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Electrons moving in a Bloch band are known to acquire an anomalous Hall velocity proportional
to the Berry curvature of the band which is responsible for the intrinsic linear Hall effect in mate-
rials with broken time-reversal symmetry. Here, we demonstrate that there is also an anomalous
correction to the electron acceleration which is proportional to the Berry curvature dipole and is
responsible for the Nonlinear Hall effect recently discovered in materials with broken inversion sym-
metry. This allows us to uncover a deeper meaning of the Berry curvature dipole as a nonlinear
version of the Drude weight that serves as a measurable order parameter for broken inversion sym-
metry in metals. We also derive a quantum rectification sum rule in time reversal invariant materials
by showing that the integral over frequency of the rectification conductivity depends solely on the
Berry connection and not on the band energies. The intraband spectral weight of this sum rule is
exhausted by the Berry curvature dipole Drude-like peak, and the interband weight is also entirely
controlled by the Berry connection. This sum rule opens a door to search for alternative photovoltaic
technologies based on the Berry geometry of bands. We also describe the rectification properties of
Weyl semimetals which are a promising platform to investigate these effects.

PACS numbers: 72.15.-v,72.20.My,73.43.-f,03.65.Vf

Introduction. The Berry phase has become a protago-
nist on our modern understanding of the motion of elec-
trons [1] and in the classification of their phases [6, 7].
The Berry curvature determines an anomalous electron
velocity which gives rise to the intrinsic Hall effect in
materials without time reversal symmetry [2]. It has
been recently predicted [3, 8, 9] and experimentally ob-
served [4, 5, 10] that materials with time reversal sym-
metry can display a nonlinear Hall effect. The nonlinear
Hall conductivity characterizing this effect is a product of
the Berry curvature dipole (BCD), an intrinsic quantum
geometric property of the material [3], and the scatter-
ing time, which is subject to sample quality variations.
This poses the question of whether the BCD could be
probed or defined in a more fundamental manner that is
less intertwined with disorder effects [11–15].

In this Letter, we propose that the BCD is indeed a
fundamental property of metals that plays the role of a
nonlinear Drude weight, namely, it measures an anoma-
lous non-Newtonian Hall acceleration that scales with the
square of the electric field and that is allowed in materials
without inversion symmetry. We will call this correction
to the electron acceleration the nonlinear Hall accelera-
tion. The first section of our work will be devoted to
demonstrating this result in the low energy single band
limit. Subsequently, by developing unifying theory of the
second order optical and transport phenomena of metals
and insulators, we will demonstrate a quantum rectifi-
cation sum rule (QRSR), according to which the recti-
fication conductivity of time-reversal-invariant materials
integrates to a quantity that is entirely controlled by the
Berry connection, and the BCD exhausts completely its
intraband weight, as depicted in Fig.1, and in analogy
to how the conventional Drude weight is related to the
Drude peak in the linear conductivity of metals. This
suggest that measurements of the rectified current over
a broad frequency range offers a systematic way to esti-

FIG. 1: Illustration of the real part of the rectification con-
ductivity which is the spectral weight on the QRSR in Eq.(6).
The intraband weight is exhausted by a Drude-like peak
whose area equals the BCD up to universal constants.

mate the BCD that bypasses detailed knowledge of the
scattering rate, which could help disentangle the more
subtle disorder mediated corrections [11–15] present in
current experiments [4, 5, 10]. The BCD therefore of-
fers a solution to the long-standing problem of defining
a measurable order parameter for broken inversion sym-
metry in metals, since the electric polarization, which is
a natural order parameter for broken inversion symme-
try in insulators, is generally illdefined in systems where
charge can freely flow.

Single-band limit. We begin by writing the Hamilto-
nian describing the dynamics of electrons in a crystal in
the presence of a time dependent but spatially uniform
electric field in the length gauge [16, 17]:

Ĥnm = δnmεn(k) + er̂nm ⋅E(t), (1)
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FIG. 2: (a) Illustration of the second order conductivity ten-
sor with two input frequencies, ω1,2, and space indices, αβ, for
the driving electric field and one output current at frequency
at ω1 +ω2 with space index γ. (b) Depiction of the geometry
of the BCD antisymmetric part [3] (green vector), the driving
linearly polarized electric (blue vector), and the second order
electric current (red arrow). The three vectors are coplanar
and the current is orthogonal to the electric field. (c) Crystal
structure of TaAs with BCD (green arrow) oriented along its
polar axis. (d) Weyl nodes in the Brillouin zone of TaAs with
one elementary Weyl pair highlighted

here n,m are band indices and k crystal momentum,
εn(k) is the band energy dispersion, r̂nm = iδnm∂k+Ânm

is the position operator in the Bloch basis, and Ânm(k) =
i⟨unk∣∂k∣umk⟩ is the non-Abelian Berry connection [18].
Before solving the full multiband problem, we consider
the special limit in which electric field is slowly varying
in time and the low energy dynamics of electrons can be
described by projecting the Hamiltonian in Eq.(1) onto a
single band, which will illuminate on the deeper meaning
of the BCD. In this limit, the acceleration operator can
be shown to contain two terms (see S.I.I A) :

âγn = −e
Eα

h̵2

∂2

∂kα∂kγ
εn + e2E

αEβ

h̵2

∂

∂kα
Ω̂βγn , (2)

here Ω̂αβn = ∂Âαnn/∂kβ − ∂Âβnn/∂kα is the Abelian

Berry curvature of the band “n”. The first term ex-
presses the conventional Newton’s second law and the
tensor relating the electric field and the acceleration
determines the ordinary linear Drude weight. The
second term, however, is a non-Newtonian accelera-
tion that is orthogonal to the applied electric field,
which we call the nonlinear Hall acceleration. The av-
erage over the occupied states of the tensor relat-
ing the nonlinear Hall acceleration and the bilinears
of the electric field is precisely the BCD [3] (dλ =
ελαβDαβ = ελαβεβγµ(2π)−3/2∑n ∫ dkΩµγn ∂fn/∂kα). No-
tice that there is no extrinsic quantity in this relation.
Therefore the BCD can be interpreted as a nonlinear
Drude weight, which is nonzero only when the system
has a Fermi surface and breaks inversion symmetry. In
metals there is invariably a friction to the electron flow
created by the impurities, phonons, and umklapp pro-
cesses, that ultimately brings the liquid into a steady
state with zero acceleration in the presence of an electric
field. The terminal velocity will depend on the scattering
rate from such agents, and this is why the nonlinear con-
ductivity ends up depending on the scattering rate and
not only on the BCD, in an analogous fashion to how
the linear conductivity depends not only on the Drude
weight but also on the scattering rate. Throughout our
Letter we will take a simple relaxation time picture of
disorder. The detailed role of disorder on the nonlinear
conductivity of metals is indeed a subject of current in-
tense investigation [11–15].

Multiband formalism. We will now develop a multi-
band theory that is applicable to metals and insulators
by modelling relaxation processes in a minimal fashion
following the spirit of the relaxation time approximation,
with the following non-Hermitian Liouville equation for
the density matrix ρ̂:

ih̵
d

dt
ρ̂(t) − [Ĥ0, ρ̂(t)] = −ih̵Γ(ρ̂(t) − ρ̂0), (3)

here Γ is the relaxation rate and ρ̂0 is the equilibrium
density matrix. Following a standard perturbation the-
ory analysis (see S.I.I B) one obtains the full second order
conductivity tensor with two input driving frequencies
ω1,2 and the output current at a frequency ω1 + ω2 (see
Fig.2(a)), and which can be separated into metallic and
interband terms as follows:

σγβα
(2)

(ω1, ω2) = σγβαMet (ω1, ω2) + σγβαInter(ω1, ω2). (4)

The interband terms contain the shift and injection
currents identified in previous studies [16, 17, 19] and
are reproduced in detail in S.I.I B. The metallic terms
are those which would manifestly vanish in the absence
of a Fermi surface and that diverge in the low frequency
ω1,2 → 0 and clean limits Γ→ 0. Their explicit expression
is this:
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σγβαMet (ω1, ω2) = −
1

2

e3

h̵2 ∫
dk

(2π)3 ∑
nm

×

×
⎧⎪⎪⎨⎪⎪⎩

∂εn
∂kγ

∂2

∂α∂β
fnδnm

(ω1 + ω2 + iΓ)(ω2 + iΓ)
+

+
(εm − εn)ÂγmnÂαnm ∂

∂kβ
(fm − fn)

(ω2 + iΓ)(ω1 + ω2 + εm − εn + iΓ)
+

+
⎛
⎝

α↔ β
ω1 ↔ ω2

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
, (5)

here fn is the Fermi Dirac distribution and (α↔ β,ω1 ↔
ω2) denotes symmetrization under simultaneous swap of
the indices (α,β) and the frequencies (ω1, omega2). The
first term is a purely semiclassical Jerk term [19]. This
term is distinct from the third order Jerk effect described
in [20, 21] and vanishes under time-reversal-symmetric
conditions which we will assume from here on. The sec-
ond term is a multiband finite frequency generalization of
the BCD nonlinear Hall conductivity, which at low fre-
quencies reduces (see S.I.I B Eq.(28)) to the expression
in [3].

Quantum rectification sum rule. We will state now one
of the central findings of our study. Using the full ex-
pression for the second order conductivity, including the
metallic and interband terms, and for any time reversal
invariant material one can show (see S.I.I B) that the fol-
lowing quantum rectification sum rule (QRSR) holds in
the clean limit (Γ→ 0):

4
h̵2

e3

1

π
∫

∞

0
dωRe [σγβα

(2)
(−ω,ω)] =

= ⟨ ∂

∂kβ
Ω̂αγ⟩ + ⟨[Âβ , i ∂

∂kα
Âγ]⟩ + ⟨[Âβ , [Âα, ˆ̄Aγ]]⟩+

+ (α↔ β), (6)

where ˆ̄Aαnm = Âαnm(1 − δnm) is the off-diagonal non-
Abelian Berry connection and average is defined as fol-
lows:

⟨⋯⟩ =∑
n
∫

dk

(2π)d
fn⟨n ∣ (⋯) ∣ n⟩. (7)

The integrand in this sum rule is the real part of the
rectification conductivity which measures the net dc cur-
rent produced by an ac linearly polarized electric field
(see S.I.I D). Remarkably, all the low frequency subgap
spectral weight is exhausted by a delta function peak at
zero frequency whose weight is given by the BCD, and
which gives rise to the first term in the right-hand side
of Eq.(6) (see Fig.1). The remaining weight account-
ing for the two other terms in the right-hand side arise
from interband terms that are only nonzero when the

frequency is above the spectral gap (see Fig.1). It is re-
markable that both intra- and interband terms integrate
to a quantity that is purely quantum geometric depend-
ing only on the Berry connection. This sum rule offers
a direct way to measure the BCD that bypasses knowl-
edge of the disorder relaxation rate, by integrating the
rectified current over frequency, in complete analogy to
how the Drude weight is estimated from the conductivity
in metals. A related rectification sum rule derived under
more restricted conditions was recently reported in [24].

This sum rule also opens a door to a systematic search
for alternatives to conventional photovoltaics in which
the band geometry plays a central role in the rectifica-
tion mechanism [24, 25]. This is because the rectification
weight, defined as the right hand side of Eq.(6), pro-
vides a natural figure of merit for photocurrent gener-
ation when the light spectrum is broad in comparison
to the bandwidth of interest and its calculation could
be efficiently streamlined with realistic modeling of band
structures. The rectification weight has units Ld−3, and,
interestingly, it is dimensionless in 3D. The rectification
weight of time reversal invariant materials therefore joins
a select group of observables that are entirely controlled
by the Berry geometry including the Hall conductiv-
ity [1, 2], the polarization [25–27] and the magnetoelectric
coefficient of 3D topological insulators [28, 29].

Weyl semimetals. We will now apply our theory to
Weyl semimetals which are topological states that can
be realized in three-dimensional materials that break ei-
ther inversion or time reversal symmetry [30]. Their non-
linear optoelectronic properties are a subject of intense
current investigation [22, 23, 31–33]. We will consider
first the ideal model of an isolated Weyl node and subse-
quently a model of mirror related Weyl node pairs that
captures the essential behavior of materials such as TaAs.
A Hamiltonian for a single Weyl node is [30]:

Ĥ0 = v0 ∑
α=x,y,z

kα ⋅ σ̂α + uzkz1̂. (8)

Here v0 is a Fermi velocity, uz is the tilt in z direc-
tion, σ̂α are Pauli matrices and 1̂ is identity operator.
In the clean limit, we have found that the rectification
conductivity of an ideal Weyl node has only two con-
tributions: the intraband BCD term and the interband
injection current term responsible for the circular photo-
galvanic effect in [22, 23], as shown in (see Fig.3(a)-3(c)).
The BCD tensor of a Weyl node is symmetric and its
nonzero components are

(D̂)αβ =Dαβ = 1

2
εβγµ∑

n
∫

dk

(2π)3
Ω̂µγn

∂

∂kα
fn, (9)

Dxx =Dyy = 1

8π2

1

ũ3
(ũ + ũ

2 − 1

2
ln

1 + ũ
1 − ũ

) , (10)

Dzz = 1

4π2

ũ2 − 1

ũ3
(ũ − 1

2
ln

1 + ũ
1 − ũ

) , (11)
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FIG. 3: Rectification conductivity (in units of {e3/(Γ(2π)3h̵2
)}) for (a) linearly polarized light of a single Weyl node displaying

the BCD Drude-like peak (h̵Γ = 0.05εF , uz = 0.2v0). (b) circularly polarized light has two contributions: a BCD term at
low frequency and an interband term (shown in the inset) which leads to the quantized circular photo-galvanic effect (dashed
horizontal line) described in [22, 23]. (c) linearly polarized light of a Weyl node pair model relevant for TaAs, with its Drude-like

BCD peak clearly separated from the interband term [displayed in inset, h̵Γ = 0.01εF , ux = 0.05vx,∆ = 5εF , vx = vz =
√

m/(2∆)]

here ũ = uz/v0. Notice that the BCD of a single Weyl
point does not depend on the location of the Weyl point
in momentum space, as found in [34]. The origin of
this inconsistency is discussed in the supplementary (see
S.I.I E). Remarkably the trace of BCD for a Weyl node
is a universal quantity independent of the details of its
Hamiltonian determined by its integer valued monopole
strength (Sj ∈ Z) [30]:

Tr[D̂] =
Sj
4π2

. (12)

The BCD rectification conductivity is given by

j(0)BD = e3

h̵2 ∫
∞

−∞

dω
i

ω + iΓ
[ {D̂.E(−ω)}×E(ω)]. (13)

Therefore the QRSR for an ideal Weyl node yields

∫
∞

−∞

σγβα
(2)

(−ω,ω)dω = e3

h̵2

Dzz −Dxx

2
{δαzεγzβ + (α↔ β)} .

(14)
Notice that Weyl nodes related by time reversal sym-

metry have the same BCD tensors, and, therefore, even
though the responses from Weyl nodes of opposite topo-
logical charge tend to cancel, the net response in materi-
als without symmetries relating nodes of opposite charge,
such as SrSi2 [35, 36], will be finite. However, several
Weyl materials such as TaAs [37–40] have mirror sym-
metries mapping Weyl nodes of opposite charge. In fact,
for TaAs with space group I41md only the antisymmetric
part of the BCD tensor is allowed [3], and therefore, the
contribution to the net BCD tensor from the linearized
model cancels after adding all nodes. However, TaAs and
related materials are expected to have a large BCD [41].
A reason for this enhancement in TaAs is the proximity of

pairs of nodes of opposite charge (see Fig.2(d)). Related
large enhancements have been predicted in BiTeI [42].
The ideal Hamiltonian describing such pairs is [30, 42]

Ĥ = vxkxσ̂x +
λ − k2

y

2m
σ̂y + vzkzσ̂z + uxkx1̂. (15)

Here vx, vy =
√

∣λ∣/m,vz are anisotropic Fermi veloc-
ities, ux is tilt in the x direction and 2λ is the node
shift. The antisymmetric BCD tensor (defined as: dα =
εαβγDβγ) is a vector oriented along the polar axis of TaAs
(see Fig.2(b) and Fig.2(c)), and the contribution from
each Weyl-nodepair to the BCD is

dz ≈ −
3vxvzuxn

1/3

10π4/3v2
ym(3vxvyvz)2/3

, (16)

where n is a density of carriers. The rectification response
to linearly polarized fields, shown in (see Fig.3(c)), dis-
plays a clear separation between the interband and the
BCD term, making it viable to estimate the BCD by in-
tegrating it up to some ω ≪ 2εF .

Fig.3 shows the response of these ideal models for
Weyl nodes. The real and imaginary parts of the sec-
ond order conductivity have a crucially distinct nature,
because the former controls the response to time-reversal-
symmetric drive (linearly polarized light) while the sec-
ond to time-reversal-breaking drive (circularly polarized
light)(see S.I.I D Eq.(39)). The QRSR requires knowl-
edge only of the real part. Figure (a) illustrates this
for a single Weyl node. Such contribution would cancel
when adding Weyl pairs related by a mirror symmetry as
it is the case for TaAs. Figure (c), however, illustrates
that there is a finite contribution beyond the linearized
model even in the case of Weyl pairs related by a mir-
ror, which could be observed in TaAs. For completeness



5

we also show the response to circularly polarized light
in figure (b), illustrating how our formalism interpolates
from the interband effects of [22, 23] to the low frequency
intraband BCD peak.

Discussion. We have shown that the BCD controls a
nonlinear Hall acceleration in metals without inversion
symmetry that scales with the square of the applied elec-
tric field. Therefore, the BCD can be viewed as a non-
linear version of the Drude weight, that serves as a mea-
surable order parameter for metallic inversion symmetry
breaking.

We have also shown that the nonlinear conductivity of
time-reversal invariant materials satisfies a QRSR whose
intraband weight is exhausted by a sharp Drude-like BCD
peak, and, remarkably, also the inter-band contributions
to this QRSR are purely controlled by the Berry connec-
tion, with all dependence on band energies disappearing.
The rectification weight defined by this sum rule, there-
fore, provides a figure of merit for dc current generation
in response to light, provided that the incident spectrum
is broad in comparison to the band energy window of in-
terest. We hope that this rectification weight could be
estimated from first principle studies to help guide the
search for alternative photovoltaic materials based on the
quantum geometry of Bloch bands. Another promising
avenue of applications for these effects are wireless energy
harvesting devices [12, 43].

Weyl semimetals are also promising platforms to study
these effects. In particular, several polar Weyl materials
such as TaAs will have a large vectorial component of
the BCD aligned with its polar axis (see Fig.2(b) and
Fig.2(c)). The BCD and the QRSR in these materials
could be studied by measuring a nonlinear Hall current
flowing along the polar axis in response to a driving elec-
tric field in the plane perpendicular to the polar axis as
a function of frequency.

Cold atomic systems also offer an interesting alterna-
tive platform to investigate these nonlinear effects of the
Berry geometry [44–49], where the slower time scales for
dynamics and the absence of friction might allow us to
directly measure the nonlinear Hall acceleration.

We are thankful to Liang Fu for previous collabora-
tions and discussions that inspired this work. We thank
Fernando de Juan and Adolfo Grushin for valuable dis-
cussions, and for sharing their manuscript on a study em-
ploying a similar formalism prior to publication [33], and
Elio König, Habib Rostami, Roser Valenti, and Christof
Weitenberg for valuable discussions and correspondence.

I. SUPPLEMENTARY INFORMATION

A. Nonlinear Hall acceleration

Following Bloch’s theorem, electronic states in crystals
are labelled by a crystal momentum k which belongs to a
periodic Brillouin zone and a discrete band index n. We

express the position operator in such Bloch basis, which,
as first demonstrated by Blount [18], is comprised of two
pieces:

r̂nm = δnmi∂k + Ânm(k), (17)

where Ânm(k) is the non-Abelian Berry connection
which is related to the periodic part of the Bloch states,
∣umk⟩, as Ânm(k) = i⟨unk∣∂k∣umk⟩. With this represen-
tation the Hamiltonian of the electron in the presence of
a uniform electric field reads as:

Ĥ = Ĥ0(k) + er̂ ⋅E(t), (18)

We now project this Hamiltonian onto a single band
n. A consequence of this is that the projected position
r̂n = r̂nn does not commute with itself along different di-
rections. The commutator is the Abelian Berry curvature
of such band:

[r̂αn , r̂βn] = i(
∂

∂kα
Âβn −

∂

∂kβ
Âαn) = iΩ̂αβn . (19)

Here An = Ann.From this one can readily derive the
velocity operator that contains the well-known anoma-
lous velocity [1, 2]:

v̂αn = i

h̵
[Ĥ(k), r̂α]n =

1

h̵

∂

∂kα
εn − e

Eβ(t)
h̵

Ω̂βαn . (20)

Let us now consider the acceleration operator defined
as the rate of change of the velocity. This operator can
be found to be comprised of three pieces:

âγn = −e
Eα

h̵2

∂2

∂kα∂kγ
εn − e

1

h̵

∂Eα

∂t
Ω̂αγn + e2E

αEβ

h̵2

∂

∂kα
Ω̂βγn .

(21)

The first piece is Newton’s second law in which the
acceleration is proportional to the force times the sec-
ond derivative of the dispersion with respect to momen-
tum, which measures the inverse inertia or Drude weight.
The second piece is proportional to the derivative of the
electric field is related to the instantaneous change of
the anomalous velocity described in Eq.(20) and is neg-
ligible when the field varies sufficiently slowly in time.
The third piece is the non-Newtonian acceleration that
is quadratic in the applied electric field and is propor-
tional to the Berry curvature dipole: the gradient in mo-
mentum space of the Berry curvature [3]. This term is
the one that we refer to as Nonlinear Hall acceleration
throughout the main text. We also note that the gra-
dient of the Berry curvature is even under time-reversal
but odd under space inversion operations.
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B. Full expression for second order conductivity

Following perturbation theory:

⟨jγ(t)⟩2 = ∫
∞

−∞
∫

∞

−∞

dt1dt2E
β(t2)Eα(t1)σγβα

(2)
(t, t1, t2),

(22)
based on a Liouville Eq.(3) for density matrix:

ρ̂(t) = ρ̂0 + e−Γtδρ̂(t), ⟨n∣ρ̂0∣m⟩ = fnδnm, (23)

we induced nontrivial relaxation Γ. According to this
approach second order conductivity is written as:

σγβα
(2)

(t, t1, t2) = −
e3

h̵2
eΓ(t2−t)⟨[rβ(t2), [rα(t1), vγ(t)]]⟩,

(24)
for t ≥ t1 ≥ t2 and 0 otherwise.
In frequency domain, the second-order conductivity

can be expressed as a function of two driving frequen-
cies with the frequency of the physical current being the
sum of these two, as depicted in Fig.2(a). We have com-
puted all the contributions to the second order current
that would be present in a multiband system for any fre-
quency of the driving fields. The conductivities can be
separated into ”metallic” and interband terms by isolat-
ing the parts that have physical divergences in the limit
in which both driving frequencies vanish ω → 0, and those
that do not, as described in Eq.(4) of the main text.

We have encountered two metallic terms in the non-
linear conductivity that can be termed the semiclassical
jerk (SCJ) and berry curvature dipole terms, and whose
expressions are:

σγβαMet (ω1, ω2) = σγβαSCJ (ω1, ω2) + σγβαBCD(ω1, ω2), (25)

σγβαSCJ (ω1, ω2) = −
1

2

e3

h̵2 ∫
dk

(2π)3
×

×∑
nm

∂εn
∂kγ

∂2

∂α∂β
fnδnm

(ω1 + ω2 + iΓ)(ω2 + iΓ)
+ ( α↔ β

ω1 ↔ ω2
) , (26)

σγβαBCD(ω1, ω2) = −
1

2

e3

h̵2 ∫
dk

(2π)3
×

×∑
nm

(εm − εn)ÂγmnÂαnm ∂
∂kβ

(fm − fn)
(ω2 + iΓ)(ω1 + ω2 + εm − εn + iΓ)

+

+ ( α↔ β
ω1 ↔ ω2

) . (27)

The semiclassical jerk term is distinct from the third
order jerk effect described in [20, 21]. These terms re-
main finite in the expressions ω → 0 only thanks to the
fact that we have accounted for a finite relaxation rate.

The jerk term identically vanishes for a time reversal in-
variant system. The term that we have called the Berry
curvature dipole reduces to the semiclassical result ob-
tained in [3] in the limit in which the external frequency
of the current is much smaller that the interband optical
threshold:

σγβαBCD(ω1 + ω2 ≪ εnm, ω1, ω2) =

= −1

2

e3

h̵2

i

ω2 + iΓ ∫
dk

(2π)3 ∑
n

Ω̂γαn
∂

∂kβ
fn+

+ ( α↔ β
ω1 ↔ ω2

) . (28)

In addition to these terms we have the interband terms
defined as those that remain finite when both driving
frequencies vanish. These interband terms contain the
shift and injection currents obtained in previous work
[16, 17, 19], and can be explicitly written as:

σγβαInter(ω1, ω2) = σγβαI (ω1, ω2) + σγβαIB2 (ω1, ω2), (29)

σγβα(ω1, ω2) = σγβαMet (ω1, ω2) + σγβαInter(ω1, ω2), (30)

we labeled interband terms as: ”Injection” and ”Inter-
band 2” parts, which explicitly read as:

σγβαI (ω1, ω2) =
1

2

e3

h̵2
(1 + iΓ

ω1 + ω2 + iΓ
)∫

dk

(2π)3
×

×∑
nm

(fn − fm)ÂβnmÂαmn( ∂
∂kγ

εn − ∂
∂kγ

εm)
(ω1 + εn − εm + iΓ)(ω2 − εn + εm + iΓ)

+

+ ( α↔ β
ω1 ↔ ω2

) , (31)

σγβαIB2 (ω1, ω2) =
1

2

e3

h̵2 ∫
dk

(2π)3
×

×∑
nm

⎧⎪⎪⎨⎪⎪⎩

Âγmn(εm − εn)
ω1 + ω2 − εn + εm + iΓ

∂

∂kα
(fn − fm)Âβnm
ω2 − εn + εm + iΓ

+

+ i (fn − fm)Âβnm
ω2 − εn + εm + iΓ∑c

[ ÂαmcÂ
γ
cn(εc − εn)

ω1 + ω2 − εn + εc + iΓ
−

− ÂγmcÂ
α
cn(εm − εc)

ω1 + ω2 − εc + εm + iΓ
]
⎫⎪⎪⎬⎪⎪⎭
+ ( α↔ β

ω1 ↔ ω2
) . (32)

The second order conductivity which we introduced
above has the following property:

σγβα
(2)

(ω1, ω2)∗ = σγβα
(2)

(−ω1,−ω2). (33)

The theory here described therefore unifies a large class
of nonlinear optoelectronic phenomena in insulators and
metals, including rectification and second harmonic gen-
eration processes.
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C. Quantum rectification sum rule

Here we will describe the sum rule for the rectification
conductivity that appears in time reversal invariant sys-
tems in the limit in which the relaxation rate Γ is smaller
than the optical εn − εm separating occupied and empty
states.

To obtain rectification conductivity in Eq.(30) we set
ω1 + ω2 = 0, and integrate over one driving frequency as
follows:

2

π
∫

∞

−∞

σγβα
(2)

(−ω,ω)dω = − e
3

h̵2 ∫
dk

(2π)3
×

×∑
n

⎧⎪⎪⎨⎪⎪⎩

1

Γ
( − ∂

∂kγ
εn

∂2

∂kα∂kβ
fn+

+∑
m

(fn − fm)ÂβnmÂαmn(
∂

∂kγ
εn −

∂

∂kγ
εm))+

+ i∑
m

[( Â
α
nmÂ

γ
mn(εm − εn)

εm − εn + iΓ
) ∂

∂kβ
(fn − fm)+

+ Â
γ
mn(εm − εn)
εm − εn + iΓ

∂

∂kα
(fn − fm)Âβnm]−

−∑
m

(fn − fm)Âβnm∑
c

[ Â
α
mc

ˆ̄Aγcn(εc − εn)
εc − εn + iΓ

−

−
ˆ̄AγmcÂ

α
cn(εm − εc)

εm − εc + iΓ
]
⎫⎪⎪⎬⎪⎪⎭
+ (α↔ β). (34)

Now we take the clean limit (Γ ≪ εn − εm,∀n,m) and
assume time-reversal symmetry. With time reversal sym-
metry we have the following property:

T r̂T −1 = r̂, (35)

T v̂T −1 = −v̂. (36)

According to this symmetry and after taking the clean
limit one obtains:

4
h̵2

e3

1

π
∫

∞

0
dωRe [σγβα

(2)
(−ω,ω)] =

= ⟨ ∂

∂kβ
Ω̂αγ⟩ + i ⟨[Âβ , ∂

∂kα
Âγ]⟩ + ⟨[Âβ , [Âα, ˆ̄Aγ]⟩+

+ (α↔ β). (37)

This sum rule contains information only about Berry
connection and it is therefore a purely quantum geomet-
rical property of the material.

D. Rectification for linearly polarized light

In this section we will show that linearly polarized light
produces the rectification current which is controlled by

real part of the second order conductivity. Consider a
monocromatic driving electric field at frequency omega:

Eα(t) = ∫ dωEα(ω)eiωt = Eαeiω0t +E∗

αe
−iω0t, (38)

the rectification current is:

jγ(0) = σγβα
(2)

(ω0,−ω0)EαE∗

β + σ
γβα
(2)

(−ω0, ω0)E∗

αEβ =

= σγβα
(2)

(ω0,−ω0)EαE∗

β + σ
∗γβα
(2)

(ω0,−ω0)E∗

αEβ =

= Re [σγβα
(2)

(ω0,−ω0)] (EαE∗

β +E∗

αEβ)+

+ Im [σγβα
(2)

(ω0,−ω0)] (EαE∗

β −E∗

αEβ). (39)

For linearly polarized light all the components can be
taken to have a common complex phase, as follows:

Eα = EαeiΦ, (40)

where Eα is real. Finally the rectification current is:

jγ(0) = 2Re [σγβα
(2)

(ω0,−ω0)]EαEβ . (41)

Therefore we see that the rectification conductivity for
linearly polarized light is controlled by the Real part of
the second order conductivity.

We will now explain why the quantum rectification
sum rule can be viewed as a figure of merit for the current
generation of a bulk material in an ideal case in which the
incident light has a spectral distribution which is broader
than the bandwidth of interest. The incident light will
have a certain spectral intensity distribution. For exam-
ple, in the case of sunlight this can be approximated as
the distribution from the black-body radiation with the
temperature of the sun. Because the incident light is ran-
dom, there will be equal probability to have right-circular
and left-circular polarized light and therefore only the
response to linearly polarized light will be important in
average, because for a time reversal invariant material
the current response to left and right-circularly polarized
light has exactly the same magnitude but opposite di-
rections. Therefore, assuming that the incident light is
isotropic and characterized by an spectral intensity dis-
tribution I(ω), the net current rectified will be given by:

Jγ =∑
α
∫ dωI(ω)Re [σγαα

(2)
(ω,−ω)] (42)

Now let us suppose that we would like to characterize
the ability to generate current in response to light for a
certain specific group of bands in a material. We can
imagine fitting a tight-binding model for such bands. In
such case, the integrand in Eq.(42) would only be non-
zero up to a maximum frequency given by the bandwidth
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of such tight-binding model. Now, assuming that the
spectral intensity distribution of incident light does not
change substantially over the bandwidth of the bands of
interest, and can thus approximated as a constant over
such window, I(ω) ≈ I0, we can approximate the total
rectified current as:

Jγ = I0∑
α
∫ dωRe [σγαα

(2)
(ω,−ω)] (43)

And, therefore, using Eq.(37), we see that the net rec-
tified current is controlled by the QRSR in the ideal limit
of incident light with a spectral distribution that is much
broader than the bandwidth of interest.

E. BCD for Weyl models

In this section we describe the derivation of BCD ten-
sor for single and double Weyl node Hamiltonians. The
single-Weyl Hamiltonian is:

Ĥ0 = ∑
α=x,y,z

vα(kα − bα)σ̂α + ∑
α=x,y,z

uα(kα − bα), (44)

where b is a constant vector which determines the loca-
tion of the Weyl point in momentum, vα are Fermi veloc-
ities and uα are tilts in appropriate direction. According
to Eq.(28) the BCD contribution to the rectification con-
ductivity is:

σγβαBCD,I(ω1 + ω2 ≪ εnm, ω1, ω2) =

= −1

2

e3

h̵2

i

ω2 + iΓ ∫
dk

(2π)3 ∑
n

Ω̂γαn
∂

∂kβ
fn+

+ ( α↔ β
ω1 ↔ ω2

) , (45)

This expression makes manifest that at low tempera-
tures only states near the Fermi surface contribute to the
BCD conductivity. It also makes manifest that at zero
temperature this integral is non-divergent because it is
restricted to a finite region of integration, provided that
the Berry curvature has no singularities at the Fermi sur-
face. Moreover, for the Weyl model in Eq.(42) we have
that fn(k, b) = fn(k − b,0), and Ωn(k, b) = Ωn(k − b,0),

and therefore it is clear that the BCD conductivity is
independent of b. This also implies that that the BCD
conductiivity of a collection of Weyl points is indepen-
dent of their particular locations and relative distances
in momentum space, provided that they can be described
by a sum of decoupled Hamiltonians of the form Eq.(44)
with different b for each of the Weyl nodes.

Let us now contrast this formula for the BCD with
that in which the derivatives act on the Berry curvature
rather than the distribution function, which is given by:

σγβαBCD,II(ω1 + ω2 ≪ εnm, ω1, ω2) =

= 1

2

e3

h̵2

i

ω2 + iΓ ∫
dk

(2π)3 ∑
n

fn
∂

∂kβ
Ω̂γαn +

+ ( α↔ β
ω1 ↔ ω2

) , (46)

sub-index II means that this is alternative way of BCD
computing. Their difference is a total derivative given
by:

σγβαBCD,I(ω1, ω2) − σγβαBCD,II(ω1, ω2) =

= −1

2

e3

h̵2

i

ω2 + iΓ ∫
dk

(2π)3 ∑
n

∂

∂kβ
(fnΩ̂γαn )+

+ ( α↔ β
ω1 ↔ ω2

) . (47)

Therefore if the Hamiltonian describes a proper lattice
model both definitions are equivalent because the peri-
odicity of the Brillouin zone would enforce the intregral
of the total derivative to vanish. However, for a contin-
uum effective Hamiltonian the two definitions could dif-
fer, and, when they do, the correct one should be taken

to be σγβαBCD,I(ω1, ω2). In particular, in the case of the

single Weyl node described by Eq.(44) we see that the
fully occupied negative energy states contribute to the
integral in Eq.(47), and therefore this integral can ap-
proach a constant as the UV cutoff, KUV , is send to
infinity because the surface area grows as K2

UV , while
the Berry curvature decreases as 1/K2

UV . Therefore, one
can verify that computing the BCD conductivity from

σγβαBCD,II(ω1, ω2) leads to an artefact according to which
the BCD has a nontrivial dependence on the location of
the origin of the Weyl nodes [34].
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