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We investigate the effects of disorder on a periodically-driven one-dimensional model displaying
quantized topological transport. We show that, while instantaneous eigenstates are necessarily
Anderson localized, the periodic driving plays a fundamental role in delocalizing Floquet states over
the whole system, henceforth allowing for a steady-state nearly-quantized current. Remarkably,
this is linked to a localization/delocalization transition in the Floquet states at strong disorder,
which occurs for periodic driving corresponding to a non-trivial loop in the parameter space. As a
consequence, the Floquet spectrum becomes continuous in the delocalized phase, in contrast with a
pure-point instantaneous spectrum.

Introduction. Thouless pumping [1, 2] provides one of
the simplest manifestations of topology in quantum sys-
tems, and has attracted a lot of recent interest, both
theoretically [3–11] and experimentally [12–17]. Since
the seminal works by Thouless and Niu [1, 2], it is ar-
gued that the quantization of the pumped charge is ro-
bust against weak disorder, but a clear characterization
of the localization properties of the relevant states, and
the breakdown of quantized transport at strong disorder,
is still missing.

Thouless pumping is also the first example of a topo-
logical phase emerging in a periodically driven system
with no static analogue. Such phases have been the
subject of many recent proposals [4, 6, 8, 18–22]. In
this respect, understanding the role of disorder has a
twofold purpose: on one hand, it is important to un-
derstand the robustness to disorder of the topology of
driven systems [17, 23] per se; on the other hand, local-
ization properties in the topological phase are relevant
for the possibility of stabilizing topological pumping in
interacting systems [24, 25] by means of many-body lo-
calization [26, 27].

Restricting ourselves to the non-interacting case, a
puzzling aspect regards the nature of the Floquet states
at long time. While quantized transport over a single
period of the driving is expected at small disorder[2], its
robustness over many driving cycles is not trivial, since
it would imply the existence of extended Floquet states.
But in the adiabatic limit, where charge is strictly quan-
tized, Floquet states for a generic driving should coincide
with the Hamiltonian eigenstates, which are Anderson lo-
calized in 1d. So, how can Thouless pumping in Ander-
son insulators be stable in the long-time limit? Previous
studies of periodically-driven 1d Anderson insulators in
the low-frequency regime [28, 29] have found a generic
increase of the localization length of Floquet states com-
pared to the static case, without any evidence of truly
extended states nor a clear link between the localization

properties and topology.
In this work, we address these questions by inquir-

ing the effects of disorder on Thouless pumping from
the point of view of Floquet theory. We focus on the
finite-size scaling of the localization length of Floquet
states, the long-time dynamics and the winding of Flo-
quet quasienergies, and show that Thouless pumping is
associated to extended Floquet states. Remarkably, as
disorder increases these states undergo a true delocaliza-
tion/localization transition at a critical disorder strength
Wc, which reflects itself in the breakdown of quantized
transport. Crucially, topology plays a fundamental role
in the existence of such extended states and on the char-
acter of the phase transition, as we prove by explicit
comparison with the case of a trivial adiabatic driving
protocol.

Model. We consider a disordered version of the driven
Rice-Mele model [30]. For a system of spinless fermions

on a chain of L = 2N sites, with ĉ†j creating a fermion
on the j−th site, the Hamiltonian reads

Ĥ(t) =−
N∑
j=1

[
J1(t) ĉ†2j−1ĉ2j + J2(t) ĉ†2j ĉ2j+1 + H.c.

]

−
L∑
l=1

[
(−1)l∆(t) +Wζl

]
ĉ†l ĉl .

(1)

Here J1(2)(t) and ∆(t) describe hopping amplitudes and
on-site energies for the clean model, while Wζl describes
the on-site disorder of strength W , with ζl ∈ [− 1

2 ,
1
2 ] uni-

formly distributed random numbers. We assume periodic
boundary conditions. In absence of disorder, W = 0, and
for generic J1(2) and ∆, the instantaneous spectrum is
split in two bands, separated by a gap. Thus, at half fill-
ing, the charge pumped in one period is equal in the adia-
batic limit to the Chern number of the occupied band [1].
This integer is different from 0 when the driving is topo-
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FIG. 1. Disorder average of the diagonal pumped charge plot-
ted against disorder strength. The transition between the
quantized charge regime and the trivial one Qd = 0 is clearly
linked to the closing of the minimum energy gap due to the
disorder, shown in the inset.

logically non-trivial, e.g. when the path in the space
(J1 − J2,∆) encloses the gapless point (0, 0).

To characterize the topological phase we compute the
infinite-time average of the pumped charge [7, 31]

Q =
1

L
lim
M→∞

1

M

∫ Mτ

0

dt〈Ψ(t)|Ĵ(t)|Ψ(t)〉 , (2)

where Ĵ(t) is the total current operator, τ = 2π/ω is the
driving period, and the system is initially prepared in the
N -particle ground state |Ψ0〉 of Ĥ(t = 0).

Since the Hamiltonian is time periodic, we can exploit
the Floquet representation [32] of the evolution operator
Û(t, 0) =

∑
ν e−iEνt/~ |Φν(t)〉 〈Φν(0)|, where |Φν(t)〉 =

|Φν(t+ τ)〉 are N -particle Floquet modes, while Eν are
the many-body quasienergies. Q can be computed di-
rectly in the Floquet diagonal ensemble [7, 33]

Q = Qd =
1

L

∑
ν

Nν
∫ τ

0

dt 〈Φν(t)|Ĵ(t)|Φν(t)〉 , (3)

where Nν = |〈Ψ0|Φν(0)〉|2 is the occupation number of
the ν-th Floquet state. For non-interacting fermions, it
suffices to know the single-particle (SP) Floquet states
|φα(t)〉 and their occupation number nα to explicitly cal-
culate the diagonal pumped charge [7, 31].

Results. Figure 1 shows the disorder average [Qd]av
as a function of the disorder strength W . Observe
that topological pumping persists for sufficiently small
W . 3J0. The regime of large W & 8J0 is also rather
clear: Qd = 0. The intermediate region W/J0 ≈ 4
shows large sample-to-sample fluctuations: the inset
shows a correlation between the drop of [Qd]av and the
closing of the minimal many-body instantaneous gap
ΛN ≡ mint∈[0,τ ][EN+1(t) − EN (t)], where EN (t) is the
N -particle ground state energy at time t.

A natural question arises: if a disordered one-
dimensional system shows Anderson-localized instanta-
neous energy eigenstates and a pure-point spectrum [34],

is it actually able to transport charge? This fact is puz-
zling, considering that the charge transport is precisely
quantized in the adiabatic limit, where Floquet states
should coincide, apart from a phase, with the instan-
taneous Hamiltonian eigenstates. In the following, we
will show that the crucial ingredient behind topological
pumping is that a significant fraction of the SP Floquet
states remain delocalized even for very low frequency. The
key point is that the dynamics is adiabatic only at many-
body level, but not at the SP one, where driving-induced
mixing of localized states occurs [28, 29].

To address the issue of localization/delocalization of
states, we analyze the real-space inverse participation
ratio (IPR) [35] of the single-particle Floquet modes

|φα(0)〉, IPRα =
∑
l |〈l |φα(0)〉 |4, with |l〉 = ĉ†l |0〉 be-

ing a particle localized at site l. For a finite system
IPRα ∈ [L−1, 1], where IPRα ∼ L−1 signals a completely
delocalized (plane-wave-like) state, while IPRα = 1 cor-
responds to a perfect localization on a single site. Fig-
ure 2(a) shows the distribution of IPRs of Floquet states
for three values of the disorder strength W . Notice the
presence of a very sharp peak in the IPR distribution
which we find to scale as IPRα ∼ L−1 for W/J0 = 2 and
4, suggesting that the mode of the IPR distribution cor-
responds to extended states [36]. We find, however, that
very similar distributions (not shown) would emerge —
for the same disorder strength — when the driving pro-
tocol is topologically trivial.

To better analyze the size dependence of the IPR
peak, and its correlation with the topology of the driv-
ing, we estimate a characteristic localization length for
a chain of size L from the inverse of the peak’s po-
sition in the IPR distribution (inverse of the mode),
ξL(W ) = (argmax(P (IPRα)))−1. Fig. 2(b) and (c) show
the size-scaling of ξL(W ) for a trivial and topological
driving, respectively. When the driving is trivial, our
data suggest that ξL(W ) scales as W−β with β ' 2.5
for large W , see Fig. 2(b), while saturates to the sys-
tem size ∼ L when W is small. Hence we can extract
a crossover disorder strength W ∗ ∼ L−1/β separating
these two regimes, vanishing in the thermodynamic limit:
here truly extended Floquet states appear only at zero
disorder. By rescaling the data, we see a very good col-
lapse of ξL(W )/L versus L1/βW [Fig. 2(b)–inset]. On the
other hand, when the driving is topological the same phe-
nomenology holds with a finite critical disorder strength
Wc [Fig. 2 (c)]: For W > Wc ' 3.5J0, we observe that
ξL(W ) ∼ (W −Wc)

−β , with β ' 2, while again the local-
ization length saturates to L when W < Wc, thus indicat-
ing the presence of an actual localization/delocalization
phase transition. The critical exponent is in good agree-
ment with bosonization calculations [37], while the value
ofWc extracted by our scaling analysis is compatible with
the breaking of quantization in Fig. 1.

To better understand the mechanism behind the delo-
calization/localization transition, we study the relation
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FIG. 2. (a): Disorder averaged IPR distribution of SP Floquet states for several values of W and L = 280. The inset shows the
sharp peaks almost superimposed at small IPR for W = 2J0 and W = 4J0. (b): Characteristic localization length ξL(W ) as a
function of disorder, for a trivial driving cycle (J1 = 4J0 + δ0 sin(ωt)). The inset shows the collapse obtained by ξL → ξL/L

and W → WL1/β , with β ' 2.5. (c): Characteristic localization length when the system exhibits topological transport

(J1 = J0 + δ0 sin(ωt)). The inset shows the collapse ξL → ξL/L and W → (W −Wc)L
1/β , with Wc ' 3.5J0 and β ' 2. The

parameters used in the simulation are δ0 = 0.5J0, ∆0 = 1.5J0, ~ω = 0.01J0.
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FIG. 3. IPRα vs the time-averaged energy of the correspond-
ing Floquet state 〈E〉α. The dashed lines indicates the value
1/L associated to extended states; the data refer to several
realizations of a chain with 200 sites and disorder strength
W = 2J0. In the insets the same data are shown for larger
disorder, when delocalized states are separated only by a mo-
bility edge (W = 3.5J0) and when there is a single band of
localized Floquet states (W = 8J0). Qd = ±1 is the charge
transported when a single band, the lower or the higher one,
is completely filled.

between the time-averaged energy of the SP Floquet
states 〈E〉α = 1

τ

∫ τ
0

dτ 〈φα(t)| Ĥ(t) |φα(t)〉 and the cor-
responding IPRα (Fig. 3). For weak disorder, extended
states carrying charge in the positive (negative) direction
lays in the middle of the lower (higher) band, while local-
ized ones stay closer to the edges. Hence quantized trans-
port is protected both by an energy gap and a mobility
edge. As disorder increases (left inset with W = 3.5J0),
the energy gap is closed by localized states but there is
still a mobility edge protecting the extended states and
transport. For even larger W the two bands merge in
a single one where extended states transporting oppo-
site charges gradually hybridize and give localized states,
(inset with W = 8J0), and quantized transport breaks
down.

This phenomenology is similar to what happens in in-
teger quantum Hall effect (IQHE) in 2D systems, where
there must be spectral regions of extended states [38–40],
in order to have a non-zero quantized transverse conduc-
tivity. Also the exponent β ' 2 found for W > Wc,
when the driving is topological, is in good agreement
with a similar scaling analysis performed on the den-
sity of extended states in IQHE in a disordered sam-
ple [41]. The parallelism between the physics of clean
1D topological charge pumping and 2D integer quantum
Hall effect is well established [2, 42, 43], but at the best
of our knowledge this is the first time where a localiza-
tion/delocalization transition in a driven Anderson insu-
lator is clearly associated to the topology of the clean
limit, as it happens in IQHE [39, 40].

Winding of quasienergies. In a clean system, quan-
tized pumping corresponds to a non-trivial winding of
the quasienergy of the occupied Floquet bands in k-
space [4, 7, 31, 44, 45]. When translational invariance
is broken, a common procedure is to introduce a phase
twist θ ∈ [0, 2π) between site 1 and site L and then take
the average of Qd over θ [2, 4]. This operation is jus-
tified because when the state projector is exponentially
localized, the dependence of observables on the twisted
boundary decays exponentially with L [46]. Hence we
can write

Qd =

∫ 2π

0

dθ

2π
Qd(θ) = τ

∑
ν

∫ 2π

0

dθ

2π
∂θEν(θ)Nν(θ) . (4)

Here Eν = εα1
+ · · ·+ εαN is the N−particle quasienergy

associated to the Floquet state |Φν〉 given by a Slater
determinant of the SP states |φα1

〉 , . . . , |φαN 〉; Nν =
|〈Ψ0 |Φν〉 |2 is the occupation number. In this context,
the winding number is the number of times that Eν(θ)
wraps around the first Floquet-Brillouin zone as θ goes
from 0 to 2π. Besides non-adiabatic corrections that de-
pend on the initial state |Ψ0〉 [7, 47], Qd is quantized
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FIG. 4. (a) Quasienergy E0(θ) of the many-body Floquet state with lowest energy. The winding is well defined only for W = 2J0
and W = 8J0, when |Ψ0〉 has a non vanishing projection on a single MB Floquet state. (b): SP quasienergy spectrum for
all possible angles θ as a function of the disorder. (c): typical behaviors of SP εα(θ). When W < Wc most of the states are
extended and sensitive to the boundary condition (upper panel), while for W > Wc many quasi-energies do not contribute to
the winding, being periodic in θ (lower panel). All data correspond to the same choice of the random variables {ζj} for L = 80
sites. The size of the dots is proportional to nα(θ).

when a single many-body Floquet state is occupied, e.g.
Nν ' δ0,ν independently of θ, and that state has a non
trivial winding number. Henceforth we focus on the Flo-
quet state with the lowest initial energy |Φ0(θ)〉, com-
puted as the Slater determinant of the N SP Floquet
states with highest projection on the ground state in
which the state is initially prepared.

We report in Fig. 4(a) E0(θ) in the first Floquet-
Brillouin zone for three different disorder strength
W/J0 = 2, 4 and 8, which are respectively below, close
to the transition value and above it. In Fig. 4(b) the
SP quasienergy spectrum is plotted with respect to W
as θ spans the interval ∈ [0, 2π), while Fig. 4(c) shows
some details of εα(θ) that help to understand the local-
ization transition. A localized state is characterized by
a quasienergy εα periodic in θ, while extended ones with
positive winding satisfy the relation εα(2π) = εα+1(0).
Hence we distinguish between three situations.

- W < Wc: |Φ0〉 coincides essentially with |Ψ0〉
(Nν ' δ0,ν) and has winding number equal to 1,
blue line in Fig. 4(a). The SP quasienergy spec-
trum is continuous in θ and there are no gaps in
the Floquet-Brillouine zone, Fig. 4(b). Most of
the SP states feel the twist at the boundary, obey
εα(2π) = εα+1(0) and contribute to the winding of
E(θ) (upper panel of Fig. 4(c)).

- W ' Wc: the initial ground state |Ψ0〉 has rele-
vant projections over many Floquet states and thus
Eq. (4) requires all combinations of N SP Floquet
states. Gaps start to appear in the SP quasienergy
spectrum(Fig. 4(b)), and the occupation number
itself depends non-trivially on θ. E0(θ) is discon-
tinuous θ [red dots in Fig. 4(a)]. The SP Floquet
states with opposite transported charge start to be

mixed in pairs of localized states, with quasiener-
gies periodic in θ (lower panel of Fig. 4(c)).

- W > Wc: both SP Floquet states and Hamiltonian
eigenstates are strongly localized and there is no
current. Again Nν = δ0,ν , but the winding num-
ber is trivial (green line in Fig. 4(a)) because SP
quasienergy spectrum has only a pure-point contri-
bution and localization makes the system insensi-
tive to the boundary twist.

Conclusions. We analyzed in detail the steady-state
current flowing in a one dimensional Floquet-Anderson
insulator: the topological periodic driving mixes local-
ized Hamiltonian eigenstates to give extended Floquet
modes. Delocalization makes quantized pumping robust,
until extended Floquet states with opposite winding coa-
lesce for large disorder. Even though the physics of quan-
tum pumping in clean systems is the same of 2D IQHE,
this analogy is not trivial in the presence of disorder,
since the 1D periodically driven chain would be mapped
in an extremely anisotropic disordered 2D model.

Finally, a subtle point emerges in the adiabatic limit
ω → 0. In a truly adiabatic evolution the Floquet states
would coincide with the Hamiltonian eigenstates, thus
being localized, at least when the disorder-induced SP
level crossings are actually avoided crossings [48]. How-
ever the quantization of the pumped charge requires
both the adiabatic and thermodynamic limit, but when
L → ∞ the spectrum becomes dense and the driving
mixes SP levels. On the opposite, when one takes the adi-
abatic limit in a finite system, SP Floquet states are iden-
tical to Hamiltonian eigenstates, modulo a phase factor,
and are localized. Quantized pumping still works because
disorder induces resonances in the spectrum at any en-
ergy scale, allowing for large distance tunneling [49, 50].

The interplay between disorder, topology and possibly
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interaction in Floquet systems can be investigated in cold
atom experiments, where a disordered or quasi-periodic
potential can be easily engineered [51].
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