
Geometrical and spectral study of β-skeleton graphs

L. Alonso∗

Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
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We perform an extensive numerical analysis of β-skeleton graphs, a particular type of proximity
graphs. In a β-skeleton graph (BSG) two vertices are connected if a proximity rule, that depends
of the parameter β ∈ (0,∞), is satisfied. Moreover, for β > 1 there exist two different proximity
rules, leading to lune-based and circle-based BSGs. First, by computing the average degree of large
ensembles of BSGs we detect differences, which increase with the increase of β, between lune-based
and circle-based BSGs. Then, within a random matrix theory (RMT) approach, we explore spectral
and eigenvector properties of randomly weighted BSGs by the use of the nearest-neighbor energy-
level spacing distribution and the entropic eigenvector localization length, respectively. The RMT
analysis allows us to conclude that a localization transition occurs at β = 1.
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I. INTRODUCTION

The analysis of spatial networks plays a fundamental
role for understanding complex systems embedded in geo-
graphical spaces, see [1, 2]. Here we study a model which
is a generalization of the so-called random neighborhood
graphs [3, 4], known as β-skeleton graphs, embedded in
the unit square. In a β-skeleton graph (BSG) two ver-
tices (points or nodes) are connected by an edge if and
only if these vertices satisfy a particular geometrical re-
quirement named as proximity rule. The proximity rule
is encoded in the β parameter which takes values in the
interval 0 < β < ∞. With the proximity rules we will
define below, a fully connected graph is obtained in the
limit β → 0, while the network becomes a disconnected
graph when β →∞.

In particular, BSGs are useful to study geometric com-
plex systems where the connectivity between two items
is interfered by the presence of a third one in between
them. This is the case, for instance of granular materi-
als [5], for representing urban street networks [6], as well
as for representing fractures in rocks [7], among others.

This work is organized as follows. In Sec. II we intro-
duce the proximity rules needed to construct the BSGs.
In fact, for β > 1 there exist two different proxim-
ity rules, leading to lune-based and circle-based BSGs.
Indeed, our study focus on a detailed comparison be-
tween both. Therefore, we study topological and spectral
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properties of BSGs by the use of the average degree, in
Sec. III, and nearest-neighbor energy-level spacing distri-
bution and the entropic eigenvector localization length,
in Sec. IV. Finally, we summarize in Sec. V.

II. DEFINITIONS OF β-SKELETON GRAPHS

For a given set of vertices V = {v1, v2, . . . , vn} on the
plane, an Euclidean distance function d, and a parameter
0 < β < ∞, a graph Gβ(V ), called BSG, is defined as
follows [3]:

Two vertices vi, vj ∈ V are connected with an edge
iff no point from V \{vi, vj} belongs to the neighborhood
N (vi, vj , β), where:

(1) for 0 < β ≤ 1, N (vi, vj , β) is the intersection of
two discs, each with radius

r =
d(vi, vj)

2β
, (1)

having the segment vivj as a chord. The disc centers are
located at

c−+ =
vi + vj

2
∓ R(π/2)(vj − vi)

2β
(1− β2)1/2, (2)

where R(·) is a rotation matrix and vi and vj are the
coordinate vectors of the corresponding vertices, namely

R(π/2) =

(
0 −1
1 0

)
, vi ≡

(
xi
yi

)
, vj ≡

(
xj
yj

)
. (3)

In Fig. 1 we show some examples of neighborhoods
N (vi, vj , β). We stress that in the limit β → 0 the neigh-
borhood N becomes the straight line joining the vertices
vi and vj , so the network becomes fully connected.
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FIG. 1. Examples of neighborhoods N (vi, vj , β) for the ver-
tices vi = (−0.25, 0) and vj = (0.25, 0) and several values of
β ≤ 1.

(2) for β > 1 there are two proximity rules:

(2a) lune-based BSG. Here N (vi, vj , β) is the inter-
section of two discs, each with radius

r =
βd(vi, vj)

2
, (4)

whose centers are at

c1 =
β

2
vi +

(
1− β

2

)
vj , (5)

c2 =
β

2
vj +

(
1− β

2

)
vi. (6)

In Fig. 2(a) we can see the lunes of influence for different
values of β ≥ 1. Note that in the limiting case β → ∞,
N (vi, vj , β) is an infinite strip of width |vi − vj |; thus,
even for very large values of β some connections may
exist.

(2b) circle-based BSG. Here N (vi, vj , β) is the union
of two discs, with radius given by Eq. (4), that pass
through both vi and vj. The disc centers are located at

c−+ =
vi + vj

2
∓ R(π/2)(vj − vi)

2
(β2 − 1)1/2. (7)

In Fig. 2(b) we can see the circles of influence for different
values of β ≥ 1. Note that in the limiting case β → ∞,
N (vi, vj , β) is the entire plane; therefore, for large enough
values of β the skeleton graph becomes a disconnected
graph.

It is worth mentioning that for β = 1, Eqs. (2), (5)
and (7) reduce to the same expression. Indeed, the case
β = 1 is well known in the literature as Gabriel graph [8]
and addressed as a 1-skeleton graph. Another well known
case is β = 2, which is known as relative neighborhood
graph [4], in the lune-based formulation, and typically
addressed as 2-skeleton graph.
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FIG. 2. Examples of (a) lune-based and (b) circle-based
neighborhoods N (vi, vj , β) for the vertices vi = (−0.25, 0)
and vj = (0.25, 0) and some values of β ≥ 1.

III. RANDOM β-SKELETON GRAPHS IN THE
UNIT SQUARE

In this work we consider randomly and independently
distributed vertices in the unit square. As examples,
in Fig. 3 we show BSGs with β = 0.5 and β = 1 for
N = 200. Note that we have used the same set of ran-
domly distributed vertices in both panels. Here, since
β ≤ 1 the proximity rule is unique. Then, in Fig. 4 we
present BSGs for β = 1.5 and β = 2. There we consider
both the lune-based (left panels) and the circle-based
(right panels) proximity rules. We have used the same set
of vertices of Fig. 3. From this figure it is clear that dif-
ferent proximity rules produce quite different networks.
In particular, for a fixed value of β, lune-based skeleton
graphs show higher connectivity than circle-based skele-
ton graphs. We will characterize this feature by the use
of geometrical and spectral properties below.

A. Average degree

A well known topological measure in graph theory is
the degree of a vertex k, which is the number of edges
incident to a given vertex. Here, since we are interested
in random BSGs, we will consider the ensemble average
degree 〈k〉 that we compute by averaging over all vertices
of BSGs with fixed parameter pairs (N, β).

On the one hand, in Figs. 5 we plot 〈k〉 as a function
of N for random BSGs with several values of β < 1 (i.e.,
when only one proximity rule applies). We observe that
for fixed β, 〈k〉 increases for increasing N . Moreover, for
fixed N , 〈k〉 increases for decreasing β; this confirms the
expected scenario of completely connected networks in
the limit β → 0.

On the other hand, in Figs. 6 and 7 we also plot 〈k〉 as a
function of N but now for random BSGs with β ≥ 1. We
consider both lune-based (left panels) and circle-based
(right panels) proximity rules. For clarity, we group the
data in the regimes 1 ≤ β < 2 (Fig. 6) and β ≥ 2 (Fig. 7).
First, let us concentrate on the BSGs constructed with
the lune-based proximity rule, see left panels in Figs. 6
and 7. There, we observe three different behaviors for 〈k〉:
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(a) (b)

FIG. 3. BSGs with (a) β = 0.5 and (b) β = 1 for the same set
of N = 200 randomly distributed vertices in the unit square.

(a)
Lune-based BSGs

(b)
Circle-based BSGs

(c) (d)

FIG. 4. BSGs with (a,b) β = 1.5 and (c,d) β = 2 for the same
set of randomly distributed vertices of Fig. 3. The lune-based
[circle-based] proximity rule was used in the left [right] panels.

(i) when β is small, β < 2, 〈k〉 is an increasing function
of N ; (ii) for intermediate values of β, 2 ≤ β ≤ 20, 〈k〉
is approximately constant for the values of N we used
in this work; and (iii) when β is large, β > 20, 〈k〉 is a
decreasing function of N . This panorama is also observed
for BSGs constructed with the circle-based proximity rule
(see right panels in Figs. 6 and 7) however shifted to
smaller values of β; that is, 〈k〉 is approximately constant
as a function of N for 1.5 ≤ β ≤ 4.

From the observations above we can concluded that
for intermediate values of β (including relative neighbor
graphs) the BSGs are very stable graphs in the sense that
the average degree remains constant even in the presence
of strong vertex density fluctuations.

The main difference we can observe between random
BSGs constructed with the lune-based and circle-based
proximity rules is that in the circle-based case the net-
works become disconnected for relatively smaller values
of β than in the lune-based case; compare Figs. 7(a)
and 7(b) and also left and right panels in Fig. 4. Indeed,

50 100 200 500 1000
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〉
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0.34
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0.55

0.71

0.9

FIG. 5. Average degree 〈k〉 as a function of N for random
BSGs with β < 1. Here, the standard deviation error is
smaller than the symbol size.

from Fig. 7(b) it is clear that when β ≥ 200 it is highly
probable to have completely disconnected networks.

IV. WEIGHTED RANDOM β-SKELETON
GRAPHS

Here, in order to use Random Matrix Theory (RMT)
results as a reference, we include weights, particularly
random weights, to the random BSGs defined above.
Specifically, we choose the non-vanishing elements of
the corresponding adjacency matrices A to be statisti-
cally independent random variables drawn from a nor-
mal distribution with zero mean 〈Aij〉 = 0 and variance
〈|Aij |2〉 = (1 + δij)/2, where δij is the Kronecker delta.
Therefore, a diagonal adjacency random matrix is ob-
tained for isolated vertices (known in RMT as the Pois-
son case), whereas the Gaussian Orthogonal Ensemble
(GOE) is recovered when the graph is fully connected.

Below we use exact numerical diagonalization to obtain
the eigenvalues λm and eigenvectors Ψm (m = 1 . . . N)
of the adjacency matrices of large ensembles of weighted
random BSGs characterized by β and N .

A. Spectral properties

In order to characterize the spectra of weighted random
BSGs, we use the nearest-neighbor energy level spacing
distribution P (s) [9]; a widely used tool in RMT. For
β → ∞, i.e., when the vertices in the random BSGs
are mostly isolated, the corresponding adjacency matri-
ces are almost diagonal and, regardless of the size of the
graph, P (s) should be close to the exponential distribu-
tion,

P (s) = exp(−s) , (8)

which is better known in RMT as Poisson distribution. In
the opposite limit, β → 0, when the weighted BSGs are
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FIG. 6. Average degree 〈k〉 as a function of N for random BSGs with 1 ≤ β < 2. In both panels the standard deviation error
is smaller than the symbol size.
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FIG. 7. Average degree 〈k〉 as a function of N for random BSGs with β ≥ 2. In (a) the standard deviation error is smaller
than the symbol size.

fully connected, the adjacency matrices become members
of the GOE (real and symmetric full random matrices)
and P (s) closely follows the Wigner-Dyson distribution,

P (s) =
π

2
s exp

(
−π

4
s2
)
. (9)

Thus, for a fixed graph size N , by increasing β from zero
to infinity, the shape of P (s) is expected to evolve from
the Wigner-Dyson distribution to the Poisson distribu-
tion. Moreover, for a fixed value of β, the increase in the
density of vertices N also produces changes in the shape
of P (s). In Fig. 8 we explore both scenarios.

We construct histograms of P (s) from N/2 unfolded
spacings [9], sm = (λm+1 − λm)/∆, around the band
center of a large number of graph realizations (such that
all histograms are constructed with 5 × 105 spacings).
Here, ∆ is the mean level spacing computed for each ad-
jacency matrix. Then, Fig. 8 presents histograms of P (s)
for the adjacency matrices of weighted random BSGs:
In Fig. 8(a) the graph size is fixed to N = 102 and β
takes the values 0.1, 0.9, 1, and 10. In this figure we

observe a complete transition in the shape of P (s) from
the Wigner-Dyson to Poisson distribution functions (also
shown as reference) for increasing β. In Fig. 8(b) the
parameter β is set to one (Gabriel graph) while N in-
creases from 6 to 104. Here, in contrast to Fig. 8(a), we
do not observe a complete transition from Wigner-Dyson
to Poisson in the shape of P (s). From Fig. 8(b) one may
expect that by decreasing further the number of vertices
N the Wigner-Dyson shape could emerge; however, this
is not the case, as shown in Fig. 9. There we observe that
for N < 6 the P (s) becomes symmetric with respect to
s = 1. It is important to stress that we have nor observed
this shape for the P (s) before. Indeed, in other random
network models embedded in the plane, such as random
regular graphs and random rectangular graphs (RRGs)
(for the definition and general properties of RRGs the
reader is referred to [10]), we did observe the full tran-
sition from Wigner-Dyson to Poisson for the P (s) as a
function of the density of vertices for a fixed value of the
proximity rule parameter [11].
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FIG. 8. Nearest-neighbor energy level spacing distribution
P (s) for weighted random BSGs with (a) [(b)] N = 102 [β =
1] and several values of β [N ]. Here we use the lune-based
proximity rule to construct the BSGs. Full lines correspond
to Poisson and Wigner-Dyson distribution functions given by
Eqs. (8) and (9), respectively.

Now, in order to characterize the shape of P (s) for
weighted random BSGs we use the Brody distribu-
tion [12, 13]

P (s) = (µ+ 1)aµs
µ exp

(
−aµsµ+1

)
, (10)

where aµ = Γ[(µ + 2)/(µ + 1)]µ+1, Γ(·) is the gamma
function, and µ, known as Brody parameter, takes values
in the range [0, 1]. Equation (10) was originally derived
to provide an interpolation expression for P (s) in the
transition from Poisson to Wigner-Dyson distributions,
serving as a measure for the degree of mixing between
Poisson and GOE statistics. In fact, µ = 0 and µ = 1
in Eq. (10) produce Eqs. (8) and (9), respectively. In
particular, as we show below, the Brody parameter will
allows us to identify the onset of the localization tran-
sition for random BSGs. It is also relevant to mention
that the Brody distribution has been applied to study
other complex networks models, see e.g. [11, 14–20]. In
fact, we found that Eq. (10) provides excellent fittings
to the histograms of P (s) of weighted random BSGs.
For example, the fittings to the histograms in Fig. 8(a)
[Fig. 8(b)] (not shown to avoid figure saturation) provide:
µ(β) = 0.953(0.1), 0.624(0.9), 0.276(1), and 0.002(10)

0 1 2 3 4 5

s

0.0
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0.4

0.6

0.8

1.0

P
(s

)

Wigner-Dyson

Poisson

N = 3

N = 4

N = 5

N = 6

FIG. 9. Nearest-neighbor energy level spacing distribution
P (s) for weighted random BSGs with β = 1 and N ≤ 6.
Vertical dashed line at s = 1 is plotted to guide the eye.

[µ(N) = 0.872(6), 0.645(10), 0.316(102), 0.145(103), and
0.0468(104)]. It is important to remark that for N ≤ 5
the P (s) can not be fitted by the Brody distribution, see
Fig. 9, therefore we will not consider small graph sizes in
our analysis below.

Thus we now perform a systematic study of the Brody
parameter µ as a function of the parameters β and N
of the BSGs. To this end, we construct histograms of
P (s) for a large number of parameter combinations to
extract the corresponding values of µ by fitting them us-
ing Eq. (10). Figure 10 reports µ versus β for five differ-
ent graph sizes for both proximity rules; lune-based and
circle-based. Notice that in all cases the behavior of µ is
similar for increasing β: for small β (i.e., β ≤ 0.1) µ is ap-
proximately constant and equal to 0.96; then µ decreases
fast for β approaching one; and finally, for β > 1, µ con-
tinues decreasing but slowly when β is further increased.
For large β (i.e., β > 10) and large N , µ ≈ 0.

Indeed, from Fig. 10 we can conclude that our model
of weighted random BSGs undergoes a clear and sharp
transition at β = 1 from a regime very close to the GOE
regime (mostly connected vertices), µ ≈ 0.96, to the Pois-
son regime (mostly isolated vertices), µ ≈ 0, as a function
of β. What is remarkable is that this delocalization-to-
localization transition seems to be independent of the
density of vertices N ; in fact, the larger the value of N
the sharper the transition at β = 1 is. It is interesting
to recall that we have also identified a delocalization-
to-localization transition in random regular graphs as a
function of the proximity rule parameter [11]; however,
for that model the transition is rather smooth and im-
portantly depends on the density of vertices. In addition,
in the inset of Fig. 10(a) we present the values of µ for in-
creasing N for Gabriel graphs where we include the case
N = 4000.

The main difference we can observe between random
BSGs constructed with the lune-based and circle-based
proximity rules is that the Poisson limit is approached
faster in the circle-based case, which was already ex-
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FIG. 10. Brody parameter µ as a function of β for several values of N for (a) lune-based and (b) circle-based weighted random
BSGs. Vertical lines in the main panels indicate Gabriel graphs (β = 1) and relative neighbor graphs (β = 2). The inset in (a)
shows µ vs. N for β = 1 (Gabriel graphs). The inset in (b) is an enlargement of the main panel in the interval 1 ≤ β ≤ 2.

pected from the analysis of the average degree of the
previous Subsection since there it was shown that circle-
based BSGs become completely disconnected for rela-
tively smaller values of β.

B. Eigenvector properties

The term “localization transition” we used in the pre-
vious subsection to describe the sharp decrease of µ at
β = 1 implies that we expect the eigenvectors of the adja-
cency matrices of BSGs to be mostly localized for β > 1.
In the following we verify this statement.

To measure quantitatively the spreading of eigenvec-
tors in a given basis, i.e., their localization properties, two
quantities are mostly used: (i) the information or Shan-
non entropy S and (ii) the inverse participation number
I2. Indeed, both have been widely used to character-
ize the eigenvectors of the adjacency matrices of random
network models. For the eigenvector Ψm, associated with
the eigenvalue λm, they are given as

Sm = −
N∑
n=1

| Ψm
n |2 ln | Ψm

n |2, (11)

and

Im2 =

N∑
n=1

|Ψm
n |4. (12)

These measures provide the number of main components
of the eigenvector Ψm. Moreover, Sm allows to compute
the so called entropic eigenvector localization length [21]

` = N exp[−(SGOE − 〈Sm〉)], (13)

where SGOE is the average entropy of a random eigenvec-
tor with Gaussian distributed amplitudes (i.e., an eigen-

vector of the GOE) which is given by [22]

SGOE = ψ

(
N

2
+ 1

)
− ψ

(
3

2

)
. (14)

Above, 〈·〉 denotes average and ψ(·) is the Digamma func-
tion; SGOE ≈ ln(N/2.07) for large N .

We average over all eigenvectors of an ensemble of ad-
jacency matrices of size N to compute 〈Sm〉, such that
for each combination (N, β) we use 5× 105 eigenvectors.
With definition (13), when β →∞, since the eigenvectors
of the adjacency matrices of BSGs have only one main
component with magnitude close to one, 〈Sm〉 ≈ 0 and
` ≈ N exp[−SGOE] ≈ const. ≈ 2.07. On the other hand,
for β → 0, 〈Sm〉 ≈ SGOE and the fully chaotic eigenvec-
tors extend over the N available vertices of the BSG, so
` ≈ N .

Therefore, in Fig. 11 we plot `/N as a function of β
for weighted random BSGs of sizes ranging from N = 50
to 800. We consider both lune-based (Fig. 11(a)) and
circle-based (Fig. 11(b)) proximity rules. As well as for
the Brody parameter vs. β (see Fig. 10) here we clearly
observe a sharp transition from delocalized to localized
eigenvectors at β = 1. Additionally, in the inset of
Fig. 11(a) we report `/N vs. N for β = 1. There we
can clearly see the GOE (`/N ∼ 1) to Poisson (`/N ∼ 0)
transition in the eigenvector properties of Gabriel graphs,
also reported through spectral properties, by the use of
the P (s), see the inset of Fig. 10(b).

Finally, we would like to add that the inverse partic-
ipation number of the eigenvectors of BSGs shows an
equivalent panorama to that reported in Fig. 11 for `,
so we do not show it here. Instead, in Fig. 12 we plot
〈ln I2〉 and ln〈I2〉 as a function of lnN for Gabriel graphs
(β = 1) and relative neighborhood graphs (β = 2). The
non-linear trend of the curves corresponding to β = 1 and
β = 2 in the lune-based proximity rule rejects the pos-
sible existence of a localization transition of the Ander-
son type where the eigenvectors are multifractal objects
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FIG. 11. Entropic eigenvector localization length ` (normalized to N) as a function of β for several values of N for (a) lune-based
and (b) circle-based weighted random BSGs. Vertical lines in the main panels indicate Gabriel graphs (β = 1) and relative
neighbor graphs (β = 2). The inset in (a) shows ` vs. N for β = 1 (Gabriel graphs). The inset in (b) is an enlargement of the
main panel in the interval 1 ≤ β ≤ 2.
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FIG. 12. 〈ln I2〉 (red full symbols) and ln〈I2〉 (black empty
symbols) as a function of lnN for Gabriel graphs (diamonds)
and relative neighborhood graphs (triangles and circles for
lune-based proximity rule and circle-based proximity rule, re-
spectively).

characterized by a set of dimensions Dq, where the cor-
relation dimension D2 can be extracted from the scalings
Ityp

2 ∝ N−D2 or 〈I2〉 ∝ N−D2 (Ityp

2 ≡ exp〈ln I2〉 is known
as the typical value of I2). See for example Refs. [23–25]
where multifractality of eigenvectors has been reported
in random graph models. Moreover the independence of
both 〈ln I2〉 and ln〈I2〉 on N for β = 2 in the circle-based
proximity rule confirms that the corresponding eigenvec-
tors are in the localized regime; that is, D2 ≈ 0.

V. CONCLUSIONS

In this paper we perform a thorough study of a partic-
ular type of proximity graphs known as β-skeleton graphs
(BSGs). In a BSG two vertices are connected if a prox-
imity rule, that depends of the parameter β ∈ (0,∞), is
satisfied. We explore the two known versions of them:
lune-based and circle-based BSGs.

Our main result is the identification of a delocalization-
to-localization transition at β = 1 for the eigenvectors of
the adjacency matrices of BSGs for increasing β. It is im-
portant to stress that the localized phase corresponds to
mostly isolated vertices while the delocalized phase iden-
tifies mostly complete graphs, see e.g. [11, 19, 25]. We
characterize the delocalization-to-localization transition
by means of topological and spectral properties; we use
the standard average degree as topological measure and,
within a random matrix theory approach, the nearest-
neighbor energy-level spacing distribution and the en-
tropic eigenvector localization length as spectral mea-
sures.
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