box formed planes were always perfectly
aligned in the simulations. This indicates a presence of
multiple nucleation centers of the new phase, as in the case
of the homogeneous phase transition [101,102].

These changes of the atomic structure are reflected in
the evolution of the diffraction patterns. In Figure 2, the
diamond reflections (111) are present at around 42°
(220) at around 74°, and (311) at around 91° at the
beginning of the simulation. Then, the peaks (220) and
(311) become reduced significantly during the graphiti-
zation. Later, they almost disappear. In contrast, the peak
(111) is only slightly reduced. The reason for that is that
this particular reflection of diamond coincides with a
reflection of the overdense graphite, due to their equal
density. At later timescales, when expansion of the
overdense graphite takes place, the peaks shift towards
smaller angles (not shown). The overlap of the diamond
and graphite peaks may complicate the analysis of the
experimentally recorded diffraction patterns. Luckily, as
Figure 2 shows, an additional peak (002) at around 50°
emerges. It corresponds to graphite structure, clearly
marking the phase transition. Additional peaks at 40° are
observed here, corresponding to the defected structure of
the bending graphite planes — those peaks are absent in
case of perfectly oriented graphite planes.

Apart from the structure of the non-thermally created
graphite phase, we can also analyze its dynamical
properties. The vibration spectrum, equation (12),
calculated for irradiated diamond is shown in Figure 3a.
During the non-thermal graphitization, coherent acoustic
phonon excitation takes place (see spectra at times after
7~ 200 — 300 fs). Such coherent excitation of phonons is in
agreement with the model of displacive excitation of
coherent phonons (A4; symmetric phonons) [103], and was

known previously for non-thermal melting in different
materials [104]. The excited modes correspond to As,
mode at ~900 cm ' — the characteristic frequencies of Dgh
symmetric graphite [105,106].

At this time period, the optical phonon modes are
inhibited in comparison to the density of states (DOS)
characteristic to the equilibrium graphite [107]. As the
material tends to a new equilibrium, the energy is
transferred to the optical phonons (7= 700 fs), leading to
the relative intensity ratio approaching that of the
equilibrium phonon spectra. This step of the diamond to
graphite transition can be characterized by the onset of
optical phonons at ~1600cm ' for the lattice modes of
E»p and E,, symmetry [105,106]. This spectrum already
closely resembles known graphite phonon DOS, although
at high temperature (these phonons have much larger
amplitude than the equilibrium ground state ones) [107].
This is reflected by the autocorrelation function,
Figure 3b, where a sudden enhancement of vibrational
amplitude ~200 fs after the pump pulse can be seen. The
predicted temperature increase is consistent with the
increase of the atomic kinetic temperature estimated
from the MD simulation (up to ~1600K) [60].

This ultrafast solid-to-solid phase transition — graph-
itization of diamond under an FEL pulse irradiation — is
unambiguously reflected in the evolution of the transient
optical properties [10]. Comparison between the experi-
mentally measured transmittance of the optical probe
pulse (wavelength of 630 nm) with theoretical predictions
is shown in Figure 4. The transmission curve is normalized
to the initial transmission of non-irradiated diamond. It
exhibits the characteristic multistep process of graphiti-
zation described above: (i) initial electronic excitation,
(ii) band gap collapse, and (iii) atomic relocation [10]. The
remarkable agreement between the theoretical calcula-
tions and the recent experiment confirms the transient
timescales of the ultrafast graphitization, completed
within ~150-200fs — to our knowledge, the fastest
solid-solid transition observed up to now.
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Fig. 4. Calculated transmission of the optical pulse of a
wavelength of 630nm, for the average absorbed dose of
0.8eV/atom, in the layer thickness of 38nm (at the time
instance of 400 fs; red solid line). FEL photon energy was 47.4 eV,
pulse duration was 52.5fs (FWHM, magenta dashed line). It is
compared to the experimental data (open black squares with
errorbars). Intervals (i)—(iii) denote different stages of graphi-
tization. The figure is reproduced from reference [10].

3.1.2 Thermal melting of silicon

As we discussed in the previous papers [67,68,96],
silicon can undergo various phase transitions depending
on the absorbed dose: a thermal one, occurring for the
doses about ~0.65eV /atom, and a non-thermal one, for
doses above ~0.9¢V/atom. Thermal melting turns
crystalline silicon into low-density liquid by heating the
lattice via electron—ion coupling mechanism (non-adia-
batic energy exchange discussed in Sect. 2.3). Non-thermal
melting quickly leads to high-density liquid phase via an
interplay of the lattice heating and non-thermal modifica-
tion of the interatomic potential, similar to the case of
diamond graphitization. The latter case will be studied
below in Section 3.2.2.

Irradiation of silicon with X-ray radiation providing
an absorbed dose 0.65-0.9 eV /atom induces the following
processes. Firstly, high-energy electron cascades deliver
photoabsorbed energy to low-energy domain via impact
ionizations [67]. Later, low-energy electrons couple to the
ions, providing them with energy via non-adiabatic
coupling, equations (5)—(4). During this phase, electronic
structure of the material is changing. A band gap
collapse follows, indicating a transition into a semime-
tallic phase. Once the lattice is heated enough, the
atomic structure transforms into the new phase. Figure 5
shows the evolution of the atomic structure of silicon
after irradiation with an FEL pulse of 30eV photon
energy, 60fs FWHM duration, and 0.72eV/atom
absorbed dose. After approximately ~300-500fs, one
can see an onset of the melted phase. Diffraction patterns
demonstrate that the short-range order is still preserved
in the new state, persisting after equilibration of
electronic and atomic temperatures on the timescale of
~1ps [67,68].
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As the stable liquid phase of silicon is a high-density
liquid, we expect that LDL phase will densify at longer
timescales, unless it is quickly cooled down to be frozen
in this low-density state. Presumably, transition to the
HDL would take at least a few tens of ps at the
considered near-threshold absorbed doses [108]. However,
such timescales are too long to access with our
present approach, and require dedicated investigations.
These aspects are beyond the scope of the current
discussion.

To analyze the dynamical properties, the temporal
evolution of silicon spectra is shown in Figure 6 for the case
of the absorbed dose of 0.72eV /atom. At the beginning
t=0fs, the initial phonon spectra are close to the
equilibrium spectra of silicon. The peak around 600 cm
corresponds to the optical phonons in the vicinity of the
I" point [110,111].

At later times after ~300-500fs, silicon crystal
enters a regime of much higher lattice vibration
amplitude, which is a signature of melting. The phonon
peak at around 600cm ' is then shifting to lower
frequencies at times around 300-500fs, indicating
phonon softening [112]. It occurs due to the ongoing
transition to the low-density liquid state [67]. This
observation is consistent with the diffraction patterns
shown above in Figure 5. The presence of the local order
in the melted phase is also consistent with the
experimentally observed low-density liquid phase cre-
ated in solid silicon by FEL-irradiation [113]. The
increase of the atomic temperature can be seen in the
gradual increase of the amplitude of the autocorrelation
function in Figure 5b.

We can compare the calculated optical properties
of irradiated silicon with experimentally available data.
Unfortunately, such data exists only for femtosecond
optical pulses [109]. However, as we discussed in
references [96,114], the electrons after VUV irradiation
as well as after an optical one — at the same near-threshold
absorbed doses — relax quickly to an equilibrium Fermi
distribution. The two cases become nearly identical within
a few fs after the exposure, as long as we consider bulk
material with periodic boundaries, without any essential
contribution of the particles and energy transport. Such a
comparison is shown in Figure 7.

This figure also clearly shows that the observed
reflectivity overshooting (i.e., the fact that final reflec-
tivity of the irradiated sample is higher than the initial
one) is a result of the thermal lattice heating. If we
exclude non-adiabatic electron—ion coupling, overshoot-
ing does not show up [68]. These results confirm the idea
presented earlier in reference [115]: the overshooting
effect observed in experimental data [7,93] is a conse-
quence of the ion heating and the resulting band-gap
shrinkage. This observation proves that it is essential to
step out beyond the BO approximation when modeling
the evolution of irradiated solids. Otherwise, important
non-adiabatic mechanisms may be missing, and a
proper description of the solid evolution can never be
achieved.
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Fig. 7. Comparison of the calculated and experimental [109]
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dose. The data were convolved with 60 fs gaussian probe pulse.
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3.1.3 Coulomb explosion of Cgq crystal layer

In the recent paper, we studied behavior of thin
layers of Cgg crystal under irradiation with FELs X-ray
pulses [88]. Our predictions indicate that irradiated Cg
crystal disintegrates into single intact fullerenes. The
observed fullerene behavior is caused by a Coulomb
explosion induced by the charging of fullerene cages. It
was confirmed by a comparison of these calculations with
the calculations performed assuming all electrons to be
confined within the system, which preserves charge
neutrality. In the latter case, no breaking of Cgy crystal
was predicted [88].

The unbalanced charge is produced due to the photo-
absorption by extreme ultraviolet /soft-X-ray (XUV /SXR)
laser radiation and impact ionization by photo-electrons
and secondary electrons. When the energy of an excited
electron is above the work function of Cgo (which is 7.6 eV),
the electron can be emitted leaving a positive charge
behind. The repulsive forces between neighboring fullerene
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of the diffraction patterns indicating intermolecular connections.

cation radicals then decompose the molecular crystal
structure, releasing fullerenes into the vacuum.

Figure 8 shows calculated snapshots of the sample at
different times following the FLASH irradiation of Cgg
crystal (for the photon energy of 92eV, 30fs FWHM,
absorbed dose of 0.28¢V/atom), reference [88]. This
figure shows the scc structure. The fcc structure
simulation looks nearly identical. The calculated
damage threshold of fcc structure is lower only by
~10% as expected from the considerations of their
cohesive energies [116]. The decomposition of the Cg
layer can clearly be observed. We notice that here, the
Cgo cages start to separate from each other on the
timescale of ~2 ps, although the unbalanced charge was
created within the first ~100fs during the electron
cascading. This timescales mismatch is due to a great
inertia of the fullerene molecules — such massive objects
repeal each other slowly in comparison with the atomic
repulsion in case of diamond and silicon phase tran-
sitions.

In Figure 8, the diffraction reflections related to the
intermolecular distances shift to lower angles, which is a
signature of the material expansion. Although the
intensity of these peaks is very low, in comparison to
the intramolecular peaks at small angles, they
clearly indicate a separation of Cg, cages. The fact

that the intramolecular peaks stay practically
unchanged confirms that intact fullerens are emitted
from the irradiated layer, as seen in the atomic
snapshots.

We do not perform here an autocorrelation analysis,
since the van der Waals potential used [88] was not
specifically designed to reproduce the vibrational frequen-
cies but only to yield the correct cohesive energy and
structure.

The damage threshold for the molecular Coulomb
explosion in thin layer depends on the produced
unbalanced charge due to electron emission. This, in
turn, depends on the FEL photon attenuation length,
and the layer thickness. Thus, we cannot present
here a universal damage threshold dose. For the
particular photon energy studied, how=92eV, the
threshold charge was estimated to be 0.0018elec-
trons/atom for fcc structure of Cgp crystal (or 0.002
for scc Cgo molecular arrangement). In this case, the
absorbed dose of 0.18eV/atom for fcc structure (or
0.21eV/atom for scc) produces the corresponding
unbalanced charge leading to breaking of bonds
between Cgy cages. For comparison, experimental
measurement produced the damage threshold of
~0.15¢eV /atom for the identical FEL pulse conditions
[88].
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3.2 Medium fluence

3.2.1 Graphitization of amorphous carbon

Simulated samples of amorphous carbon (a-C) were
prepared by quenching of the melted phase starting from
underdense diamond (with the density equal to that of the
desired a-C, p=2.6 g/ cmg), heated up to the temperatures
of a few thousand Kelvins. Quenching was performed by
artificially setting atomic velocities to zero every few
femtoseconds (similar to the standard zero-temperature
MD schemes for quenching [117]) during ~5 ps until the
total energy change in the system became negligible. It
indicates that a stable configuration was reached. In a
series of simulations multiple initial a-C states were
created and then checked for their quality. The most
homogeneous and stable one was chosen for the simulation
of X-ray irradiation.

Calculations with XTANT for a-C showed that for the
considered parameters of FLASH irradiation (hw =92V,
30 fs FWHM), the spallation threshold is ~0.85 —0.9eV/
atom (cf. the experimental dose of 0.88eV /atom [88]).
Here, the spallation threshold is identified by modeling
within Parrinello-Rahman method for NPH ensemble.
This allows to trace material expansion and its eventual
fragmentation. For an above-spallation dose, the irradiat-
ed sample breaks apart into molecular fragments, and the
volume of the modeled supercell expands indefinitely (see
Sect. 3.3.1). For the below-spallation case, no fragmenta-
tion was observed.

In the below-spallation absorbed dose case
(<0.85¢eV/atom), Figure 9 shows expansion of the
irradiated material, which saturates after ~2.5ps, with

formation of graphite-like structures inside. As atomic
snapshots in Figure 9 demonstrate, this process is similar
to graphitization, although the formed graphite-like
planes are bent and highly defected. This below-
spallation expansion reproduces the experimental find-
ing [88].

Analysis of the diffraction patterns for the correspond-
ing atomic snapshots shows emergence of sharp peaks,
indicating ordering of the material. This supports the
above-mentioned scenario of graphitization of a-C under
FEL irradiation.

The good agreement of the calculated spallation
threshold with the experimental one confirms the reliability
of the model [88]. To the best of our knowledge, there is no
time-resolved experimental data available yet on the
process of graphitization of amorphous carbon. However,
we expect that the timescales of material expansion
reported here are probably underestimated, as is typical
for Parrinello-Rahman MD simulations.

3.2.2 Thermal and non-thermal melting of silicon

We studied non-thermal melting of silicon under a fs
laser pulse irradiation in detail in references [67,68,96].
We performed the silmulations of irradiated silicon for
the following FEL parameters: 1.08eV/atom, photon
energy of 30eV, and FWHM pulse duration 60 fs. This
absorbed dose is above the threshold for the non-thermal
melting of ~0.9eV /atom, calculated in [67]. Note that
this dose is significantly lower than the non-thermal
melting threshold predicted earlier, e.g., [118], estimated
to be ~2.1eV /atom. This is due to the fact that in our
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approach we included not only the changes of the
potential energy surface due to excitation of electrons
(BO approximation), but also the electron—ion (electron-
phonon) coupling via non-adiabatic effects [67]. This
heating of the lattice by electrons significantly lowers the
damage threshold [67].

The damage threshold can also be expressed in terms of
the number of excited electrons, which is lowered from
~9% within BO approximation, to ~4.5-5% if electron—
ion coupling is included. For comparison, experimental
estimation of the electron density threshold is ~6% [119].
Thus, one can conclude that the interplay of thermal
heating with the non-thermal evolution of the potential
energy surface plays an important role in the damage
formation in silicon [67,68].

Calculations with Parrinello-Rahman MD allowed us
to demonstrate that this phase transition proceeds via
low-density liquid phase at a picosecond timescales into

the ultimate high-density liquid phase, in a good
agreement with experiments [67,113]. Atomic snapshots
of the material evolution are shown in Figure 10. In the
same figure one can also see that the material disorders on
the scale of ~500fs, with diffraction peaks almost
completely disappearing. By the time of 1ps, only the
diffuse scattering background is visible in the powder
diffraction.

The evolution of vibrational spectra in silicon after
absorbed dose of 1.08eV/atom is demonstrated in
Figure 11. Again, as in the low-dose case discussed
above (Sect. 3.1.2), at t=0fs, the initial phonon
spectra are close to the equilibrium spectra of silicon.
After the FEL irradiation, the optical phonon peak
(~600cm ') completely disappears after ~500fs, in
agreement with the conclusions drawn from the diffrac-
tion patterns. Since the optical phonons correspond to
the relative motion of silicon atoms inside the primitive
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probe pulse. The figure is reproduced from reference [68].

cell, the disappearance of the relevant peak reflects
disordering of the original structure. The non-thermal
transition to the high-density liquid state is thus
completed [67]. Again, increase of the amplitude in
the autocorrelation function in Figure 11b indicate
heating of the lattice, however, one can also see that
at times after ~500 fs disorder in the system changes the
dynamics qualitatively.

The timescales of damage can be compared with
experiments by tracing evolution of the optical proper-
ties. In the case of the absorbed dose above the non-
thermal melting threshold, the band-gap collapse is
induced via non-thermal melting [67,68]; significant
heating of the lattice is not necessary for that. For such
doses, the overshooting effect allows to extract time-
scales of the predominant non-thermal melting. We
again use the experimental data on the optical pulse
irradiation [109], as no FEL-pump time-resolved data
exists as of yet to the best of our knowledge. Such a
comparison is shown in Figure 12. One can see a very
good agreement between the calculated and experimen-
tal reflectivities, indicating that the predicted timescales
of damage are correct.

3.3 High fluence
3.3.1 Spallation of amorphous carbon

For studying disintegration of amorphous carbon, we
start with the same initial sample as discussed in
Section 3.2.1. Then, we model the evolution of the
sample after its irradiation with pulses of different
fluences (absorbed doses) with NPH ensemble MD. After
running a simulation for 10 ps, we can determine whether
the super-cell volume expansion saturates or proceeds
continuously and the material breaks apart. From the set
of simulations, we can identify the damage threshold
dose.

The results show that after irradiation with a dose
above ~0.85-0.9eV/atom, a-C spallates. This dose
corresponds to the peak density of the CB electrons of
~5.5%, or the electronic temperature of ~13 000 K.

The spallation proceeds via graphitization on a
timescale of a few picoseconds, similar to the above-
mentioned case from Section 3.2.1. However, in the above-
threshold case, one can clearly see spallated parts of the
disintegrating sample at the time instant of 5ps, see
Figure 13.

Emergence of the diffraction peaks from the diffuse
scattering pattern clearly shows some ordering in the
structure before material disintegration. Then, material
breaks apart into a few fragments, but not into atomic
species, which is indicative of a spallation regime of the
material removal rather than ablation [37]. Note that in
contrast to a thin layer of Cgg here we modeled a bulk
material with no open surfaces, and thus with no
unbalanced charge in the system. The spallation, thus,
can be considered as a thermal effect due to atomic heating
via electron—ion coupling.

3.3.2 Ablation of silicon

An ablation threshold of silicon was determined within
the Parrinello-Rahman MD. From a set of calculations for
different deposited doses, the damage threshold was
estimated to be ~2.6eV /atom. Below this threshold, Si
samples demonstrated only (non-thermal) melting, with-
out disintegration. For doses above that threshold,
material disintegrated into fragments. This damage
threshold dose corresponds to the maximal excited
electron density of ~12—13%, and the electronic tempera-
ture of ~20 kK.

An example of such a simulation is shown in Figure 14
for 3 eV /atom absorbed dose, delivered with an FEL pulse
of 92eV photon energy and 10fs FWHM. The material
disintegration appears to be in the ablation regime, as even
individual atoms and small molecular fragments are
observed.

Silicon ablation occurs via transient non-thermal
melting on sub-ps timescales. This is consistent with the
reported above non-thermal melting regime described
above (Sect. 3.2.2). The initial changes in the electron
structure take place on sub-100 fs timescales, the band
gap collapses within ~40fs, producing semi-metallic
silicon. Already within ~200-300fs, Figure 14 shows
that powder diffraction reflections vanish into the
rising diffuse scattering background. Thus, a complete
loss of structural order takes place at this ultrashort
timescale. After that, however, new diffraction peaks
emerge. They confirm formation of small molecular
fragments, emitted from the disintegrating bulk sam-
ple. This process is a non-thermal ablation with the
contribution from thermal electron—ion heating. We
note again that due to inclusion of non-adiabatic effects
beyond the BO approximation, our predicted ablation
threshold is significantly lower than previously pre-
dicted purely non-thermal thresholds within the
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BO approximation (respectively, ~2.6eV/atom vs.
~4—6eV /atom [120]). This prediction should be vali-
dated by experiments.

However, again, due to application of the Parrinello—
Rahman MD scheme, we expect that the timescales of
ablation are underestimated. The experimental studies
would probably reveal longer times of silicon ablation.

3.4 Ultrahigh fluence: warm dense matter formation

In order to test the limits and capabilities of our
developed hybrid approach, we performed a set of
simulations at very high deposited doses, leading to
WDM formation, reference [121]. The simulations of
diamond irradiated with an extremely intense X-ray FEL

pulses (at average absorbed doses 18.5-24.9eV/atom;
6.1keV photon energy; 5fs FWHM) performed with
XTANT code demonstrate that the atomic structure
quickly disorders, on a timescale of a few tens of fs, see
atomic snapshots in Figure 15. Diamond transiently
undergoes through a stage similar to the graphitization
discussed above (Sect. 3.1.1), lasting only for a few fs.
From there on, a complete disordering of the sample
proceeds.

These effects are visible in the simulated diffraction
patterns: the nearest neighbour peak, corresponding to
the reflection (220), disappears faster than the (111)
peak. That is due to the fact that the peak (111) is
present in diamond as well as in overdense graphite
formed before material expansion, see Figure 2. Thus, a
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presence of both peaks (220) and (111) indicates a
diamond structure, whereas presence of the peak (111)
only, with the peak (220) absent, indicates a transient
overdense graphite-like state.

This effect is confirmed by the powder diffraction
patterns in Figure 15 (e.g. see the snapshot at 20 fs). After
that phase, a quick atomic rearrangement follows, leading
to the sample disordering at times >20 fs. This is due to the
fact that the absorbed dose lies so much above the graphite
damage threshold that it triggers atomic disordering in the
graphite-like state as soon as it is formed.

This process is clearly of non-thermal nature at its
early stage, i.e., until 15-20fs. The ion temperature
increases due to the non-thermal changes of the potential
energy surface, and not due to the electron—ion coupling,
as confirmed by a comparison with a dedicated simulation
within the BO approximation. Such a simulation pro-
duced nearly identical result, showing a negligible
contribution of the electron—ion coupling at such extreme-
ly short timescales [121].

The calculated diffraction peaks in Figure 15 show
qualitative agreement with the recent experiment [59]: the
intensity of peak (220) decreases faster than the peak
(111) both in our simulation and in experiment. However,
quantitatively, the simulated diffraction peaks vanish
significantly faster (by the time of ~25fs) than the
experimental ones (>80 fs). This observation indicates the
limit of validity of our approach reached in this particular
case.

The shifts of diffraction peaks (111) and (220)
measured in experiments were smaller than 0.15° [59].
The lack of any significant shifts of maxima positions of
both Bragg peaks indicates that the material expansion
due to ablation was insignificant at the experimental
timescale of 80 fs. It justifies the usage of MD simulation
scheme at a constant volume ( V= const, NVE ensemble),
which we applied. We note that application of the
NPH Parrinello-Rahman scheme in this case resulted

in an explosive expansion of the material at the modeled
timescales of 30fs, yielding a clear disagreement with
experimental data. This, again, is in line with our
argumentation above on the underestimation of the
timescales within this MD scheme.

4 Discussion
4.1 Damage thresholds vs. photon energy

As we have discussed in the course of this paper, in
many cases for materials irradiated with fs X-ray
pulses, there are universal damage threshold doses.
Knowing the photon attenuation length in the material,
one can evaluate the corresponding threshold fluence
with the inverse of equation (11). It relies upon the
assumption of the negligible electron transport, so that
the delivered energy is distributed in the material
according to the photon penetration profile. This
assumption is generally satisfyed in case of X-rays
irradiation under normal incidence, since the electron
ranges [123] are then significantly shorter than the
X-ray attenuation length [124]. It also assumes the
thickness of the sample to be significantly larger than
the electron range, so that the electron emission from
the surfaces could be neglected.

The calculated threshold fluences for various damage
channels in allotropes of carbon and in crystalline silicon
are presented in Figure 16. They could be used as guidance
for preparation of experiments at FEL facilities, which
utilize photon energies from few tens of eV to tens of keV.
Note, however, that they are yet to be validated by
experiments at hard X-rays.

4.2 Limitations of the model

Our results from high-fluence regime indicate a few
limitations of the XTANT model. We can estimate the
limiting fluence or an absorbed dose. Our results discussed
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in Section 3.4 showed only qualitative agreement with
experiment, implying the absorbed dose of ~18.9 eV /atom
is already too high for quantitative model application. On
the other hand, comparison with the optical properties of
diamond after irradiation with ~5.4 eV /atom produced a
reasonably good agreement with experiment in reference
[96]. Thus, the limitation of the model is somewhere in
the range of 5.4-18.9 eV /atom. A few reasons for that can
be identified.

Firstly, we can expect that the duration of cascading of
created high-energy photo-electrons, in reality, may be
different from that estimated with the model. This is due
to the fact that the XTANT code currently uses cross
section for electron impact ionization, calculated for
neutral medium with the CDF [60,75]. In case of a strong
ionization of the sample by a high radiation dose
deposited, the sample neutrality quickly breaks down.
To the best of our knowledge, there are no rigorously
derived impact ionization cross sections in highly excited
solids yet available. However, the recently proposed semi-
empirical expression based on the experimental data
suggests that the cross section of electron impact
ionization in dense plasma increases, which may speed
up the electron cascading [125].

Inreference [121], we showed that (artificially) reducing
impact ionization cross sections would be needed to slows
down the diamond damage, but even then, it was not
sufficient to achieve a quantitative agreement with
experiment on WDM formation.

Secondly, created K-shell holes may strongly perturb
the electronic band structure, which is not taken into
account in the present model. However, in reference [121]
the number of K-shell holes was shown to be small enough
not to influence significantly the sample evolution.

The most important effect which is not accounted in
XTANT seems to be related to the fact that the model
relies on the transferable TB parameterization, whose

parameters were fitted to the equilibrium configurations of
different carbon phases [84]. This approximation misses
the effect of the shifts of the electronic energy levels due to
the presence of excited electrons. This problem is also
known in the plasma community in the context of the
ionization potential depression (IPD) [126-128]. With the
increasing temperature within the heated solid, higher
charges appear within the sample (cf. Fig. 5 in Ref. [127]).
The energy levels within the band correspondingly move
down. Electrons occupying the valence levels below the
Fermi level form bonding states, whereas electrons
populating the levels in the conduction band above the
Fermi level contribute to antibonding states. Thus,
lowering of the conduction band levels beyond the Fermi
level in the strongly heated diamond may temporally
change the bonding from repulsive to attractive. This
effect may stabilize diamond on the way to the WDM state
and prolong the timescales of WDM formation. Since
transient amount of excited electrons in diamond is close
to a metal density, perhaps similar effects to the bond
hardening observed in metals can be transiently expected
in diamond during WDM formation [129,130]. This
conjecture may be tested in the future by a dedicated ab
initio modeling, such as, e.g., finite-temperature DFT.
Another kind of a limitation of the model is related to
the periodic boundary conditions applied. In case of the
normal incidence hard X-rays irradiation, when heating is
homogeneous within the material down to the depth of a
few microns or more, periodic boundary conditions can be
applied with a good accuracy as it was done throughout
the paper. For lower photon energies, or grazing incidence
angles, the photon attenuation length is small and
the periodic boundary conditions are inapplicable. Near
the plasmon resonance, the attenuation length may be as
short as a few nanometers, which induces strong gradients
in the absorbed energy, and triggers strong particle and
heat transport. These effects hinder the application of the
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model to the photon energies below about 50 eV. For very
low energies, in the ultraviolet or optical regime,
additional nonlinear effects such as photoabsorption and
inverse Bremsstrahlung must be taken into account [71].

And last but not least of the discussed issues, the
electron—ion coupling scheme which we currently apply in
XTANT seems to have limitations. In our attempt to
apply it to GaAs, the calculated non-adiabatic electron—
ion coupling rate seemed to underestimate the experimen-
tal values extracted from the optical probe data [83]. The
reason for this discrepancy is likely that GaAs has a very
narrow conduction band minimum. For its proper
sampling, one would need a large number of k-points
[131]. Thus, our electron—ion energy exchange, so far
written for the Gamma-point (Eq. (6)), must be extended
to include multiple k-points. This will be a topic of a
separate study.

4.3 Future development

The reliability of the XTANT code, confirmed by its
quantitative agreement with various experimental results,
proofs the correctness of the approach and demonstrates
powerful capabilities of hybrid models. Consequently, one
can think of further improvements of the model in order to
extend its applicability.

Firstly, in order to enable the usage of the model for
other materials, a non-orthogonal TB parameterizations
can be implemented. As was mentioned, e.g., in [132], a
non-orthogonal TB allows for easier construction of
transferable parameterizations. It is already available
for many elemental solids [132].

Secondly, in order to go beyond the simple periodic
boundary conditions, one can incorporate particle and
energy transport effects into the model. One way is to
include additional source and sink terms into the
electronic and atomic equations. For example, a proper
tracing of the electronic transport can be done by
extending the MC module and the rate-equation/thermo-
dynamics module to account for spatial dimensions, see,
e.g., [133]. In this way, a sample can be discretized into a
set of simulation boxes. Each of them would have its
specific absorbed dose. Exchange of particles and energies
between each other could also be accounted for.

As shown, e.g., in reference [45], at low fluences the
thermalization of low-energy electrons may take long
times. In order to take this effect into account, one could
replace the rate-equations and the TTM with a proper
Boltzmann electron—electron collision integrals [45], or a
full Boltzmann transport equation [44]. As non-equilibri-
um electron distribution couples differently to the ions,
this may affect the atomic dynamics in the case of long
electron thermalization times. Non-equilibrium electron
distribution could also affect optical coefficients
(cf. Eq. (13)), which may improve their agreement with
experiments (e.g. in Fig. 7).

Thirdly, the calculations presented in Sections 3.3.1—
3.4 show that the high-fluence regime lies on the border
of applicability of the TB method. The latter relies on

the ground-state parametrization and therefore should
be applied with care under such conditions. In order to
reliably describe irradiation at higher fluences, one would
need to replace the TB module with a more suitable
approach. Since at higher material excitations we expect
to reach states far from equilibrium, we require a robust
method not relying on the ground-state approximation,
which casts doubts on the applicability of the DFT
schemes.

In reference [134], an ab initio scheme X MOLECULE
for the calculation of the electronic structure in molecular
ensembles within the Hartree-Fock (HF) approximation
was developed. It includes multiple-hole configurations of
molecules or solids formed during XFEL pulses and is able
to provide necessary information about the electronic
states, also including the influence of core holes on the
interatomic forces under strongly non-equilibrium con-
ditions. Incorporation of such a method into XTANT
would allow to simulate previously unreachable condi-
tions, such as X-ray-generated warm or even hot dense
matter. A disadvantage of such an approach is its high
computational costs. In order to decrease them, one could
try to use XMOLECULE to obtain classical interatomic
force-fields with the parameters adjusted on-the-fly. One
of the fitting methods suitable for such an implementation
is the force-matching method [135]. Another option would
be to create a HF-based TB parameterizations on-the-fly,
similarly to the density-functional-based tight binding
(DFTB) methods [136,137].

5 Summary

We proposed a hybrid model specifically designed to
treat femtosecond free-electron-laser irradiation of solids.
The corresponding code XTANT has been used here for
carbon- and silicon-based materials. It provides a good
quantitative description of various damage channels: non-
thermal graphitization of diamond and amorphous carbon
(a-C), thermal spallation of a-C, molecular Coulomb
explosion of Cgy crystal, thermal melting of silicon into
low-density liquid phase, non-thermal melting of silicon
into high-density liquid phase, ablation of silicon. It also
gives qualitative insights into WDM formation in
diamond.

Wherever available, a comparison with time-resolved
experimental data was provided. This was done by
extracting experimental observables from XTANT, such
as transient transmission and reflectivity coefficients for
an optical probe pulse. The reliability of the XTANT code,
confirmed by its quantitative agreement with various
experimental results, proves the correctness of the
approach and demonstrates powerful capabilities of
hybrid models in general.

For each studied case, we presented transient atomic
snapshots and powder diffraction patterns. The time-
resolved diffraction patterns can be used for a comparison
with future X-ray-pump X-ray-probe experiments at
FELs. Damage thresholds calculated for a wide range of
photon energies were also shown.
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Finally, we presented a discussion on the limitations of
the developed model and outlined directions for its future
improvements.
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