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Abstract. Electron temperature and density profiles consistent with JET high
resolution Thomson scattering (HRTS) and far infrared (FIR) interferometer data
are inferred by a Bayesian joint model using Gaussian processes. Forward models
predicting diagnostic data including instrument effects such as optics and electronics
are developed independently for both diagnostic systems in the Minerva framework,
and combined as one joint model. The full joint posterior distribution of the electron
temperature and density profiles, the hyperparameters of the Gaussian processes
and calibration factor is explored by Markov chain Monte Carlo (MCMC) sampling.
The posterior distribution of the electron density(temperature) profile is obtained
by marginalising all the possible combinations of the electron temperature(density)
profile, the hyperparameters and calibration factor. Therefore, the method removes
profile dependency on the hyperparameters completely in addition to eliminating often-
used avoidable constraints such as monotonicity and parametrisation on the profiles.
The posterior distribution of the calibration factor is also calculated explaining both
the HRTS and the FIR interferometer data simultaneously. Thus, absolute electron
density can be obtained from the HRTS without additional experiments measuring the
calibration factor.
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Gaussian process

1. Introduction

Consistent inference on physics parameters is arguably one of the most important and
fundamental issues in any scientific field. Since large-scale magnetic confinement fusion
experiments such as Joint European Torus (JET) [1] and Wendelstein 7-X (W7-X) [2]
have multiple sophisticated diagnostics, it is inevitable to use a framework that is capable
of handling and keeping track of parameters, data, assumptions, forward models and
analysis codes in order to achieve consistent scientific inference. Resolving discrepancies
among various measurements, if they exist, is challenging at least for the following reasons:
i) forward models and analysis codes for a complex system, e.g., plasma diagnostics,
often contain many hidden assumptions and depend on various uncertain information
such as measurement positions, calibration factors and instrument effects as well as
our insufficient understanding of physics, and ii) even if an individual forward model,
for instance, is well managed, creating a joint model with other diagnostics or physics
models can be difficult due to lack of a standardised interface.

The Minerva framework [3, 4] allows us to perform a consistent data analysis for
complex experiments as it provides a standardised format (modularisation) for forward
models and analysis codes, so called Minerva models, and a standardised interface to
connect all of them in a systematic way. For instance, a Minerva (forward) model for
a Thomson scattering system is built as an independent module depending on lasers,
collecting optics, polychromators, data acquisition systems and physics parameters,
i.e., electron temperature and density. Once the Minerva model is created, the input,
e.g., laser energy and wavelength, polychromator details, electron temperature and
density, and the output, e.g., predicted Thomson scattered signals, can be connected
to/from other Minerva models and/or data sources. Minerva thus standardises scientific
modelling and represents such joint models as joint probabilities and provides their
graphical representation as shown in Figure 1. Some examples of implemented Minerva
models are interferometer [5], magnetic sensor [6, 7, 8], Thomson scattering [9], beam
emission spectroscopy [10, 11], soft X-ray [12], electron cyclotron emission [13], x-ray
imaging crystal spectroscopy [14] and effective ion charge [15] diagnostics. We also note
that data analysis based on Minerva models can be accelerated by field-programmable
gate arrays (FPGAs) [16] and neural networks [17].

The conventional analysis for the high resolution Thomson scattering (HRTS) and
the far infrared (FIR) interferometer diagnostics at JET are carried out individually. The
HRTS can provide electron temperature and density profiles with the spatial resolutions of
0.8−1.6 cm [20, 21]. It is well known that electron density measurements with Thomson
scattering systems require information on the calibration factors of the system [22].
The FIR interferometer diagnostic system provides line integrated electron densities,
i.e., no spatial resolution, without such calibration factors [23, 24, 25, 26]. Bayesian
analysis for Thomson scattering [9, 27, 28], interferometer [5, 29] systems and joint
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Figure 1. A simplified version of the Minerva graph representing the joint model of the
high resolution Thomson scattering (HRTS) and the far infrared (FIR) interferometer
systems at JET. The unknown parameters, i.e., the parameters we wish to determine,
and observations are shown as red and blue circles, respectively. Note that the
observations can be taken from previous inference, e.g., an observed Thomson scattered
amplitude DTS is taken from the inference results described in Section 3.1. The electron
temperature Te and density ne are given as a function of the normalised poloidal flux
ψN and mapped to Cartesian coordinates x, y, z in real space by using the equilibrium
fitting (EFIT) code [18, 19]. The predicted Thomson scattered amplitude ATS are
calculated by the Minerva model of the Thomson scattering system with the calibration
factor CTS treated as an unknown parameter, and they are compared with the observed
data. Line integrated electron densities are calculated by the lines of sight integration
model mimicking the FIR interferometer system and compared with the observed data.
Note that σf,Te

, σx,Te
, σf,ne

and σx,ne
are the hyperparameters of Gaussian processes

which are explained in Section 2.3.

analysis [30] have been previously reported. They made impressive progress, especially
evaluating uncertainties of electron temperature and density. This joint analysis [30] made
use of spline models for the electron temperature and density profiles with additional
monotonicity assumptions, which our method avoids. We use Gaussian processes, with a
smoothness determined by a marginalisation over different length scales, thus providing
an objective smoothness criterion.

In this work, we present a Bayesian joint model of the HRTS and the FIR
interferometer systems at JET to combine the advantages of each diagnostic system
while eliminating the disadvantages of them. We have developed Minerva (forward)
models for both diagnostics individually and combine them as one joint model with
an additional unknown parameter, the HRTS electron density calibration factor CTS,
as shown in Figure 1. The conventional analysis for the HRTS system uses a single
interferometer chord (channel 3) to calibrate electron density for each discharge, if the
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data from the chord 3 is available. It calculates an electron density correction factor (a
single value per discharge) for the HRTS system as the ratio of line integrated density
from the chord 3 to the predicted line integrated density from a linearly interpolated
HRTS density profile with the EFIT mapping. The method in this work infers CTS with
uncertainties, self consistently for each time slice. This means that we can automatically
and explicitly obtain the posterior distribution of CTS explaining all the HRTS and the
FIR interferometer data simultaneously, thereby getting rid of generally required extra
calibration procedures, e.g., Raman calibration, to measure CTS.

Electron temperature and density profiles are formulated by Gaussian processes
[5, 31], a non-parametric model that can adopt the complexity of profiles within a
Bayesian framework. Specifically, we use the hyperparameter model developed by
[32] (denoted as σf,Te , σx,Te , σf,ne and σx,ne in Figure 1) whose details are explained in
Section 2.3. Since we use a non-parametric model, our method does not depend on
any predefined parametric model [20, 21, 33, 34, 35, 36] such as a modified hyperbolic
tangent function [33] which often limit our knowledge on the profiles from measurements.
Moreover, Gaussian processes avoid imposing assumptions such as monotonicity [30, 37].

We explore the joint posterior distribution of the electron temperature and density
profiles, their hyperparameters and the HRTS electron density calibration factor by
using Markov chain Monte Carlo (MCMC) sampling, specifically, we use an adaptive
Metropolis-Hastings algorithm [38, 39, 40] implemented in Minerva. Finally, we obtain
electron temperature(density) profiles with the associated uncertainties by marginalising
out electron density(temperature) profiles, their hyperparameters and the calibration
factor. In other words, our final result on the temperature and density profile does not
depend on a specific set of values of all the other unknown parameters.

Section 2 describes the forward models of the HRTS and the FIR interferometer
systems, and explains Gaussian processes for the electron temperature and density
profile modelling. The details on Bayesian inference for electron temperature and density
profiles and their results are discussed in Section 3. Our conclusions are provided in
Section 4.

2. The forward model

2.1. JET high resolution Thomson scattering system

The HRTS diagnostic [20] measures the electron temperature and density from 63 spatial
locations along the laser beam across the low-field side of JET from the major radius
of R = 3.0m to 3.9m near the middle plane (Z ∼ 0.1m) with spatial resolutions of
0.8−1.6 cm. The laser wavelength of 1064 nm and typical energy level of 5.0 J with 20 ns

pulse duration and 20Hz repetition rate are used. The laser photons are scattered off of
electrons via Thomson scattering, and the Thomson scattered spectra are broadened by
the Doppler effect due to the thermal motions of the electrons. Electron temperature Te
and density ne determine the width and the area, respectively, of a Thomson scattered
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Figure 2. A schematic diagram of the HRTS system showing (a) the geometry of the
laser beam and collecting optics, (b) three spatial locations covered by a polychromator
with three sets of fibres (in this case, two optical fibres per location), (c) a polychromator
with four reflection/transmission interference filters and detectors, and (d) an example
of spectral response functions φ (λ). (e) Four filtered signals (cartoon drawings) detected
by a polychromator from three different spatial locations are distinguished by time
delays. External Raman scattered signals are originated from where the laser beam
crosses the optical path between the collecting optics and the fibres.

spectrum. The predicted Thomson scattered signal amplitude ATS is given as a function
of Te, ne and the HRTS electron density calibration factor CTS including the electronics,
optics and geometric effects:

ATS = CTS neElaser

∫
φ (λ)

φ1,1 (λN)

λ

hc
r2e
S (λ, θ, Te)

λlaser
dλ, (1)

where Elaser is the laser energy, φ (λ) are spectral response functions of the HRTS system,
φ1,1 (λN) is a normalisation factor for the spectral response functions (the value of the
spectral response function of the first spectral channel of the first spatial position at
the wavelength λN = 1020 nm), λ a scattered wavelength, h the Planck constant, c the
speed of light, re the classical electron radius, S (λ, θ, Te) the spectral density function
[41], θ a scattering angle and λlaser the laser wavelength. Further details of the Thomson
scattering model are described in Appendix A.

Each polychromator detects Thomson scattered signals from three spatial locations
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collected by three or six fibres, i.e., one or two fibres per location. The fibres for the
second and third locations are set to be 30m and 60m longer than the first location,
respectively, to separate these signals by time delays (Figure 2). This allows 63 spatial
locations to be addressed by 21 polychromators.

Thomson scattered signals from each spatial location are resolved over time by the
detectors as shown in Figure 2(e). The shape of the Thomson scattered signals depends
on the shape of the laser pulses and detector electronics. By assuming that the HRTS
system has Gaussian-shaped laser pulses and low-pass filter electronics [42], the Thomson
scattered signals as a function of time VTS (t) are formulated as

VTS (t) = ATS

∫ t

0

1√
2πτlaser

1

τelectronics
exp

[
−(t′ − tTS)

2

τ 2laser

]
exp

(
− t− t′

τelectronics

)
dt′, (2)

where ATS is the amplitude (see Equation (1)), τlaser is the width of Gaussian-shaped
laser pulses, τelectronics is the characteristic time of the electronics, and tTS is the time
when the laser energy is the maximum for Thomson scattered signals.

Raman scattered photons also get into the polychromators as the laser beam
crosses the optical path between the collecting optics and fibres outside of the JET
vacuum vessel (Figure 2(a)) in addition to stray light signals. These unintended external
Raman scattered and stray light signals, which we call parasitic signals, are occasionally
overlapping the Thomson scattered signals, therefore they must be separated out. The
parasitic signals can be measured separately by firing laser pulses into the vessel before
every JET discharge. While the temporal evolution of the parasitic signals is not changing,
the amplitudes of the signals may slightly change over plasma discharges due to the
changes of gas pressure and the laser energy. As the parasitic signals are collected by
the same polychromators and fibres we can use Equation (2) to express these signals as

VPS (t) = APS,R

∫ t

0

1√
2πτlaser

1

τelectronics
exp

[
−(t′ − tPS,R)

2

τ 2laser

]
exp

(
− t− t′

τelectronics

)
dt′

+ APS,S

∫ t

0

1√
2πτlaser

1

τelectronics
exp

[
−(t′ − tPS,S)

2

τ 2laser

]
exp

(
− t− t′

τelectronics

)
dt′, (3)

where APS = [APS,R, APS,S] is the amplitude, and tPS = [tPS,R, tPS,S] is the time when the
laser energy is the maximum for these parasitic signals (external Raman scattered and
stray light signals with the subscript R or S, respectively).

By taking account of the Thomson scattered signals VTS (t), the parasitic signals
VPS (t) and the constant background offset VB, we can express the predicted HRTS signals
VHRTS (t) as

VHRTS (t) = VTS (t) + VPS (t) + VB. (4)

Our method infers the Thomson scattered and parasitic signals simultaneously, and
results of the method are discussed in Section 3.1.
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Figure 3. The lines (dashed orange) of sight of the FIR interferometer (Interf) system
and the spatial positions of the HRTS system (green). The HRTS system measures
the electron temperature and density along the green line with spatial resolutions of
0.8−1.6 cm, and the FIR interferometer system measures line integrated densities along
the dashed orange lines. Red line indicates the plasma boundary of a typical JET
plasma discharge.

2.2. JET far infrared (FIR) interferometer system

The JET far infrared (FIR) interferometer [23, 24, 25, 26] diagnostic measures line
integrated electron densities along the eight lines of sight (four vertical and four lateral
directions as shown in Figure 3) with an approximately 10−200 µs temporal resolution
(depending on the channels). The 1st and 4th channels measure the line integrated
densities near the first wall, constraining the electron density at the edge, and the other
lines of sight cover the plasma core. Our forward model calculates the line integrated
electron density of the ith channel V i

interf as:

V i
interf =

∫
ne (x, y, z) d`, (5)

where the integration path
∫
d` is all the way along the lines of sight inside the vacuum

vessel.

2.3. Gaussian process prior

A Gaussian process [31] is a probabilistic function that associates each element of
a domain to a single element of a random vector following a multivariate Gaussian
distribution whose mean at every point and covariance between any two points within
the domain are defined. Thus, the function that is modelled by a Gaussian process is
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not constrained by any specific parametric representation, but properties given by their
mean and covariance functions.

Zero mean, which does not usually limit the inference solutions [31], and squared
exponential covariance functions are one of the most common specifications of a Gaussian
process, and they are given as

µ (x) = 0 (6)

Σ
(
xi, xj

)
= σ2

f exp

(
−(xi − xj)

2

2σ2
x

)
+ σ2

yδ
ij, (7)

where µ is the mean function, and x is a scalar or vector input, e.g., time or space. xi
and xj denote ith and jth elements of the input domain, respectively. Σ is the covariance
function with an overall scale σf , a length scale σx and a noise scale σy. These scales are
hyperparameters, and σf and σx determine the smoothness of the function. σy is chosen
to be a relatively small number with respect to the overall scale, i.e., σy/σf = 10−3 in
this work, to avoid any numerical instability [10]. δij is the Kronecker delta function.

We note that Gaussian processes have been introduced to the fusion community
with a non-parametric tomography for the JET FIR interferometer data [5] and used
for current tomography [6, 7, 43, 44], beam emission spectroscopy [10, 11], soft X-ray
spectroscopy [12], X-ray imaging crystal spectroscopy [14] and profile regressions [32].
In this work, Gaussian processes are used to model electron temperature and density
profiles to constrain their smoothness (gradient scale length) without imposing any
specific profile shapes or assumptions such as monotonicity.

Electron temperature and density profiles can have substantially different gradients
in the core and edge regions [45]. In order to represent such spatially varying gradients,
we choose non-stationary covariance functions [46], given as

Σ
(
xi, xj

)
= σ2

f

(
2σx (x

i)σx (x
j)

σx (xi)
2 + σx (xj)

2

) 1
2

exp

(
− (xi − xj)

2

σx (xi)
2 + σx (xj)

2

)
+ σ2

yδ
ij, (8)

where the length scale σx is an arbitrary function of the input x. The length scale
function σx specifies the smoothness at any point on the domain. We need a function
with different length scales in the core and edge regions and a smooth transition between
the two. For this reason, we choose a hyperbolic tangent function [32],

σx
(
xi
)
=
σcore
x + σedge

x

2
− σcore

x − σedge
x

2
tanh

(
xi − x0
σwidth
x

)
, (9)

where σcore
x and σedge

x are the core and edge length scales, respectively. x0 is the transition
position of the length scale, and σwidth

x determines how fast the transition occurs. With
this length scale function, the smoothness (gradient scale length) of the profiles is
changing gradually from the core to the edge.

The Gaussian processes of electron temperature and density profiles are set as a
function of the normalised poloidal flux, i.e., x = ψN, as shown in the Figure 1. By using
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the equilibrium fitting (EFIT) code [18, 19] with only the magnetic diagnostics, electron
temperature and density profiles are mapped onto Cartesian coordinates x, y, z in real
space. The forward models of the HRTS and the FIR interferometer systems access
values of Te and ne at their corresponding spatial positions and calculate the predictions,
ATS and V i

interf , given by Equation (1) and (5), respectively. These predictions are directly
compared to the observations for inference.

3. Bayesian inference

In Bayesian probability theory, we express a probability of generating (observing)
experimental data D given parameter values H as a conditional probability P (D|H),
a likelihood. Our state of knowledge on the parameters H before any observations are
taken into account is formulated as a prior probability P (H). For instance, P (Te) may
be a uniform distribution from zero to some maximum, e.g., 100 keV. Note that the
parameters H are what we wish to infer by conducting experiments. Bayes’ formula
states that our state of knowledge on the parameters H given the observed data D is
the posterior probability P (H|D), expressed as

P (H|D) =
P (D|H)P (H)

P (D)
, (10)

where the denominator is a normalisation factor P (D) (also called the model evidence).
A more detailed description of Bayesian inference can be found in [47, 48].

The posterior distribution is high dimensional if there exist many parameters of
interest. Thus, to calculate lower dimensional distributions of parameters of interest, a
marginalisation has to be carried out:

P (H1) =

∫
P (H1, H2) dH2. (11)

The marginal distributions provide full information of the parameters of interest by
taking into account all possible values of the other parameters. We can perform this
integration by collecting values of the parameters of interest H1 from joint samples
[H1, H2] of the joint distribution P (H1, H2). These collected values of H1 are equivalent
to samples drawn from the marginal distribution P (H1).

In this work, the parameters are electron temperature and density profiles at
50 normalised poloidal flux surfaces, Te = [Te (ψ

i=1
N ) , Te (ψ

i=2
N ) , · · · , Te (ψi=s

N )] and
ne = [ne (ψ

i=1
N ) , ne (ψ

i=2
N ) , · · · , ne (ψ

i=s
N )] with s = 50, the calibration factor CTS and the

hyperparameters MTe = [σf,Te , σx,Te ] and Mne = [σf,ne , σx,ne ] (the red circles in Figure 1).
σx,Te and σx,ne are given by Equation (9) with two sets of four parameters σcore

x , σedge
x ,

σwidth
x , and x0. The data are obtained by the HRTS and the FIR interferometer diagnostics.

With DTS denoting the amplitudes of Thomson scattered signals from all the spatial
locations and Dinterf standing for the line integrated electron densities from all the lines
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of sight, the posterior is expressed as

P (Te,ne, CTS,MTe ,Mne |DTS,Dinterf)

=
P (DTS,Dinterf |Te,ne, CTS,MTe ,Mne)P (Te,ne, CTS,MTe ,Mne)

P (DTS,Dinterf)

=
P (DTS|Te,ne, CTS)P (Dinterf |ne)P (Te|MTe)P (ne|Mne)P (MTe)P (Mne)P (CTS)

P (DTS)P (Dinterf)
.

(12)

Notice that Figure 1 exactly expresses Equation (12) which is automatically generated
by the Minerva framework such that conditional dependences among the parameters
and observations can be easily verified.

Raw data from the HRTS system contain the parasitic signals, i.e., the external
Raman scattered and stray light signals as explained in Section 2.1. In order to proceed
the profile inference, we have to first extract the Thomson scattered signals from the raw
HRTS data which is discussed in Section 3.1. Then, we present how electron temperature
and density profiles are inferred in Section 3.2.

3.1. Inference on the amplitudes of the Thomson scattered signals

We assume that the time series of raw HRTS data from the ith spatial position
(total of 63 spatial positions with 21 polychromators, i = 1, 2, . . . , 63) and the
jth spectral channel (four spectral channels for each polychromator j = 1, . . . , 4)
denoted as Di,j

HRTS§ is following a multivariate Gaussian distribution whose mean
is the HRTS predicted signals Vi,j

HRTS given by Equation (4) with the covariance
Σi,j

HRTS as a combination of the electronics and photon noises. Thus, the probability
P
(
Di,j

HRTS|A
i,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics

)
is written as

P
(
Di,j

HRTS|A
i,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics

)
=

1√
(2π)m

∣∣Σi,j
HRTS

∣∣ exp
(
−1

2

(
Di,j

HRTS −Vi,j
HRTS

)T
Σi,j

HRTS

−1 (
Di,j

HRTS −Vi,j
HRTS

))
. (13)

Di,j
HRTS and Vi,j

HRTS are time series vectors, e.g., Di,j
HRTS =

[
Di,j

HRTS (t = t1) , · · · , Di,j
HRTS (t = tm)

]
with m = 500 covering 500 ns. The covariance Σi,j

HRTS is given as a diagonal matrix
assuming no correlation with other time points, that is

Σi,j
HRTS =


(
σi,j
HRTS (t = t1)

)2
0 · · · 0

0
(
σi,j
HRTS (t = t2)

)2 · · · 0
... ... . . . ...
0 0 · · ·

(
σi,j
HRTS (t = tm)

)2

 , (14)

§ Note that DTS in Equation (12) are the amplitudes of the Thomson scattered signals extracted from
the raw HRTS data DHRTS.
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Figure 4. (a) An example of the parasitic signals obtained by firing the laser pulses
before a plasma discharge. Different signal levels from different laser pulses (different
colours) at a fixed time are dominated by the photon noise. (b) Poisson statistics are
calculated from the linear relation between the signal mean and variance from the
different parasitic signals, and we find that σ2

photon = aVHRTS with a = 2.01× 10−4 in
this example.

where
(
σi,j
HRTS (t)

)2
=
(
σi,j
electronics

)2
+
(
σi,j
photon (t)

)2 is the uncertainty of the raw HRTS
data.

The electronics noise σi,j
electronics is set as a zero mean Gaussian noise whose standard

deviation is estimated from the electronics noise signals measured before the laser pulses
and plasma discharges, i.e., without the laser pulses and plasmas, and assumed not to
vary over time.

The photon noise is estimated from the mean and variance of the parasitic signals.
Figure 4(a) shows an example of the parasitic signals obtained by firing many laser pulses
(different colours) before a single plasma discharge, and (b) shows the linear relation
between the signal mean and the variance over many laser pulses with the estimated slope
of a = 2.01× 10−4. Here, the photon noise is assumed to be the dominant contribution
to the signal fluctuation [36]. Once we have the value of a, then the photon noise can be
estimated as (

σi,j
photon (t)

)2
= aV i,j

HRTS (t) . (15)

More details on the method of the photon noise estimation can be found in [10].
Assuming that a prior probability of each parameter (Ai,j

TS, Ai,j
PS, V i,j

B , ti,jTS, ti,jPS, τ i,jlaser

and τ i,jelectronics) is given as a uniform distribution, the posterior probability is written as

P
(
Ai,j

TS, A
i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics|D

i,j
HRTS

)
=

P
(
Di,j

HRTS|A
i,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics

)
×

P
(
Ai,j

TS

)
P
(
Ai,j

PS

)
P
(
V i,j
B

)
P
(
ti,jTS

)
P
(
ti,jPS
)
P
(
τ i,jlaser

)
P
(
τ i,jelectronics

)
P
(
Di,j

HRTS

) . (16)

The posterior distribution of Ai,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser and τ i,jelectronics is explored

by Markov chain Monte Carlo (MCMC) sampling, specifically, we use the adaptive
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Figure 5. An example of the measured raw HRTS data Di,j
HRTS (orange dots) and

the mean of predicted HRTS signals Vi,j
HRTS (dark blue line) from the fourth spectral

channel (j = 4) of the seventh polychromator (corresponding to i = 19, 20 and 21)
during a plasma discharge over one laser pulse. The light blue lines show samples of
the posterior (Equation (16)) explored by the MCMC method. The red and green lines
are the predicted Thomson scattered signals Vi,j

TS and the predicted parasitic signals
Vi,j

PS calculated through Equations (2) and (3), respectively, given the posterior mean.
There are three peaks of Thomson scattered signals as one polychromator receives the
signals from three different spatial positions as described in Section 2.1

Metropolis-Hastings algorithm [38, 39, 40]. The mechanism of this algorithm is: i) to
propose a random sample x′ in parameter space from a proposal distribution Q (x′|xt)
given a previous sample xt and ii) to accept the candidate if P (x′) /P (xt) ≥ u, otherwise
reject it (P (x) is the posterior probability of x, and u is a random number from a
uniform distribution on [0, 1]). After some iterations, the algorithms will collect a set of
samples, which are drawn from the posterior distribution [38, 39]. We use an adaptive
rule [40] to modify the proposal distribution Q in every iteration to sample the posterior
distribution effectively.

The samples drawn from the posterior distribution given by Equation (16) are
shown in Figure 5. The orange dots are the measured raw HRTS data Di,j

HRTS (the fourth
spectral channel of the seventh polychromator in this example) during a plasma discharge
over one laser pulse. The dark blue line is the mean of predicted HRTS signals Vi,j

HRTS,
whereas the light blue lines are samples of the posterior. The red and green lines are
the predicted Thomson scattered signals Vi,j

TS and the predicted parasitic signals Vi,j
PS

calculated through Equations (2) and (3), respectively, given the posterior mean.
As electron temperature and density profiles are inferred based on the observed‖

‖ As a matter of fact, DTS is an inferred quantity (rather than being an observed quantity) from the
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Figure 6. Comparisons between the mean values of the Thomson scattered amplitudes
with one standard deviation error bars from the Bayesian approach and the conventional
method for (a) JET discharge #88630 at 8.024 s and (b) JET discharge #89380 at
11.776 s. The black line is: y = x.

amplitudes of the Thomson scattered signals DTS from all the spatial locations, we
need to obtain ATS given the measured raw HRTS data (see Equation (2)). Thus, we
marginalise out all the other parameters except Ai,j

TS from the posterior as

P
(
Ai,j

TS|D
i,j
HRTS

)
=∫

P
(
Ai,j

TS, A
i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics|D

i,j
HRTS

)
dAi,j

PSdV
i,j
B dti,jTSdt

i,j
PSdτ

i,j
laserdτ

i,j
electronics.

(17)

We perform the marginalisation by collecting the values of Ai,j
TS from sample vectors[

Ai,j
TS, A

i,j
PS, V

i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser, τ

i,j
electronics

]
of the posterior given by Equation (16). The

collected values of Ai,j
TS are equivalent to samples drawn from the marginal posterior

distribution P
(
Ai,j

TS|D
i,j
HRTS

)
given by Equation (17). Finally, we define the mean and

variance of the amplitudes of the Thomson scattered signal from the jth spectral channel
of the ith spatial position as Di,j

TS and
(
σi,j
TS

)2 for profile inference in the following section,
respectively, which are calculated as

Di,j
TS =

∫
Ai,j

TS P
(
Ai,j

TS|D
i,j
HRTS

)
dAi,j

TS, (18)(
σi,j
TS

)2
=

∫ (
Ai,j

TS −Di,j
TS

)2
P
(
Ai,j

TS|D
i,j
HRTS

)
dAi,j

TS. (19)

We emphasise that our method infers the amplitudes of the Thomson scattered
signals Ai,j

TS by taking into account all possible values of all the other parameters Ai,j
PS,

V i,j
B , ti,jTS, t

i,j
PS, τ

i,j
laser and τ i,jelectronics. As discussed in Section 2.1, the parasitic signals

measured raw data DHRTS. We treat the inferred DTS as an observed one for the profile inference.
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might change over laser pulses during plasma discharges, and our method takes that
into account by marginalisation, to arrive at a proper distribution of Ai,j

TS from the raw
HRTS measurements. In addition, our method uses a more realistic signal model for the
Thomson scattered and parasitic signals (Equations (2) and (3)) and uncertainty model
which takes into account electronics and Photon noises. In contrast, the conventional
method uses a Gaussian signal model and does not perform the marginalisation to
calculate Ai,j

TS. The mean values of the Thomson scattered amplitudes with one standard
deviation error bars from the Bayesian approach and the conventional method are
compared as shown in Figure 6. In general, the two results are comparable to each other,
but there are notable differences on the size of error bars, especially when the signal
level is low.

3.2. Inference on the electron temperature and density profiles

3.2.1. Likelihood. To obtain the posterior probability of electron temperature and
density profiles, Te and ne, the calibration factor CTS, and the hyperparameters, MTe

and Mne , given DTS and Dinterf , we need to model two likelihoods, i.e., one for the
Thomson scattered data P (DTS|Te,ne, CTS) and the other for the FIR interferometer
data P (Dinterf |ne) as described in Equation (12).

We assume that the conditional probability of the Thomson scattered data
P (DTS|Te,ne, CTS) is a multivariate Gaussian distribution whose mean is DTS ={
Di,j

TS|i = 1, 2, · · · , 63, j = 1, · · · , 4
}
=
[
D1,1

TS, D
1,2
TS, · · · , D

63,3
TS , D

63,4
TS

]
(63 spatial positions

and four spectral channels for each polychromator resulting in total of 63 × 4 = 252

amplitudes) with the covariance ΣTS as

ΣTS =



(
σ1,1
TS

)2
0 · · · 0 0

0
(
σ1,2
TS

)2 · · · 0 0
... ... . . . ... ...
0 0 · · ·

(
σ63,3
TS

)2
0

0 0 · · · 0
(
σ63,4
TS

)2

 . (20)

We have calculated Di,j
TS and

(
σi,j
TS

)2 in Section 3.1. Thus, we have

P (DTS|Te,ne, CTS) =
1√

(2π)k |ΣTS|
exp

(
−1

2
(DTS −ATS?)

TΣ−1
TS (DTS −ATS?)

)
,

(21)
where ATS? =

{
Ai,j

TS?|i = 1, 2, · · · , 63, j = 1, · · · , 4
}
=
[
A1,1

TS?, A
1,2
TS?, · · · , A

63,3
TS?, A

63,4
TS?

]
is a

predicted quantity (denoted with an additional subscript ?) calculated by Equation (1)
given the parameters of Te,ne and CTS. Notice the difference between ATS? and ATS,
where the latter is an observed quantity from the raw HRTS data. Here, k is the total
number of Thomson scattered amplitudes, i.e. k = 63 × 4 = 252. We formulate the
likelihood for the Thomson scattered data as a multivariate Gaussian distribution for
computational efficiency.
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With the same argument, the conditional probability of the FIR interferometer data
P (Dinterf |ne) is

P (Dinterf |ne) =
1√

(2π)l |Σinterf |
exp

(
−1

2
(Dinterf −Vinterf)

TΣ−1
interf (Dinterf −Vinterf)

)
,

(22)
where Vinterf = {V i

interf |i = 1, 2, · · · , 8} = [V i=1
interf , V

i=2
interf , · · · , V i=8

interf ] is a set of the
predicted line integrated densities calculated by Equation (5) given the parameter
of ne. Here, l = 8 representing the eight lines of sight. The covariance matrix Σinterf is
an l × l diagonal matrix, where the diagonal elements describe the uncertainties, i.e.,
variance, of the eight channels of the FIR interferometer system. Relevant measured
quantities Dinterf and Σinterf are retrieved from the data source [5, 29], i.e., JET database.

3.2.2. Prior. We now turn our attention to model the prior probabilities, which are
P (Te|MTe), P (ne|Mne), P (MTe), P (Mne) and P (CTS), in Equation (12).

The prior probabilities of Te and ne are modelled by using the Gaussian processes
with the zero mean function (Equation (6)) and the covariance function Σ

(
ψi
N, ψ

j
N

)
(Equation (8)). We form the Gaussian process priors as

P (Te|MTe) =
1√

(2π)s |ΣTe |
exp

(
−1

2
(Te − 0)T Σ−1

Te
(Te − 0)

)
, (23)

P (ne|Mne) =
1√

(2π)s |Σne |
exp

(
−1

2
(ne − 0)T Σ−1

ne
(ne − 0)

)
, (24)

where s = 50 denotes the number of flux surfaces we use to infer the profiles in this work.
0 is the zero vector, and the covariance matrix Σ⊕ (where the subscript ⊕ representing
either Te or ne) is defined as

Σ⊕ =


Σ⊕ (ψi=1

N , ψi=1
N ) Σ⊕ (ψi=1

N , ψi=2
N ) · · · Σ⊕ (ψi=1

N , ψi=s
N )

Σ⊕ (ψi=2
N , ψi=1

N ) Σ⊕ (ψi=2
N , ψi=2

N ) · · · Σ⊕ (ψi=2
N , ψi=s

N )
... ... . . . ...

Σ⊕ (ψi=s
N , ψi=1

N ) Σ⊕ (ψi=s
N , ψi=2

N ) · · · Σ⊕ (ψi=s
N , ψi=s

N )

 . (25)

We set the prior probabilities of the hyperparameters P (MTe) and P (Mne) to be
uniform distributions. Likewise, the prior of the calibration factor P (CTS) is set to be a
uniform distribution.

3.2.3. Posterior. Equation (12) provides us the joint posterior probability of Te, ne,
CTS, MTe and Mne with the likelihoods, i.e., Equations (21) and (22), and the prior
probabilities, i.e., Equations (23) and (24) together with the uniform distributions for CTS,
MTe and Mne . The joint posterior distribution of Te, ne, CTS, MTe and Mne is explored
by MCMC sampling with the adaptive Metropolis-Hastings algorithm [38, 39, 40]. The
inference results for JET discharge #88630 at 10.526 s (L-mode) are shown in Figure 7:
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Figure 7. Inference results for JET discharge #88630 at 10.526 s (L-mode): (a) Te
profiles, (b) Te gradient, (c) length scale of Te profiles, (d) ne profiles, (e) ne gradient
and (f) length scale of ne profiles. The thick and light blue lines are the mean and
samples, respectively, of the marginal joint posterior distributions. The blue dashed
lines are the lower and upper boundaries of two standard deviation (±2σ) marginal
posterior uncertainty bands. For comparison, the electron temperature and density
profiles (red dots with ±2σ error bars on a few points) and gradients (red lines) from
the conventional analysis of the HRTS system [20] are shown. The results (orange lines)
of a fitted modified hyperbolic tangent function [33] to the conventional analysis are
also presented here. The red vertical line in (d) indicates a large uncertainty of the
conventional analysis outside of the last closed flux surface due to a small signal-to-noise
ratio.

(a) Te profiles, (b) Te gradient, (c) length scale of Te profiles, (d) ne profiles, (e) ne

gradient and (f) length scale of ne profiles. The electron temperature(density) profiles are
obtained by marginalising over the electron density(temperature) profiles, the calibration
factor CTS and hyperparameters MTe and Mne . Similarly, the length scale profiles of Te
and ne are obtained by marginalising over all the other parameters. The gradient profiles
are calculated numerically from these marginalised Te and ne profiles. The thick and
light blue lines are the mean and samples, respectively, of the marginal joint posterior
distributions. The blue dashed lines are the lower and upper boundaries of two standard
deviation (±2σ) marginal posterior uncertainty bands.

For comparison, we show, in Figure 7, the electron temperature and density profiles
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Figure 8. The data (orange dots) and predictions (blue crosses with ±1σ error bars)
of (a) the HRTS and (c) the FIR interferometer systems for JET discharge #88630

at 10.526 s. The differences between the predictions P and data D divided by the
uncertainties σ are shown in (b) and (d). Note that the channels #1 and #2 of the
FIR interferometer system were not available for this discharge, hence no measured
line integrated densities for these channels.

(red dots with ±2σ error bars on a few points) and Te and ne gradient profiles (red lines)
from the conventional analysis of the HRTS system [20]. The gradient profiles from the
conventional analysis are calculated from two neighbouring points then smoothened by a
simple moving mean with five points. We also present the results (orange lines) of a fitted
modified hyperbolic tangent function [33] to the conventional analysis. The Bayesian
method reproduces the gradient profiles which agree with those from the conventional
method within the marginal posterior uncertainties.

The data (orange dots) and predictions (blue crosses with ±1σ error bar) of the
HRTS and the FIR interferometer systems are shown in Figure 8 (a) and (c). The
predictions are calculated through Equations (1) and (5) given the mean of the joint
posterior distribution. The differences between the predictions P and data D divided by
the uncertainties σ are also shown in Figure 8 (b) and (d). The data and predictions
agree within the uncertainties.

An example of the electron temperature and density profiles of a JET H-mode
discharge (#89380 at 11.776 s) is shown in Figure 9. The Gaussian processes infer the
pedestal gradients of the electron temperature and density profiles by taking account
of all possible hyperparameter values and marginalising them out. Note that we have
not included the spatial instrument response of the HRTS system because all the HRTS
data used in this work are obtained from the present HRTS configuration that affects
the pedestal gradient minimally [21].

We emphasise that our method inferring profiles of electron temperature and density
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Figure 9. Same as Figure 7 for a JET H-mode discharge (#89380 at 11.776 s).

do not depend on any parametrisation due to the usage of non-parametric Gaussian
processes with the hyperparameters. The choice of Gaussian process class will result in
different prior probabilities for different profile shapes. At the same time, the Gaussian
process is still a universal approximator, so given enough data the actual underlying
profile would be recovered. It is very hard to estimate, even define, the bias introduced
by the choice of Gaussian process family, but within a family the marginalisation over
hyperparameters should objectively choose proper smoothnesses. The choice of Gaussian
process family (in this case the hyperbolic tangent function) will in the end correspond
to a physics assumption, though a much weaker one than a strict parameterised function.
In no case though will the shape be related (not even weakly) to a hyperbolic tangent
curve. Thus, non-hyperbolic tangent profile shapes, e.g., hollow profiles, can be inferred
as shown in Figure 10 where the profile shapes are fully determined by the data, taking
account of all possible combinations of CTS, MTe and Mne .

This Gaussian process family well reproduces all profile shapes we have examined
including highly non-monotonic profiles. Nevertheless, there might be cases which are
not well represented by this Gaussian process family. Extensive usage of our method
will show how versatile this Gaussian process parameterisation is.
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Figure 10. Same as Figure 7 for ne inference results for (a), (b) and (c) JET discharge
#88680 at 11.776 s (H-mode plasma with 6MW neutral beam injection) and (d), (e)
and (f) #88400 at 11.076 s (H-mode plasma with pellet injection).

3.3. Discussion on the calibration factor CTS

The electron density calibration factor CTS for the HRTS system is set as a single
unknown parameter for all the spectral channels of all the polychromators and inferred
by sampling the joint posterior distribution, i.e., Equation (12), that can explain both
the measured HRTS and FIR interferometer data. Figure 11 shows the mean (thick
segmented blue lines) and the samples (light blue lines) from the marginalised CTS

posterior distribution over all the other parameters which are electron temperature,
density and their associated hyperparameters for multiple time points of several JET
discharges.

The inferred calibration factor may provide us useful information on the HRTS
system. For instance, relatively large variation of the calibration factor within a single
discharge, e.g., JET discharge #88380 in Figure 11, may be caused by: i) a fluctuation
of the laser energy, ii) a laser misalignment or iii) over/under-estimation of the plasma
volume via the EFIT code. The overall trend of the calibration factor over many discharges
may suggest us unforeseen slow aberration of the instruments such as contamination
on the collecting optics (by dust for example). Our method can handle the temporal
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Figure 11. Evolution of the electron density calibration factor CTS over multiple JET
discharges. The upper and lower labels on the abscissa are the time points and the
discharge numbers, respectively. The thick segmented blue lines show the mean of the
samples (light blue lines) from the marginalised CTS posterior distribution. Evolution of
CTS may provide us how the HRTS system vary over time. The blue dashed lines are the
lower and upper boundaries of one standard deviation marginal posterior uncertainty
bands.

variation of CTS as well as the uncertainties of CTS and its influence on the profile
quantities.

4. Conclusions

We have developed and presented a Bayesian inference scheme for electron temperature
and density profiles using non-parametric Gaussian processes consistent with the high
resolution Thomson scattering (HRTS) and the far infrared (FIR) interferometer data
from JET. The forward models of both systems are constructed within the Minerva
framework, individually and combined together. Our method consists of two steps:
i) extracting the amplitudes of the Thomson scattered signals from the raw HRTS
measurements, and ii) inferring the electron temperature and density profiles.

The raw HRTS measurements contain not only the Thomson scattered but also the
parasitic signals which are external Raman scattered and stray light signals. These signals
are carefully modelled by taking account of the instrument effects with the associated
uncertainties which are electronics and photon noises. The joint posterior distribution of
the Thomson scattered and the parasitic signals are explored by Markov chain Monte
Carlo (MCMC) sampling, and the amplitudes of the Thomson scattered signals are
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obtained by marginalising out all the other parameters. The mean and variance of the
amplitudes define the observed quantities for the profile inference.

The electron temperature and density profiles are modelled by non-parametric
Gaussian processes. The profiles are inferred from the observed amplitudes of the
Thomson scattered signals and the FIR interferometer data by exploring (with MCMC
sampling) the joint posterior distribution of the electron temperature and density profiles,
the electron density calibration factor of the HRTS system and the hyperparameters.
The electron temperature and density profiles are obtained by marginalising out all
the other parameters. Therefore, these profiles do not depend on a specific value of
hyperparameters nor any parametric regressions which may restrain the shape of the
profiles significantly. In addition, combining the HRTS and the FIR interferometer
data allows us to infer the calibration factor and its uncertainty, and it may provide us
knowledge on unforeseen aberration of the diagnostic systems over time.

These inference results, including the profile samples, can be used for further
advanced investigation such as transport analysis with TRANSP [49]. Samples of
gradient profiles can be fed to transport codes to extract uncertainty information on
calculated physics parameters.
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Appendix A. Details on the Thomson scattering model, i.e., Equation (1)

Thomson scattered energy E per unit solid angle Ω per unit wavelength λ that depends
on the electron temperature Te and density ne is given by Naito formula [41]

∂2E

∂Ω∂λ
= r2eneElaserL

S (λ, θ, Te)

λlaser
, (A.1)

where re is the classical electron radius, Elaser the energy of incident laser, L a scattering
length, S the spectral density function which depends on scattering wavelength λ and
angle θ in addition to the electron temperature Te. Since N = λ

hc
E where N is the

number of photons at the wavelength λ, Equation (A.1) can be rewritten as

∂2N

∂Ω∂λ
=

λ

hc

∂2E

∂Ω∂λ
, (A.2)

where h is the Planck constant and c the speed of light.
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Taking account of spectral response functions of Thomson scattering diagnostic
systems (in this case, the HRTS system) φ (λ), which include the transmittance of optics
and polychromator filter functions, the number of collected photons NTS is

NTS =

∫∫
φ (λ)

∂2N

∂Ω∂λ
dΩdλ

=

∫∫
φ (λ)

λ

hc
r2eneElaserL

S (λ, θ, Te)

λlaser
dΩdλ

≈ L∆Ω neElaser

∫
φ (λ)

λ

hc
r2e
S (λ, θ, Te)

λlaser
dλ, (A.3)

and the last line is obtained by approximating
∫
dΩ to ∆Ω.

Detectors convert the collected photons to an electronics signal ATS with their gain
factor G, thus we have

ATS = GL∆Ω φ1,1 (λN)neElaser

∫
φ (λ)

φ1,1 (λN)

λ

hc
r2e
S (λ, θ, Te)

λlaser
dλ, (A.4)

where φ1,1 (λN) is a normalisation factor for the spectral response functions (the value of
the spectral response function of the first spectral channel of the first spatial position at
the wavelength λN = 1020 nm in our case).

Equation (1) is obtained by letting the electron density calibration factor CTS =

GL∆Ω φ1,1 (λN), that is

ATS = CTS neElaser

∫
φ (λ)

φ1,1 (λN)
(λ)

λ

hc
r2e
S (λ, θ, Te)

λlaser
dλ. (A.5)
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