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Abstract. The propagation of electromagnetic waves in vacuum is often described within
the geometrical optics approximation, which predicts that wave rays follow null geodesics.
However, this model is valid only in the limit of infinitely high frequencies. At large but
finite frequencies, diffraction can still be negligible, but the ray dynamics becomes affected
by the evolution of the wave polarization. Hence, rays can deviate from null geodesics,
which is known as the gravitational spin Hall effect of light. In the literature, this effect
has been calculated ad hoc for a number for special cases, but no general description has
been proposed. Here, we present a covariant WKB analysis from first principles for the
propagation of light in arbitrary curved spacetimes. We obtain polarization-dependent ray
equations describing the gravitational spin Hall effect of light. We also present numerical
examples of polarization-dependent ray dynamics in the Schwarzschild spacetime, and the
magnitude of the effect is briefly discussed. The analysis presented here is analogous to the
spin Hall effect of light in inhomogeneous media, which has been experimentally verified.

1. Introduction

The propagation of electromagnetic waves in curved spacetime is often described within
the geometrical optics approximation, which applies in the limit of infinitely high frequencies
[48, 58]. In geometrical optics, Maxwell’s equations are reduced to a set of ray equations, and
a set of transport equations along these rays. The ray equations are the null geodesics of the
underlying spacetime, and the transport equations govern the evolution of the intensity and
the polarization vector. In particular, the geometrical optics approximation predicts that the
ray equations determine the evolution of the polarization vector, but there is no backreaction
from the polarization vector onto the ray equations. However, this model is valid only in
the limit of infinitely high frequencies, and there has been interest in calculating the light
propagation more accurately. At large but finite frequencies, diffraction can still be negligible
but rays can deviate from geodesics. This is known as the gravitational spin Hall effect of
light [50].

The mechanism behind the spin Hall effect is the spin–orbit interaction [13], i.e., the cou-
pling of the wave polarization (spin) with the translational (orbital) motion of the ray as
a particle, resulting in polarization(spin)-dependent rays. Related phenomena are found in
many areas of physics. In condensed matter physics, electrons travelling in certain materials
experience a spin Hall effect, resulting in spin-dependent trajectories, and spin accumulation
on the lateral sides of the material [26, 62]. The effect was theoretically predicted by Dyakonov
and Perel in 1971 [28, 27], followed by experimental observation in 1984 [6] and 2004 [40]. In
optics, the polarization-dependent deflection of light travelling in an inhomogeneous medium
is known as the spin Hall effect of light [13, 43]. The effect was predicted by several authors
[20, 42, 52, 10, 11, 22, 23], and has recently been verified experimentally by Hosten and Kwiat
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[38], and by Bliokh et al. [12]. The spin Hall effect of light provides corrections to the ge-
ometrical optics limit, which scale roughly with the inverse of frequency. This, and several
other effects, can be explained in terms of the Berry curvature [66, 7, 12, 13].

There are several approaches aiming to describe the dynamics of spinning particles or
wave packets in general relativity. Using a multipole expansion of the energy-momentum
tensor, the dynamics of massive spinning test particles has been extensively studied in the
form of the Mathisson–Papapetrou–Dixon equations [47, 53, 68, 15, 16]. A massless limit
of these equations was derived by Souriau and Saturnini [63, 57], and particular examples
adapted to certain spacetimes have been discussed in [25, 24, 46]. Another commonly used
method is the Wentzel-Kramers-Brillouin (WKB) approximation for various field equations
on curved spacetimes. For massive fields, this has been done in [5, 54] by considering a WKB
approximation for the Dirac equation. For massless fields, using a WKB approximation
for Maxwell’s equations on a stationary spacetime, Frolov and Shoom derived polarization-
dependent ray equations [30, 31] (see also [71, 19, 18, 36]). With methods less familiar in
general relativity, using the Foldy–Wouthuysen transformation for the Bargmann–Wigner
equations in a perturbative way, Gosselin et al. derived ray equations for photons [35] and
electrons [34] travelling in static spacetimes (see also [61, 60, 51]). The gravitational spin Hall
effect of gravitational waves was also considered in [71, 70]. However, as discussed in [50],
there are inconsistencies between the predictions of these different models, and some of them
only work in particular spacetimes.

In this work, we are concerned with describing the propagation of electromagnetic waves in
curved spacetime, beyond the traditional geometrical optics approximation. We carry out a
covariant WKB analysis of the vacuum Maxwell’s equations, closely following the derivation
of the spin Hall effect in optics [12, 55, 56], as well as the work of Littlejohn and Flynn [44].
As a result, we derive ray equations that contain polarization-dependent corrections to those
of traditional geometrical optics, and capture the gravitational spin Hall effect of light. As in
optics, these corrections can be interpreted in terms of the Berry curvature. To illustrate the
effect, we give some numerical examples of the effective ray trajectories in the Schwarzschild
spacetime.

Our paper is organized as follows. In Section 2 we start by introducing the variational
formulation of the vacuum Maxwell’s equations. Then, we present the specific form of the
WKB ansatz to be used, we discuss the role of the Lorenz gauge condition, and we state the
assumptions that we are considering on the initial conditions. In Section 3, we present the
WKB approximation of the field action, and the corresponding Euler–Lagrange equations.
Analyzing these equations at each order in the geometrical optics parameter ε, we obtain
the well-known results of geometrical optics. The dynamics of the polarization vector is
expressed in terms of the Berry phase. Finally, we derive an effective Hamilton–Jacobi system
that contains O(ε) corrections over the standard geometrical optics results. In Section 4,
we use the corrected Hamilton–Jacobi equation to derive the ray equations that account
for the gravitational spin Hall effect of light. The gauge-invariance of these equations is
discussed, and noncanonical coordinates are introduced. In Section 5, we present some basic
numerical examples. We consider the effective ray equations on a Schwarzschild background,
and compare with the results of Gosselin et al. [35]. The magnitude of the effect is estimated
numerically. A summary of the result, including the effective Hamiltonian and the effective
ray equations, can be found in Section 6.
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Notations and conventions. We consider an arbitrary smooth Lorentzian manifold (M, gµν),
where the metric tensor gµν has signature − + ++. The absolute value of the metric deter-
minant is denoted as g = | det gµν |. The phase space is defined as the cotangent bundle
T ∗M , and phase space points are denoted as (x, p). The Einstein summation convention is
assumed. Greek indices represent spacetime indices, and run from 0 to 3. Latin indices from
the beginning of the alphabet, (a, b, c, ...), represent tetrad indices and run from 0 to 3. Latin
indices from the middle of the alphabet, (i, j, k, ...), label the components of 3-vectors and
run from 1 to 3.

2. Maxwell’s equations and the WKB approximation

2.1. Lagrangian formulation of Maxwell’s equations. Electromagnetic waves in vac-
uum can be described by the electromagnetic tensor Fαβ. This is a skew-symmetric, real
2-form, which satisfies the vacuum Maxwell’s equations [48]

∇αFαβ = 0, ∇[αFβγ] = 0. (2.1)

Solutions to Maxwell’s equations can also be represented by introducing the electromagnetic
four-potential Aα, which is a real 1-form. Then, the electromagnetic tensor can be expressed
as

Fαβ = 2∇[αAβ], (2.2)

and equations (2.1) become [48]

D̂ β
α Aβ = 0, D̂ β

α = ∇β∇α − δβα∇µ∇µ. (2.3)

This equation can be obtained as the Euler–Lagrange equation of the following action:

J =
1

4

∫
M

d4x
√
g FαβF

αβ =

∫
M

d4x
√
gAαD̂ β

α Aβ, (2.4)

where the last equality is obtained using integration by parts.

2.2. WKB Ansatz. We assume that the vector potential admits a WKB expansion of the
form

Aα(x) = Re
[
Aα(x, k, ε)eiS(x)/ε

]
,

Aα(x, k, ε) = A0α(x, k) + εA1α(x, k) + O(ε2),
(2.5)

where S is a real scalar function, Aα is a complex amplitude, and ε is a small expansion
parameter. The gradient of S is denoted as

kµ(x) = ∇µS(x). (2.6)

Note that we are allowing the amplitude Aα to depend on kµ(x). In physical terms, the limit
ε� 1 indicates that the phase of the vector potential rapidly oscillates, and its variations are
much faster than those corresponding to the amplitude Aα(x, k, ε).

The role of the expansion parameter ε becomes clear if we consider a timelike observer,
traveling along the worldline τ 7→ xα(τ), with proper time τ . This observer measures the
frequency

ω = − t
αkα
ε
, (2.7)

where tα = dxα/dτ is the velocity vector field of the observer. The phase function S and
ε are dimensionless quantities. Working with geometrized units, such that c = G = 1 [69,
Appendix F], the velocity tα is dimensionless, and kα has dimension of inverse length. Hence,
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ω has the dimension of the inverse length, as expected for frequency. Then, an observer sees
the frequency going to infinity as ε goes to 0.

We illustrate the validity condition of the geometrical optics approximation on a Schwarzschild
black hole, with Schwarzschild radius rs. For a source of light that is falling into the black
hole, the gravitational redshift formula implies that the frequency ω∞ measured by an ob-
server at infinity in the rest frame of the central object is smaller than the frequency measured
by an observer at finite distance from the black hole. Then, a criterion for the high-frequency
limit to hold is

ε = (ω∞rs)
−1 � 1. (2.8)

Note that we could have taken any observer at finite distance of the black hole as a criterion.
The choice of the observer at infinity provides the simplest expression.

2.3. Lorenz gauge. As commonly known, Maxwell’s equations in the form (2.3) are not
hyperbolic. In particular, they admit pure gauge solutions. We eliminate this problem by
introducing a gauge, specifically, the Lorenz gauge

∇βAβ = 0. (2.9)

Using the identity

D̂ β
α Aβ +∇α∇βAβ = ∇β∇βAα +RαβA

β, (2.10)

one observes that, if Maxwell’s equations (2.3) and the Lorenz gauge (2.9) are satisfied, then
the following wave equation holds:

∇α∇αAβ +RβγA
γ = 0. (2.11)

It should then be checked that, if the wave equation (2.11) is satisfied, one obtains a solution
to Maxwell’s equations in the Lorenz gauge. Note that we consider here approximate solutions
to Maxwell’s equations

D̂ β
α Aβ = O(ε0). (2.12)

Hence, it is sufficient to consider

∇αAα = O(ε). (2.13)

We reproduce the standard argument recovering Maxwell’s equation in the Lorenz gauge
from the wave equation (2.11), taking into account that we are considering only approximate
solutions. Assume that the wave equation holds:

∇α∇αAβ +RβαA
β = O(ε0)⇔

{
kαkα = 0
ikαkαA1β +A0β∇αkα + 2kα∇αA0β = 0

. (2.14)

Assume furthermore that the initial data for the wave equation (2.14) satisfy

kαA0α = 0,

∇αA0
α + iA1

αkα = 0.
(2.15)

Equation (2.14) implies that

∇α∇α
(
∇βAβ

)
= O(ε−1). (2.16)

The initial data (2.15) for the wave equation (2.14) imply that, initially,

∇αAα = O(ε). (2.17)

Observe that the condition

T β∇β (∇αAα) = O(ε0) (2.18)
4



is automatically satisfied, where T is a unit future-oriented normal vector to the hypersurface
on which initial data are prescribed. Hence, the equation satisfied by the Lorenz gauge source
function (2.16) admits initial data as in (2.17) and (2.18) vanishing at the appropriate order
in ε (at O(ε1) and O(ε0), respectively). This implies that Maxwell’s equations

D̂ β
α Aβ = O(ε0)⇔

 kαA0[αkµ] = 0
2kα∇αA0µ − (ikαA1α +∇αA0α) kµ − kα∇µA0α

−A0α∇αkµ +A0µ∇αkα + ikαkαA1µ = 0,
(2.19)

are satisfied in the Lorenz gauge

∇βAβ = O(ε1)⇔
{
kαA0α = 0
∇αA0

α + iA1
αkα = 0

. (2.20)

2.4. Assumption on the initial conditions. In this paper, we consider solutions of the
vacuum Maxwell’s equations assuming a WKB ansatz (2.5), with initial conditions satisfying
the following properties:

(1) The Lorenz gauge (2.20) is satisfied initially.
(2) The initial phase gradient kα is a future-oriented null vector. This assumption is in

fact a compatibility condition resulting from the dispersion relation (3.8) below, and
the Lorenz gauge condition (2.20).

(3) Initially, the beam has circular polarization (see Section 3.4).

3. Higher-order geometrical optics

3.1. WKB approximation of the field action. We compute the WKB approximation for
our field theory by inserting the WKB ansatz (2.5) in the field action (2.4):

J =

∫
M

d4x
√
gRe

(
AαeiS/ε

)
D̂ β
α Re

(
Aβe

iS/ε
)

=
1

4

∫
M

d4x
√
g
[
A∗αe−iS/εD̂ β

α

(
Aβe

iS/ε
)

+ c.c.
]

+
1

4

∫
M

d4x
√
g
[
AαeiS/εD̂ β

α

(
Aβe

iS/ε
)

+ c.c.
]
.

(3.1)

Since eiS/ε is a rapidly oscillating function, the Riemann–Lebesgue lemma implies, for suffi-
ciently regular f , ∫

M
d4x
√
g e±i2S(x)/εf(x) = o(ε0). (3.2)

Upon expanding the derivative terms in equation (3.1), and keeping only terms of the low-
est two orders in ε, we obtain the following WKB approximation of the field action (for
convenience, we are shifting the powers of ε, such that the lowest-order term is of O(ε0)):

− ε2J =

∫
M

d4x
√
g
[
D β
α A∗αAβ −

iε

2

v
∇µD β

α (A∗α∇µAβ −Aβ∇µA∗α)
]

+ O(ε2), (3.3)

where

D β
α =

1

2
kµk

µδβα −
1

2
kαk

β,

v
∇µD β

α = kµδβα − δµαkβ − gµβkα.
(3.4)
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Here, D β
α represents the symbol [32] of the operator D̂ β

α , evaluated at the phase space point

(x, p) = (x, k), and we are using the notation
v
∇µD β

α for the vertical derivative (Appendix

A) of D β
α , evaluated at the phase space point (x, p) = (x, k).

The action depends on the following fields: S(x), ∇µS(x), Aα(x,∇S), ∇µ [Aα(x,∇S)],
A∗α(x,∇S), ∇µ [A∗α(x,∇S)]. Following the calculations in Appendix B, the Euler–Lagrange
equations are

D β
α Aβ − iε

(
v
∇µD β

α

)
∇µAβ −

iε

2

(
∇µ

v
∇µD β

α

)
Aβ = O(ε2), (3.5)

D β
α A∗α + iε

(
v
∇µD β

α

)
∇µA∗α +

iε

2

(
∇µ

v
∇µD β

α

)
A∗α = O(ε2), (3.6)

∇µ

[(
v
∇µD β

α

)
A∗αAβ −

iε

2

(
v
∇µ

v
∇νD β

α

)
(A∗α∇νAβ −Aβ∇νA∗α)

]
= O(ε2). (3.7)

In the above equations, the symbol D β
α and its vertical derivatives are all evaluated at the

phase space point (x, k).

3.2. 0th-order geometrical optics. Starting with equations (3.5)–(3.7), and keeping only
terms of O(ε0), we obtain

D β
α A0β = 0, (3.8)

D β
α A0

∗α = 0, (3.9)

∇µ

[(
v
∇µD β

α

)
A0
∗αA0β

]
= 0. (3.10)

Equation (3.8) can also be written as:

1

2

(
kµk

µδβα − kαkβ
)
A0β = 0. (3.11)

This equation admits nontrivial solutions if and only if A0β is an eigenvector of D β
α with

zero eigenvalue. Two cases should be discussed: k is a null vector, or k is not a null vector.
Assume first that k is not a null vector, kµkµ 6= 0. Then, equation (3.8) leads to

A0α =
kβA0β

kµkµ
kα. (3.12)

This entails that

A0[αkβ] = 0 or Fαβ = ∇[αAβ] = O(ε0). (3.13)

In other words, when k is not a null vector, the corresponding solution is, at the lowest order
in ε, a pure gauge solution. Since the corresponding electromagnetic field vanishes, we do not
consider this case further.

If k is null, kµkµ = 0, equation (3.8) implies

kβA0β = 0. (3.14)

This is consistent with the Lorenz gauge condition (2.20) at the lowest order in ε. A similar
argument can be applied for the complex-conjugate equation (3.9), from which we obtain
kαA0

∗α = 0.
6



Using equations (3.8)–(3.10), we obtain the well-known system of equations governing the
geometrical optics approximation at the lowest order in ε:

kµk
µ = 0, (3.15)

kαA0α = kαA0
∗α = 0, (3.16)

∇µ (kµI0) = 0, (3.17)

where I0 = A0
∗αA0α is the lowest-order intensity (more precisely, I0 is proportional to the

wave action density [67]). Equation (3.17) is obtained from equation (3.10) by using the
orthogonality condition (3.16). Using equation (2.6), we have

∇µkα = ∇αkµ, (3.18)

and we can use equation (3.15) to derive the geodesic equation for kµ:

kν∇νkµ = 0. (3.19)

3.3. 1st-order geometrical optics. Here, we examine equations (3.5) and (3.6) at order ε1

only:

D β
α A1β − i

(
v
∇µD β

α

)
∇µA0β −

i

2

(
∇µ

v
∇µD β

α

)
A0β = 0, (3.20)

D β
α A1

∗α + i

(
v
∇µD β

α

)
∇µA0

∗α +
i

2

(
∇µ

v
∇µD β

α

)
A0
∗α = 0. (3.21)

Using equation (3.4), we can also rewrite equation (3.20) as follows:

kµ∇µA0α −
1

2
kα∇µA0

µ − 1

2
kβ∇αA0

β − i

2
kαk

βA1β

+
1

2
A0α∇µkµ −

1

4
A0

β∇βkα −
1

4
A0

β∇αkβ = 0.

(3.22)

Using equation (3.18), we can rewrite the last two terms as

− 1

4
A0

β∇βkα −
1

4
A0

β∇αkβ = −1

2
A0

β∇αkβ. (3.23)

With the results obtained at O(ε0), we also have

kβA0
β = 0 ⇒ ∇α

(
kβA0

β
)

= kβ∇αA0
β +A0

β∇αkβ = 0. (3.24)

Then, equation (3.22) becomes

kµ∇µA0α +
1

2
A0α∇µkµ −

1

2
kα (∇µA0

µ + ikµA1
µ) = 0. (3.25)

The last term can be eliminated by using the Lorenz gauge (2.20). The same steps can be
applied to the complex-conjugate equation (3.21):

kµ∇µA0α +
1

2
A0α∇µkµ = 0,

kµ∇µA0
∗β +

1

2
A0
∗β∇µkµ = 0.

(3.26)

Furthermore, using the lowest-order intensity I0, we can write the amplitude vectors in the
following way:

A0α =
√
I0a0α, A0

∗α =
√
I0a0

∗α, (3.27)
7



where a0α is a unit complex vector (i.e. a0
∗αa0α = 1) describing the polarization. Then, from

equation (3.26), together with equation (3.17), we obtain

kµ∇µa0α = kµ∇µa0∗α = 0. (3.28)

The parallel propagation of the complex vector a0α along the integral curve of kµ is another
well-known result of the geometrical optics approximation.

3.4. The polarization vector in a null tetrad. We observed that the polarization vector
satisfies the orthogonality condition

kαa0α = 0. (3.29)

Consider the Newman–Penrose tetrad {kα, nα,mα, m̄α} satisfying

mαm̄
α = 1, kαn

α = −1,

kαk
α = nαn

α = mαm
α = m̄αm̄

α = 0,

kαm
α = kαm̄

α = nαm
α = nαm̄

α = 0.

(3.30)

Since the Newman–Penrose tetrad is adapted to the vector kα, the orthogonality conditions
imply that mα and m̄α are functions of kα. Since the polarization vector a0α is orthogonal
to kα, we can decompose it as

a0α(x, k) = z1(x)mα(x, k) + z2(x)m̄α(x, k) + z3(x)kα(x), (3.31)

where z1, z2, and z3 are complex scalar functions. Since a0α is a unit complex vector, the
scalar functions z1 and z2 are constrained by

z∗1z1 + z∗2z2 = 1. (3.32)

It is important to note that the decomposition (3.31), and more specifically, the choice of mα,
requires choosing a null vector nα. Fixing nα is equivalent to choosing a timelike vector field
tα, that represents an observer. Once nα is fixed, the remaining SO(2) gauge freedom in the
choice of mα is described by the spin rotation

kα 7→ kα, nα 7→ nα, mα 7→ eiφmα, for φ ∈ R. (3.33)

Altogether, the gauge freedom in the decomposition (3.31) is described by the little group,
that is to say the subgroup of the transformations leaving k invariant.

Using equations (3.31) and (3.19), the parallel-transport equation for the polarization vec-
tor becomes

0 = kµ∇µa0α = z1k
µ∇µmα + z2k

µ∇µm̄α +mαk
µ∇µz1

+ m̄αk
µ∇µz2 + kαk

µ∇µz3.
(3.34)

Contracting the above equation with m̄α, mα, and nα, we obtain

kµ∇µz1 = −z1m̄αkµ∇µmα,

kµ∇µz2 = −z2mαkµ∇µm̄α,

kµ∇µz3 = −(z1m
α + z2m̄

α)kµ∇µnα.
(3.35)
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Recall that in the above equations, the vectors mα and m̄α are functions of x and k(x). The
covariant derivatives are applied as follows:

kµ∇µmα = kµ∇µ [mα(x, k)]

= kµ
(
h
∇µmα

)
(x, k) + kµ (∇µkν)

(
v
∇νmα

)
(x, k)

= kµ
h
∇µmα,

(3.36)

where
h
∇µ is the horizontal derivative (Appendix A). It is convenient to introduce the following

2-dimensional unit complex vector, which is analogous to the Jones vector in optics [29, 9,
55, 56]:

z =

(
z1
z2

)
, (3.37)

and we shall also use the hermitian transpose z†, defined as follows:

z† =
(
z∗1 z∗2

)
. (3.38)

Then, the equations for z1 and z2 can be written in a more compact form:

kµ∇µz = ikµBµσ3z, (3.39)

where σ3 is the third Pauli matrix,

σ3 =

(
1 0
0 −1

)
, (3.40)

and Bµ is the real 1-form extending to general relativity the Berry connection used in optics
[9, 55]

Bµ(x, k) =
i

2

(
m̄α

h
∇µmα −mα

h
∇µm̄α

)
= im̄α

h
∇µmα. (3.41)

Furthermore, if we restrict z to a worldline xµ(τ), with ẋµ = kµ, we can write

ż = ikµBµσ3z. (3.42)

Integrating along the worldline, we obtain

z(τ) =

(
eiγ(τ) 0

0 e−iγ(τ)

)
z(0), (3.43)

where γ represents the Berry phase [9, 55]

γ(τ1) =

∫ τ1

τ0

dτkµBµ. (3.44)

Using either equation (3.35) or equation (3.42), we see that the evolution of z1 and z2 is
decoupled in the circular polarization basis, and the following quantities are conserved along
kµ:

1 = z∗1z1 + z∗2z2 = z†z,

s = z∗1z1 − z∗2z2 = z†σ3z.
(3.45)

Based on our assumptions on the initial conditions (Section 2.4), we only consider beams with

z(0) =

(
1
0

)
or z(0) =

(
0
1

)
. (3.46)

9



Thus, we have s = ±1, depending on the choice of the initial polarization state.
The results described in this section are similar to the description of the polarization of

electromagnetic waves travelling in a medium with an inhomogeneous index of refraction [9].

3.5. Extended geometrical optics. Now, we take equations (3.5)–(3.7), but without split-
ting them order by order in ε. Our aim is to derive an effective Hamilton–Jacobi system that
would give us O(ε) corrections to the ray equations.

3.5.1. Effective dispersion relation. By contracting equation (3.5) with A∗α and equation (3.6)
with Aβ, and also adding them together, we obtain the following equation:

D β
α A∗αAβ −

iε

2

(
v
∇µD β

α

)
(A∗α∇µAβ −Aβ∇µA∗α) = O(ε2). (3.47)

Using equations (3.4), (3.15) and (3.16), we can rewrite this as follows:

1

2
kµk

µ(A0
∗αA0α + εA0

∗αA1α + εA1
∗αA0α)

− iε

2
kµ (A0

∗α∇µA0α −A0α∇µA0
∗α)

+
iε

4
kα (A0

∗µ∇µA0
α −A0

µ∇µA0
∗α) = O(ε2).

(3.48)

Using equation (3.16), we obtain

0 = A0
∗µ∇µ (kαA0

α) = kαA0
∗µ∇µA0

α +A0
∗µA0

α∇µkα, (3.49)

so we can write:
iε

4
kα (A0

∗µ∇µA0
α −A0

µ∇µA0
∗α) = − iε

2
∇µkαA0

∗[µA0
α] = 0, (3.50)

where the latter equality is due to (3.18). Then, equation (3.47) becomes

1

2
kµk

µ(A0
∗αA0α + εA0

∗αA1α + εA1
∗αA0α)

− iε

2
kµ (A0

∗α∇µA0α −A0α∇µA0
∗α) = O(ε2).

(3.51)

Let us introduce the O(ε1) intensity:

I = A∗αAα = A∗αAα = A0
∗αA0α + εA0

∗αA1α + εA1
∗αA0α + O(ε2). (3.52)

Then, we can rewrite the amplitude as

Aα =
√
Iaα =

√
I (a0α + εa1α) + O(ε2), (3.53)

where aα is a unit complex vector. Then, equation (3.51) can be expressed as follows:

1

2
kµk

µ − iε

2
kµ (a0

∗α∇µa0α − a0α∇µa0∗α) = O(ε2). (3.54)

This can be viewed as an effective dispersion relation, containing O(ε) corrections to the
geometrical optics equation (3.15). Finally, let us assume the notation

Kµ = kµ −
iε

2
(a0
∗α∇µa0α − a0α∇µa0∗α) (3.55)

and rewrite the effective dispersion relation takes the following form:

1

2
KµK

µ = O(ε2). (3.56)
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This equation can also be obtained directly from the effective field action (3.3), specifically
by varying the latter with respect to I.

3.5.2. Effective transport equation. Using equations (3.4), (3.15) and (3.16), the effective
transport equation (3.7) becomes

∇µ

[
kµ (A0

∗αA0α + εA0
∗αA1α + εA1

∗αA0α)

− ε

2
kα (A0

∗µA1
α +A1

∗αA0
µ) +

iε

4
(A0

∗α∇αA0
µ −A0

µ∇αA0
∗α)

+
iε

4
(A0

∗µ∇αA0
α −A0

α∇αA0
∗µ)

− iε

2
gµν (A0

∗α∇νA0α −A0α∇νA0
∗α)

]
= O(ε2).

(3.57)

We can perform the following replacements in the above equation:

A0
∗α∇αA0

µ = ∇α (A0
∗αA0

µ)−∇αA0
∗αA0

µ,

∇αA0
∗µA0

α = ∇α (A0
∗µA0

α)−A0
∗µ∇αA0

α.
(3.58)

After rearranging terms, the effective transport equation becomes

∇µ

[
kµ (A0

∗αA0α + εA0
∗αA1α + εA1

∗αA0α) +
iε

4
∇α
(
A0
∗[αA0

µ]
)

− iε

2
A0

µ (∇αA0
∗α − ikαA1

∗α) +
iε

2
A0
∗µ (∇αA0

α + ikαA1
α)

− iε

2
gµν (A0

∗α∇νA0α −A0α∇νA0
∗α)

]
= O(ε2).

(3.59)

The following term vanishes due to the symmetry of the Ricci tensor:

∇µ∇α
(
A0
∗[αA0

µ]
)

= ∇[µ∇α] (A0
∗αA0

µ)

=
(
R ν
ανµ −R ν

µνα

)
A0
∗αA0

µ

= (Rαµ −Rµα)A0
∗αA0

µ

= 0.

(3.60)

Furthermore, using the Lorenz gauge condition (2.20), we are left with the following form of
the effective transport equation:

∇µ

[
kµ(A0

∗αA0α + εA0
∗αA1α + εA1

∗αA0α)

− iε

2
gµν (A0

∗α∇νA0α −A0α∇νA0
∗α)

]
= O(ε2).

(3.61)

Introducing the intensity I, and the vector Kµ, we obtain

∇µ

{
I

[
kµ − iε

2
gµν (a0

∗α∇νa0α − a0α∇νa0∗α)

]}
= ∇µ (IKµ) = O(ε2). (3.62)
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This is an effective transport equation for the intensity I, which includes O(ε) corrections to
the geometrical optics equation (3.17).

4. Effective ray equations

4.1. Hamilton–Jacobi system at leading order. The lowest-order geometrical optics
equations (3.15) and (3.17) can be viewed as a system of coupled partial differential equations:

1

2
gµνkµkν = 0, (4.1)

∇µ (I0k
µ) = 0, (4.2)

where kµ = ∇µS. The first equation is a Hamilton–Jacobi equation for the phase function
S, and the second equation is a transport equation for the intensity I0 [49]. The Hamilton–
Jacobi equation can be solved using the method of characteristics. This is done by defining
a Hamiltonian function on T ∗M , such that

H (x,∇S) =
1

2
gµνkµkν = 0. (4.3)

It is obvious that in this case, the Hamiltonian is

H(x, p) =
1

2
gµνpµpν , (4.4)

and Hamilton’s equations take the following form:

ẋµ =
∂H

∂pµ
= gµνpν , (4.5)

ṗµ = − ∂H
∂xµ

= −1

2
∂µg

αβpαpβ. (4.6)

Given a solution {xµ(τ), pµ(τ)} for Hamilton’s equations, we obtain a solution of the Hamilton–
Jacobi equation (4.3) by taking [33]:

S(xµ(τ1), pµ(τ1)) =

∫ τ1

τ0

dτ [ẋµpµ −H(x, p)] + const. (4.7)

Once the Hamilton–Jacobi equation is solved, the transport equation (4.2) can also be solved,
at least in principle [49]. However, our main interest is in the ray equations governed by
the Hamiltonian (4.4). The corresponding Hamilton’s equations (4.5) and (4.6) describe null
geodesics. These equations can easily be rewritten as

ẍµ + Γµαβẋ
αẋβ = 0, (4.8)

or in the explicitly covariant form:

pν∇νpµ = ẋν∇ν ẋµ = 0. (4.9)

4.2. Effective Hamilton–Jacobi system. The effective dispersion relation (3.56), together
with the effective transport equation (3.62) introduce O(ε1) corrections over the system dis-
cussed above:

1

2
gµνkµkν −

iε

2
kµ (a0

∗α∇µa0α − a0α∇µa0∗α) = O(ε2), (4.10)

∇µ

{
I

[
kµ − iε

2
gµν (a0

∗α∇νa0α − a0α∇νa0∗α)

]}
= O(ε2). (4.11)
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Using equation (3.31), the effective dispersion relation becomes

1

2
gµνkµkν −

iε

2
kµ
(
z†∂µz − ∂µz†z

)
− εskµBµ = O(ε2), (4.12)

where Bµ = Bµ(x, k) is the Berry connection introduced in equation (3.41), and s = ±1,
depending on the initial polarization. Using equation (3.43), together with the assumption
on the initial polarization, we can write:

− iε

2
kµ
(
z†∂µz − ∂µz†z

)
= εskµ∂µγ. (4.13)

Since the value of s is fixed by initial conditions, the only unknowns are the phase function
S and the Berry phase γ. We can write an effective Hamilton–Jacobi equation for the total
phase S̃ = S + εsγ:

H
(
x,∇S̃

)
=

1

2
gµνkµkν + εskµ∂µγ − εskµBµ + O(ε2). (4.14)

The corresponding Hamiltonian function on T ∗M is

H(x, p) =
1

2
gµνpµpν − εsgµνpµBν(x, p), (4.15)

and we have the following Hamilton’s equations:

ẋµ =
∂H

∂pµ
= gµνpν − εs

(
Bµ + pα

v
∇µBα

)
, (4.16)

ṗµ = − ∂H
∂xµ

= −1

2
∂µg

αβpαpβ + εspα

(
∂µg

αβBβ + gαβ∂µBβ

)
. (4.17)

These equations contain polarization-dependent corrections to the null geodesic equations
(4.5) and (4.6), representing the gravitational spin Hall effect of light. For ε = 0, one recovers
the standard geodesic equation in canonical coordinates.

We can also write these ray equations in a more compact form(
ẋµ

ṗµ

)
=

(
0 δµν
−δνµ 0

)( ∂H
∂xν
∂H
∂pν

)
, (4.18)

where the constant matrix on the right-hand side is the inverse of the symplectic 2-form, or
the Poisson tensor [45].

4.2.1. Noncanonical coordinates. The Hamiltonian (4.15) contains the Berry connection Bµ,
which is gauge-dependent. The latter means that Bµ depends on the choice of mα and m̄α; for

example, the transformation mα → mαe
iφ causes the following transformation of the Berry

connection:

Bµ → Bµ −∇µφ. (4.19)

This kind of gauge dependence was considered by Littlejohn and Flynn in [44], where they
also proposed how to make the Hamiltonian and the equations of motion gauge-invariant.
The main idea is to introduce noncanonical coordinates such that the Berry connection is
removed from the Hamiltonian and the symplectic form acquires the corresponding Berry
curvature, which is gauge-invariant. This is similar to the description of a charged particle
in an electromagnetic field in terms of either the canonical or the kinetic momentum of the
particle. The Berry connection and Berry curvature play a similar role as the electromagnetic
vector potential and the electromagnetic tensor [14].
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We start by rewriting the Hamiltonian (4.15) as

H(x, p) = H0(x, p)− εsgµνpµBν(x, p), (4.20)

where H0 = 1
2g
µνpµpν . Following [44], the Berry connection can be written in the following

way, by using the definition of the horizontal derivative

pµBµ(x, p) = ipµm̄α
h
∇µmα

= ipµm̄α∇µmα + ipµpσΓσµρm̄
α
v
∇ρmα

= i
∂H0

∂pµ
m̄α∇µmα − i

∂H0

∂xµ
m̄α

v
∇ρmα.

(4.21)

The Berry connection can be eliminated from the Hamiltonian (4.15) by considering the
following change of coordinates on T ∗M

Xµ = xµ + iεsm̄α
v
∇µmα, (4.22)

Pµ = pµ − iεsm̄α∇µmα. (4.23)

Since (X,P ) are noncanonical coordinates, the symplectic form transforms nontrivially under
this change of coordinates. The Hamiltonian (4.15) is as a scalar, so we obtain

H ′(X,P ) = H(x, p)

= H

(
Xµ − iεsm̄α

v
∇µmα, Pµ + iεsm̄α∇µmα

)
= H(X,P )− iεs∂H0

∂xµ
m̄α

v
∇µmα + iεs

∂H0

∂pµ
m̄α∇µmα

= H0(X,P ).

(4.24)

In the new coordinate system (X,P ), we obtained the following Hamiltonian:

H ′(X,P ) =
1

2
gµν(X)PµPν . (4.25)

The corresponding Hamilton’s equations can be written in a matrix form as:

(
Ẋµ

Ṗµ

)
= T ′

(
∂H′

∂Xν

∂H′

∂Pν

)
, (4.26)

where T ′ is the Poisson tensor in the new variables. Following Marsden and Ratiu [45, Section
10.4], we obtain

T ′ =

(
(Fpp)

νµ δµν + (Fxp)
µ
ν

−δνµ − (Fxp)
ν
µ − (Fxx)νµ

)
, (4.27)
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where we have the following Berry curvature terms

(Fpp)
νµ = i

( v
∇µm̄α

v
∇νmα −

v
∇νm̄α

v
∇µmα

+ m̄α
v
∇[µ

v
∇ν]mα −mα

v
∇[µ

v
∇ν]m̄α

)
,

(Fxx)νµ = i
(
∇µm̄α∇νmα −∇νm̄α∇µmα

+ m̄α∇[µ∇ν]mα −mα∇[µ∇ν]m̄α
)
,

(Fpx) µ
ν = − (Fxp)

µ
ν = i

(
v
∇µm̄α∇νmα −∇νm̄α

v
∇µmα

)
.

(4.28)

Simplified expressions for these terms can be found in appendix C. Now we can write Hamil-
ton’s equations in the new variables:

Ẋµ = Pµ + εsP ν (Fpx) µ
ν + εsΓαβνPαP

β (Fpp)
νµ , (4.29)

Ṗµ = ΓαβµPαP
β − εsP ν (Fxx)νµ − εsΓ

α
βνPαP

β (Fxp)
ν
µ . (4.30)

The last term on the right-hand side of equation (4.29) is the covariant analogue of the
spin Hall effect correction obtained in optics, (ṗ× p) /|p|3, due to the Berry curvature in
momentum space [12, 55]. This term is also the source of the gravitational spin Hall effect in
the work of Gosselin et al. [35]. In equation (4.30), the second term on the right-hand side
contains the Riemann tensor, and resembles the curvature term obtained in the Mathisson–
Papapetrou–Dixon equations [16].

5. Numerical examples

To illustrate how the polarization-dependent correction terms modify the ray trajectories,
we provide here some numerical examples. For convenience, we use canonical coordinates and
treat x0 as a parameter along the rays. Hence, equations (4.16) and (4.17) become

ẋ0 = 1, (5.1)

ẋi =

giνpν − εs
(
Bi + pα

v
∇iBα

)
g0νpν − εs

(
B0 + pα

v
∇0Bα

) , (5.2)

ṗi =
−1

2∂ig
αβpαpβ + εspα

(
∂ig

αβBβ + gαβ∂iBβ
)

g0νpν − εs
(
B0 + pα

v
∇0Bα

) , (5.3)

and p0 is calculated from
1

2
gµνpµpν − εsgµνpµBν(x, p) = 0. (5.4)

This equation can be solved explicitly, using the fact that the velocity ẋα is future oriented:

p0 =
(
g00
)−1 {− (g0ipi − εsg0µBµ)

+
[(
g0ipi − εsg0µBµ

)2 − g00 (gijpipj − 2εspig
iµBµ

)]1/2 }
.

(5.5)

15



Figure 1. Results of numerical simulations illustrating the gravitational spin
Hall effect of light around a Schwarzschild black hole. The effect is exaggerated
for visualization purposes. The two figures present the same rays from different
viewing angles. The central sphere represents the Schwarzschild black hole,
and the small orange sphere represents a source of light. The blue and the
red trajectories correspond to rays of opposite circular polarizations, s = ±1,
while the green trajectory represents a null geodesic. We take rs = 1, and we
start with the initial position xi(0) = (−50rs, 15rs, 0), and initial normalized
momentum pi = (1, 0, 0). The wavelength λ is set to a sufficiently large value
to make the effect visible on this plot.

Note that in general Bµ depends on p0. However, since this is an O(ε1) term, we can replace
the O(ε0) expression for p0 in Bµ.

In order to compare with the results of Gosselin et al. [35], we consider a Schwarzschild
spacetime in Cartesian isotropic coordinates (t, x, y, z):

ds2 = −
(

1− rs
4R

1 + rs
4R

)2

dt2 +
(

1 +
rs
4R

)4
(dx2 + dy2 + dz2), (5.6)

where rs = 2GM
c2

is the Schwarzschild radius, and R =
√
x2 + y2 + z2. We also define the

following orthonormal tetrad:

e0 =
1 + rs

4R

1− rs
4R

∂t, e1 =
(

1 +
rs
4R

)−2
∂x, e2 =

(
1 +

rs
4R

)−2
∂y, e3 =

(
1 +

rs
4R

)−2
∂z, (5.7)

where tµ = (e0)
µ is our choice of observer.

The Berry connection Bµ can be explicitly computed by introducing a particular choice
of polarization vectors. Using the orthonormal tetrad, we can easily adapt the polarization
vectors used in optics [55]. We can write pµ = P a(ea)

µ, vµ = V a(ea)
µ, and wµ = W a(ea)

µ,
where the components of these vectors are given by

P =


P 0

P 1

P 2

P 3

 , V =


0

−P 2/Pp
P 1/Pp

0

 , W =


0

P 1P 3/(PsPp)
P 2P 3/(PsPp)
−Pp/Ps

 , (5.8)
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Figure 2. Results of numerical simulations illustrating the gravitational spin
Hall effect of light around the Sun. The effect is exaggerated for visualization
purposes. Viewing angle from above. The separation distance d is observed
from the Earth. The blue and the red trajectories correspond to rays of op-
posite circular polarization, s = ±1, while the green trajectory represents a
null geodesic. We take rs = 3 km, and we start with the initial position
xi(0) = (−107rs, 3× 105rs, 0), and initial normalized momentum pi = (1, 0, 0).

where

Pp =

√
(P 1)2 + (P 2)2, Ps =

√
(P 1)2 + (P 2)2 + (P 3)2. (5.9)

The vectors vµ and wµ are real unit spacelike vectors that represent a linear polarization
basis, satisfying (C.2). We now have all the elements required for the numerical integration
of equations (5.1)–(5.3). For this purpose, we are using Mathematica [39], with the NDSolve
function. The default settings for integration method, precision and accuracy are being used.

As a first step, we numerically compare our ray equations (5.1)-(5.3) with those predicted
by Gosselin et al. [35]. Up to numerical errors, we obtain the same ray trajectories with both
sets of equations. However, while the equations obtained by Gosselin et al. only apply to
static spacetimes, equations (5.1)-(5.3) do not have this limitation.

The results of our numerical simulations are shown in Figure 1, which illustrates the general
behavior of the gravitational spin Hall effect of light around a Schwarzschild black hole (the
actual effect is small, so the figure is obtained by numerical integration of equations (5.1)-(5.3)
for unrealistic parameters). Here, we consider rays of opposite circular polarization (s = ±1)
passing close to a Schwarzschild black hole, together with a reference null geodesic (s = 0).
Except for the value of s, we are considering the same initial conditions,

(
xi(0), pi(0)

)
, for

these rays. Unlike the null geodesic, for which the motion is planar, the circularly polarized
rays are not confined to a plane.

As another example, we used initial conditions
(
xi(0), pi(0)

)
, such that the rays are ini-

tialized as radially ingoing or outgoing. In this case (not represent by any figure, since it is
trivial), the gravitational spin Hall effect vanishes, and the circularly polarized rays coincide
with the radial null geodesic.

Using these numerical methods, we can also estimate the magnitude of the gravitational
spin Hall effect. As a particular example, we consider a similar situation to the one presented
in Figure 1, where the black hole is replaced with the Sun. More precisely, we model this
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situation by considering a Schwarzschild black hole with rs ≈ 3 km. We consider the deflection
of circularly polarized rays coming from a light source far away, passing close to the surface
of the Sun, and then observed on the Earth. This situation is illustrated in Figure 2. The
numerical results are based on the initial data presented in the caption of Figure 2. When
reaching the Earth, the separation distance between the rays of opposite circular polarization
depends on the wavelength. For example, taking wavelengths of the order λ ≈ 10−9 m
results in a separation distance of the order d ≈ 10−15 m, while for wavelengths of the order
of λ ≈ 1 m we obtain a separation distance of the order d ≈ 10−6 m. Although the ray
separation is small (about six orders of magnitude smaller than the wavelength), what really
matters is that the rays are scattered by a finite angle, so the ray separation grows linearly
with distance after the re-intersection point. This means that the effect should be robustly
observable if one measures it sufficiently far from the Sun. Furthermore, massive compact
astronomical objects, such as black holes or neutron stars, are expected to produce a larger
gravitational spin Hall effect.

6. Conclusions

In summary, we have presented a first comprehensive theory of the gravitational spin Hall
effect that occurs due to the coupling of the polarization with the translational dynamics of
the light rays. The ray dynamics is governed by the corrected Hamiltonian

H(x, p) =
1

2
gµνpµpν − εsgµνpµBν(x, p). (6.1)

Here, the first term represents the geometrical optics Hamiltonian, and the second terms
represents a correction of O(ε1) that is due to the Berry connection, which is given by

Bµ(x, p) = im̄α
h
∇µmα = im̄α

(
∂

∂xµ
mα − Γσαµmσ + Γσµρpσ

∂

∂pρ
mα

)
. (6.2)

Assuming the noncanonical coordinates (4.22), the corresponding ray equations are

Ẋµ = Pµ + εsP ν (Fpx) µ
ν +

2iεs

(tαPα)2
ΓαβνPαP

βm[νm̄µ], (6.3)

Ṗµ = ΓαβµPαP
β + εsP ν

[
iRαβµνm

αm̄β + (F̃xx)νµ

]
+ εsΓαβνPαP

β (Fpx) ν
µ , (6.4)

where the terms Fpx and F̃xx and the timelike vector t are given in appendix C. The term

containing m[νm̄µ] is the covariant analogue of spin Hall correction term usually encoun-
tered in optics [12, 35], while the Riemann curvature term is reminiscent of the Mathisson–
Papapetrou–Dixon equations [16].

The resulting deviation of the ray trajectories from those predicted by geometrical optics is
weak but not unobservable. First of all, even small angular deviations are observable at large
enough distances. Second, as shown shown in [38], weak quantum measurement techniques
can be used to detect the spin Hall effect of light, even when the spatial separation between
the left-polarized and the right-polarized beams of light is smaller than the wavelength.

Potentially, this work can be naturally extended in two directions. Firstly, the corrected ray
equations are yet to be studied more thoroughly, both analytically and numerically. Rigorous
numerical investigations are needed to obtain a precise prediction of the effect, in particular
for Kerr black holes. Secondly, Maxwell’s equations are a proxy to linearized gravity. It is
expected that a similar approach can be carried out to obtain an effective pointwise description
of a gravitational wave packet, extending the results of [70].
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As discussed in [13], the spin Hall effect of light is directly related to the conservation
of total angular momentum. For the discussion presented so far, the considered rays carry
extrinsic orbital angular momentum, associated with the ray trajectory, and intrinsic spin
angular momentum, associated with the polarization. However, it is well known that light
can also carry intrinsic orbital angular momentum [2, 3, 41] (see also [1] and references
therein). In principle, the magnitude of the spin Hall effect can be increased by considering
optical beams carrying intrinsic orbital angular momentum [8]. The method and ansatz that
we have adopted is insufficient to describe this effect. A more realistic and more precise
approach involving wave packets, such as Laguerre–Gaussian beams, should be considered.
It may be possible to do so using the machinery developed in [17].

A formulation of the special-relativistic dynamics of massless spinning particles and wave
packets beyond the geometrical optics limit has been previously reported by Duval and col-
laborators, cf. [21] for the spin-1/2 case, see also [65]. This analysis relates the modified
dynamics to the approach of Souriau [64], making use of so-called spin enslaving. This has
been extended to general helicity by Andzejewski et al. [4]. We expect that the Hamilton-
ian formulation presented here corresponds to a general relativistic version of the models
considered in the mentioned papers. This will be considered in a future work.
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Appendix A. Horizontal and vertical derivatives on T ∗M

Let (xµ, pµ) be canonical coordinates on T ∗M . Considering fields defined on T ∗M , such as
uα(x, p) and vα(x, p), the horizontal and vertical derivatives are defined as follows [59, section
3.5]:

v
∇µuα =

∂

∂pµ
uα, (A.1a)

h
∇µuα =

∂

∂xµ
uα − Γσαµuσ + Γσµρpσ

∂

∂pρ
uα, (A.1b)
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v
∇µvα =

∂

∂pµ
vα, (A.2a)

h
∇µvα =

∂

∂xa
vα + Γασµv

σ + Γσµρpσ
∂

∂pρ
vα. (A.2b)

The extension for general tensor fields on T ∗M is straightforward. Note that, in contrast to
[59, section 3.5], we have the opposite sign for the last term in the definition of the horizontal
derivative. This is because our fields, uα(x, p) and vα(x, p), are defined on T ∗M , and not
on TM , as is the case in the reference mentioned before. We can make use of the following
properties:

[
h
∇µ,

v
∇ν ] = [

v
∇µ,

v
∇ν ] = 0,

h
∇µpα =

h
∇µgαβ =

v
∇µgαβ = 0. (A.3)

Appendix B. Variation of the action

Here, we derive the Euler–Lagrange equations that correspond to the action

J =

∫
M

d4x
√
gL, (B.1)

where the Lagrangian density is of the following form:

L = L
{
S(x),∇µS(x), Aα(x,∇S(x)),∇µ [Aα(x,∇S(x))] ,

A∗α(x,∇S(x)),∇µ [A∗α(x,∇S(x))]
}
.

(B.2)

Here, S(x) is an independent field, while Aα and A∗α cannot be considered independent, since
they depend on ∇µS. Following Hawking and Ellis [37, p. 65], we define the variation of a
field Ψi as a one-parameter family of fields Ψi(u, x), with u ∈ (−ε, ε) and x ∈M . We use the
following notation:

∂Ψi(u, x)

∂u

∣∣∣∣∣
u=0

= ∆Ψi. (B.3)

Note that the derivative with respect to the parameter u commutes with the covariant deriv-
ative, so we have:

d

du
∇µS(u, x) = ∇µ

(
∂S

∂u

)
, (B.4)

d

du
Aα (u, x,∇S(u, x)) =

∂Aα
∂u

+
∂Aα
∂∇νS

∇ν
(
∂S

∂u

)
, (B.5)

d

du
∇µ [Aα (u, x,∇S(u, x))] = ∇µ

[
d

du
Aα (u, x,∇S(u, x))

]
= ∇µ

[
∂Aα
∂u

+
∂Aα
∂∇νS

∇ν
(
∂S

∂u

)]
.

(B.6)
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We take the variation of the action, taking special care when applying the chain rule:

0 =
dJ

du

∣∣∣∣∣
u=0

=

∫
M

d4x
√
g

{
∂L

∂S
∆S +

∂L

∂∇µS
∆ (∇µS)

+
∂L

∂Aα

[
∆Aα +

∂Aα
∂∇µS

∇µ (∆S)

]
+

∂L

∂∇µAα
∇µ
[
∆Aα +

∂Aα
∂∇νS

∇ν (∆S)

]
+

∂L

∂A∗α

[
∆A∗α +

∂A∗α

∂∇µS
∇µ (∆S)

]
+

∂L

∂∇µA∗α
∇µ
[
∆A∗α +

∂A∗α

∂∇νS
∇ν (∆S)

]}
.

(B.7)

Integrating by parts, and assuming the boundary terms vanish, we obtain:

0 =
dJ

du

∣∣∣∣∣
u=0

=

∫
M

d4x
√
g

{(
∂L

∂Aα
−∇µ

∂L

∂∇µAα

)
∆Aα

+

(
∂L

∂A∗α
−∇µ

∂L

∂∇µA∗α

)
∆A∗α

+
∂L

∂S
∆S −∇µ

[
∂L

∂∇µS
+

∂Aα
∂∇µS

(
∂L

∂Aα
−∇ν

∂L

∂∇νAα

)

+
∂A∗α

∂∇µS

(
∂L

∂A∗α
−∇ν

∂L

∂∇νA∗α

)]
∆S

}
.

(B.8)

Since the above equation must be satisfied for all variations ∆S, ∆Aα, and ∆A∗α, we obtain
the following Euler–Lagrange equations:

∂L

∂A∗α
−∇µ

∂L

∂∇µA∗α
= O(ε2), (B.9)

∂L

∂Aα
−∇µ

∂L

∂∇µAα
= O(ε2), (B.10)

∂L

∂S
−∇µ

[
∂L

∂∇µS
+

∂Aα
∂∇µS

(
∂L

∂Aα
−∇ν

∂L

∂∇νAα

)

+
∂A∗α

∂∇µS

(
∂L

∂A∗α
−∇ν

∂L

∂∇νA∗α

)]
= O(ε2).

(B.11)
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Furthermore, equation (B.11) can be simplified by using equations (B.9) and (B.10). Thus,
as a final result, we have the following set of Euler–Lagrange equations:

∂L

∂A∗α
−∇µ

∂L

∂∇µA∗α
= O(ε2),

∂L

∂Aα
−∇µ

∂L

∂∇µAα
= O(ε2),

∂L

∂S
−∇µ

∂L

∂∇µS
= O(ε2).

(B.12)

Appendix C. Berry curvature

In order to calculate the Berry curvature terms (4.28), it is enough to use a tetrad {tα, pα, vα, wα},
where tα is a future-oriented timelike vector field representing a family of observers and pα is
a generic vector, not necessarily null, representing the momentum of a point particle (ray).
The vectors vα and wα are real spacelike vectors related to mα and m̄α by the following
relations:

mα =
1√
2

(vα + iwα) , m̄α =
1√
2

(vα − iwα) . (C.1)

The elements of the tetrad {tα, pα, vα, wα} satisfy the following relations:

tαt
α = −1, pαp

α = κ, tαp
α = −εω, vαv

α = wαw
α = 1,

tαv
α = tαwα = pαv

α = pαw
α = vαw

α = 0.
(C.2)

Note that the vectors vα and wα depend of pµ through the orthogonality condition, while tα

is independent of pµ. We start by computing the vertical derivatives of the vectors vα and
wα. Using the tetrad, we can write:

v
∇µvα =

∂vα

∂pµ
= c1

µtα + c2
µpα + c3

µvα + c4
µwα, (C.3)

v
∇µwα =

∂wα

∂pµ
= d1

µtα + d2
µpα + d3

µvα + d4
µwα, (C.4)

where ci
µ and di

µ are unknown vector fields that need to be determined. Using the properties
from equation (C.2), we obtain

v
∇µvα =

εω

ε2ω2 + κ
vµtα − 1

ε2ω2 + κ
vµpα + c4

µwα,

v
∇µwα =

εω

ε2ω2 + κ
wµtα − 1

ε2ω2 + κ
wµpα + d3

µvα.

(C.5)

Applying the same arguments to the terms ∇µvα and ∇µwα, we also obtain

∇µvα =− 1

ε2ω2 + κ
(εωpσ∇µvσ + κtσ∇µvσ) tα

+
1

ε2ω2 + κ
(pσ∇µvσ − εωtσ∇µvσ) pα + f4µwα,

∇µwα =− 1

ε2ω2 + κ
(εωpσ∇µwσ + κtσ∇µwσ) tα

+
1

ε2ω2 + κ
(pσ∇µwσ − εωtσ∇µwσ) pα + g3µvα.

(C.6)
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Note that the fields c4µ, d3µ, f4µ, and g3µ are undetermined within this approach, but this is
not a problem, because they do not affect the Berry curvature.

C.1. Fpp. We compute (Fpp)
νµ by using equation (C.5) and setting κ = 0. Since vertical

derivatives commute, we can write

(Fpp)
νµ = i

(
v
∇µm̄α

v
∇νmα −

v
∇νm̄α

v
∇µmα

)
=

v
∇νvα

v
∇µwα −

v
∇µvα

v
∇νwα

=
2

ε2ω2
v[νwµ]

=
2i

ε2ω2
m[νm̄µ].

(C.7)

C.2. Fxx. We have

(Fxx)νµ = i
(
∇µm̄α∇νmα −∇νm̄α∇µmα

+ m̄α∇[µ∇ν]mα −mα∇[µ∇ν]m̄α
)
.

(C.8)

The last two terms can be expressed in terms of the Riemann tensor:

i
(
m̄α∇[µ∇ν]mα −mα∇[µ∇ν]m̄α

)
= −iRαβµνmαm̄β. (C.9)

The first two terms can be computed using equation (C.6) and κ = 0:

(F̃xx)νµ = i
(
∇µm̄α∇νmα −∇νm̄α∇µmα

)
= ∇νvα∇µwα −∇µvα∇νwα

=
1

ε2ω2

(
pσ∇µvσpρ∇νwρ − pσ∇νvσpρ∇µwρ

− εωpσ∇µvσtρ∇νwρ + εωpσ∇νvσtρ∇µwρ

− εωtσ∇µvσpρ∇νwρ + εωtσ∇νvσpρ∇µwρ
)

=
1

ε2ω2

(
pσ∇µmσpρ∇νm̄ρ − pσ∇νmσpρ∇µm̄ρ

− εωpσ∇µmσtρ∇νm̄ρ + εωpσ∇νmσtρ∇µm̄ρ

− εωtσ∇µmσpρ∇νm̄ρ + εωtσ∇νmσpρ∇µm̄ρ
)

(C.10)

C.3. Fpx and Fxp. Since (Fpx) µ
ν = − (Fxp)

µ
ν , it is enough to compute only one term. Using

equations (C.5) and (C.6), and setting κ = 0, we obtain

(Fpx) µ
ν = i

(
v
∇µm̄α∇νmα −∇νm̄α

v
∇µmα

)
= ∇νvα

v
∇µwα −

v
∇µvα∇νwα

=
1

ε2ω2
[(pσ∇νwσ − εωtσ∇νwσ) vµ − (pσ∇νvσ − εωtσ∇νvσ)wµ]

=
i

ε2ω2
[(pσ∇νm̄σ − εωtσ∇νm̄σ)mµ − (pσ∇νmσ − εωtσ∇νmσ) m̄µ] .

(C.11)
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