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Abstract 

A synthetic reflectometer based on the 2D finite-difference time-domain full-wave code 

REFMUL is applied to data from 3D numerical simulations of edge and scrape-off layer 

plasma turbulence obtained with the GEMR code. Full-wave simulations are performed using 

the conventional reflectometry set-up with O-mode waves, fixed frequency probing and an 

equivalent I/Q detection scheme. Results show a significant spectral broadening of the 

synthetic reflectometry complex amplitude A(t)eiφ(t) with increasing probing frequency. The 

reflectometry response displays ±2𝜋  phase jumps which are due to the self-consistent 

evolution of turbulent density structures. The range ~3-6% of moderate turbulence amplitude 

is studied here, in the transition from the linear to non-linear regimes of conventional 

reflectometry. While a phase jump removal algorithm is applied, spectral broadening of the 

phase with increasing probing frequency is nevertheless observed. Linear scaling of phase 

fluctuations with 𝛿𝑛𝑒/𝑛𝑒 is also retrieved. REFMUL simulations with turbulence data 

rendered on both the GEMR field aligned coordinates (drift planes, neglecting circular 

magnetic flux surfaces) and on polar geometry (poloidal planes, taking into account plasma 

curvature) are carried out revealing similar trends on both coordinate systems. However, 

phase fluctuations obtained from poloidal planes display higher root mean square values, 

compared to drift planes. This could be expected from an increased sensitivity of the 

reflectometer to higher wavenumbers, due to plasma curvature effects. 
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1. Introduction 

The performance of magnetized plasmas in fusion devices 

is widely determined by turbulence and magneto-

hydrodynamic instabilities. To understand these phenomena, 

diagnostics with high temporal and spatial resolution must be 

employed to allow experimental characterization of the 

relevant plasma properties. Microwave reflectometry 

techniques have been successfully applied to this end, 

measuring for instance electron density fluctuations (see [1] 

for an overview). Nevertheless, without a strong modelling 
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effort, turbulence measurements with reflectometry can be 

only essentially qualitative. This has driven the continuous 

development of both analytical theory and sophisticated full-

wave numerical codes in support of reflectometry data 

interpretation. Successful proof-of-principle coupling of a 

numerical turbulence code with reflectometry simulation 

codes has been achieved in the past (e.g. using Landau-fluid 

[2]). However, continuous development of powerful 

turbulence codes based on gyro-fluid (e.g. the GEMR code [3, 

4]) and gyro-kinetic theory (e.g. the GENE code [5]) has led 

to improved numerical predictions of the microscopic 

properties of plasma turbulence. Recently, complete chains 

from measured turbulence properties through a full-wave code 

simulating reflectometry in realistic gyro-kinetic simulations 

have been implemented [6-9]. Modelling of edge and scrape-

off layer (SOL) plasma dynamics with a fluid model equipped 

with other synthetic diagnostics has also been reported [10]. 

In this work, the two-dimensional finite-difference time-

domain (FDTD) full-wave code REFMUL [11] is used to 

implement synthetic conventional reflectometry diagnostics 

on turbulence simulations carried out with the gyro-fluid code 

GEMR. In particular, the electron density dynamics are 

diagnosed with fixed frequency O-mode reflectometry in the 

plasma periphery, including the plasma edge and SOL.  In this 

region, typical experimental background density profiles and 

density fluctuation levels 𝛿𝑛𝑒/𝑛𝑒 are as displayed in Fig. 1 

[12,13]. 

Figure 1. Cartoon with typical radial profiles of average 

electron density (solid line) and density fluctuation level 

(dashed line) at the plasma edge and scrape-off layer (SOL) 

regions of a medium-sized tokamak. The radial position 𝑟𝐿𝐶𝐹𝑆 

of the Last Closed Flux Surface (LCFS) is used as reference. 

 

This figure illustrates important features of the underlying 

physics and their impact on the reflectometry technique, as 

will be shown later. Note, for instance, the steeper density 

profile region in the vicinity of the Last Closed Flux Surface 

LCFS, and the drastic change in the fluctuation levels from 

core (< 1%) to SOL (> 20%) where intermittent high density 

perturbations are dominant. In this work, the edge to SOL 

transition (shaded in Fig. 1) is the region of interest where 

fluctuation levels increase significantly and more challenging 

reflectometry measurements will be investigated. In addition, 

the impact of plasma curvature on reflectometry 

measurements will also be assessed together with the validity 

of the usual assumption of taking data rendered in the so-

called drift plane equivalently to the poloidal plane. The paper 

is organized as follows: in Section 2 an overview of the 

technique and theory of conventional reflectometry for 

fluctuation measurements is provided. The turbulence code 

GEMR and the full-wave code REFMUL are briefly described 

in Section 3 and Section 4, respectively. In Section 5, the main 

issues and adopted strategies for coupling the two codes are 

explained. Details about the set-up used for both GEMR and 

REFMUL simulations are given in Section 6. In Section 7 the 

procedure to obtain synthetic reflectometry signals from 

REFMUL in the frozen turbulence approximation is given. In 

Section 8 a preliminary characterization of GEMR output 

turbulence is made without analysing synthetic reflectometry 

data. In Section 9 the results of synthetic reflectometry are 

presented and compared to turbulence characteristics and 

theoretical predictions given previously. Finally, a summary 

and brief discussion of the results is done in Section 10. 

2. Conventional microwave reflectometry 

Conventional reflectometry is based on the phase variation 

of a microwave that is launched into the plasma, with 

incidence along the plasma surface normal, and reflected at a 

cut-off layer where the refractive index N becomes zero. As 

O-mode polarized waves with fixed vacuum probing 

frequency 𝑓𝑜 propagate in the plasma, its wavenumber 

decreases until the cut-off condition is met, and reflection 

occurs, at a critical density 𝑛𝑐  given by 

 

𝑛𝑐 = 𝑓𝑜
2 (

4𝜋2𝜀0𝑚𝑒

𝑒2
)    (1) 

 

where  𝑒 and 𝑚𝑒  are the electron charge and mass, and 𝜀0 is 

the permeability and permittivity of free space, respectively. 

Fixed frequency waves can thus probe different regions of the 

plasma according to the plasma radial density profile.   

Early developments of wave scattering and microwave 

reflectometry theory [14-18] supported the development of 

reflectometers aiming to measure density profiles and density 

fluctuations [19-22]. The phase of O-mode probing waves, 

propagating in the plasma, records the reflection at the cut-off 

but also the fluctuations due to plasma density perturbations. 

This includes Bragg backscattering processes, which are 

plasma-wave interactions of the incident wave with density 

perturbations satisfying the Bragg rule 𝑘𝑓
⃗⃗⃗⃗ = −2𝑘𝑖

⃗⃗  ⃗(𝑟𝐵) where 

𝑘𝑓
⃗⃗⃗⃗  is a given wavenumber component of a density perturbation 
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and 𝑘𝑖
⃗⃗  ⃗ is the local wavenumber of the incident wave at 

the radial location 𝑟𝐵  along its path in the plasma. Density 

fluctuations displaying only radial wave vector 𝑘𝑟
⃗⃗⃗⃗   are 

considered in light of one dimensional models, for which the 

Bragg resonance rule can be satisfied in the range 2𝑘𝐴 < 𝑘𝑟 <

2𝑘𝑜, where 𝑘𝑜 is the vacuum probing wavenumber and 𝑘𝐴 is 

the Airy wavenumber 𝑘𝐴 = 0.63(𝑘𝑜
2𝐿𝑛

−1)1/3, with 𝐿𝑛 being 

the density gradient scale length [23]. The minimum plasma 

fluctuation wavenumber allowing Bragg backscattering, 𝑘𝑟 =

2𝑘𝐴, resonates in the vicinity of the cut-off. Under the Born 

approximation, for small amplitude perturbations and a slab 

background plasma, a linear relation between the O-mode 

phase and the local density perturbation level 𝛿𝑛/𝑛𝑐 has been 

shown [23,24]: 

 

𝛿𝜑 = √𝜋𝑘𝑜√
𝐿𝑛

𝑘𝑓
(
𝛿𝑛

𝑛𝑐
)    (2) 

 

A common 1D result for fusion plasmas was the localised 

phase response from the reflecting layer and fluctuations in its 

vicinity [25]. To obtain a realistic description of experiments, 

two dimensional effects (e.g. refraction and finite beam 

divergence) should be considered even if neglecting any 

density fluctuations. To analyse the phase response in 2D 

geometry, various models have been proposed including the 

physical optics approach [26-27] and full-wave solutions [28-

30]. It was shown that the reflectometer was sensitive to 

poloidal fluctuation wavenumbers (poloidal and perpendicular 

directions assumed identical) 𝑘⊥ up to a limit determined by 

the receiver location and incident beam width (or spot size). A 

sensitivity criterion 𝑘⊥𝑤 < 2, where 𝑤 is the 1/e radius of the 

incident beam intensity, was deduced from rigorous analysis 

based on slab geometry [31]. Later it was found that the 

plasma poloidal curvature and the curvature of the probing 

wave-front could extend the microwave reflectometry 

response to much higher poloidal wavenumbers than what was 

prescribed by slab plasma models [32-34]. A phase screen 

model was used to derive the strong curvature regime criterion 

𝜌 / (2𝑘𝑜𝑤
2) ≪ 1, where 𝜌 is an effective radius of curvature 

defined by [32]: 

 

  𝜌 = 2𝜌𝑐𝜌𝑤/(𝜌𝑐 + 2𝜌𝑤)   (3) 

 

using the radius of curvature of the cut-off layer 𝜌𝑐 and of the 

incident wave front at the cut-off layer 𝜌𝑤. Under strong 

curvatures, the sensitivity to fluctuations with a given 

wavenumber 𝑘⊥ showed to be as strong as to much smaller 

wavenumber 𝑘⊥ 
′  without considering curvature effects: 

 

𝑘⊥ 
′ = (

𝜌

2𝑘𝑜𝑤2
)𝑘⊥      (4) 

 

Note that both the beam width and the wave front curvature 

depend on the propagation in the plasma (e.g. [34]). On the 

other hand, the interpretation of correlation reflectometry for 

measurements of fluctuation levels and turbulence correlation 

lengths proved to be challenging. Detailed knowledge of the 

instrument transfer function was also shown to be required, for 

instance depending on which reflectometry signal would be 

used, such as the complex amplitude, the phase or the 

homodyne signal [35-37].  

Forward scattering or small-angle scattering off long-scale 

fluctuations (𝑘𝑓 ≈ 0) may also contribute to reflectometry 

fluctuations, either considering 1D [17] or 2D models [38-40]. 

While these effects can become important, in particular under 

high turbulence conditions or in long plasma paths with 

stronger spreading of the probing beam [41], at low turbulence 

levels and small to mid-sized devices, Bragg backscattering in 

the vicinity of the cut-off is assumed to dominate. In any case, 

qualitative measurements are obtained mostly in the frame of 

the so-called linear (scattering) regime of reflectometry, 

which is in practice limited to small phase fluctuations and 

turbulence levels [25,38,42-43]. A transition to the non-linear 

regime of reflectometry has been explained via small angle 

multi-scattering mechanisms [38]. It was concluded that in the 

non-linear regime the reflectometry spectrum is not localized 

to the cut-off vicinity conveying information about a wide 

region of the plasma, despite a quick coherence decay 

remaining proportional to the local level of density 

fluctuations at the cut-off. A criterion for the transition to the 

non-linear regime was derived using a 1D modelling with 

linear density profile and statistically homogeneous 

turbulence with arbitrary wavenumber spectrum: 

 

𝜉 ≥ 1, 𝜉 = (
𝛿𝑛

𝑛𝑐
)
2 𝜔2𝑙𝑐𝑥𝑐

𝑐2 ln
𝑥𝑐

𝑙𝑐
   (5) 

 

This criterion, where  𝑙𝑐  is the turbulence correlation length, 

𝜔 is the angular wave frequency, 𝑥𝑐 is the plasma length to 

cut-off and 𝑐 is the speed of light in vacuum, showed to be 

valid when 2D effects were also considered in 2D full-wave 

simulations [44-45]. 

 With increasing density fluctuation levels, phase jumps 

start to occur [25,29,46]. If predominant, phase jumps lead to 

distorted reflectometer spectra, approaching a f—2 decay over 

most of the dynamic range of the diagnostics [20,47-48]. For 

this reason, removal of phase jumps has been carried out in 

experimental data mostly on an empirical basis [49]. A 

convolution method was suggested [50] and allowed to 

retrieve both the spectra and correlation lengths of turbulence 

in good agreement with probe measurements [51]. Other 

authors have employed either similar algorithms [12,52-53], 

back-projection techniques [25], or simply band-pass filtering 

to cope with phase jump and phase runaway phenomena. If 

only a small fraction of the phase data corresponds to phase 

jumps this may be indicative of a transition in the 
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reflectometer response regime. Independently of the method 

employed, phase jump removal may be a reasonable way to 

extend the range (only up to a certain limit) over which phase 

measurements might be used in linearly determining plasma 

turbulence levels.  

A fully realistic description of the phase jump phenomena 

may require employing 3D modelling in order to properly 

describe the behaviour of electric fields in 3D cavities. 

REFMUL3, a three-dimensional full-wave code with parallel 

computing, was just recently developed and first benchmarked 

against the 2D code REFMUL [54]. It was shown a stronger 

impact of 3D effects in the reflectometry amplitude rather than 

in the phase for slab plasmas. Although this first result was 

obtained without plasma turbulence, it strengthens our 

confidence in 2D simulations with respect to describing 

reflectometry phase robustly, while 3D simulations are still 

computationally expensive and a scarce resource. 

3. Turbulence code: GEMR 

The turbulence code GEMR consists of a three dimensional 

(3D) electromagnetic gyrofluid model with global geometry 

suitable for edge plasma conditions. The code solves the first 

six moments of the gyrokinetic equation, computing the 

evolution of density fluctuations and the density profile 

gradient. To yield a closed system, the gyrokinetic 

polarisation equation [55] and the Ampère’s law are also 

considered. The gyrofluid formulation guarantees that finite 

Larmor radius effects (FLR) are included in the model. In fact, 

whenever ion and electron temperatures are Ti  ∼ Te, and hence 

the ion gyroradius (𝜌𝑖) and the size of the typical vortical space 

scales (𝜌𝑠) are of the same order 𝜌𝑖 ∼ 𝜌𝑠, the dynamics on the 

scales 𝑘⊥𝜌𝑖 ∼ 1 become important. This is relevant for this 

work since the spatial resolution demanded by the 

reflectometer to produce accurate phase signals goes beyond 

this range (see Sect. 4).  

The GEMR geometry is global in the sense that both 

poloidal and radial dependencies of the geometrical quantities 

are considered, without using the flux tube approximation. 

The GEMR coordinates are field aligned, hence non-

orthogonal, which is justified by the computational efficiency 

gain allowed by the strong spatial anisotropy between the 

direction along the magnetic field and the plane that is 

perpendicular. A generalised poloidal angle is set as the field 

aligned coordinate ϑ, while ξ follows the toroidal angle to give 

the field line label and ψ is the (radial) flux label. The 

simulations presented in this paper use a circular equilibrium 

described according to the unit Jacobian definition 

 

𝜓 = 2𝜋2𝑅0𝑟
2     (6.1) 

𝜉𝑘 = (2𝜋)−1(𝑞(𝑟)𝜃 − 𝜙 − 𝛼𝑘(𝑟))  (6.2) 

𝜗 = (2𝜋)−1𝜃     (6.3) 

 

where (𝑟, 𝜃, 𝜙) are the polar coordinates, 𝑅0 is the tokamak 

major radius and 𝑞(𝑟) is the magnetic field pitch. The quantity 

𝛼𝑘(𝑟) represents a toroidal shift due to the shearing of the 

magnetic field, which is applied locally along the magnetic 

field lines to ensure a correct representation of both toroidal 

and slab mode structure. The details of such technique called 

shifted metric procedure can be found elsewhere [56].  

An example of a representative GEMR turbulence snapshot 

for a medium-sized tokamak, like ASDEX Upgrade (AUG), 

is shown in Fig. 2. The very low ratio between the radial and 

poloidal domain sizes can be noted in this case. Also displayed 

in the figure is a zoom-in view of a typical region of interest 

on the equatorial low-field side (LFS). 

Figure 2. GEMR electron density data on a poloidal plane cut, 

defined on a polar geometry (𝑅, 𝜃), and zoom on region with 

interpolated data for REFMUL Cartesian grid (x, y). 

 

Because the background profiles evolve in time, a dynamical 

Shafranov shift and a correction to the magnetic field pitch are 

calculated to adjust the field alignment self consistently in the 

model [57]. Global consistency in the angles is also ensured 

[58], even in toroidally truncated domains, such as in the cases 

presented here, which simulate one fourth of the whole torus. 

This is a major point in the closed field lines region, where it 

is insured that parallel space scales follow the so called field 

line connection constraint 𝑘∥𝑞𝑅0 ∼ 1. In the SOL the field 

lines cease to wrap around the flux surface to intersect material 

plates, allowing the existence of modes with both 𝑘∥ = 0 and 
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𝑘⊥ ≠ 0 (finite-sized eddies in the perpendicular plane which 

are perfectly aligned to the magnetic field also called 

convective cell modes,). The fact that convective cell modes 

are allowed outside the LCFS, and not inside due to the field 

line connection constraint, changes the character of turbulence 

from drift wave to an interchange turbulence [59]. In gradient 

driven turbulence of magnetised plasmas, the balance between 

linear and nonlinear processes determine the evolution of the 

system. Non-linear processes include an inverse energy 

cascade due to vorticity nonlinearity [60] and a direct cascade 

due to E×B advection of pressure. Among linear processes are 

the interchange forcing and the so called adiabatic response 

where parallel electron dynamics act on all available degrees 

of freedom, keeping the electrostatic potential (�̃�) coupled to 

the electron pressure (𝑝�̃�) through parallel forces mediated by 

parallel currents (𝐽∥̃) [61,62]. Since convective cells do not 

experience parallel dynamics, in the SOL plasma �̃� and 𝑝�̃�  are 

coupled through the interchange mechanism which becomes 

the dominant turbulence character. Closed and open field line 

regions thus experience substantially different behaviour of 

heat and particle fluxes down the gradients, as previously 

demonstrated with GEMR [59]. 

4. Full-wave code: REFMUL 

REFMUL is a full-wave propagation code that solves the 

Maxwell equations in two dimensions for ordinary wave 

polarization (O-mode) using the FDTD technique. The plasma 

electron density 𝑛𝑒(𝑟, 𝑡) sufficiently accounts for the plasma 

effects since O-mode propagation fulfils the cold plasma 

approximation. Both electric and magnetic fields of the 

electromagnetic wave are coupled to 𝑛𝑒(𝑟, 𝑡) in the Yee 

scheme through the density current 𝐽 [63]. The complete set of 

FDTD equations is the following 

 

𝜇0𝜀0(𝜕𝑡𝐸𝑧)𝑖,𝑗
𝑛 = (𝜕𝑥𝐵𝑦 − 𝜕𝑦𝐵𝑥 − 𝜇0𝐽𝑧)𝑖,𝑗

𝑛
 (7.1) 

(𝜕𝑡𝐵𝑥)𝑖,𝑗+1/2
𝑛+1/2

= −(𝜕𝑦𝐸𝑧)𝑖,𝑗+1/2

𝑛+1/2
   (7.2) 

(𝜕𝑡𝐵𝑦)𝑖+1/2,𝑗

𝑛+1/2
= −(𝜕𝑥𝐸𝑧)𝑖+1/2,𝑗

𝑛+1/2
   (7.3) 

(𝜕𝑡𝐽𝑧)𝑖,𝑗
𝑛+1/2

= 𝑒2/𝑚𝑒(𝑛𝑒𝐸𝑧)𝑖,𝑗
𝑛+1/2

  (7.4) 

 

where  𝜇0 is the permeability of free space and the indices 

(𝑖, 𝑗) refer to the spatial coordinates. The term 𝑛𝑒
𝑛 provides the 

plasma model (at the time instance 𝑡 = 𝑛 × ∆𝑡) which in this 

work is obtained from results of GEMR simulations. A 

detailed description of GEMR data processing, required for 

REFMUL integration, will be given later in Sect. 5. The 

REFMUL code runs on a Cartesian grid of dimensions Lx × Ly 

where the x- and y- directions correspond to the radial and 

poloidal directions in a tokamak. Part of the simulation box is 

devoted to the signal emission setup (antenna) and a vacuum 

distance to the plasma. A unidirectional transparent source is 

used for injection of the signal in a metallic structure, as a 

waveguide or an antenna, allowing separating the emitted 

probing wave from any returning waves [11]. A Perfectly 

Matched Layer (PML) approach is used for boundary 

conditions [64]. In this work, the response of O-mode 

reflectometry in conventional set-up was studied using a 

monostatic design, i.e. one antenna for both emission and 

reception. 

Separate REFMUL runs with different fixed frequency values 

have been performed, in particular to allow probing of regions 

inside and outside the LCFS. To be as close as possible to the 

experiment, the same reflectometer parameters are extracted 

using similar data processing tools. Moreover, the synthetic 

reflectometry phase φ(t) and amplitude A(t) signals are 

obtained carrying out identical simulation runs with sin and 

cos excitation signals allowing in-phase and quadrature 

detection, as will be explained in Sect. 7. To adequately 

resolve the phase φ(t), the spatial discretization in FDTD 

simulations must be a small fraction of the probing 

wavelength. In this work, simulations are run with 𝛿𝑥 = 𝛿𝑦 =

𝜆40GHz/20 = 3.75 × 10−4𝑚, where 𝜆40GHz is the vacuum 

wavelength of a wave with frequency f=40GHz which could 

still be suitably employed. The time discretization is also a 

small fraction of the wave period in order to comply with the 

Courant-Friedrichs-Lewy condition to ensure stability. The 

temporal resolution is thus required to be 𝛿𝑡 = 6.25 ×

10−13𝑠. This makes reflectometry simulations 

computationally very demanding, which is the main reason 

why 2D codes have been used rather than 3D. 

5. Coupling of GEMR and REFMUL 

Different codes use distinct models, approximations and 

mathematical descriptions. A direct coupling between them is 

often challenging. In particular, to integrate GEMR and 

REFMUL special attention must be paid to the coordinate 

systems employed in each code and the required spatial and 

temporal resolutions. 

5.1 Poloidal plane and drift plane 

The main approach in this work is to use instances (2D 

maps) of plasma electron density provided by GEMR as the 

required plasma model input to REFMUL simulations. The 

electron density on the drift plane (𝜓, 𝜉) perpendicular to the 

magnetic field as defined by the GEMR coordinates can be 

used without further coordinate transformations. This 

approximates the drift plane with the poloidal plane and 

neglects the circular cross section of the magnetic flux 

surfaces. Previous methods to couple numerical turbulence 

simulations and reflectometer simulations have employed the 

drift plane approximation (e.g. [2]). However, experimental 

reflectometry probes the plasma electron density on the 

poloidal plane where plasma curvature effects may play an 
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important role, as highlighted in Sect. 2. For that reason, post 

processing coordinates transformations to invert equations Eq. 

(6.1-6.3) and express the electron density in the usual 

cylindrical coordinates has to be done. This involves 

transforming into Fourier space in the GEMR toroidal angle 

coordinate (ξ) to apply a phase shift that undoes the shifted 

metric procedure [56]. This must be followed by interpolation 

from a typical lower resolution parallel grid to a high 

resolution one, after which a phase factor of q (magnetic field 

pitch) is applied to transform back to an unaligned 

representation – that is, to move from a parallel coordinate to 

a poloidal coordinate (𝜃). To finalise, an inverse Fourier 

transform is applied by summing the transformed toroidal 

Fourier modes, which yields a single poloidal plane where the 

data 𝑛𝑒 is then measured. In summary, we employ both the 

poloidal plane and the drift plane rendering of the 𝑛𝑒  data on 

REFMUL simulations in order to compare the results obtained 

with both methods, in particular to assess any effects of the 

plasma curvature on the reflectometer sensitivity. 

5.2 Interpolation 

The time discretization usually employed in GEMR is 

much larger than in REFMUL. A GEMR time resolution of 

𝛿𝑡′ = 9.3 × 10−7𝑠, allows to consider the plasma frozen in 

the time frame of the probing signal. 

As previously mentioned, electron density data obtained 

from GEMR can be provided either on a drift plane cut or on 

a poloidal plane cut of the plasma. The former is defined on a 

Cartesian grid, as expected for REFMUL, and interpolation is 

done merely to ensure the required spatial resolution (number 

of points per wavelength) is met. The latter is defined on polar 

geometry (𝑅, 𝜃) and the points of the two meshes do not 

obviously coincide. Furthermore, the points of the polar grid 

are not equidistantly distributed. This problem is treated with 

the usual tools for irregular meshes, such as Delaunay 

interpolation, in order to obtain the required spatial resolution. 

In practice, the interpolation is not performed on the whole 

poloidal cut, but only in a smaller region, adequate for the 

REFMUL simulations. The entire poloidal plane cut domain 

of an AUG turbulence snapshot and a typical region of interest 

on the LFS were shown previously in Fig. 2. 

5.3 Boundary conditioning 

One must be aware that the GEMR density profiles do not 

start at zero density. The numerical SOL in these particular 

GEMR runs has a minimum/outer value 𝑛𝑒 ≈ 9 × 1018𝑚−3 

which is relatively high. Employing probing waves on such 

density profiles with frequencies near the value corresponding 

to that critical density (𝑓𝑜 ≡ 27 GHz, according to Eq. (1)) 

would result in sudden phase jumps as the waves would 

propagate from vaccum suddenly into the plasma medium. To 

overcome this, the numerical plasma is extended to allow a 

smooth growth from ∼ 0 density to the first GEMR density 

point. A modified hyperbolic tangent [65] is used to shape this 

numerical SOL extension which has a length of 80 grid points. 

Similarly, to allow transitioning from the plasma medium to 

the perfectly matched layer used for boundary conditions, the 

plasma is extended towards the other edges of the simulation 

grid by 100-150 grid points to accommodate adaptation layers. 

In Fig. 3 a radial cut (profile) taken at the middle poloidal 

position on the LFS is shown for a Cartesian density matrix 

prepared to be used as input for REFMUL simulations. 

 

Figure 3. Radial profile from one poloidal plane cut prepared 

as input for REFMUL. The GEMR full turbulent plasma (solid 

black) and the base plasma (dashed) are shown with a set of 

critical density layers corresponding to selected probing 

frequencies. Also shown are the far-SOL (blue) and adaption 

layer (red) boundary extensions together with part of the 

vacuum distance. 

6. Simulation Setup 

The GEMR simulations assumed a simplified magnetic 

equilibrium with circular plasma cross-section and local 

plasma parameters representative of L-mode discharges at the 

AUG tokamak (e.g. see [66] for a comprehensive range of 

ohmic L-mode discharges used for intrinsic rotation studies). 

Namely, the following parameters were used: major radius R 

= 1.65m, minor radius a = 0.5m, magnetic field Bt = 2.6T. The 

plasma characteristics are ion and electron temperatures Ti = 

Te = 60eV, ion and electron densities 𝑛𝑖 = 𝑛𝑒 = 1.2 ×

1019𝑚−3 respectively and temperature and density gradient 

scale lengths LT = Ln/2 = 3.5cm, nuclear mass of deuterium MD  

= 3670me, effective nuclear charge number Zeff =2, safety 

factor q = 4.6, and magnetic shear �̂� = 1.13. In this work, we 

focus on the role of edge and SOL turbulence on the synthetic 

reflectometry measurements, which requires GEMR to 

simulate a somewhat broad radial plasma region that includes 

regions with closed and open flux surfaces. 
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The GEMR simulations were run allowing the evolution of 

turbulence using (ψ, ϑ, ξ) = (512 × 1024 × 16) grid points and 

recording electron density matrices (drift plane cuts and 

poloidal plane cuts at the mid-plane LFS) at 1915 sequential 

time iteration points. Subsequently, each GEMR matrix, was 

processed as explained in Sec. 4. Both drift plane and poloidal 

plane density matrices could then be used as input to 

REFMUL reflectometry simulations. Independently of the 

type of plane cut, the plasma itself was recorded on a similar 

region with dimensions lx ~ 6cm and ly ~ 17cm. The whole 

REFMUL simulation box was larger, due to the boundary 

extensions previously described, as well as additional room 

for the emission setup (antenna) and a vacuum distance (dvac 

= 413 grid points) to the plasma. In this work a monostatic 

design was employed (i.e. one antenna for both beam emission 

and reception) together with a unidirectional transparent 

source, allowing separation of the emitted probing wave from 

any returning waves. A 2D H-plane horn antenna with a half 

power beam width ≤ 6.5 cm at the plasma entry was chosen 

for directivity, with on-axis line of sight at the LFS mid-plane. 

The same antenna was employed in another similar set-up, 

where a lens focused the beam ahead of the cut-off positions, 

resulting in the half power beam width ≤ 3.2 cm. 

O-mode probing waves with fixed frequency fo = {28, 29, 

30, 31, 32} GHz, corresponding to cut-off densities in the 

range [0.97-1.27] ×1019m-3, have been used. These density 

layers correspond to radial locations across the open (SOL) 

and closed (edge) field line regions, away from the boundaries 

where GEMR source and sinks act. The chosen set of 

frequencies also lie on fairly constant background gradients to 

ensure some independence of the reflectometer response to 

this parameter. Lower frequency values than 28 GHz would 

also yield smaller gradients in the outer regions, possibly 

rendering poor radial probing localization. 

7. Synthetic Reflectometry Probing 

Simultaneous access to the simulated GEMR density 

profiles and density fluctuations, allows to easily strip the 

latter from the former by averaging the data over the angles 

(zonal average). Hence, for each of the GEMR renditions of 

density (drift plane and poloidal plane), two sets of sequential 

𝑛𝑒 GEMR data matrices were obtained and used as input to 

REFMUL. One set comprised the zonal averaged plasma 

density profiles 𝑛𝑒0(𝑥, 𝑦) (background or base plasma), the 

second set included the density fluctuations 𝑛𝑒(𝑥, 𝑦) =

𝑛𝑒0(𝑥, 𝑦) + 𝛿𝑛𝑒(𝑥, 𝑦) (turbulent plasma).  Probing of the two 

sets can be combined in order to implement a synthetic in-

phase and quadrature (I/Q) detection that allows to compute 

the returned amplitude 𝐴(𝑡) and phase 𝜑(𝑡) reflectometry 

signals. This is performed as follows: two REFMUL runs are 

carried out per matrix, one with a cosine (I) excitation signal 

and the other with sine excitation (Q).  The in-phase and 

quadrature emitted signals are, respectively: 

 

𝑠(𝑡)𝐼 = sin (2𝜋𝑓𝑡)    (8.1) 

𝑠(𝑡)𝑄 = cos (2𝜋𝑓𝑡)      (8.2) 

 

The signals reflected back to the antenna after propagating 

in the plasma with 𝛿𝑛𝑒(𝑥, 𝑦) = 0 will display a phase 

displacement 𝜑𝑝 accounting for the propagation delay the 

wave suffers through the plasma medium: 

 

𝑠(𝑡)𝐼𝑅0
= sin (2𝜋𝑓𝑡 + 𝜑𝑝)   (9.1) 

𝑠(𝑡)𝑄𝑅0
= cos (2𝜋𝑓𝑡 + 𝜑𝑝)     (9.2) 

 

For the full turbulent plasma, an additional fluctuating phase 

term 𝛿𝜑 will be included due to the turbulence perturbations 

𝛿𝑛𝑒(𝑥, 𝑦): 

 

𝑠(𝑡)𝐼𝑅 = sin (2𝜋𝑓𝑡 + 𝜑𝑝 + 𝛿𝜑)   (10.1) 

𝑠(𝑡)𝑄𝑅 = cos (2𝜋𝑓𝑡 + 𝜑𝑝 + 𝛿𝜑)  (10.2) 

 

Since the plasma is static in each run, 𝜑𝑝 + 𝛿𝜑 will remain 

constant at a given time 𝑡𝑘 = 𝑛 × ∆𝑡, after a stationary regime 

is reached. Sampling at time  𝑡𝑘 a complete set of signals 

obtained for a sequential set of density input matrices [Eqs. (8-

10)], will allow obtaining the reflectometry time series: 

 

𝑠[𝑛]𝐼𝑅 = sin (𝜑𝑘 + 𝜑𝑝[𝑛] + 𝛿𝜑[𝑛])  (11.1) 

𝑠[𝑛]𝑄𝑅 = cos (𝜑𝑘 + 𝜑𝑝[𝑛] + 𝛿𝜑[𝑛])  (11.2) 

 

where 𝜑𝑘 = 2𝜋𝑓𝑡𝑘 is constant. A similar sampling procedure 

allows to obtain signals 𝑠[𝑛]𝐼𝑅0
 and  𝑠[𝑛]𝑄𝑅0

 from Eqs. (9). 

These signals combined perform an I/Q detection providing 

access to the 𝛿𝜑[𝑛] and 𝐴[𝑛] time series: 

 

cos(𝛿𝜑[𝑛]) = 𝑠[𝑛]𝐼𝑅 × 𝑠[𝑛]𝐼𝑅0
+ 𝑠[𝑛]𝑄𝑅 × 𝑠[𝑛]𝑄𝑅0

  (12.1) 

sin(𝛿𝜑[𝑛]) = 𝑠[𝑛]𝑄𝑅 × 𝑠[𝑛]𝐼𝑅0
− 𝑠[𝑛]𝐼𝑅 × 𝑠[𝑛]𝑄𝑅0

   (12.2) 

 

Finally, yielding the phase variations and amplitude as: 

 

𝛿𝜑[𝑛] = 𝑡𝑎𝑛−1 sin (𝛿𝜑[𝑛] )

cos (𝛿𝜑[𝑛] )
   (13.1) 

𝐴[𝑛] = √sin (𝛿𝜑[𝑛])2 + cos (𝛿𝜑[𝑛])2  (13.2) 

 

Note that 𝜑𝑝[𝑛] can be obtained using the same procedure 

as above by similarly sampling the emitted signals [Eqs. (8)] 

and combining them with Eqs. (11) time series. In this work, 

and for the results presented in the following sections, the 

REFMUL runs were carried out with 120000 time iterations 

and the reflectometry phase and amplitude signals were 

obtained by sampling at time 𝑡𝑘 corresponding to 𝑛 = 60000, 

which was observed to be well into the stationary regime of 

the reflectometer response. 
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8. Characteristics of GEMR Turbulence 

Plasma density fluctuations contain a wealth of information 

about the underlying turbulence mechanisms [67]. Their 

perpendicular wavenumber spectra can be usually measured 

with Doppler reflectometry diagnostics, e.g. see [68]. Efforts 

to understand both the experimental and the theoretical results 

have been made, in particular employing synthetic diagnostics 

for validation studies [69]. Conventional reflectometry may 

also allow to retrieve the radial wavenumber spectra [70], 

however it is usually relevant to simply obtain the turbulence 

level of the electron density fluctuations. 

The typical scale length of turbulence dynamics is given by 

the correlation length, defined as the distance by which the 

correlation between fluctuating quantities drops from its 

maximum value by a factor of 1/e. Cross-correlation functions 

(CCF) can be calculated between time series of electron 

density evolution registered at chosen grid points. Selecting a 

given poloidal position and computing the CCF for varying 

radial separations, allows estimating the radial correlation 

length lc directly from the radial separation value where 

CCF(∆𝑟, 𝜏 = 0) = 1/e, where 𝜏 is the time lag [33]. In Fig. 4, 

CCFs calculated this way are shown, for a set of radial 

locations in the mid-plane. 

Figure 4. Cross-correlation functions (CCF) computed at drift 

plane cuts. Reference time series were registered at the cut-off 

locations of probing frequencies fo.. An example is shown (fo..= 

28 GHz) on how to calculate lc directly from the 1/e level.  

 

The reference radial locations employed in the CCFs were 

chosen to correspond to the cut-off layer positions, in the base 

plasma, of the set of probing frequencies to be employed in 

REFMUL (see Fig. 3). The radial correlation lengths lc 

obtained in the case of drift plane data, shown in the figure, 

were in the range of 0.31-0.44 cm. Poloidal plane cut data 

analysis resulted in similar values. 

To further assess the local effects of turbulence on GEMR 

data, we have chosen to register the time sequences of the 

average density 〈𝑛𝑒〉 at those different cut-off locations, where 

the averaging 〈 〉 was defined in a given spot size region. The 

spot sizes were assumed rectangular with radial length 𝑤𝑅 and 

poloidal length (in poloidal plane cases) or perpendicular 

length (in drift plane cases) 𝑤𝑍.  The radial length was 

computed as the full-width-half-maximum, in physical space, 

of the last lobe of the Airy phase solution, usually taken as the 

radial thickness of the cut-off layer 𝑤𝑅 = 1.6(𝐿𝑛)1/3𝑘𝑜
−2/3

 

[37]. The length of the rectangle in the other direction was 

taken from the full width at half maximum of the beam 

measured at the cut-off distance in base plasma simulations. 

The spot size center was positioned at the radial location of 

each critical density layer, on axis with the antenna. 

The resulting spot size dimensions varied with the probing 

frequency within the range 𝑤𝑍 = [9.2-12.4] cm for the 

unfocused antenna and 𝑤𝑍 = [6.3-7.7] cm for the focused 

antenna. The range of radial lengths was  𝑤𝑅 = [0.86-0.94] cm 

for both set-ups. An example of the spot size regions, for the 

minimum 28 GHz and maximum 32 GHz frequencies 

employed here, are displayed in Fig. 5, for the case of one 

poloidal plane cut.  

 

Figure 5. Region of interest of a poloidal plane data matrix 

from GEMR, together with rectangular spot-size regions 

centered at the corresponding cut-off locations of probing 

frequencies fo = 28 GHz and fo = 32 GHz. 

 

The computed time traces of average density within each 

spot size as well as the corresponding spectra are shown in 
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Fig. 6, for the case of drift plane data. The spectra obtained 

from the fluctuating components at all positions are rather 

similar, both in drift planes and poloidal planes (the latter are 

not shown). The typical spectrum is relatively flat at low 

frequencies and then decays with a given index.  In particular, 

there is no significant change in the spectral index with fo but 

only a slight increase of power with increasing probing 

frequency, which is observed across the whole frequency 

range. These results indicate a small radial dependence of 

turbulence effects at the cut-off, at least measured with such 

spatial averaging. The radial coverage included locations 

inside and outside the LCFS, where drift waves and 

interchange instabilities dominate, respectively. But, in fact, 

no clear changes are expected in the spectra of density time 

traces registered in the two regions [71].  

 

Figure 6. Time traces of average density from drift plane data 

at selected spot sizes (left) and corresponding power spectra 

(right). 

 

Despite this result being expected, to investigate the 

sensitivity of the spatial averaging method to variations in the 

radial and poloidal/perpendicular width of the spot size, scans 

on these parameters were also performed. A scan of the 

perpendicular width of the spot size is shown in Fig. 7, while 

a scan of the radial width of the spot size is shown in Fig. 8. 

The scans used the case fo =28 GHz as reference, with  𝑤𝑅 =

0.94𝑐𝑚 and  𝑤𝑍 = 12.4𝑐𝑚 which was then varied by 

employing a multiplication factor on one of the spot size 

dimensions while the other remained constant.  The total 

power across the whole frequency range, but in particular in 

the low frequency range, is observed to increase with 

decreasing 𝑤𝑍  in Fig. 7, but the spectral index remains 

unchanged across the whole scan. On the other hand, it is 

observed in Fig. 8 that variations in the radial size 𝑤𝑅  have a 

small impact on the low frequency range. However, reducing 

the radial size results in a shallower spectral decay, i.e. smaller 

spectral index.  

Figure 7. Time traces of average density from drift plane data 

spot-sizes with 𝑤𝑅 = 0.94𝑐𝑚 and 𝑤𝑍 = 𝑚𝑍 × 12.4𝑐𝑚 (left) 

and corresponding power spectra (right). 

Figure 8. Time traces of average density from drift plane data 

spot-sizes with 𝑤𝑅 = 𝑚𝑅 × 0.94𝑐𝑚 and 𝑤𝑍 = 12.4𝑐𝑚 (left) 

and corresponding power spectra (right). 

 

Radial profiles of turbulence level can also be computed 

directly from GEMR data. The antenna on-axis line of sight 

was considered to calculate the radial profiles displayed in Fig. 

9 and Fig. 10 corresponding to the drift and poloidal plane 

cuts, respectively. In both figures are shown the base density 

profiles together with the standard deviation of the density 

fluctuation level, registered at each radial position for the full 

time evolution of the simulation run. The two turbulence level 

profiles, from the two plane cuts, are quite narrow, non-

monotonic and decreasing outwards, across the LCFS. This is 

not in agreement with what is observed in experiments, where 

in the edge and near-SOL regions there is an increase, or 

perhaps flattening, of the turbulence level towards the plasma 

periphery (remember Fig. 1) and typically reaching much 

higher levels in the SOL.  
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Figure 9. Drift plane radial profiles of average base density 

(solid black) and of standard deviation of the turbulence level 

(dotted red). Values at cut-off locations for a set of probing 

frequencies are highlighted (squares) on each profile. 

Figure 10. Poloidal plane radial profiles of average base 

density (solid black) and of standard deviation of the 

turbulence level (dotted red). Values at cut-off locations for a 

set of probing frequencies are highlighted (squares) on each 

profile. 

 

The reason for this discrepancy may result from GEMR 

iterating self-sustained base profiles, which are solved for 

ln(𝑛𝑒) rather than 𝑛𝑒. In practice, an average value of 𝑛𝑒  is 

assumed to be constant while its gradient is evolving. 

However, this assumption cannot be realistic for edge and 

SOL regions. Hence, while GEMR generated turbulence may 

be representative in the whole region of interest, the base 

profiles may not, which is also manifest on the 𝛿𝑛𝑒/𝑛𝑒 

profiles. As future work, one may consider taking the 

fluctuation density data obtained here together with another 

base plasma data (custom building steeper base plasmas, or 

using experimental profile data) to obtain 𝛿𝑛𝑒/𝑛𝑒 profiles 

closer to what is observed experimentally in the edge and 

SOL. In the scope of this work, it is worth pointing out that 

only mild differences between the two plane cuts are observed, 

and 𝛿𝑛𝑒/𝑛𝑒 values at the cut-off locations of the considered 

probing frequencies are in the range of ~[3-6] % 

9. Results from REFMUL-GEMR Simulations 

Following what was previously prescribed in Sect. 7 

regarding the REFMUL simulations, baseband I/Q signals 

were obtained from sets of REFMUL simulations, at each 

fixed frequency, using drift planes and poloidal planes 

separately. Illustrative examples of synthetic 𝐼[𝑛] and 

𝑄[𝑛] discretized signals are shown in Fig. 11. 

 

Figure 11. Synthetic I/Q signals obtained with drift plane data 

using fo = 28 GHz and fo = 32 GHz. 

 

Figure 12. Spectral analysis of the complex amplitude signals 

𝐴(𝑡)𝑒𝑖𝜑(𝑡) for a set of probing frequencies fo in drift plane 

cases. 

 

Visual inspection of this data immediately reveals distinct 

intermittent characteristics in the two signals. The complex 

amplitude signals 𝐴(𝑡)𝑒𝑖𝜑(𝑡) = 𝐼(𝑡) + 𝑖𝑄(𝑡) were also 
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obtained and their spectra analysed. This is shown in Fig. 12, 

where the full set of probing frequencies, i.e.  fo = {28, 29, 30, 

31, 32} GHz, are represented for the drift plane cases. The 

frequency spectra have been renormalized to 𝑓/𝑓𝑜  in order to 

account for the increasing Bragg backscattering efficiency 

with increasing frequency. In general, the spectra are fairly 

symmetric. The typical spectrum shows the DC component at 

zero frequency, accounting for the reflected signal, and the 

spectral broadening around the central component, accounting 

for density fluctuations at the cut-off and Bragg resonant 

backscattering along the plasma path [24, 70]. Data in both 

drift plane cases and poloidal plane cases (not shown here), 

display a trend of spectral broadening with increasing 

frequency. However, the DC reflected power appears to be 

lower in poloidal plane cases. The same trends were obtained 

with the focused antenna set-up, yet displaying significantly 

higher levels of power across the whole frequency range (see 

Fig. 13 for an example). 

Figure 13. Spectral analysis of the complex amplitude signals 

𝐴(𝑡)𝑒𝑖𝜑(𝑡) for fo = 29GHz in drift plane cases, with and 

without a focused antenna. 

 

The spectral broadening effect appears to be independent 

of the local turbulence level since the latter does not vary 

monotonically in either poloidal or drift plane cases (see Fig. 

9 and Fig. 10, respectively). Increased Bragg backscattering 

might still be determining the spectral broadening. Either due 

to geometrical effects, such as beam spreading, allowing 

poloidal components contributions [72] or due to longer wave 

paths into the turbulent plasmas enabling contributions from 

locations farther away from the cut-off. 

The total integrated power of each spectrum, normalized to 

its DC power component, is shown in Fig. 14 against both the 

turbulence level and the plasma path length, computed at the 

corresponding cut-off layer positions in the base plasma. The 

root mean square of turbulent density fluctuations can be 

estimated through the squared spectral power [73]. However, 

in both planes, a strong linear relation with the plasma path 

length is also suggested by Fig 14. The two dependencies are 

likely entangled on the total integrated power response of 

reflectometry. Note that the power integration strongly 

depends on the low frequency range components (DC 

included), which are usually lower with increasing probing 

frequency. Without the DC normalization of each spectrum, 

data would be more scattered without easily distinguishable 

trends. 

Figure 14. Square root of total integrated power of the 

complex amplitude signals 𝐴(𝑡)𝑒𝑖𝜑(𝑡) for a set of probing 

frequencies fo using the drift plane cut and the poloidal plane 

cut, with and without a focused antenna. Spectra have been 

normalized to the DC components. 

 

The time evolution of the reflectometry phase can also be 

obtained, as previously explained in Sec. 6. An example of 

base plasma phase 𝜑𝑝(𝑡) and fluctuating phase 𝛿𝜑(𝑡) 

computed for each probing frequency employed on drift plane 

simulations is shown in Fig. 15.  

Figure 15. Synthetic 𝜑𝑝 and 𝛿𝜑 phase signals obtained with 

the corresponding sets of base and fluctuating density matrices 

of drift plane cuts. 2𝜋 plateaus are depicted on the right 

(broken grey lines). 
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Rapid phase variations are observed in 𝛿𝜑(𝑡) while 𝜑𝑝(𝑡) 

only varies slowly, as expected. The smooth variations of the 

zonal density profile (base plasma) are not responsible for the 

phase jump effects, as confirmed by the evolution of 𝛿𝜑(𝑡) in 

the right panel of Fig. 16. Turbulent density fluctuations cause 

phase jumps into another position in the phase plane. The 

phase jumps are not related to generic phase unwrapping 

issues (for instance due to insufficient sampling rates) but are 

a common occurrence in experimental data, as discussed 

previously in Sect. 2 (e.g. see [74]). Simulations have been 

designed previously to understand this phenomenology, but 

have always been done by imposing simplified models [46, 

75]. In the present work, the self-consistent evolution of the 

turbulent plasma forms the required conditions for phase 

jumps, being in this sense much nearer to reality and the 

experimental observations. To further perform spectral and 

statistical analysis on the phase signals, the phase jumps have 

been removed using an algorithm based on the one suggested 

by Ejiri [50]. An illustrative example is shown in Fig. 16 

where the synthetic phase components obtained from 

REFMUL are displayed on the left and the corrected 

fluctuating phase signal is displayed on the right. 

Figure 16. Synthetic phase signals obtained with REFMUL 

simulations with fo = 28 GHz and poloidal plane cuts (left). 

Correction of 𝛿𝜑 signal by phase jump removal (right).  

 

The resulting phase fluctuating signal components, 

obtained after phase jump corrections, are shown in Fig. 17 

and Fig. 18, for the drift plane and poloidal plane respectively, 

as well as the corresponding power spectra. In the low 

frequency range, the shape of the spectra is relatively flat, in 

both drift and poloidal planes, and there is a strong roll-over 

of the spectra at a given knee position, followed by a region of 

constant spectral index, in agreement with the shape of the 

spectra previously obtained from the GEMR turbulence 

directly (see Fig. 6). A spectral broadening effect, observed 

previously in the complex amplitude signals, is also present in 

the phase signals. The steep spectra become increasingly 

shallower with increasing probing frequency, reaching higher 

spectral index values than what was obtained directly from the 

2D density averaging procedure. At some probing frequencies 

(fo =30 GHz and fo =31 GHz) there is clearly a larger power 

response at high frequencies in the poloidal plane simulations 

than in drift plane cases. This could be an effect of the plasma 

curvature, accounted for by the base plasma data in the 

poloidal plane cuts, which has been reported to extend the 

microwave response to high perpendicular wavenumber 

fluctuations [32]. 

Figure 17. Fluctuating phase signals using drift plane cuts.  

Left: synthetic 𝛿𝜑 signals after phase jump corrections, with 

imposed offsets of 2𝜋 multiples for better visualization. Right: 

power spectra of the corresponding signals. 

Figure 18. Fluctuating phase signals using poloidal plane cuts.  

Left: synthetic 𝛿𝜑 signals after phase jump corrections, with 

imposed offsets of 2𝜋 multiples for better visualization. Right: 

power spectra of the corresponding signals. 

 

However, in both planes, the differences in the spectra 

obtained at different probing frequencies (see Fig. 12, Fig. 17 

and Fig.18) are much stronger than those observed with the 

simple local 2D density sampling procedure (see Fig. 6). The 
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latter, of course, did not account for any Bragg resonant 

effects. Differences in the dimensions of the spot sizes, alone, 

could not result in the large spectral modifications that are 

observed with synthetic reflectometry. This highlights the 

sensitivity of the reflectometer response to the beam 

broadening and/or increased Bragg backscattering efficiency 

away from the cut-off. To assess the relevance of the Bragg 

mechanisms and how they should scale according to what is 

expected from theory, the simple relation predicted by Eq. (2) 

has been considered. In Fig. 19, the standard deviation of the 

fluctuating phase signals obtained with the REFMUL 

simulations is displayed against the local standard deviation of 

the turbulence level. Also shown are the theoretical estimates 

obtained by considering effective turbulence wavenumbers 

𝑘𝑓 = 1/𝑙𝑐 [76]. Using the radial correlation lengths computed 

previously in Sect. 8, we obtain at the corresponding cut-off 

locations  𝑘𝑓 = 3.2 cm-1 for fo =28 GHz, and 𝑘𝑓 = 2.3 cm-1 for 

fo =32 GHz.  

 

Figure 19. Standard deviation of reflectometry phase signals 

from both planes, against the local turbulence level at the cut-

off location. Theoretical values estimated from Eq. (2) are also 

shown in dashed lines. 

 

The theoretical estimates for the lowest and highest probing 

frequency draw a theoretical envelope for phase fluctuations 

due to Bragg backscattering. The poloidal pane data is mostly 

within the predictions given by Eq. (2). Note that only 

considering higher effective turbulence wavenumbers 𝑘𝑓 

would bring the theoretical curves below the synthetic data, 

which would be unreasonable, at least for the lowest probing 

frequency. This effect might be due to the phase jump 

correction carried out for the poloidal plane cases, given the 

existence of at least one phase jump in most phase time traces. 

On the other hand, the phase fluctuations in the drift plane cuts 

are over-estimated by the theoretical model. In the drift plane 

cases only the phase at the highest probing frequency 

displayed phase jumps. In fact, phase fluctuations in 2D 

simulations have been reported to display smaller amplitude 

than in 1D simulations, where it was suggested that the global 

movement of the 2D density fluctuations would lead to a 

smaller apparent change of refractive index than in the 1D case 

[7]. 

Despite both the relatively small range of turbulence levels 

that have been analysed here and the observed scatter in the 

data, an approximately linear dependence of the phase 

fluctuations with the turbulence level is recovered for both 

drift and poloidal plane cut simulations. This indicates that 

phase jump removal may allow to extend the linear sensitivity 

of conventional reflectometry phase response, and 

consequently enable measurements of turbulence levels above 

what is expected from theory. 

10. Summary and Discussion 

In this work, the outputs of the gyro-fluid turbulence code 

GEMR were successfully integrated as inputs to the full-wave 

code REFMUL. Fixed frequency O-mode simulations were 

carried out on the LFS mid-plane region allowing to record 

time traces of synthetic reflectometry I/Q signals. Both the 

complex amplitude signals and the reflectometry phase signals 

were retrieved and analysed, for probing frequencies covering 

the edge and SOL plasma regions where turbulence of ~3-6%  

moderate amplitude develops.  

REFMUL simulations with 𝑛𝑒 data rendered on both drift 

plane cuts (GEMR coordinate system) and poloidal plane cuts 

have been performed in order to assess the validity of the usual 

approximation where the two coordinate systems are not 

distinguished for practical purposes. Similar trends were 

observed in both the spectra of the complex amplitude and in 

the phase fluctuations on the two sets of simulations. For 

similar turbulence levels, phase fluctuations were higher (> 

20%) when poloidal planes were used instead of drift planes. 

Plasma curvature effects may explain this behaviour. For 

example, in the case of probing wave with frequency  fo = 30 

GHz, an effective radius of curvature 𝜌~0.31𝑚 given by Eq.  

(3) can be estimated for the poloidal plane simulations, also 

yielding that 𝜌 / (2𝑘𝑜𝑤
2)~0.08 predicts the case of strong 

curvature regime. Considering the sensitivity criterion 𝑘⊥𝑤 <

2 in the slab geometry and the scaling of Eq. (4), we can expect 

reflectometry measurements to have their sensitivity increased 

from 𝑘⊥
′ ~0.4𝑐𝑚−1 to  𝑘⊥~4.4𝑐𝑚−1 due to curvature effects. 

One should note that the curvature of the cut-off layer was 

neglected in the drift planes while the curvature of the incident 

wave-front was included in both cases. The wave-front 

curvature alone could increase the perpendicular k-sensitivity 

to  𝑘⊥~1.7𝑐𝑚−1, according to the same expressions used 

above. Thus, a significant increase in the sensitivity from that 

of slab geometry was expected when considering the 2D drift 

planes. The sensitivity could still be further extended by 

plasma curvature effects, as observed for the poloidal planes.  



Journal XX (XXXX) XXXXXX Author et al  

 14  
 

Phase fluctuations arising from the Bragg resonances have 

been predicted according to a number of models yielding 

linear or non-linear relations between the phase fluctuations 

and the turbulence level at the cut-off location, depending on 

the amplitude of the density perturbations, e.g. see [23]. Time 

traces of the reflectometry fluctuating phase components 

displayed phase jumps of ±2𝜋 corresponding to realistic 

effects observed experimentally. The existence of phase 

jumps in the simulated data indicate the non-linear operation 

regime of the reflectometer. The GEMR turbulence and the 

REFMUL probing information can be employed to assess the 

criterion established in Eq. (5) for the transition between linear 

and non-linear regimes. Using the drift plane data, for 

instance, probing with fo = 20 GHz sets the reflectometer 

operating far from the transition (𝜉 = 0.0002) while for fo = 

32 GHz it is only marginally below (𝜉 = 0.98). In fact, 

probing of GEMR turbulence in drift planes only displayed 

phase jumps at this probing frequency (as observed in Fig.15). 

However, for the poloidal plane cuts, at least one phase jump 

occurred in most probing frequencies. Nevertheless, given the 

small fraction of data representing phase jumps in the whole 

time series and the marginally non-linear regime of the 

reflectometer operation (when the jumps were indeed 

present), it was chosen to correct them prior to further 

analysis.  

Trends of spectral broadening with increasing probing 

frequency, in both drift plane and poloidal plane rendered 

data, were observed. It was possible to retrieve a linear scaling 

between phase fluctuations and the turbulence levels, as 

expected in the linear regime of operation, despite the 

relatively small span of turbulence levels considered here. 

For future work, it is envisaged to apply a scaling factor to 

the density turbulence terms obtained from GEMR in order to 

probe a larger range of turbulence levels and include values 

that are closer to what is found experimentally across the SOL, 

where 𝛿𝑛𝑒/𝑛𝑒 up to ~40% is observed [4,13]. This will also 

allow assessing to which extent it will still be possible to 

extract undistorted frequency spectra and observe linear phase 

responses, with and without phase jump removal procedures. 

Taking into account the advantages in user/code access and 

code coupling, for the general use of REFMUL or other 

reflectometry codes together with GEMR or other turbulence 

codes, employing a data structure like ITER Integrated 

Modelling & Analysis Suite (IMAS) should also be 

considered [77]. 
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