
ar
X

iv
:1

80
5.

06
19

6v
2

 [
cs

.L
O

]
 2

7
Se

p
20

18

On the Semantics of Snapshot Isolation

Azalea Raad1, Ori Lahav2, and Viktor Vafeiadis1

1 MPI-SWS, Germany
2 Tel Aviv University, Israel

{azalea,viktor}@mpi-sws.org
orilahav@tau.ac.il

Abstract. Snapshot isolation (SI) is a standard transactional consis-
tency model used in databases, distributed systems and software trans-
actional memory (STM). Its semantics is formally defined both declara-
tively as an acyclicity axiom, and operationally as a concurrent algorithm
with memory bearing timestamps.
We develop two simpler equivalent operational definitions of SI as lock-
based reference implementations that do not use timestamps. Our first
locking implementation is prescient in that requires a priori knowledge
of the data accessed by a transaction and carries out transactional writes
eagerly (in-place). Our second implementation is non-prescient and per-
forms transactional writes lazily by recording them in a local log and
propagating them to memory at commit time. Whilst our first imple-
mentation is simpler and may be better suited for developing a program
logic for SI transactions, our second implementation is more practical due
to its non-prescience. We show that both implementations are sound and
complete against the declarative SI specification and thus yield equiva-
lent operational definitions for SI.
We further consider, for the first time formally, the use of SI in a context
with racy non-transactional accesses, as can arise in STM implementa-
tions of SI. We introduce robust snapshot isolation (RSI), an adaptation
of SI with similar semantics and guarantees in this mixed setting. We
present a declarative specification of RSI as an acyclicity axiom and
analogously develop two operational models as lock-based reference im-
plementations (one eager, one lazy). We show that these operational
models are both sound and complete against the declarative RSI model.

1 Introduction

Transactions are the de facto synchronisation mechanism in databases and geo-
replicated distributed systems, and are thus gaining adoption in the shared-
memory setting via software transactional memory (STM) [32,20]. In contrast
to other synchronisation mechanisms, transactions readily provide atomicity, iso-
lation, and consistency guarantees for sequences of operations, allowing program-
mers to focus on the high-level design of their systems.

However, providing these guarantees comes at a significant cost. As such, var-
ious transactional consistency models in the literature trade off consistency guar-
antees for better performance. At nearly the one end of the spectrum, we have

http://arxiv.org/abs/1805.06196v2

serialisability [28], which requires transactions to appear to have been executed
in some total order consistent with the program order. Serialisability provides
strong guarantees, but is widely considered too expensive to implement. The
main problem is that two conflicting transactions (e.g. one reading from and one
updating the same datum) cannot both execute and commit in parallel.

Consequently, most major databases, both centralised (e.g. Oracle and MS
SQL Server) and distributed [15,31,29], have opted for a slightly weaker model
called snapshot isolation (SI) [7] as their default consistency model. SI has much
better performance than serialisability by allowing conflicting transactions to
execute concurrently and commit successfully as long as they do not have a
write-write conflict. This in effect allows reads of SI transactions to read from
an earlier memory snapshot than the one affected by their writes, and permits
the write skew anomaly [11] depicted in Fig. 1. Besides this anomaly, however,
SI is essentially the same as serialisability: Cerone et al. [11] provide a widely
applicable condition under which SI and serialisability coincide for a given set
of transactions. For these reasons, SI has also started gaining adoption in the
generic programming language setting via STM implementations [1,16,8,26,25]
that provide SI semantics for their transactions.

The formal study of SI, however, has so far not accounted for the more general
STM setting in which both transactions and uninstrumented non-transactional
code can access the same memory locations. While there exist two equivalent
definitions of SI—one declarative in terms of an acyclicity constraint [10,11]
and one operational in terms of an optimistic multi-version concurrency control
algorithm [7]—neither definition supports mixed-mode (i.e. both transactional
and non-transactional) accesses to the same locations. Extending the definitions
to do so is difficult for two reasons: (1) the operational definition attaches a
timestamp to every memory location, which heavily relies on the absence of
non-transactional accesses; and (2) there are subtle interactions between the
transactional implementation and the weak memory model underlying the non-
transactional accesses.

In this article, we address these limitations of SI. We develop two simple
lock-based reference implementations for SI that do not use timestamps. Our first
implementation is prescient [19] in that it requires a priori knowledge of the data
accessed by a transaction, and performs transactional writes eagerly (in-place).
Our second implementation is non-prescient and carries out transactional writes
lazily by first recording them in a local log and subsequently propagating them to
memory at commit time. Our first implementation is simpler and may be better
suited for understanding and developing a program logic for SI transactions,
whilst our second implementation is more practical due to its non-prescience. We
show that both implementations are sound and complete against the declarative
SI specification and thus yield equivalent operational definitions for SI.

We then extend both our eager and lazy implementations to make them ro-
bust under uninstrumented non-transactional accesses, and characterise declar-
atively the semantics we obtain. We call this extended model robust snapshot

isolation (RSI) and show that it gives reasonable semantics with mixed-mode
accesses.

To provide SI semantics, instead of timestamps, our implementations use
multiple-readers-single-writer (MRSW) locks. They acquire locks in reader mode
to take a snapshot of the memory locations accessed by a transaction and then
promote the relevant locks to writer mode to enforce an ordering on transac-
tions with write-write conflicts. As we shall discuss, the equivalence of the RSI
implementation and its declarative characterisation depends heavily upon the
axiomatisation of MRSW locks: here, we opted for the weakest possible axioma-
tisation that does not order any concurrent reader lock operations and present
an MRSW lock implementation that achieves this.

Outline In §2 we present an overview of our contributions by describing our
reference implementations for both SI and RSI. In §3 we define the declarative
framework for specifying STM programs. In §4 we present the declarative SI
specification against which we demonstrate the soundness and completeness of
our SI implementations. In §5 we formulate a declarative specification for RSI
and demonstrate the soundness and completeness of our RSI implementations.
We discuss related and future work in §6.

2 Background and Main Ideas

As noted earlier, the key challenge in specifying STM transactions lies in ac-
counting for the interactions between mixed-mode accesses to the same data.
One simple approach is to treat each non-transactional access as a singleton
mini-transaction and to provide strong isolation [27,9], i.e. full isolation between
transactional and non-transactional code. This, however, requires instrument-
ing non-transactional accesses to adhere to same access policies as transactional
ones (e.g. acquiring the necessary locks), which incurs a substantial performance
penalty for non-transactional code. A more practical approach is to enforce iso-
lation only amongst transactional accesses, an approach known as weak isola-
tion [27,9], adopted by the relaxed transactions of C++ [2].

As our focus is on STMs with SI guarantees, instrumenting non-transactional
accesses is not feasible. In particular, as we expect many more non-transactional
accesses than transactional ones, we do not want to incur any performance degra-
dation on non-transactional code when executed in parallel with transactional
code. As such, we opt for an STM with SI guarantees under weak isolation. Un-
der weak isolation, however, transactions with explicit abort instructions are
problematic as their intermediate state may be observed by non-transactional
code. As such, weakly isolated STMs (e.g. C++ relaxed transactions [2]) often
forbid explicit aborts altogether. Throughout our development we thus make
two simplifying assumptions: (1) transactions are not nested; and (2) there are
no explicit abort instructions, following the example of weakly isolated relaxed
transactions of C++. As we describe later in §2.3, it is straightforward to lift
the latter restriction (2) for our lazy implementations.

T1:
[
a := x; //0
x := a+ 1;

T2:
[
b := x; //0
x := b+ 1;

(LU) Lost Update
SI: ✗

T1:
[
a := x; //0
y := 1;

T2:
[
b := y; //0
x := 1;

(WS) Write Skew
SI: ✓

T1:

[
y := 1;

T3:
[
a := x; //0

T2:
[
b := y; //0
x := 1;

(WS2) Write Skew Variant
SI: ✓

T1:

[
x := 1;
y := 1;

T3:
[
a := y; //2

T2:
[
b := x; //0
y := 2;

(LU2) Lost Update Variant
SI: ✗

x := 1;
T1:
[
a := z;

b := y; //0

y := 1;
T2:
[
c := z;

d := x; //0

(SBT) Store Buffering
RSI: ✓

x := 1;
y := 1;

T2:
[
a := y; //1
b := x; //0

(MPT) Message Passing
RSI: ✗

Fig. 1: Litmus tests illustrating transaction anomalies and their admissibility
under SI and RSI. In all tests, initially, x = y = z = 0. The //v annotation next
to a read records the value read.

For non-transactional accesses, we naturally have to pick some consistency
model. For simplicity and uniformity, we pick the release/acquire (RA) subset
of the C++ memory model [6,23], a well-behaved platform-independent memory
model, whose compilation to x86 requires no memory fences.

Snapshot Isolation (SI) The initial model of SI in [7] is described informally
in terms of a multi-version concurrent algorithm as follows. A transaction T

proceeds by taking a snapshot S of the shared objects. The execution of T is
then carried out locally: read operations query S and write operations update S.
Once T completes its execution, it attempts to commit its changes and succeeds
only if it is not write-conflicted. Transaction T is write-conflicted if another
committed transaction T′ has written to a location also written to by T, since
T recorded its snapshot. If T fails the conflict check it aborts and may restart;
otherwise, it commits its changes, and its changes become visible to all other
transactions that take a snapshot thereafter.

To realise this, the shared state is represented as a series of multi-versioned
objects: each object is associated with a history of several versions at differ-
ent timestamps. In order to obtain a snapshot, a transaction T chooses a start-
timestamp t0, and reads data from the committed state as of t0, ignoring up-
dates after t0. That is, updates committed after t0 are invisible to T. In order
to commit, T chooses a commit-timestamp tc larger than any existing start- or
commit-timestamp. Transaction T is deemed write-conflicted if another transac-
tion T′ has written to a location also written to by T and the commit-timestamp
of T′ is in the execution interval of T ([t0, tc]).

2.1 Towards an SI Reference Implementation without Timestamps

While the SI description above is suitable for understanding SI, it is not useful
for integrating the SI model in a language such as C/C++ or Java. From a pro-

1. for (x∈ RS) lock r x

2. snapshot(RS);
3. for (x∈ RS) unlock r x

4. for (x∈ WS) lock w x

5. JTK;
6. for (x∈ WS) unlock w x

(a)

1. for (x∈ WS) lock w x;

2. for (x∈ RS\WS) lock r x

3. snapshot(RS);
4. for (x∈ RS\WS) unlock r x

5. JTK;
6. for (x∈ WS) unlock w x

(b)

1. for (x∈ RS∪ WS) lock r x

2. snapshot(RS);
3. for (x∈ RS∪ WS) {
4. if (x∈ WS) promote x

5. else unlock r x; }
6. JTK;
7. for (x∈ WS) unlock w x

(c)

Sound: ✗ Sound: ✓ Sound: ✓

allows (LU), (LU2) Complete: ✗ Complete: ✗

disallows (WS) disallows (WS2)

Fig. 2: Candidate SI implementations of transaction T given read/write sets RS,WS

grammer’s perspective, in such languages the various threads directly access the
uninstrumented (single-versioned) shared memory; they do not access their own
instrumented snapshot at a particular timestamp, which is loosely related to the
snapshots of other threads. Ideally, what we would therefore like is an equivalent
description of SI in terms of accesses to uninstrumented shared memory and a
synchronisation mechanism such as locks.

In what follows, we present our first lock-based reference implementation for
SI that does not rely on timestamps. To do this, we assume that the locations ac-
cessed by a transaction can be statically determined. Specifically, we assume that
each transaction T is supplied with its read set, RS, and write set, WS, containing
those locations read and written by T, respectively (a static over-approximation
of these sets suffices for soundness.). As such, our first reference implementation
is prescient [19] in that it requires a priori knowledge of the locations accessed by
the transaction. Later in §2.3 we lift this assumption and develop an SI reference
implementation that is non-prescient and similarly does not rely on timestamps.

Conceptually, a candidate implementation of transaction T would (1) obtain
a snapshot of the locations read by T; (2) lock those locations written by T; (3)
execute T locally; and (4) unlock the locations written. The snapshot is obtained
via snapshot(RS) in Fig. 3 where the values of locations in RS are recorded in a
local array s. The local execution of T is carried out by executing JTK in Fig. 3,
which is obtained from T by (i) modifying read operations to read locally from
the snapshot in s, and (ii) updating the snapshot after each write operation. Note
that the snapshot must be obtained atomically to reflect the memory state at a
particular instance (cf. start-timestamp). An obvious way to ensure the snapshot
atomicity is to lock the locations in the read set, obtain a snapshot, and unlock
the read set. However, as we must allow for two transactions reading from the
same location to execute in parallel, we opt for multiple-readers-single-writer
(MRSW) locks.

Let us now try to make this general pattern more precise. As a first attempt,
consider the implementation in Fig. 2a, which releases all the reader locks at the
end of the snapshot phase before acquiring any writer locks. This implementa-

tion is unsound as it admits the lost update (LU) anomaly in Fig. 1 disallowed
under SI [11]. To understand this, consider a scheduling where T2 runs between
lines 3 and 4 of T1 in Fig. 2a, which would result in T1 having read a stale
value. The problem is that the writer locks on WS are acquired too late, allowing
two conflicting transactions to run concurrently. To address this, writer locks
must be acquired early enough to pre-empt the concurrent execution of write-
write-conflicting transactions. Note that locks have to be acquired early even for
locations only written by a transaction to avoid exhibiting a variant of the lost
update anomaly (LU2).

As such, our second candidate implementation in Fig. 2b brings forward the
acquisition of writer locks. Whilst this implementation is sound (and disallows
lost update), it nevertheless disallows behaviours deemed valid under SI such
as the write skew anomaly (WS) in Fig. 1, and is thus incomplete. The prob-
lem is that such early acquisition of writer locks not only pre-empts concurrent
execution of write-write-conflicting transactions, but also those of read-write-
conflicting transactions (e.g. WS) due to the exclusivity of writer locks.

To remedy this, in our third candidate implementation in Fig. 2c we first
acquire weaker reader locks on all locations in RS or WS, and later promote the
reader locks on WS to exclusive writer ones, while releasing the reader locks on
RS. The promotion of a reader lock signals its intent for exclusive ownership and
awaits the release of the lock by other readers before claiming it exclusively as
a writer. To avoid deadlocks, we further assume that RS∪ WS is ordered so that
locks are promoted in the same order by all threads.

Although this implementation is “more complete” than the previous one, it
is still incomplete as it disallows certain behaviour admitted by SI. In particular,
consider a variant of the write skew anomaly (WS2) depicted in Fig. 1, which is
admitted under SI, but not admitted by this implementation.

To understand why this is admitted by SI, recall the operational SI model
using timestamps.Let the domain of timestamps be that of natural numbers N.
The behaviour of (WS2) can be achieved by assigning the following execution
intervals for T1: [tT10 =2, tT1c =2]; T2: [tT20 =1, tT2c =4]; and T3: [tT30 =3, tT3c =3]. To see
why the implementation in Fig. 2c does not admit the behaviour in (WS2), let
us assume without loss of generality that x is ordered before y. Upon executing
lines 3-5, a) T1 promotes y; b) T2 promotes x and then c) releases the reader
lock on y; and d) T3 releases the reader lock on x. To admit the behaviour in
(WS2), the release of y in (c) must occur before the promotion of y in (a) since
otherwise T2 cannot read 0 for y. Similarly, the release of x in (d) must occur
before its promotion in (b). On the other hand, since T3 is executed by the
same thread after T1, we know that (a) occurs before (d). This however leads
to circular execution: (b)→(c)→(a)→(d)→(b), which cannot be realised.

To overcome this, in our final candidate execution in Fig. 3 (ignoring the
code in blue), after obtaining a snapshot, we first release the reader locks on
RS, and then promote the reader locks on WS, rather than simultaneously in one
pass. As we demonstrate in §4, the implementation in Fig. 3 is both sound and
complete against its declarative SI specification.

0. LS := ∅;
1. for (x∈ RS∪ WS) lock r x
2. snapshot(RS);
3. for (x∈ RS\WS) unlock r x
4. for (x∈ WS) {
5. if (can-promote x) LS.add(x)
6. else {
7. for (x∈ LS) unlock w x
8. for (x∈ WS \ LS) unlock r x
9. goto line 0 }

10. }
11. JTK;
12. for (x∈ WS) unlock w x

snapshot(RS) , for (x∈ RS) sx:= x

Ja:=xK , a:=sx

Jx:=aK , x:=a; sx:=a

JS1;S2K , JS1K;JS2K

Jwhile(e)SK , while(e) JSK
... and so on ...

snapshot
RSI

(RS) ,

start: for (x∈ RS) sx:= x

for (x∈ RS) {
if (sx!= x) goto start

}

Fig. 3: SI implementation of transaction T given RS, WS; the code in blue en-
sures deadlock avoidance. The RSI implementation (§5) is obtained by replacing
snapshot on line 2 with snapshotRSI.

Avoiding Deadlocks As two distinct reader locks on x may simultaneously
attempt to promote their locks, promotion is done on a ‘first-come-first-served’
basis to avoid deadlocks. A call to can-promote x by reader r thus returns a
boolean denoting either (i) successful promotion (true); or (ii) failed promotion
as another reader r′ is currently promoting a lock on x (false). In the latter case,
r must release its reader lock on x to ensure the successful promotion of xl by
r′ and thus avoid deadlocks. To this end, our implementation in Fig. 3 includes
a deadlock avoidance mechanism (code in blue) as follows. We record a list LS of
those locks on the write set that have been successfully promoted so far. When
promoting a lock on x succeeds (line 5), the LS is extended with x. On the other
hand, when promoting x fails (line 6), all those locks promoted so far (i.e. in
LS) as well as those yet to be promoted (i.e. in WS \LS) are released and the
transaction is restarted.

Remark 1. Note that the deadlock avoidance code in blue does not influence
the correctness of the implementation in Fig. 3, and is merely included to make
the reference implementation more realistic. In particular, the implementation
without the deadlock avoidance code is both sound and complete against the
SI specification, provided that the conditional can-promote call on line 5 is
replaced by the blocking promote call.

Avoiding Over-Synchronisation due to MRSW Locks Consider the store
buffering program (SBT) shown in Fig. 1. If, for a moment, we ignore transac-
tional accesses, our underlying memory model (RA)—as well as all other weak
memory models—allows the annotated weak behaviour. Intuitively, placing the
two transactions that only read z in (SBT) should still allow the weak behaviour
since the two transactions do not need to synchronise in any way. Nevertheless,

most MRSW lock implementations forbid this outcome because they use a single
global counter to track the number of readers that have acquired the lock, which
inadvertently also synchronises the readers with one another. As a result, the
two read-only transactions act as memory fences forbidding the weak outcome of
(SBT). To avoid such synchronisation, in the technical appendix (Appendix A)
we provide a different MRSW implementation using a separate location for each
thread so that reader lock acquisitions do not synchronise.

To keep the presentation simple, we henceforth assume an abstract speci-
fication of a MRSW lock library providing operations for acquiring/releasing
reader/writer locks, as well as promoting reader locks to writer ones. We require
that (1) calls to writer locks (to acquire, release or promote) synchronise with
all other calls to the lock library; and (2) writer locks provide mutual exclusion
while held. We formalise these notions in §4. These requirements do not restrict
synchronisation between two read lock calls: two read lock calls may or may
not synchronise. Synchronisation between read lock calls is relevant only for the
completeness of our RSI implementation (handling mixed-mode code); for that
result, we further require that (3) read lock calls not synchronise.

2.2 Handling Racy Mixed-Mode Accesses

Let us consider what happens when data accessed by a transaction is modified
concurrently by an uninstrumented atomic non-transactional write. Since such
writes do not acquire any locks, the snapshots taken may include values written
by non-transactional accesses. The result of the snapshot then depends on the
order in which the variables are read. Consider the (MPT) example in Fig. 1.
In our implementation, if in the snapshot phase y is read before x, then the
annotated weak behaviour is not possible because the underlying model (RA)
disallows this weak “message passing” behaviour. If, however, x is read before y,
then the weak behaviour is possible. In essence, this means that the SI implemen-
tation described so far is of little use when there are races between transactional
and non-transactional code. Technically, our SI implementation violates mono-
tonicity with respect to wrapping code inside a transaction. The weak behaviour
of the (MPT) example is disallowed by RA if we remove the transaction block
T2, and yet it is exhibited by our SI implementation with the transaction block.

To get monotonicity under RA, it suffices for the snapshots to read the vari-
ables in the same order they are accessed by the transactions. Since a static
calculation of this order is not always possible, following [30], we achieve this by
reading each variable twice. In more detail, our snapshotRSI implementation in
Fig. 3 takes two snapshots of the locations read by the transaction, and checks
that they both return the same values for each location. This ensures that every
location is read both before and after every other location in the transaction,
and hence all the high-level happens-before orderings in executions of the trans-
actional program are also respected by its implementation. As we demonstrate
in §5, our RSI implementation is both sound and complete against our proposed
declarative semantics for RSI. There is however one caveat: since equality of
values is used to determine whether the two snapshots agree, we will miss cases

0. LS:= ∅;
1. RS:= ∅; WS:= ∅;
2. for (x∈ Locs) s[x]:=⊥
3. JTK;
4. for (x∈ RS\WS) unlock r x
5. for (x∈ WS) {
6. if (can-promote x) LS.add(x)
7. else {
8. for (x∈ LS) unlock w x
9. for (x∈ WS \ LS) unlock r x

10. goto line 0 } }
11. for (x∈ WS) x := s[x]
12. for (x∈ WS) unlock w x

Ja:=xK , if (x 6∈ RS∪ WS) {
lock r x; RS.add(x);

s[x]:= x;

}
a:= s[x];

Jx:=aK , if (x 6∈ RS∪ WS) lock r x;

WS.add(x); s[x]:= a;

JS1;S2K , JS1K;JS2K

Jwhile(e) SK , while(e) JSK

... and so on ...

Fig. 4: Non-prescient SI implementation of transaction T with RS and WS com-
puted on the fly; the code in blue ensures deadlock avoidance.

where different non-transactional writes to a location write the same value. In our
formal development (see §5), we thus assume that if multiple non-transactional
writes write the same value to the same location, they cannot race with the same
transaction. Note that this assumption cannot be lifted without instrumenting
non-transactional writes, and thus impeding performance substantially. That is,
to lift this restriction we must instead replace every non-transactional write x:= v
with lock w x; x:= v; unlock w x.

2.3 Non-Prescient Reference Implementations without Timestamps

Recall that the SI and RSI implementations in §2.1 are prescient in that they re-
quire knowledge of the read and write sets of transactions beforehand. In what fol-
lows we present alternative SI and RSI implementations that are non-prescient.

Non-Prescient SI Reference Implementation In Fig. 4 we present a lazy
lock-based reference implementation for SI. This implementation is non-prescient
and does not require a priori knowledge of the read set RS and the write set WS.
Rather, the RS and WS are computed on the fly as the execution of the transaction
unfolds. As with the SI implementation in Fig. 3, this implementation does not
rely on timestamps and uses MRSW locks to synchronise concurrent accesses
to shared data. As before, the implementation consults a local snapshot at s

for read operations. However, unlike the eager implementation in Fig. 3 where
transactional writes are performed in-place, the implementation in Fig. 4 is lazy
in that it logs the writes in the local array s and propagates them to memory
at commit time, as we describe shortly.

Ignoring the code in blue, the implementation in Fig. 4 proceeds with initial-
ising RS and WS with ∅ (line 1); it then populates the local snapshot array at s
with initial value ⊥ for each location x (line 2). It then executes JTK which is
obtained from T as follows. For each read operation a:= x in T, first the value of

s[x] is inspected to ensure it contains a snapshot of x. If this is not the case
(i.e. x 6∈ RS ∪ WS), a reader lock on x is acquired, a snapshot of x is recorded
in s[x], and the read set RS is extended with x. The snapshot value in s[x] is
subsequently returned in a. Analogously, for each write operation x:= a, the WS

is extended with x, and the written value is lazily logged in s[x]. Recall from
our candidate executions in Fig. 2 that to ensure implementation correctness, for
each written location x, the implementation must first acquire a reader lock on x,
and subsequently promote it to a writer lock. As such, for each write operation
in T, the implementation first checks if a reader lock for x has been acquired (i.e.
x ∈ RS ∪ WS) and obtains one if this is not the case.

Once the execution of JTK is completed, the implementation proceeds to com-
mit the transaction. To this end, the reader locks on RS are released (line 4),
reader locks on WS are promoted to writer ones (line 6), the writes logged in
s are propagated to memory (line 11), and finally the writer locks on WS are
released (line 12). As we demonstrate later in §4, the implementation in Fig. 4
is both sound and complete against the declarative SI specification.

Note that the implementation in Fig. 4 is optimistic in that it logs the writes
performed by the transaction in the local array s and propagates them to memory
at commit time, rather than performing the writes in-place as with its pessimistic
counterpart in Fig. 3. As before, the code in blue ensures deadlock avoidance and
is identical to its counterpart in Fig. 3. As before, this deadlock avoidance code
does not influence the correctness of the implementation and is merely included
to make the reference implementation more practical.

Non-Prescient RSI Reference Implementation In Fig. 5 we present a lazy
lock-based reference implementation for RSI. As with its SI counterpart, this
implementation is non-prescient and computes the RS and WS on the fly. As be-
fore, the implementation does not rely on timestamps and uses MRSW locks
to synchronise concurrent accesses to shared data. Similarly, the implementa-
tion consults the local snapshot at s for read operations, whilst logging write
operations lazily in a write sequence at wseq, as we describe shortly.

Recall from the RSI implementation in §2.1 that to ensure snapshot validity,
each location is read twice to preclude intermediate non-transactional writes. As
such, when writing to a location x, the initial value read (recorded in s) must
not be overwritten by the transaction to allow for subsequent validation of the
snapshot. To this end, for each location x, the snapshot array s contains a pair
of values, (r, c), where r denotes the snapshot value (initial value read), and c
denotes the current value which may have overwritten the snapshot value.

Recall that under weak isolation, the intermediate values written by a trans-
action may be observed by non-transactional reads. For instance, given the
T:

[

x := 1;x := 2
∣

∣

∣

∣ a := x program, the non-transactional read a := x, may
read either 1 or 2 for x. As such, at commit time, it is not sufficient solely to
propagate the last written value (in program order) to each location (e.g. to
propagate only the x := 2 write in the example above). Rather, to ensure imple-
mentation completeness, one must propagate all written values to memory, in

0. LS:= ∅;
1. RS:= ∅; WS:= ∅; wseq:= [];
2. for (x∈ Locs) s[x]:= (⊥,⊥)
3. JTK;
4. for (x∈ RS) {(r,-):= s[x];
5. if (x!=r) { //read x again
6. for (x∈ RS∪ WS) unlock r x
7. goto line 0 } }
8. for (x∈ RS\WS) unlock r x
9. for (x∈ WS) {

10. if (can-promote x) LS.add(x)
11. else {
12. for (x∈ LS) unlock w x
13. for (x∈ WS \ LS) unlock r x
14. goto line 0 } }
15. for ((x,v)∈ wseq) x := v
16. for (x∈ WS) unlock w x

Ja:=xK , if (x 6∈ RS∪ WS) {
lock r x; RS.add(x);

r:= x; s[x]:= (r,r);

} (-,c):= s[x]; a:= c;

Jx:=aK , if (x 6∈ RS∪ WS) lock r x

WS.add(x);

(r,-):= s[x]; s[x]:= (r,a);

wseq:= wseq++[(x,a)];

JS1;S2K , JS1K;JS2K

Jwhile(e) SK , while(e) JSK

... and so on ...

Fig. 5: Non-prescient RSI implementation of transaction T with RS and WS com-
puted on the fly; the code in blue ensures deadlock avoidance.

the order they appear in the transaction body. To this end, we track the values
written by the transaction as a (FIFO) write sequence at location wseq, contain-
ing items of the form (x, v), denoting the location written (x) and the associated
value (v).

Ignoring the code in blue, the implementation in Fig. 5 initialises RS and WS

with ∅, initialises wseq as an empty sequence [] (line 1), and populates the local
snapshot array s with initial value (⊥,⊥) for each location x (line 2). It then
executes JTK, obtained from T in an analogous manner to that in Fig. 4. For every
read a:= x in JTK, the current value recorded for x in s (namely c when s[x]

holds (-,c)) is returned in a. Dually, for every write x:= a in JTK, the current
value recorded for x in s is updated to a, and the write is logged in the write
sequence wseq by appending (x,a) to it.

Upon completion of JTK, the snapshot in s is validated (lines 4-7). Each
location x in RS is thus read again and its value is compared against the snapshot
value in s[x]. If validation fails (line 5), the locks acquired are released (line 6)
and the transaction is restarted (line 7).

If validation succeeds, the transaction is committed: the reader locks on RS

are released (line 8), the reader locks on WS are promoted (line 10), the writes in
wseq are propagated to memory in FIFO order (line 15), and finally the writer
locks on WS are released (line 16).

As we show in §5, the implementation in Fig. 5 is both sound and complete
against our proposed declarative specification for RSI. As before, the code in blue
ensures deadlock avoidance; it does not influence the implementation correctness
and is merely included to make the implementation more practical.

Supporting Explicit Abort Instructions It is straightforward to extend
the lazy implementations in Fig. 4 and Fig. 5 to handle transactions containing
explicit abort instructions. More concretely, as the effects (writes) of a transac-

tion are logged locally and are not propagated to memory until commit time,
upon reaching an abort in JT K no roll-back is necessary, and one can simply
release the locks acquired so far and return. That is, one can extend J.K in Fig. 4
and Fig. 5, and define JabortK , for (x∈ RS∪ WS) unlock r x; return.

3 A Declarative Framework for STM

We present the notational conventions used in the remainder of this article, and
describe a general framework for declarative concurrency models. Later in this
article, we present SI, its extension with non-transactional accesses, and their
lock-based implementations as instances of this general definition.

Notation Given a relation r on a set A, we write r?, r+ and r∗ for the re-
flexive, transitive and reflexive-transitive closure of r, respectively. We write
r−1 for the inverse of r; r|A for r ∩ (A × A); [A] for the identity relation on A,
i.e.

{

(a, a) a ∈ A
}

; irreflexive(r) for ∄a. (a, a) ∈ r; and acyclic(r) for irreflexive(r+).
Given two relations r1 and r2, we write r1; r2 for their (left) relational composition,
i.e.

{

(a, b) ∃c. (a, c) ∈ r1 ∧ (c, b) ∈ r2
}

. Lastly, when r is a strict partial order, we

write r|imm for the immediate edges in r:
{

(a, b) ∈ r ∄c. (a, c) ∈ r ∧ (c, b) ∈ r
}

.

Assume finite sets of locations Loc; values Val; thread identifiers TId, and
transaction identifiers TXId. We use x, y, z to range over locations, v over values,
τ over thread identifiers, and ξ over transaction identifiers.

Definition 1 (Events). An event is a tuple 〈n, τ, ξ, l〉, where n ∈ N is an event
identifier, τ ∈ TId⊎{0} is a thread identifier (0 is used for initialisation events),
ξ ∈ TXId⊎{0} is a transaction identifier (0 is used for non-transactional events),
and l is an event label that takes one of the following forms:

– A memory access label: R(x, v) for reads; W(x, v) for writes; and U(x, vr, vw)
for updates.

– A lock label: RL(x) for reader lock acquisition; RU(x) for reader lock release;
WL(x) for writer lock acquisition; WU(x) for writer lock release; and PL(x)
for reader to writer lock promotion.

We typically use a, b, and e to range over events. The functions tid, tx, lab,
typ, loc, valr and valw respectively project the thread identifier, transaction
identifier, label, type (in

{

R, W, U, RL, RU, WL, WU, PL
}

), location, and read/written
values of an event, where applicable. We assume only reads and writes are used
in transactions (tx(a) 6= 0 =⇒ typ(a) ∈

{

R, W
}

).

Given a relation r on events, we write rloc for
{

(a, b) ∈ r loc(a) = loc(b)
}

.

Analogously, given a set A of events, we write Ax for
{

a ∈ A loc(a)=x
}

.

Definition 2 (Execution graphs). An execution graph, G, is a tuple of the
form (E , po, rf,mo, lo), where:

– E is a set of events, assumed to contain a set E 0 of initialisation events,
consisting of a write event with label W(x, 0) for every x ∈ Loc. The sets
of read events in E is denoted by R ,

{

e ∈ E typ(e) ∈ {R, U}
}

; write

events by W ,
{

e ∈ E typ(e) ∈ {W, U}
}

; update events by U , R ∩ W;

and lock events by L ,
{

e ∈ E typ(e) ∈
{

RL, RU, WL, WU, PL
}}

. The sets of
reader lock acquisition and release events, RL and RU , writer lock acquisi-
tion and release events, WL and WU , and lock promotion events PL are
defined analogously. The set of transactional events in E is denoted by T
(T ,

{

e ∈ E tx(e) 6= 0
}

); and the set of non-transactional events is de-

noted by NT (NT , E \ T).
– po ⊆ E×E denotes the ‘program-order’ relation, defined as a disjoint union
of strict total orders, each ordering the events of one thread, together with
E0× (E \E0) that places the initialisation events before any other event. We
assume that events belonging to the same transaction are ordered by po, and
that any other event po-between them also belongs to the same transaction.

– rf ⊆ W ×R denotes the ‘reads-from’ relation, defined as a relation between
write and read events of the same location with matching read and written
values; it is total and functional on reads, i.e. every read event is related to
exactly one write event.

– mo ⊆ W×W denotes the ‘modification-order’ relation, defined as a disjoint
union of strict total orders, each of which ordering the write events to one
location.

– lo ⊆ L × L denotes the ‘lock-order’ relation, defined as a disjoint union
of strict orders, each of which (partially) ordering the lock events to one
location.

In the context of an execution graph G=(E , po, rf,mo, lo)—we often use “G.”
as a prefix to make this explicit—the ‘same-transaction’ relation, st ∈ T × T ,
is the equivalence relation given by st ,

{

(a, b) ∈ T × T tx(a) = tx(b)
}

. We

write rT for lifting a relation r ⊆ E ×E to transaction classes: rT , st; (r \ st); st.
Analogously, we write rI to restrict r to its intra-transactional edges (within a
transaction): rI , r∩ st; and write rE to restrict r to its extra-transactional edges
(outside a transaction): rE , r \ st. Lastly, the ‘reads-before’ relation is defined
by rb , (rf−1;mo) \ [E].

Execution graphs of a given program represent traces of shared memory
accesses generated by the program. The set of execution graphs associated with
a program can be straightforwardly defined by induction over the structure of
programs (see e.g. [34]). Each execution of a program P has a particular program
outcome, prescribing the final values of local variables in each thread. In this
initial stage, the execution outcomes are almost unrestricted as there are very
few constraints on the rf, mo and lo relations. Such restrictions and thus the
permitted outcomes of a program are determined by defining the set of consistent
executions, which is defined separately for each model we consider. Given a
program P and a model M , the set outcomesM (P) collects the outcomes of
every M -consistent execution of P .

4 Snapshot Isolation (SI)

We present a declarative specification of SI and demonstrate that the SI imple-
mentations presented in Fig. 3 and Fig. 4 are both sound and complete with
respect to the SI specification.

In [11] Cerone and Gotsman developed a declarative specification for SI using
dependency graphs [4,3]. Below we adapt their specification to the notation of
§3. As with [11], throughout this section, we take SI execution graphs to be those
in which E = T ⊆ (R ∪ W) \ U . That is, the SI model handles transactional
code only, consisting solely of read and write events (excluding updates).

Definition 3 (SI consistency [11]). An SI execution G = (E , po, rf,mo, lo) is
SI-consistent if the following conditions hold:

– rfI ∪moI ∪ rbI ⊆ po (int)
– acyclic((poT ∪ rfT ∪moT); rbT

?) (ext)

Informally, (int) ensures the consistency of each transaction internally, while
(ext) provides the synchronisation guarantees among transactions. In particu-
lar, we note that the two conditions together ensure that if two read events in
the same transaction read from the same location x, and no write to x is po-
between them, then they must read from the same write (known as ‘internal
read consistency’).

Next, we provide an alternative formulation of SI-consistency which will serve
as the basis of our extension with non-transactional accesses in §5. In the tech-
nical appendix we prove that the two formulations are equivalent.

Proposition 1. An SI execution G = (E , po, rf,mo, lo) is SI-consistent if and
only if int holds and the ‘SI-happens-before’ relation si-hb , (poT ∪ rfT ∪moT ∪
si-rb)+ is irreflexive, where si-rb , [RE]; rbT; [W] and RE , {r | ∃w. (w, r) ∈ rfE}.

Proof. The full proof is given in the technical appendix (see Prop. 2 in Ap-
pendix B).

Intuitively, SI-happens-before orders events of different transactions due to
either the program order (poT), or synchronisation enforced by the implementa-
tion (rfT∪moT∪si-rb). By contrast, events of the same transaction are unordered,
as the implementation may well execute them in a different order (in particular,
by taking a snapshot, it executes external reads before the writes).

In more detail, the rfT corresponds to transactional synchronisation due to
causality, i.e. when one transaction T2 observes an effect of an earlier transaction
T1. The inclusion of rfT ensures that T2 cannot read from T1 without observing
its entire effect. This in turn ensures that transactions exhibit ‘all-or-nothing’
behaviour: they cannot mix-and-match the values they read. For instance, if T1
writes to both x and y, transaction T2 may not read x from T1 but read y from
an earlier (in ‘happens-before’ order) transaction T0.

The moT corresponds to transactional synchronisation due to write-write
conflicts. Its inclusion enforces write-conflict-freedom of SI transactions: if T1

and T2 both write to x via events w1 and w2 such that (w1, w2) ∈ mo, then T1
must commit before T2, and thus its entire effect must be visible to T2.

To understand si-rb, first note that RE denotes the external transactional
reads (i.e. those reading a value written by another transaction). That is, the
RE are the read events that get their values from the transactional snapshot
phases. By contrast, internal reads (those reading a value written by the same
transaction) happen only after the snapshot is taken. Now let there be an rbT
edge between two transactions, T1 and T2. This means there exist a read event
r of T1 and a write event w of T2 such that (r, w) ∈ rb; i.e. there exists w′ such
that (w′, r) ∈ rf and (w′, w) ∈ mo. If r reads internally (i.e. w′ is an event in T1),
then T1 and T2 are conflicting transactions and as accounted by moT described
above, all events of T1 happen before those of T2. Now, let us consider the case
when r reads externally (w′ is not in T1). From the timestamped model of SI,
there exists a start-timestamp tT10 as of which the T1 snapshot (all its external
reads including r) is recorded. Similarly, there exists a commit-timestamp tT2c
as of which the updates of T2 (including w) are committed. Moreover, since
(r, w) ∈ rb we know tT10 < tT2c (otherwise r must read the value written by w and
not w′). That is, we know all events in the snapshot of T1 (i.e. all external reads
in T1) happen before all writes of T2.

3

We use the declarative framework in §3 to formalise the semantics of our im-
plementation. Here, our programs include only non-transactional code, and thus
implementation execution graphs are taken as those in which T = ∅. Furthermore,
we assume that locks in implementation programs are used in a well-formed man-
ner: the sequence of lock events for each location, in each thread (following po),
should match (a prefix of) the regular expression (RL · RU | WL · WU | RL · PL · WU)∗.
For instance, a thread never releases a lock, without having acquired it earlier
in the program. As a consistency predicate on execution graphs, we use the C11
release/acquire consistency augmented with certain constraints on lock events.

Definition 4. An implementation execution graph G = (E , po, rf,mo, lo) is RA-
consistent if the following hold, where hb , (po ∪ rf ∪ lo)+ denotes the ‘RA-
happens-before’ relation:

– ∀x. ∀a ∈ WLx∪WUx∪PLx, b ∈ Lx. a = b∨(a, b) ∈ lo∨(b, a) ∈ lo (WSync)
– [WL ∪ PL]; (lo \ po); [L] ⊆ po; [WU]; lo (WEx)
– [RL]; (lo \ po); [WL∪ PL] ⊆ po; [RU ∪ PL]; lo (RShare)
– acyclic(hbloc ∪mo ∪ rb) (Acyc)

The (WSync) states that write lock calls (to acquire, release or promote)
synchronise with all other calls to the same lock.

The next two constraints ensure the ‘single-writer-multiple-readers’ paradigm.
In particular, (WEx) states that write locks providemutual exclusion while held:
any lock event l of thread τ lo-after a write lock acquisition or promotion event
l′ of another thread τ ′, is lo-after a subsequent write lock release event u of τ ′

3 By taking rbT instead of si-rb in Prop. 1 one obtains a characterisation of serialis-
ability.

(i.e. (l′, u) ∈ po and (u, l) ∈ lo). As such, the lock cannot be acquired (in read or
write mode) by another thread until it has been released by its current owner.

The (RShare) analogously states that once a thread acquires a lock in read
mode, the lock cannot be acquired in write mode by other threads until it has
either been released, or promoted to a writer lock (and subsequently released)
by its owner. Note that this does not preclude other threads from simultaneously
acquiring the lock in read mode. In the technical appendix we present two MRSW
lock implementations that satisfy the conditions outlined above.

The last constraint (Acyc) is that of C11 RA consistency [23], with the hb

relation extended with lo.

Remark 2. Our choice of implementing the SI STMs on top of the RA fragment is
purely for presentational convenience. Indeed, it is easy to observe that execution
graphs of JP K are data race free, and thus, Acyc could be replaced by any
condition that implies ∀x. ([Wx]; (po ∪ lo)+; [Wx]; (po ∪ lo)+; [Rx]) ∩ rf = ∅ and
that is implied by acyclic(po∪ rf∪ lo∪mo∪ rb). In particular, the C11 non-atomic
accesses or sequentially consistent accesses may be used.

We next demonstrate that our SI implementations in Fig. 3 and Fig. 4 are
both sound and complete with respect to the declarative specification given
above. The proofs are non-trivial and the full proofs are given in the techni-
cal appendix.

Theorem 1 (Soundness and completeness). Let P be a transactional pro-
gram; let JP Ke denote its eager implementation as given in Fig. 3 and JP Kl
denote its lazy implementation as given in Fig. 4. Then:

outcomesSI(P) = outcomesRA(JP Ke) = outcomesRA(JP Kl)

Proof. The full proofs of both implementations is given in the technical appendix
(Appendix C and Appendix D, respectively).

Stronger MRSW Locks As noted in §2, for both (prescient and non-
prescient) SI implementations our soundness and completeness proofs show that
the same result holds for a stronger lock specification, in which reader locks syn-
chronise as well. Formally, this specification is obtained by adding the constraint:

– ∀x. ∀a, b ∈ RLx ∪RUx. a = b ∨ (a, b) ∈ lo ∨ (b, a) ∈ lo (RSync)

Soundness of this stronger specification (outcomesRA(JP Kx) ⊆ outcomesSI(P) for
x ∈ {e, l}) follows immediately from Thm. 1. Completeness (outcomesSI(P) ⊆
outcomesRA(JP Kx) for x ∈ {e, l}), however, is more subtle, as we need to addi-
tionally satisfy (RSync) when constructing lo. While we can do so for SI, it is
essential for the completeness of our RSI implementations that reader locks not
synchronise, as shown by (SBT) in §2.

In the technical appendix we present two MRSW lock implementations (see
Appendix A). Both implementations are sound against the lo conditions in Def. 4.
Additionally, the first implementation is complete against the conditions of Def. 4
augmented with (RSync), whilst the second is complete against the conditions
of Def. 4 alone.

T

W(x, 0) W(y, 0)

w1 : W(y, 1)

w2 : W(x, 1)

R(x, 1)

R(y, 0)

rf
rf

rb

mo

(a)

T

W(x, 0) W(y, 0)

r′: R(y, 0)

r :R(x, 1)

W(y, 1)

w : W(x, 1)

mo

rf

rb

rf

(b)

T1

T2
W(x, 0) W(y, 0)

W(y, 1)

w : W(x, 1)

R(x, 2)

W(x, 2) r : R(x, 2)

R(y, 0)

rf

mo
rb

(c)

Fig. 6: RSI-inconsistent executions due to (a) rsi-po; (b) [NT]; rf; st; (c) (mo; rf)T

5 Robust Snapshot Isolation (RSI)

We explore the semantics of SI STMs in the presence of non-transactional code
with weak isolation guarantees (see §2). We refer to this model as robust snapshot
isolation (RSI), due to its ability to provide SI guarantees between transactions
even in the presence of non-transactional code. We propose the first declarative
specification of RSI programs and develop two lock-based reference implementa-
tions that are both sound and complete against our proposed specification.

A Declarative Specification of RSI STMs We formulate a declarative
specification of RSI semantics by adapting the SI semantics in Prop. 1 to ac-
count for non-transactional accesses. To specify the abstract behaviour of RSI
programs, RSI execution graphs are taken to be those in which L = ∅. Moreover,
as with SI graphs, RSI execution graphs are those in which T ⊆ (R∪W)\U . That
is, RSI transactions comprise solely read and write events, excluding updates.

Definition 5 (RSI consistency). An execution G = (E , po, rf,mo, lo) is RSI-
consistent iff int holds and acyclic(rsi-hbloc ∪ mo ∪ rb), where rsi-hb , (rsi-po ∪
rsi-rf ∪ moT ∪ si-rb)+ is the ‘RSI-happens-before’ relation, with rsi-po , (po \
poI) ∪ [W]; poI; [W] and rsi-rf , (rf; [NT]) ∪ ([NT]; rf; st) ∪ rfT ∪ (mo; rf)T.

As with SI and RA, we characterise the set of executions admitted by RSI
as graphs that lack cycles of certain shapes. To account for non-transactional
accesses, similar to RA, we require rsi-hbloc ∪ mo ∪ rb to be acyclic (recall that
rsi-hbloc ,

{

(a, b) ∈ rsi-hb loc(a) = loc(b)
}

). The RSI-happens-before relation
rsi-hb includes both the synchronisation edges enforced by the transactional im-
plementation (as in si-hb), and those due to non-transactional accesses (as in
hb of the RA consistency). The rsi-hb relation itself is rather similar to si-hb. In
particular, the moT and si-rb subparts can be justified as in si-hb; the difference
between the two lies in rsi-po and rsi-rf.

To justify rsi-po, recall from §4 that si-hb includes poT. The rsi-po is indeed
a strengthening of poT to account for non-transactional events: it additionally
includes (i) po to and from non-transactional events; and (ii) po between two
write events in a transaction. We believe (i) comes as no surprise to the reader;

for (ii), consider the execution graph in Fig. 6a, where transaction T is denoted by
the dashed box labelled T, comprising the write events w1 and w2. Removing the
T block (with w1 and w2 as non-transactional writes), this execution is deemed
inconsistent, as this weak “message passing” behaviour is disallowed in the RA
model. We argue that the analogous transactional behaviour in Fig. 6a must
be similarly disallowed to maintain monotonicity with respect to wrapping non-
transactional code in a transaction (see Thm. 3). As in SI, we cannot include the
entire po in rsi-hb because the write-read order in transactions is not preserved
by the implementation.

Similarly, rsi-rf is a strengthening of rfT to account for non-transactional
events: in the absence of non-transactional events rsi-rf reduces to rfT∪ (mo; rf)T
which is contained in si-hb. The rf; [NT] part is required to preserve the ‘happens-
before’ relation for non-transactional code. That is, as rf is included in the hb

relation of underlying memory model (RA), it is also included in rsi-hb.
The [NT]; rf; st part asserts that in an execution where a read event r of

transaction T reads from a non-transactional write w, the snapshot of T reads
from w and so all events of T happen after w. Thus, in Fig. 6b, r′ cannot read
from the overwritten initialisation write to y.

For the (mo; rf)T part, consider the execution graph in Fig. 6c where there is
a write event w of transaction T1 and a read event r of transaction T2 such that
(w, r) ∈ mo; rf. Then, transaction T2 must acquire the read lock of loc(w) after
T1 releases the writer lock, which in turn means that every event of T1 happens
before every event of T2.

Remark 3. Recall that our choice of modelling SI and RSI STMs in the RA
fragment is purely for presentational convenience (see Remark 2). Had we chosen
a different model, the RSI consistency definition (Def. 5) would largely remain

unchanged, with the exception of rsi-rf , (sw; [NT]) ∪ ([NT]; sw; st) ∪ rfT ∪

(mo; rf)T, where in the highlighted changes the rf relation is replaced with sw,

denoting the ‘synchronises-with’ relation. As in the RA model sw , rf, we have
inlined this in Def. 5.

SI and RSI Consistency We next demonstrate that in the absence of
non-transactional code, the definitions of SI-consistency (Prop. 1) and RSI-
consistency (Def. 5) coincide. That is, for all executions G, if G.NT = ∅, then
G is SI-consistent if and only if G is RSI-consistent. This is captured in the
following theorem with its full proof given in the technical appendix.

Theorem 2. For all executions G, if G.NT = ∅, then:

G is SI-consistent ⇐⇒ G is RSI-consistent

Proof. The full proof is given in the technical appendix (see Thm. 5 in Ap-
pendix B).

Note that the above theorem implies that for all transactional programs P , if
P contains no non-transactional accesses, then outcomesSI(P) = outcomesRSI(P).

RSI Monotonicity We next prove the monotonicity of RSI when wrap-
ping non-transactional events into a transaction. That is, wrapping a block of
non-transactional code inside a new transaction does not introduce additional be-
haviours. More concretely, given a program P , when a block of non-transactional
code in P is wrapped inside a new transaction to obtain a new program PT, then
outcomesRSI(PT) ⊆ outcomesRSI(P). This is captured in the theorem below, with
its full proof given in the technical appendix.

Theorem 3 (Monotonicity). Let PT and P be RSI programs such that PT

is obtained from P by wrapping a block of non-transactional code inside a new
transaction. Then:

outcomesRSI(PT) ⊆ outcomesRSI(P)

Proof. The full proof is given in the technical appendix (see Thm. 6 in Ap-
pendix B).

Lastly, we show that our RSI implementations in §2 (Fig. 3 and Fig. 5) are
sound and complete with respect to Def. 5. This is captured in the theorem
below. The soundness and completeness proofs are non-trivial; the full proofs
are given in the technical appendix.

Theorem 4 (Soundness and completeness). Let P be a program that pos-
sibly mixes transactional and non-transactional code. Let JP Ke denote its eager
RSI implementation as given in Fig. 3 and JP Kl denote its lazy RSI implemen-
tation as given in Fig. 5.

If for every location x and value v, every RSI-consistent execution of P
contains either (i) at most one non-transactional write of v to x; or (ii) all
non-transactional writes of v to x are happens-before-ordered with respect to all
transactions accessing x, then:

outcomesRSI(P) = outcomesRA(JP Ke) = outcomesRA(JP Kl)

Proof. The full proofs of both implementations is given in the technical appendix
(Appendix E and Appendix F, respectively).

6 Related and Future Work

Much work has been done in formalising the semantics of weakly consistent
database transactions [7,33,3,4,10,12,11,13,14,18], both operationally and declar-
atively. On the operational side, Berenson et al. [7] gave an operational model
of SI as a multi-version concurrent algorithm. Later, Sovran et al. [33] described
and operationally defined the parallel snapshot isolation model (PSI), as a close
relative of SI with weaker guarantees.

On the declarative side, Adya et al. [3,4] introduced dependency graphs (sim-
ilar to execution graphs of our framework in §3) for specifying transactional

semantics and formalised several ANSI isolation levels. Cerone et al. [10,12] in-
troduced abstract executions and formalised several isolation levels including SI
and PSI. Later in [11], they used dependency graphs of Adya to develop equiva-
lent SI and PSI semantics; recently in [13], they provided a set of algebraic laws
for connecting these two declarative styles.

To facilitate client-side reasoning about the behaviour of database transac-
tions, Gotsman et al. [18] developed a proof rule for proving invariants of client
applications under a number of consistency models.

Recently, Kaki et al. [21] developed a program logic to reason about transac-
tions under ANSI SQL isolation levels (including SI). To do this, they formulated
an operational model of such programs (parametric in the isolation level). They
then proved the soundness of their logic with respect to their proposed opera-
tional model. However, the authors did not establish the soundness or complete-
ness of their operational model against existing formal semantics, e.g. [11]. The
lack of the completeness result means that their proposed operational model may
exclude behaviours deemed valid by the corresponding declarative models. This
is a particular limitation as possibly many valid behaviours cannot be shown
correct using the logic and is thus detrimental to its usability.

By contrast, the semantics of transactions in the STM setting with mixed-
mode (both transactional and non-transactional) accesses is under-explored on
both operational and declarative sides. Recently, Dongol at al. [17] applied exe-
cution graphs [5] to specify the behaviour of serialisable STM programs under
weak memory models. Raad et al. [30] formalised the semantics of PSI STMs
both declaratively (using execution graphs) and operationally (as lock-based ref-
erence implementations). Neither work, however, handles the semantics of SI
STMs under weaker isolation guarantees.

Finally, Khyzha et al. [22] formalise the sufficient conditions on STMs and
the programs running on them that together ensure strong isolation. That is,
non-transactional accesses can be viewed as singleton transactions (transactions
containing single instructions). However, their conditions require serialisability
for fully transactional programs, and as such, RSI transactions do not meet
their conditions. Nevertheless, we conjecture that a DRF guarantee for strong
atomicity, similar to the one in [22], may be established for RSI. That is, if all
executions of a given fully transactional program have no races between singleton
and non-singleton transactions, then it is safe to replace all singleton transactions
by non-transactional accesses.

In the future, we plan to build on the work presented here by developing
reasoning techniques that would allow us to verify properties of STM programs.
This can be achieved by either extending existing program logics for weak mem-
ory, or developing new ones for currently unsupported models. In particular, we
can reason about the SI models presented here by developing custom proof rules
in the existing program logics for RA such as [24,34].

Acknowledgements This research was supported in part by a European
Research Council (ERC) Consolidator Grant for the project “RustBelt”, under

the European Union’s Horizon 2020 Framework Programme (grant agreement
no. 683289).

References

1. The Clojure Language: Refs and Transactions, http://clojure.org/refs
2. Technical specification for C++ extensions for transactional memory (2015),

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf

3. Adya, A.: Weak consistency: A generalized theory and optimistic implementations
for distributed transactions. Ph.D. thesis, MIT (1999)

4. Adya, A., Liskov, B., O’Neil, P.: Generalized isolation level definitions. In: Proceed-
ings of the 16th International Conference on Data Engineering. pp. 67–78 (2000)

5. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

6. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ concur-
rency. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 55–66 (2011)

7. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A cri-
tique of ANSI SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data. pp. 1–10 (1995)

8. Bieniusa, A., Fuhrmann, T.: Consistency in hindsight: A fully decentralized STM
algorithm. In: Proceedings of the 2010 IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2010. pp. 1 – 12 (2010)

9. Blundell, C., C. Lewis, E., M. K. Martin, M.: Deconstructing transactions: The
subtleties of atomicity. In: 4th Annual Workshop on Duplicating, Deconstructing,
and Debunking (2005)

10. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: Proceedings of the 26th International Conference
on Concurrency Theory. pp. 58–71 (2015)

11. Cerone, A., Gotsman, A.: Analysing snapshot isolation. In: Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing. pp. 55–64 (2016)

12. Cerone, A., Gotsman, A., Yang, H.: Transaction chopping for parallel snapshot
isolation. In: Proceedings of the 29th International Symposium on Distributed
Computing - Volume 9363. pp. 388–404 (2015)

13. Cerone, A., Gotsman, A., Yang, H.: Algebraic laws for weak consistency. In: CON-
CUR (2017)

14. Crooks, N., Pu, Y., Alvisi, L., Clement, A.: Seeing is believing: A client-
centric specification of database isolation. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing. pp. 73–82. PODC ’17,
ACM, New York, NY, USA (2017). https://doi.org/10.1145/3087801.3087802,
http://doi.acm.org/10.1145/3087801.3087802

15. Daudjee, K., Salem, K.: Lazy database replication with snapshot isolation. In:
Proceedings of the 32Nd International Conference on Very Large Data Bases. pp.
715–726 (2006)

16. Dias, R.J., Distefano, D., Seco, J.a.C., Lourenço, J.a.M.: Verifi-
cation of snapshot isolation in transactional memory java pro-
grams. In: Proceedings of the 26th European Conference on Object-
Oriented Programming. pp. 640–664. ECOOP’12, Springer-Verlag,

http://clojure.org/refs
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
https://doi.org/10.1145/3087801.3087802
http://doi.acm.org/10.1145/3087801.3087802

Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31057-7-28,
http://dx.doi.org/10.1007/978-3-642-31057-7-28

17. Dongol, B., Jagadeesan, R., Riely, J.: Transactions in relaxed memory ar-
chitectures. Proc. ACM Program. Lang. 2(POPL), 18:1–18:29 (Dec 2017).
https://doi.org/10.1145/3158106, http://doi.acm.org/10.1145/3158106

18. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ’cause
i’m strong enough: Reasoning about consistency choices in distributed sys-
tems. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. pp. 371–384. POPL ’16,
ACM, New York, NY, USA (2016). https://doi.org/10.1145/2837614.2837625,
http://doi.acm.org/10.1145/2837614.2837625

19. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2Nd Edition. Morgan and
Claypool Publishers, 2nd edn. (2010)

20. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture. pp. 289–300 (1993)

21. Kaki, G., Nagar, K., Najafzadeh, M., Jagannathan, S.: Alone together:
Compositional reasoning and inference for weak isolation. Proc. ACM Pro-
gram. Lang. 2(POPL), 27:1–27:34 (Dec 2017). https://doi.org/10.1145/3158115,
http://doi.acm.org/10.1145/3158115

22. Khyzha, A., Attiya, H., Gotsman, A., Rinetzky, N.: Safe privatization in transac-
tional memory. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming. pp. 233–245 (2018)

23. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. pp. 649–662 (2016)

24. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In: Pro-
ceedings, Part II, of the 42Nd International Colloquium on Automata, Languages,
and Programming - Volume 9135. pp. 311–323 (2015)

25. Litz, H., Cheriton, D., Firoozshahian, A., Azizi, O., Stevenson, J.P.: SI-TM: Re-
ducing transactional memory abort rates through snapshot isolation. SIGPLAN
Not. pp. 383–398 (2014)

26. Litz, H., Dias, R.J., Cheriton, D.R.: Efficient correction of anomalies in snapshot
isolation transactions. ACM Trans. Archit. Code Optim. 11(4), 65:1–65:24 (Jan
2015). https://doi.org/10.1145/2693260

27. Martin, M., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity
semantics. IEEE Comput. Archit. Lett. 5(2), 17–17 (2006)

28. Papadimitriou, C.H.: The serializability of concurrent database updates.
J. ACM 26(4), 631–653 (Oct 1979). https://doi.org/10.1145/322154.322158,
http://doi.acm.org/10.1145/322154.322158

29. Peng, D., Dabek, F.: Large-scale incremental processing using distributed transac-
tions and notifications. In: Proceedings of the 9th USENIX Conference on Operat-
ing Systems Design and Implementation. pp. 251–264 (2010)

30. Raad, A., Lahav, O., Vafeiadis, V.: On parallel snapshot isolation and release/ac-
quire consistency. In: Proceedings of the 27th European Symposium on Program-
ming (2018), to appear

31. Serrano, D., Patino-Martinez, M., Jimenez-Peris, R., Kemme, B.: Boosting
database replication scalability through partial replication and 1-copy-snapshot-
isolation. In: Proceedings of the 13th Pacific Rim International Symposium on
Dependable Computing. pp. 290–297 (2007)

https://doi.org/10.1007/978-3-642-31057-7-28
http://dx.doi.org/10.1007/978-3-642-31057-7-28
https://doi.org/10.1145/3158106
http://doi.acm.org/10.1145/3158106
https://doi.org/10.1145/2837614.2837625
http://doi.acm.org/10.1145/2837614.2837625
https://doi.org/10.1145/3158115
http://doi.acm.org/10.1145/3158115
https://doi.org/10.1145/2693260
https://doi.org/10.1145/322154.322158
http://doi.acm.org/10.1145/322154.322158

32. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing. pp.
204–213 (1995)

33. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. pp. 385–400 (2011)

34. Vafeiadis, V., Narayan, C.: Relaxed separation logic: A program logic for C11
concurrency. In: Proceedings of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages & Applications. pp. 867–884
(2013)

A MRSW Lock Implementations

We consider two different MRSW library implementations, both satisfying the
lock synchronisation guarantees required by Def. 4. As we demonstrate shortly,
our first implementation (Appendix A.1) offers additional synchronisation guar-
antees by ensuring that any two calls to the library (including those of read locks)
synchronise. That is, our first implementation satisfies the (RSync) axiom on
page 16. By contrast, the synchronisation guarantees of our second implementa-
tion (Appendix A.2) are exactly those required by Def. 4, where a library call
to a write lock synchronises with all other lock library calls. As we discussed
earlier in §2, whilst both library implementations can be used in our SI imple-
mentation, only the weaker (second) implementation can be used in our RSI
implementation.

A.1 Fully Synchronising MRSW Lock Implementation

Our first MRSW lock library is implemented in the RA fragment of C11 [23], and
is given in Fig. 7. In this implementation, the lock associated with each location
x resides at location x+1, written xl. The state of a lock xl is represented by
an integer value. A lock xl may hold either:

i) value 0, denoting that the lock is free (not held in read or write mode); or
ii) value 1, denoting that the lock is held (exclusively) in write mode; or
iii) an even value 2n with n > 0, denoting that the lock is held in (shared) read

mode by n readers; or
iv) an odd value 2n+1 with n > 0, denoting that the lock is currently being

promoted, awaiting the release of n readers.

As such, the implementation of lock w x simply spins until it can atomically
update (via CAS) the value of xl from zero (free) to one (acquired in write mode).
The CAS(xl,v ,v’) denotes the atomic ‘compare-and-set’ operation, where ei-
ther xl currently holds value v in which case it is atomically updated to v′ and
true is returned; or xl currently holds a value other than v in which case it is
left unchanged and false is returned. Dually, the implementation of unlock w x

simply releases the write lock by atomically assigning xl to zero.
The implementation of can-promote x is more involved. As multiple readers

may attempt to promote their reader locks simultaneously, promotion is granted
on a ‘first-come-first-served’ bases. As such, the implementation of can-promote
x first reads the value of xl. If xl holds an odd value, then another reader is
currently promoting xl and thus promotion of xl fails by returning false. On the
other hand, if xl holds an even value, then its value is atomically decremented
(to an odd value) to signal the intention to promote. The implementation then
proceeds by spinning until all other readers have released their locks on x (i.e. xl
== 1), at which point true is returned to denote the successful acquisition of x
in write mode. Note that once a reader has signalled its intention to promote x

(by decrementing xl to an odd value), any other such attempt to promote the

lock r x ,

start: a := xl;

if (is-odd a) goto start;

if (!CAS(xl, a, a+2))

goto start;

unlock r x , FAA(xl, -2);

lock w x , while (!CAS(xl,0,1)) skip;

can-promote x ,

start: a := xl;

if (is-odd a) return false;

if (!CAS(xl, a, a-1))

goto start;

while (xl != 1) skip;

return true;

unlock w x , xl := 0;

Fig. 7: Fully synchronising MRSW lock implementation in the RA fragment of
C11

lock on x, as well as calls to acquire it in read mode will fail thereafter until such
time that x is released by its current promoter.

The implementation of lock r x is similar. It first checks whether xl is odd
(held in write mode or being promoted). If so then the implementation spins until
xl is even (free or held in read mode), at which point its value is incremented
by two (to increase the number of readers by one) using the atomic ‘fetch-and-
add’ (FAA) operation, and x is successfully acquired in read mode. Dually, the
implementation of unlock r x atomically decrements the value of xl by two to
decrease the reader count by one.

Synchronisation Guarantees In what follows we demonstrate that our imple-
mentation satisfies the (WSync), (WEx) and (RShare) conditions in Def. 4,
as well as the stronger (RSync) condition discussed on page 16.

Observe that a successful acquisition of a writer lock is done via an atomic
update operation (when the CAS succeeds). That is, a call to lock w x returns
only when the CAS is successful, i.e. when no other thread holds a lock on x.
Similarly, a call to unlock w x returns after an atomic write to xl assigning it
to zero. Moreover, once x is acquired in write mode by a thread τ , no other thread
can acquire it (all other calls to lock r x and lock w x spin until x is released
by τ). As such, any RA-consistent execution graph of a program P containing
a call by thread τ to lock w x followed by its subsequent release via unlock w

x includes a trace of the following form, where wl and wu are events of thread
τ , wl denotes the update event associated with the successful CAS acquiring the
writer lock, and wu denotes the write event associated with its release:

rf
→ wl : U(xl, 0, 1)

poxl|imm

→ wu : W(xl, 0) (1)

Note that if the use of locks in P is well-formed (i.e. the sequence of lock events
in each thread following po matches (a prefix of) the regular expression (RL ·
RU | WL · WU | RL · PL · WU)∗ – see page 15), no other write event on xl can happen

between wl and wu. This is because i) well-formedness of lock traces ensures
that the lock is released by the acquiring thread τ itself, and ii) the lock on x

cannot be acquired after wl and before wu: calls to lock w x fail because xl is
non-zero; and calls to can-promote x and lock r x fail because xl = 1 holds
an odd value. This in turn ensures the mutual exclusion property of writer locks,
as required by the (WEx) condition in Def. 4.

Similarly, a call to can-promote x returns after the CAS succeeds and sub-
sequently the condition of the while loop amounts to false and no other thread
owns a lock on x (in read or write mode). As such, any RA-consistent execution
graph of a program P containing a call by thread τ to can-promote x followed
by its subsequent release via unlock w x includes a trace of the following form,
where sp, pl and wu are events of thread τ , sp denotes the update event asso-
ciated with the successful CAS signalling promotion, pl denotes the atomic read
event in the final iteration of the while loop denoting successful promotion, and
wu denotes the write event associated with its release:

rf
→ sp : U(xl, 2i+2, 2i+1)

rf
→ b1

rf
→ · · ·

rf
→ bi

rf
→ pl : R(xl, 1)

poxl|imm

→ wu : W(xl, 0)
(2)

for some i denoting the reader count on x, with b1 · · · bm ∈ RUx, rl
poxl|imm

→ ru.
In other words, once τ has signalled its intention to promote x, no other lock on
x can be acquired – calls to lock w x fail as the value of xl is non-zero; calls
to lock r x fail as xl holds an odd value. However, existing reader locks must
be released before x can be successfully promoted. As with writer locks above, if
the use of locks in P is well-formed, no other event on xl can happen between
pl and wu. This once again ensures the mutual exclusion property of promoted
locks, as required by the (WEx) condition in Def. 4.

Analogously, a call to lock r x returns when the CAS succeeds; and a call to
unlock r x returns after the atomic FAA operation. Moreover, once x is acquired
in reader mode by a thread τ , no other thread can acquire it in write mode (all
other calls to lock w x spin) until it has been released by τ (and potentially
other readers). As such, any RA-consistent execution graph of a program P
containing a call to lock r x followed by its subsequent release via unlock r x
includes a trace of the following form, where rl and ru are events of thread τ , rl
denotes the update event associated with the successful CAS acquiring the reader
lock, and ru denotes the update event associated with its release via FAA:

rf
→ rl : U(xl, 2i, 2i+2)

rf
→ a1

rf
→ · · ·

rf
→ an

︸ ︷︷ ︸
zero or more

rf
→ sp : U(xl, 2k+2, 2k+1)
︸ ︷︷ ︸

zero or one

rf
→ b1

rf
→ · · ·

rf
→ bm

︸ ︷︷ ︸
zero or more

rf
→ ru : U(xl, j+2, j) (3)

for some i, j, k > 0, where a1 · · · an ∈ RLx ∪RUx, b1 · · · bm ∈ RUx, rl
poxl|imm

→ ru.
In other words, other threads may also acquire x in read mode (denoted by
events of a1 · · · ai) and their calls may be interleaved between the read lock and
unlock of τ . Moreover, another thread may signal to promote its reader lock on
x (denoted by sp) in between the acquisition and release of the reader lock on x

by τ . Lastly, once the lock has been signalled for promotion, no other reader lock
on x can be acquired, though existing reader locks may be released (denoted by
b1 · · · bm). Note that if the use of locks in P is well-formed, no thread can acquire
x in write mode (as x holds a non-zero value) or successfully promote it before
x is released by τ via ru. More concretely, threads may signal their intention
to promote (see sp above). However, they cannot successfully promote it before
τ has released it in ru as xl holds a value greater than 1 (see pl in (2)). This
ensures the (RShare) condition in Def. 4.

Observe that given an RA-consistent execution graph involving calls to the
above MRSW lock library above, for each location x and its lock at xl, the trace
of events on xl comprises po and rf edges, as demonstrated by the traces in (1),
(2) and (3). In other words, any two events on xl are related by (po ∪ rf)+

loc
,

i.e. (po ∪ rf)+
loc

is total for each xl. Moreover, from the RA-consistency of our
execution we know that (po ∪ rf)+

loc
is acyclic. As such, since (po ∪ rf)+

loc
is

transitively closed, we know that it is a strict total order. For each location x,
we thus define lox as the strict total order given by lox , (poxl ∪ rfxl)

+. As
such, our implementation satisfies both the (WSync) condition in Def. 4 and
the stronger (RSync) condition discussed on page 16.

A.2 Write Synchronising MRSW Lock Implementation

Our second MRSW lock implementation is similarly implemented in the RA
fragment of C11 [23] and is given in Fig. 8. In this implementation, each lock x

is represented as an ordered map at location x+1, written xl. The map at xl

contains one entry per thread as follows. For each thread with identifier τ , the
xl[τ]map entry records the current locking privileges of τ on x. More concretely,
when xl[τ] = 0, then τ does not hold the x lock; when xl[τ] = 2, then τ holds
x in read mode; and when xl[τ] = 1; then some thread (either τ or another
thread) either holds x in write mode, or it is in the process of acquiring x in write
mode. The x lock is held in write mode only when all entries in xl are mapped
to one. As we describe shortly, for thread τ to acquire x in write mode, it must
inspect each entry in xl (in order), wait for it be free (zero) and then set it to
one. As we discuss shortly, this in-order inspection of entries allows us to avoid
deadlocks. In our implementation, we assume that the thread identifier can be
obtained by calling getTID. We identify the top-most thread by τ = 0; as such,
the entry of top-most thread in each map is ordered before all other threads.

We proceed with a more detailed explanation of our implementation after
introducing our map notation. We write 1 to denote a map where all entries
have value 1; similarly, we write 0 to denote a map where all entries have value
0. Lastly, we write S ⊆ xl, to denote that the values held in map xl are a
superset of S. The lock map xl associated with location x can be in one of the
following states:

– xl = 0 when x is free;
– xl = 1 when x is held in write mode;
– {2} ⊆ xl when x is held in read mode (by those threads τ where xl[τ] = 2).

lock r x ,

t:= getTID;

while (!CAS(xl[t], 0, 2)) skip;

unlock r x , t:= getTID; xl[t]:= 0

lock w x ,

for (t∈ dom(xl))

while (!CAS(xl[t],0,1)) skip;

unlock w x ,

for (t∈ dom(xl)) xl[t]:= 0;

can-promote x ,

t:= getTID;

if (t == 0) xl[t]:= 1;

else {
retry: a:= xl[0];

if (a == 1) return false;

if (!CAS(xl[0], 0, 1))

goto retry;

} xl[t]:= 1;

for (i∈ dom(xl) && i 6∈{0,t})
while (!CAS(xl[i],0,1)) skip;

return true;

Fig. 8: Write synchronising MRSW lock implementation in the RA fragment of
C11

When thread τ calls lock r x, it simply spins until the lock is free (xl = 0
and thus xl[τ] = 0), at which point it acquires it in read mode by setting xl[τ]
to two. Dually, when τ calls unlock r x it simply sets xl[τ] to zero.

Analogously, when τ calls lock w x, it traverses the xlmap in order, spinning
on each entry until it is free (0) and subsequently acquiring it (by setting it to
1). Conversely, when τ calls unlock w x, it releases x by traversing xl in order
and setting each entry to one.

To understand the implementation of lock promotion, first consider the case
where can-promote x is called by τ 6= 0, i.e. a thread other than the top-most
thread. The implementation of can-promote x then inspects the first entry in
the map (xl[0]), i.e. that of the top-most thread. If xl[0] = 1, then x is
currently being acquired by another thread; the promotion thus fails and false
is returned. If on the other hand xl[0] 6= 1 (i.e. xl[0] = 0 or xl[0] = 2), the
implementation spins until it is zero and atomically updates it to one, signalling
its intention to promote x. This pre-empts the promotion of x by other threads:
any such attempt would fail as now xl[0] = 1. The implementation then sets its
own entry (xl[τ]) to one, traverses the map in order, and spins on each entry
until they too can be set to one. At this point the lock is successfully promoted
and true is returned. Note that it is safe for τ to update its own entry xl[τ] to
one: at this point in execution no thread holds the writer lock on x, no thread
can promote its lock on x, and those threads with a reader lock on x never access
the xl[τ] entry – the read lock calls of another thread τ ’ solely accesses xl[τ’].

Let us now consider the case when the top-most thread with τ = 0 calls
can-promote x. Since prior to a can-promote x call τ owns a reader lock on x,
i.e. xl[τ] = 2, no other thread can promote its x lock. As such, τ successfully
sets xl[τ] to one, signalling its intention to promote x. In other words, the
promotion is skewed in favour of the top-most thread: if a thread races against

the top-most thread to promote x, the top-most thread always wins. With the
exception of the top-most thread, promotion is done on a ‘first-come-first-served’
basis. The rest of the implementation is then carried out as before: the map xl

is traversed in turn and each entry is set to one.

Synchronisation Guarantees In what follows we demonstrate that our imple-
mentation satisfies the (WSync), (WEx) and (RShare) conditions in Def. 4,
while it does not satisfy the stronger (RSync) condition discussed on page 16.

Observe that a successful acquisition of a writer lock is done via several
atomic update operations (via successful CAS operations in the for loop). That is,
a call to lock w x returns only once the CAS on all xl entries succeeds, i.e. when
no other thread holds a lock on x. Similarly, a call to unlock w x returns after
atomic writes on each entry in xl, assigning them to zero. Moreover, once x

is acquired in write mode by a thread τ , no other thread can acquire it: all
other calls to lock r x spin until the relevant xl entry is set to zero by τ ; all
calls to lock w x spin until all entries in xl are set to zero by τ). As such, any
RA-consistent execution graph of a program P containing a call by thread τ
to lock w x or can-promote x, followed by its subsequent release via unlock w

x includes a trace of the following form, where the domain of the xl map is
0 · · ·n for some n, the wl0, · · ·wln, wu0, · · · , wun are events of thread τ , each wli
denotes the update event associated with the successful CAS (in lock w x) on
the xl[i] entry, and each wui denotes the write event setting the xl[i] entry
to zero (in unlock w x):

rf
→ wl0 : U(xl[0], 0, 1)

↓ po
...

↓ po
rf
→wln : U(xl[n], 0, 1)

po
→ wu0 : W(xl[0], 0)

po
→ · · ·

po
→ wun : W(xl[0], 0)

(4)

As before, note that if the use of locks in P is well-formed (see page 15), no other
write event on xl[i] can happen between wli and wui. This is because no thread
can acquire the write lock on xl after wl0 and before wun; and thread τi cannot
acquire the read lock on xl after wli and before wui. This in turn ensures the
mutual exclusion property of writer locks, as required by the (WEx) condition
in Def. 4.

Analogously, a call to lock r x returns when the CAS succeeds; and a call
to unlock r x returns after the atomic write operation setting xl[τ] to zero.
As such, any RA-consistent execution graph of a program P containing a call to
lock r x by thread τ , followed by its subsequent release via unlock r x includes
a trace of the following form, where rl and ru are events of thread τ , rl denotes
the update event associated with the successful CAS acquiring the reader lock,
and ru denotes the write event associated with its release by assigning it to zero:

rf
→ rl : U(xl[τ], 0, 2)

po
→ ru : W(xl[τ], 0) (5)

Note that each read lock call on x by thread τ , accesses xl[τ] alone and no
other entry in xl. As such, two threads may simultaneously acquire the reader
lock on x, ensuring the (RShare) condition in Def. 4. Moreover, as read lock
calls by two distinct threads τ , τ ’ access disjoint memory locations (xl[τ] and
xl[τ’]), they never synchronise. That is, the MRSW lock implementation in
Fig. 8 does not satisfy the (RSync) axiom on page 16.

Lastly, we demonstrate that our implementation satisfies the (WSync) con-
dition in Def. 4, when accessed by an arbitrary (finite) number of threads n.
Observe that given an RA-consistent execution graph involving calls to the
MRSW lock library above, for each location x, its lock at xl, and each thread
τ , the trace of events on xl[τ] comprises po and rf edges, as demonstrated
by the traces in (4) and (5). In other words, any two event on xl[τ] are re-
lated by (po ∪ rf)+

loc
, i.e. (po ∪ rf)+

loc
is total for each xl[τ]. We thus use this

total order to determine the lo (synchronisation order) between two lock events,
where at least one of them is a write lock event. Let us now pick two distinct
lock events, w, l ∈ Lx, where at least one of them w is a write lock event,
i.e. w ∈ WLx ∪ PLx ∪WUx. Either 1) w, l are events of the same thread; or 2)
w and l are events of distinct threads τ , τ ′, respectively. In the first case the
two events are related by po one way or another, and as po ⊆ hb, we know that
the two events synchronise. In the second case, there are two additional cases to
consider: either i) l ∈ WLx ∪ PLx ∪WUx; or l ∈ RLx ∪RUx. In case (i), as we
discussed above we know that each call amounts to a trace akin to that in (4).

That is, we know the trace of τ contains wl : U(xl[0], 0, 1)
po
→ wu : W(xl[0], 0),

and the trace of τ ′ contains wl′ : U(xl[0], 0, 1)
po
→ wu′ : W(xl[0], 0). Moreover, as

we discussed above, we know that no other write event on xl[0] can happen
between wl and wu, and between wl′ and wu′. As (po ∪ rf)+

loc
is total for each

xl[τ], we then know that we either have wl
po
→ wu

(po∪rf)+
loc→ wl′

po
→ wu′, or we

have wl′
po
→ wu′

(po∪rf)+
loc→ wl

po
→ wu. As such, in both cases we know that the two

events synchronise.
In case (ii), we know that the write call results in a trace akin to that in (4),

while the read call results in a trace similar to that in (5). That is, we know

the trace of τ contains wl : U(xl[τ ′], 0, 1)
po
→ wu : W(xl[τ ′], 0), and the trace

of τ ′ contains rl : U(xl[τ ′], 0, 2)
po
→ ru : W(xl[τ ′], 0). Moreover, as we discussed

above, we know that no other write event on xl[τ ′] can happen between wl
and wu. As (po ∪ rf)+

loc
is total for xl[τ ′], we then know that we either have

wl
po
→ wu

(po∪rf)+
loc→ rl

po
→ ru, or we have rl

po
→ ru

(po∪rf)+
loc→ wl

po
→ wu. As such, in

both cases we know that the two events synchronise.

B Auxiliary Results

Proposition 2 (SI-consistency). An execution graph G is SI-consistent if
and only if int holds and the ‘SI-happens-before’ relation si-hb , (poT ∪ rfT ∪
moT ∪ si-rb)+ is irreflexive, where si-rb , [RE]; rbT; [W] and RE , codom(rfE).

Proof. Pick an arbitrary execution graph G. We are then required to show:

acyclic((poT ∪ rfT ∪moT); rbT
?) ⇐⇒ irreflexive(si-hb)

The ⇒ direction
We proceed by contradiction. Assume that acyclic((poT ∪ rfT ∪ moT); rbT

?) and
¬irreflexive(si-hb) both hold. We then know there exists e such that (e, e) ∈ si-hb =
(poT∪rfT∪moT∪si-rb)+. Note that si-rb; si-rb = ∅ because RE∩W = ∅. Hence, the
si-hb cycle cannot have adjacent si-rb edges, which means that we have a cycle in
((poT∪rfT∪moT); si-rb

?)+, which contradicts our first assumption as si-rb ⊆ rbT.

The ⇐ direction
We proceed by contradiction. Let us assume irreflexive(si-hb) and ¬acyclic((poT ∪
rfT ∪ moT); rbT

?). We then know there exists e such that (e, e) ∈ ((poT ∪ rfT ∪
moT); rbT

?)+, i.e. there exists e such that (e, e) ∈ (rbT
?; (poT ∪ rfT ∪ moT))

+.
There are now two cases to consider: either 1) (e, e) ∈ (poT ∪ rfT ∪moT)

+; or 2)
∃a, d. (e, a) ∈ (rbT

?; (poT∪rfT∪moT))
∗, (a, d) ∈ rbT; (poT∪rfT∪moT) and (d, e) ∈

(rbT
?; (poT ∪ rfT ∪ moT))

∗, i.e. ∃a. (a, a) ∈ rbT; (poT ∪ rfT ∪ moT); (rbT
?; (poT ∪

rfT ∪moT))
∗. In case (1) from the definition of si-hb we then have (e, e) ∈ si-hb,

contradicting the assumption that irreflexive(si-hb) holds.
In case (2) we then know there exists b, c such that [b]st 6= [c]st, (a, b) ∈ rbT,

(b, c) ∈ poT∪rfT∪moT and (c, a) ∈ (rbT
?; (poT∪rfT∪moT))

∗. From the definitions
of poT, rfT and moT we then have [b]st× [c]st ⊆ poT∪ rfT∪moT and thus from the
definition of si-hb we have [b]st × [c]st ⊆ si-hb. As such, from Lemma 1 below we
have [b]st× [a]st ⊆ si-hb. On the other hand, from (a, b) ∈ rbT we know there exist
r, w, w′ such that r ∈ [a]st, w ∈ [b]st, [a]st 6= [b]st, (r, w) ∈ rb, (w′, r) ∈ rf and
(w′, w) ∈ mo. There are now two cases to consider: i) w′ ∈ [a]st; or ii) w′ 6∈ [a]st.

In case (2.i) we then have [a]st × [b]st ⊆ moT ⊆ si-hb. As such, we have
(a, b) ∈ si-hb. Since we have also established [b]st × [a]st ⊆ si-hb, we have (b, a) ∈
si-hb. By transitivity, we have (a, a) ∈ si-hb, contradicting the assumption that
irreflexive(si-hb) holds.

In case (2.ii) we then know r ∈ RE. As such we have (r, w) ∈ si-rb ⊆ si-hb.
Since we have also established [b]st× [a]st ⊆ si-hb, we have (w, r) ∈ si-hb. By tran-
sitivity, we have (r, r) ∈ si-hb, contradicting the assumption that irreflexive(si-hb)
holds.

Theorem 5. For all executions G, if G.NT = ∅, then:

G is SI-consistent ⇐⇒ G is RSI-consistent

Proof (the ⇐ direction). Pick an arbitrary G such that G.NT = ∅ and G is RSI-
consistent. Let us proceed by contradiction and assume G is not SI-consistent.
That is, there exists a such that (a, a) ∈ G.si-hb. From the definition of si-hb we
then have G.si-hb ⊆ G.rsi-hb. As such, we have (a, a) ∈ G.rsi-hb, contradicting
the assumption that G is RSI-consistent.

Proof (the ⇒ direction). Pick an arbitrary G such that G.NT = ∅ and G is SI-
consistent. As G.NT = ∅, we then have G.rsi-hb = (poT ∪ rfT ∪moT ∪ si-rb∪A)+

with A , G.([W]; poI; [W]). That is, G.rsi-hb = (G.si-hb ∪ A)+. In what follows
we demonstrate:

A; si-hb ⊆ si-hb and si-hb;A ⊆ si-hb (6)

As such, since si-hb is transitively closed, we have G.rsi-hb = G.si-hb ∪A.
Moreover, we have G.mo ⊆ G.moT ∪ G.moI. As such, since from (int) we

have G.moI ⊆ G.poI, we have G.moI ⊆ A and thus G.mo ⊆ G.rsi-hbloc.
Let B , G.rb∩G.poI. We also have G.rb ⊆ G.si-rb∪G.rbI. As such, since from

(int) we have G.rbI ⊆ G.poI, we have G.rbI ⊆ B and thus G.rb ⊆ G.rsi-hbloc∪B.
Consequently, we have G.(rsi-hbloc ∪mo ∪ rb) = G.(rsi-hbloc ∪B) = G.(si-hbloc ∪
Aloc ∪B). Therefore, G.(rsi-hbloc ∪mo ∪ rb)+ = G.(si-hbloc ∪Aloc ∪B)+.

Observe that A;B = ∅. In what follows we demonstrate that:

B;A ⊆ B (7)

si-hb;B ⊆ si-hb and B; si-hb ⊆ si-hb (8)

Note that since G is SI-consistent we know that A is irreflexive. As such, to show
that G.(rsi-hbloc ∪mo ∪ rb)+ = G.(si-hbloc ∪ Aloc ∪ B)+ is irreflexive, from (6),
(7), (8), and since B is irreflexive, it suffices to show that G.si-hb is irreflexive,
which follows immediately from the SI-consistency of G.

TS. (6)
To show A; si-hb ⊆ si-hb, pick an arbitrary (a, b) ∈ A; si-hb. We then know there
exists c such that a, c ∈ W, (a, c) ∈ A and (c, b) ∈ si-hb. From the definition of
si-hb and since c ∈ W, we know there exists d such that (c, d) ∈ poT ∪ rfT ∪moT
and (d, b) ∈ si-hb∗. As (a, c) ∈ A ⊆ st, we thus know that (a, d) ∈ poT ∪ rfT ∪
moT ⊆ si-hb. Consequently, since (d, b) ∈ si-hb∗ and si-hb is transitively closed,
we have (a, b) ∈ si-hb, as required.

To show si-hb;A ⊆ si-hb, pick an arbitrary (a, b) ∈ si-hb;A. We then know
there exists c such that b, c ∈ W, (a, c) ∈ si-hb and (c, b) ∈ A. From the def-
inition of si-hb, we know there exists d such that (a, d) ∈ si-hb∗ and (d, c) ∈
poT ∪ rfT ∪moT ∪ si-rb. As (c, b) ∈ A ⊆ st and since b, c ∈ W we thus know that
(d, b) ∈ poT ∪ rfT ∪ moT ∪ si-rb ⊆ si-hb. Consequently, since (a, d) ∈ si-hb∗ and
si-hb is transitively closed, we have (a, b) ∈ si-hb, as required.

TS. (7)
Pick an arbitrary a, b such that (a, b) ∈ B;A. We then know there exists c such
that b, c ∈ W, (a, c) ∈ B, (c, b) ∈ A and tx(a) = tx(b) = tx(c). As b, c ∈ W, we
know either (b, c) ∈ moI or (c, b) ∈ moI. However, as G is SI-consistent, from
(int) we know that moI ⊆ poI and thus we have (c, b) ∈ moI ∩ poI. As such,
since (a, c) ∈ rb ∩ poI, (c, b) ∈ moI ∩ poI and poI is transitively closed, from the
definition of rb we have (a, b) ∈ rb ∩ poI = B, as required.

TS. (8)
To show B; si-hb ⊆ si-hb, pick an arbitrary (a, b) ∈ B; si-hb. We then know
there exists c such that a ∈ R, c ∈ W, (a, c) ∈ B and (c, b) ∈ si-hb. From the
definition of si-hb and since c ∈ W, we know there exists d such that (c, d) ∈
poT ∪ rfT ∪ moT and (d, b) ∈ si-hb∗. As (a, c) ∈ B ⊆ st, we thus know that
(a, d) ∈ poT ∪ rfT ∪moT ⊆ si-hb. Consequently, since (d, b) ∈ si-hb∗ and si-hb is
transitively closed, we have (a, b) ∈ si-hb, as required.

To show si-hb;B ⊆ si-hb, pick an arbitrary (a, b) ∈ si-hb;B. We then know
there exists c such that c ∈ R, b ∈ W, (a, c) ∈ si-hb and (c, b) ∈ B. From the
definition of si-hb, and since c ∈ R, we know there exists d such that (a, d) ∈
si-hb∗ and (d, c) ∈ poT ∪ rfT ∪ moT. As (c, b) ∈ B ⊆ st, we thus know that
(d, b) ∈ poT ∪ rfT ∪moT ⊆ si-hb. Consequently, since (a, d) ∈ si-hb∗ and si-hb is
transitively closed, we have (a, b) ∈ si-hb, as required.

Theorem 6 (Monotonicity). Let GT be an RSI execution graph obtained from
an RSI execution graph G by wrapping some non-transactional events inside a
new transaction. If GT is RSI-consistent, then so is G.

Proof. First, we show that [W];G.rsi-hb ⊆ GT .poI ∪GT .rsi-hb. Let A denote the
events of the new transactions in GT . Let 〈a, b〉 ∈ [W];G.rsi-hb, and consider a

(po \ poI) ∪ [W]; poI; [W] ∪ rf; [NT] ∪ [NT]; rf; st ∪ rfT ∪ (mo; rf)T ∪moT ∪ si-rb

path from a to b of minimal length (all relations are in G). Note that the only
possible edges on this path that do not appear in a corresponding relation in
GT are [A]; rf; [A] and [A]; po; [A] \ (W ×W) edges. Suppose first that [A]; rf; [A]
is used on this path. Immediately before or after [A]; rf; [A], we can only have
po\poI, but then the two edges can be replaced by a shorter path that uses only
po \ poI. Thus, in this case it follows that 〈a, b〉 ∈ [A]; rf; [A] ⊆ GT .poI. Next,
suppose that [A]; po; [A] \ (W ×W) is used on this path (the minimality ensures
such edge is used only once). First, if this edge is the first edge on the path,
then (again) it is the only edge on the path (immediately after [A]; po; [A], we
can only have rf; [NT \A] or [NT]; rf; st, but both start with a write). Hence, in
this case we have 〈a, b〉 ∈ [A]; po; [A] ⊆ GT .poI. Second, consider the case that
the [A]; po; [A] edge is not the first on the path. Immediately before [A]; po; [A],
we can only have a [E \ A]; rf edge. Then, in GT , the two edges can be joined
into either [NT];GT .rf;GT .st or GT .rfT. Hence, we obtain 〈a, b〉 ∈ GT .rsi-hb.

Now, suppose that G is not RSI-consistent. If int does not hold, then GT is
also not RSI-consistent and we are done. Otherwise, G.rsi-hbloc ∪ G.mo ∪ G.rb
is cyclic. Since G.mo is total on writes to each location, it follows that 〈a, a〉 ∈
G.rsi-hb; (G.mo∪G.rb) for some a ∈ G.W . Since G.mo = GT .mo, G.rb = GT .rb,
our claim above entails that 〈a, a〉 ∈ (GT .poI∪GT .rsi-hb); (GT .mo∪GT .rb). Now,
〈a, a〉 ∈ GT .poI; (GT .mo ∪ GT .rb) implies that int does not hold for GT , while
〈a, a〉 ∈ GT .rsi-hb; (GT .mo∪GT .rb) implies that GT .rsi-hbloc ∪GT .mo∪GT .rb is
cyclic. In both cases, GT is not RSI-consistent.

Lemma 1. For all a, b, c:

[a]st 6= [b]st∧[a]st×[b]st ⊆ si-hb∧(b, c) ∈ (rbT
?; (poT∪rfT∪moT))

∗ ⇒ [a]st×[c]st ⊆ si-hb

Proof. Note that (rbT
?; (poT ∪ rfT ∪ moT))

∗ =
⋃

n∈N
Sn, where S0 , id and for

all n ∈ N we have Sn+1 , (rbT
?; (poT ∪ rfT ∪ moT));Sn. We thus demonstrate

instead:

∀a, b, c. ∀n ∈ N. [a]st 6= [b]st∧[a]st×[b]st ⊆ si-hb∧(b, c) ∈ Sn ⇒ [a]st×[c]st ⊆ si-hb

We proceed by induction on n.

Base case n = 0
Follows immediately from the assumptions of the lemma and the definition of S0.

Inductive case n = m+1

∀a, b, c. ∀i ≤ m.

[a]st 6= [b]st ∧ [a]st × [b]st ⊆ si-hb ∧ (b, c) ∈ Si ⇒ [a]st × [c]st ⊆ si-hb (I.H.)

Pick arbitrary a, b, c such that [a]st 6= [b]st, [a]st × [b]st ⊆ si-hb, and (b, c) ∈
Sn. From the definition of Sn we then know there exists d such that (b, d) ∈
rbT

?; (poT ∪ rfT ∪moT) and (d, c) ∈ Sm. There are now two cases to consider: 1)
(b, d) ∈ poT ∪ rfT ∪moT; or 2) (b, d) ∈ rbT; (poT ∪ rfT ∪moT).

In case (1) from the definitions of poT, rfT and moT we have [b]st × [d]st ⊆
poT ∪ rfT ∪moT and thus from the definition of si-hb we have [b]st × [d]st ⊆ si-hb.
Since we also have [a]st × [b]st ⊆ si-hb and si-hb is transitively closed, we have
[a]st × [d]st ⊆ si-hb. As (d, c) ∈ Sm, from (I.H.) we then have [a]st × [c]st ⊆ si-hb,
as required.

In case (2) we then know there exists e such that (b, e) ∈ rbT and (e, d) ∈ poT∪
rfT ∪moT. From the definitions of poT, rfT and moT we then have [e]st × [d]st ⊆
poT∪rfT∪moT and thus from the definition of si-hb we have [e]st×[d]st ⊆ si-hb. On
the other hand, from (b, e) ∈ rbT we know there exist r, w, w′ such that r ∈ [b]st,
w ∈ [e]st, [b]st 6= [e]st, [d]st 6= [e]st, (r, w) ∈ rb, (w′, r) ∈ rf and (w′, w) ∈ mo.
There are now two cases to consider: i) w′ ∈ [b]st; or ii) w′ 6∈ [b]st.

In case (2.i) we then have [b]st × [e]st ⊆ moT ⊆ si-hb. Since we also have
[a]st × [b]st ⊆ si-hb and [e]st × [d]st ⊆ si-hb, from the transitivity of si-hb we have
[a]st × [d]st ⊆ si-hb. As (d, c) ∈ Sm, from (I.H.) we then have [a]st × [c]st ⊆ si-hb,
as required.

In case (2.ii) we then know r ∈ RE. As such we have (r, w) ∈ si-rb ⊆ si-hb.
As [a]st× [b]st ⊆ si-hb and r ∈ [b]st we then have [a]st×{w} ⊆ si-hb. Similarly, as
[e]st × [d]st ⊆ si-hb and w ∈ [e]st we then have {w} × [d]st ⊆ si-hb. As such, from
the transitivity of si-hb we have [a]st × [d]st ⊆ si-hb. As (d, c) ∈ Sm, from (I.H.)
we then have [a]st × [c]st ⊆ si-hb, as required.

Lemma 2 (Lock ordering). Given an RA-consistent execution graph G =
(E , po, rf,mo, lo) of the SI or RSI implementations in Fig. 3, for all wl, wl′ ∈

WLx, pl, pl
′ ∈ PLx, wu,wu

′ ∈ WUx, rl, rl
′ ∈ RLx, and ru ∈ RUx:

(wl, wu), (wl′, wu′) ∈ pox|imm⇒ (wu,wl′) ∈ lox ∨ (wu′, wl) ∈ lox
(wl, wu), (rl, pl, wu′) ∈ pox|imm⇒ (wu, rl) ∈ lox ∨ (wu′, wl) ∈ lox

(rl, pl, wu), (rl′, pl′, wu′) ∈ pox|imm⇒ (wu, rl′) ∈ lox ∨ (wu′, rl) ∈ lox

(WWSync)

(wl, wu), (rl, ru) ∈ pox|imm⇒ (wu, rl) ∈ lox ∨ (ru, wl) ∈ lox
(rl, pl, wu), (rl′, ru) ∈ pox|imm⇒ (wu, rl′) ∈ lox ∨ (ru, pl) ∈ lox

(RWSync)

where given a relation r we write (a, b, c) ∈ r as a shorthand for (a, b), (b, c) ∈ r.

Proof (Proof (WWSync)). Pick an arbitrary RA-consistent execution graph
G = (E , po, rf,mo, lo) of the SI or RSI implementations in Fig. 3, and pick
arbitrary wl, wl′ ∈ WLx, pl, pl

′ ∈ PLx, wu,wu
′ ∈ WUx and rl, rl′ ∈ RLx. We

are then required to show:

(wl, wu), (wl′, wu′) ∈ pox|imm ⇒ (wu,wl′) ∈ lox ∨ (wu′, wl) ∈ lox (9)

(wl, wu), (rl, pl, wu′) ∈ pox|imm ⇒ (wu, rl) ∈ lox ∨ (wu′, wl) ∈ lox (10)

(rl, pl, wu), (rl′, pl′, wu′) ∈ pox|imm ⇒ (wu, rl′) ∈ lox ∨ (wu′, rl) ∈ lox (11)

RTS. (9)
We proceed by contradiction. Let (wl, wu), (wl′, wu′) ∈ pox|imm and (wu,wl′) 6∈
lox ∧ (wu′, wl) 6∈ lox. Since lox is totally ordered w.r.t. write lock events, we then
have (wl′, wu) ∈ lox and (wl, wu′) ∈ lox.

From the mutual exclusion (WEx) afforded by lock events, and since (wl′, wu) ∈

lox we know there exists wu′′ ∈ WUx such that wl′
po
→ wu′′ and wu′′ lo

→ wu. More-

over, since wl′
pox|imm

→ wu′ we have wu′ po∗

→ wu′′. Once again, since lo is total w.r.t.
write lock events and agrees with po (otherwise we would have a cycle contra-

dicting the assumption that G is RA-consistent), we have wu′ lo∗

→ wu′′. We then

have wu′ lo∗

→ wu′′ lo
→ wu and thus since lo is an order (i.e. is transitive), we have

wu′ lo
→ wu.
Following a similar argument symmetrically, we get wu

lo
→ wu′. We then

have wu′ lo
→ wu

lo
→ wu′, contradicting the assumption that lo is a strict order.

RTS. (10)
We proceed by contradiction. Let (wl, wu), (rl, pl, wu′) ∈ pox|imm and (wu, rl) 6∈
lox ∧ (wu′, wl) 6∈ lox. Since lox is totally ordered w.r.t. write lock events, we then
have (rl, wu) ∈ lox and (wl, wu′) ∈ lox.

From (RShare) and since (rl, wu) ∈ lox we know there exists l ∈ RUx∪PLx

such that rl
po
→ l and l

lo
→ wu. Moreover, since rl

pox|imm

→ pl we have pl
po∗

→ l. Once
again, since lo is total w.r.t. write lock events and agrees with po (otherwise we
would have a cycle contradicting the assumption that G is RA-consistent), we

have pl
lo∗

→ l. We then have pl
lo∗

→ l
lo
→ wu and thus since lo is an order (i.e. is

transitive), we have pl
lo
→ wu. Similarly, from the mutual exclusion (WEx) of

write locks and since pl
lo
→ wu, we know there exists wu′′ ∈ WUx such that

pl
po
→ wu′′ and wu′′ lo

→ wu. Moreover, since pl
pox|imm

→ wu′ we have wu′ po∗

→ wu′′.
Again, since lo is total w.r.t. write lock events and agrees with po (otherwise we
would have a cycle contradicting the assumption that G is RA-consistent), we

have wu′ lo∗

→ wu′′. We then have wu′ lo∗

→ wu′′ lo
→ wu and thus since lo is an order

(i.e. is transitive), we have wu′ lo
→ wu.

Analogously, from (WEx) and since (wl, wu′) ∈ lo, we know there exists

wu′′′ ∈ WUx such that wl
po
→ wu′′′ and wu′′′ lo

→ wu′. Moreover, since wl
pox|imm

→

wu we have wu
po∗

→ wu′′′. Once again, since lo is total w.r.t. write lock events
and agrees with po (otherwise we would have a cycle contradicting the assumption

that G is RA-consistent), we have wu
lo∗

→ wu′′′. We then have wu
lo∗

→ wu′′′ lo
→ wu′

and thus since lo is an order (i.e. is transitive), we have wu
lo
→ wu′.

We then have wu′ lo
→ wu

lo
→ wu′, contradicting the assumption that lo is a

strict order.

RTS. (11)
We proceed by contradiction. Let (rl, pl, wu), (rl′, pl′, wu′) ∈ pox|imm and (wu, rl′) 6∈
lox ∧ (wu′, rl) 6∈ lox. Since lox is totally ordered w.r.t. write lock events, we then
have (rl, wu′) ∈ lox and (rl′, wu) ∈ lox.

From (RShare) and since (rl, wu′) ∈ lox we know there exists l ∈ RUx∪PLx

such that rl
po
→ l and l

lo
→ wu′. Moreover, since rl

pox|imm

→ pl we have pl
po∗

→ l. Once
again, since lo is total w.r.t. write lock events and agrees with po (otherwise we
would have a cycle contradicting the assumption that G is RA-consistent), we

have pl
lo∗

→ l. We then have pl
lo∗

→ l
lo
→ wu′ and thus since lo is an order (i.e. is

transitive), we have pl
lo
→ wu′. Similarly, from (WEx) and since pl

lo
→ wu′, we

know there exists wu′′ ∈ WUx such that pl
po
→ wu′′ and wu′′ lo

→ wu′. Moreover,

since pl
pox|imm

→ wu we have wu
po∗

→ wu′′. Again, since lo is total w.r.t. write
lock events and agrees with po (otherwise we would have a cycle contradicting

the assumption that G is RA-consistent), we have wu
lo∗

→ wu′′. We then have

wu
lo∗

→ wu′′ lo
→ wu′ and thus since lo is an order (i.e. is transitive), we have

wu
lo
→ wu′.
Following a similar argument symmetrically, we get wu′ lo

→ wu. We then

have wu
lo
→ wu′ lo

→ wu, contradicting the assumption that lo is a strict order.

Proof (Proof (RWSync)). Pick an arbitrary RA-consistent execution graph
G = (E , po, rf,mo, lo) of the SI or RSI implementations in Fig. 3, and pick
arbitrary wl ∈ WLx, pl ∈ PLx, wu ∈ WUx, rl, rl

′ ∈ RLx and ru ∈ RUx. We
are then required to show:

(wl, wu), (rl, ru) ∈ pox|imm ⇒ (wu, rl) ∈ lox ∨ (ru, wl) ∈ lox (12)

(rl, pl, wu), (rl′, ru) ∈ pox|imm ⇒ (wu, rl′) ∈ lox ∨ (ru, pl) ∈ lox (13)

RTS. (12)
We proceed by contradiction. Let (wl, wu), (rl, ru) ∈ pox|imm and (wu, rl) 6∈ lox∧
(ru, wl) 6∈ lox. Since lox is totally ordered w.r.t. write lock events, we then have
(rl, wu) ∈ lox and (wl, ru) ∈ lox.

From (WEx) and since (wl, ru) ∈ lox we know there exists wu′ ∈ WUx such

that wl
po
→ wu′ and wu′ lo

→ ru. Moreover, since wl
pox|imm

→ wu we have wu
po∗

→ wu′.
Once again, since lo is total w.r.t. write lock events and agrees with po (otherwise
we would have a cycle contradicting the assumption that G is RA-consistent), we

have wu
lo∗

→ wu′. We then have wu
lo∗

→ wu′ lo
→ ru and thus since lo is an order

(i.e. is transitive), we have wu
lo
→ ru.

Analogously, from (RShare) and since (rl, wu) ∈ lox we know there exists

l ∈ RUx ∪ PLx such that rl
po
→ l and l

lo
→ wu. Moreover, since rl

pox|imm

→ ru we

have ru
po∗

→ l. We then have l
lo
→ wu

lo
→ ru

po∗

→ l, contradicting the assumption
that G is RA-consistent.

RTS. (13)
We proceed by contradiction. Let (rl, pl, wu), (rl′, ru) ∈ pox|imm and (wu, rl′) 6∈
lox ∧ (ru, pl) 6∈ lox. Since lox is totally ordered w.r.t. write lock events, we then
have (rl′, wu) ∈ lox and (pl, ru) ∈ lox.

From (WEx) and since (pl, ru) ∈ lox we know there exists wu′ ∈ WUx such

that pl
po
→ wu′ and wu′ lo

→ ru. Moreover, since pl
pox|imm

→ wu we have wu
po∗

→ wu′.
Once again, since lo is total w.r.t. write lock events and agrees with po (otherwise
we would have a cycle contradicting the assumption that G is RA-consistent), we

have wu
lo∗

→ wu′. We then have wu
lo∗

→ wu′ lo
→ ru and thus since lo is an order

(i.e. is transitive), we have wu
lo
→ ru.

Analogously, from (RShare) and since (rl′, wu) ∈ lox we know there exists

l ∈ RUx ∪ PLx such that rl
po
→ l and l

lo
→ wu. Moreover, since rl

pox|imm

→ ru we

have ru
po∗

→ l. We then have l
lo
→ wu

lo
→ ru

po∗

→ l, contradicting the assumption
that G is RA-consistent.

C Soundness and Completeness of the Eager SI
Implementation

Notation Given an execution graph G ′ = (E , po, rf,mo, lo) we write T /st
for the set of equivalence classes of T induced by st; [a]st for the equivalence
class that contains a; and Tξ for the equivalence class of transaction ξ ∈ TXId:

Tξ ,
{

a tx(a)=ξ
}

. We write si-consistent(G ′) to denote that G ′ is SI-consistent;
and write RA-consistent(G) to denote that G is RA-consistent.

Given an execution graph G of the SI implementation in Fig. 3, let us assign
a transaction identifier to each transaction executed by the program; and given
a transaction ξ, let RSξ and WSξ denote its read and write sets, respectively.
Observe that given a transaction ξ of the SI implementation in Fig. 3 with
RSξ ∪ WSξ =

{

x1, · · · , xi
}

, the trace of ξ, written θξ, is of the following form:

θξ = FS ∗ po|imm

→ Rs
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ts
po|imm

→ Us

where FS∗ denotes the sequence of events attempting but failing to obtain a
snapshot, and

– Rs denotes the sequence of events acquiring the reader locks (on all loca-
tions accessed) and capturing a snapshot of the read set, and is of the

form rlx1
po|imm

→ · · ·
po|imm

→ rlxi
po|imm

→ Sx1
po|imm

→ · · ·
po|imm

→ Sxi , where for all
n ∈ {1 · · · i}:

rlxn = RL(xln) Sxn =

{

rsxn
po|imm

→ wsxn if x ∈ RSξ

∅ otherwise

with rsxn , R(xn, vn) and wsxn , W(s[xn], vn), for some vn.

– RUs denotes the sequence of events releasing the reader locks (when the given

location is in the read set only) and is of the form rux1

po|imm

→ · · ·
po|imm

→ ruxi ,
where for all n ∈ {1 · · · i}:

ruxn =

{

RU(xln) if xn 6∈ WSξ

∅ otherwise

– PLs denotes the sequence of events promoting the reader locks to writer ones

(when the given location is in the write set), and is of the form plx1
po|imm

→

· · ·
po|imm

→ pl xi , where for all n ∈ {1 · · · i}:

plxn =

{

PL(xln) if xn ∈ WSξ

∅ otherwise

– Ts denotes the sequence of events corresponding to the execution of JTK in

Fig. 3 and is of the form t1
po|imm

→ · · ·
po|imm

→ tk, where for all m ∈ {1 · · ·k}:

tm =

{

R(s[xn], vn) if Om=R(xn, vn)

W(xn, vn)
po|imm

→ W(s[xn], vn) if Om=W(xn, vn)

where Om denotes the mth event in the trace of the original T;
– Us denotes the sequence of events releasing the locks on the write set. That

is, the events in Us correspond to the execution of the last line of the imple-

mentation in Fig. 3, and is of the form wux1

po|imm

→ · · ·
po|imm

→ wuxi , where for
all n ∈ {1 · · · i}:

wuxn =

{

WU(yln) if xn ∈ WSξ

∅ otherwise

Given a transaction trace θξ, we write e.g. ξ.Ls to refer to its constituent Ls
sub-trace and write Ls .E for the set of events related by po in Ls . Similarly, we
write ξ.E for the set of events related by po in θξ. Note that G.E =

⋃

ξ∈Tx

ξ.E .

C.1 Implementation Soundness

In order to establish the soundness of our implementation, it suffices to show
that given an RA-consistent execution graph of the implementation G, we can
construct a corresponding SI-consistent execution graph G ′ with the same out-
come.

Given a transaction ξ ∈ Tx with RSξ ∪ WSξ = {x1 · · · xi} and trace θξ =

Fs∗
po|imm

→ Rs
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ts
po|imm

→ Us, with Ts = t1
po|imm

→

· · ·
po|imm

→ tk, we construct the corresponding implementation trace θ′ξ as follows:

θ′ξ , t ′1
po
→ · · ·

po
→ t ′k

where for all m ∈ {1 · · ·k}:

t ′m=R(xn, rbn) when tm = R(s[xn], rbn)

t ′m=W(xn, rbn) when tm = W(xn, rbn)
po|imm

→ W(s[xn], rbn)

such that in the first case the identifier of t ′m is that of tm; and in the second
case the identifier of t ′m is that of the first event in tm. We then define:

RFξ ,



























(w, t′j)

t′j ∈ Ts ′ ∧ ∃x, v. t′j=R(x, v) ∧ w=W(x, v)

∧(w ∈ ξ.E ⇒ w
po
→ t′j ∧

(∀e ∈ ξ.E . w
po
→ e

po
→ t′j ⇒ (loc(e)6=x ∨ e 6∈W)))

∧(w 6∈ ξ.E ⇒ (∀e ∈ ξ.E . (e
po
→ t′j ⇒ (loc(e) 6= x ∨ e 6∈ W))

∧ (w, ξ.rsx) ∈ G.rf)



























We are now in a position to demonstrate the soundness of our implementation.
Given an RA-consistent execution graph G of the implementation, we construct
an SI execution graph G ′ as follows and demonstrate that si-consistent(G ′) holds.

– G ′.E =
⋃

ξ∈Tx

θ′ξ.E , with the tx(.) function defined as:

tx(a) , ξ where a ∈ θ′ξ

– G ′.po = G.po|G′.E

– G ′.rf =
⋃

ξ∈Tx
RFξ

– G ′.mo = G.mo|G′.E

– G ′.lo = ∅

Observe that the events of each θ′ξ trace coincides with those of the equivalence
class Tξ of G ′. That is, θ′ξ.E = Tξ.

Lemma 3. Given an RA-consistent execution graph G of the implementation
and its corresponding SI execution graph G ′ constructed as above, for all a, b, ξa, ξb, x:

ξa 6= ξb ∧ a ∈ ξa.E ∧ b ∈ ξb.E ∧ loc(a) = loc(b) = x ⇒

((a, b) ∈ G
′
.rf ⇒ ξa.wux

G.hb
→ ξb.rl x) (14)

∧ ((a, b) ∈ G
′
.mo ⇒ ξa.wux

G.hb
→ ξb.rl x) (15)

∧ ((a, b) ∈ G
′
.mo; rf ⇒ ξa.wux

G.hb
→ ξb.rl x) (16)

∧
(
(a, b) ∈ G

′
.rb ⇒ (x ∈ WSξa ∧ ξa.wux

G.hb
→ ξb.rl x) ∨ (x 6∈ WSξa ∧ ξa.rux

G.hb
→ ξb.pl x)

)

(17)

Proof. Pick an arbitrary RA-consistent execution graph G of the implementation
and its corresponding SI execution graph G ′ constructed as above. Pick an arbi-
trary a, b, ξa, ξb, x such that ξa 6= ξb, a ∈ ξa.E, a ∈ ξa.E, and loc(a) = loc(b) =
x.

RTS. (14)
Assume (a, b) ∈ G ′.rf. From the definition of G ′.rf we then know (a, ξa.rsx) ∈
G.rf. On the other hand, from Lemma 2 we know that either i) x ∈ WSξb and

ξb.wux
G.hb
→ ξa.rlx; or ii) x 6∈ WSξb and ξb.rux

G.hb
→ ξa.plx; or iii) ξa.wux

G.hb
→

ξb.rlx. In case (i) we then have a
G.rf
→ ξa.rsx

G.po
→ ξb.wux

G.hb
→ ξa.rlx

G.po
→ a. That

is, we have a
G.hbloc→ a, contradicting the assumption that G is RA-consistent.

Similarly in case (ii) we have a
G.rf
→ ξa.rsx

G.po
→ ξb.rux

G.hb
→ ξa.plx

G.po
→ a. That

is, we have a
G.hbloc→ a, contradicting the assumption that G is RA-consistent. In

case (iii) the desired result holds trivially.

RTS. (15)
Assume (a, b) ∈ G ′.mo. From the definition of G ′.mo we then know (a, b) ∈ G.mo.

On the other hand, from Lemma 2 we know that either i) ξb.wux
G.hb
→ ξa.rlx;

or ii) ξa.wux
G.hb
→ ξb.rlx. In case (i) we then have a

G.mo
→ b

G.po
→ ξb.wux

G.hb
→

ξa.rlx
G.po
→ a. That is, we have a

G.hbloc→ a, contradicting the assumption that G
is RA-consistent. In case (ii) the desired result holds trivially.

RTS. (16)
Assume (a, b) ∈ G ′.mo; rf. We then know there exists w such that (a, w) ∈ G ′.mo

and (w, b) ∈ G ′.rf. From the definition of G ′.mo we then know (a, w) ∈ G.mo.
There are now three cases to consider: 1) w ∈ ξa; or 2) w ∈ ξb; or 3) w ∈
ξc ∧ ξc 6= ξa ∧ ξc 6= ξb. In case (1) the desired result follows from part 14. In case
(2) since (a, w) ∈ G ′.mo the desired result follows from part 15.

In case (3) from the proof of part 15 we have ξa.wux
G.hb
→ ξc.rlx. More-

over, from the shape of G traces we have ξc.rlx
G.po
→ ξc.wux. On the other

hand, from the proof of part 14 we have ξc.wux
G.hb
→ ξb.rlx. We thus have

ξa.wux
G.hb
→ ξc.rlx

G.po
→ ξc.wux

G.hb
→ ξb.rlx. As G.po ⊆ G.hb and G.hb is transi-

tively closed, we have ξa.wux
G.hb
→ ξb.rlx, as required.

RTS. (17)
Assume (a, b) ∈ G ′.rb. From the definition of G ′.rb we then know (ξa.rsx, b), (ξa.vsx, b) ∈

G.rb. On the other hand, from Lemma 2 we know that either i) ξb.wux
G.hb
→ ξa.rlx;

or ii) x 6∈ WSξa and ξa.rux
G.hb
→ ξa.plx; or iii) x ∈ WSξa and ξa.wux

G.hb
→ ξb.rlx.

In case (i) we then have b
G.po
→ ξb.wux

G.hb
→ ξa.rlx

G.po
→ ξa.rsx

G.rb
→ b. That is, we

have b
G.hbloc→ ξa.rsx

G.rb
→ b, contradicting the assumption that G is RA-consistent.

In cases (ii-iii) the desired result holds trivially.

Lemma 4. For all RA-consistent execution graphs G of the implementation and
their counterpart SI execution graphs G ′ constructed as above,

1. (G ′.poT ⊆ G.po) ∧ (G ′.poT;G
′.rbT ⊆ G.hb)

2. (G ′.moT ⊆ G.hb) ∧ (G ′.moT;G
′.rbT ⊆ G.hb)

3. (G ′.rfT ⊆ G.hb) ∧ (G ′.rfT;G
′.rbT ⊆ G.hb)

Proof. Pick an arbitrary RA-consistent execution graph G of the implementation
and its counterpart SI execution graph G ′ constructed as above.

RTS. (Part 1)
The proof of the first conjunct is immediate from the definitions of G ′.po and
G.po. For the second conjunct, pick arbitrary (a, b) ∈ G ′.(poT; rbT). We then
know there exist c such that (a, c) ∈ G ′.poT and (c, b) ∈ G ′.rbT. Since (a, c) ∈
G ′.poT, from the definition of G ′.po we also have (a, c) ∈ G.po and thus (a, c) ∈
G.hb. Moreover, from the definition of G ′.rbT we know there exist ξ1, ξ2, r, w such
that ξ1 6= ξ2, c, r ∈ θ′ξ1 , b, w ∈ θ′ξ2 and (r, w) ∈ G ′.rb. Let loc(r) = loc(w) = x.
We then know that x ∈ RSξ1 ∪ WSξ1 , x ∈ WSξ2 , and that there exists wx such that
(wx, r) ∈ G ′.rf and (wx, w) ∈ G ′.mo. From the construction of G ′.mo we then

have (wx, w) ∈ G.mo. From the construction of G ′.rf there are now two cases to
consider: 1) (wx, ξ1.rsx) ∈ G.rf; or 2) x ∈ WSξ1 , wx ∈ ξ1 and (wx, r) ∈ G.po.

In case (1) we then have (ξ1.rsx, w) ∈ G.rb. Moreover, from Lemma 3 we have

that either: i) x 6∈ WSξ1 ∧ ξ1.rux
G.hb
→ ξ2.pl x; or ii) x ∈ WSξ1 ∧ ξ1.wux

G.hb
→ ξ2.rlx.

In case (1.i), since we have (a, c) ∈ G ′.poT, from the construction of G ′.po

we have (a, ξ1.rux) ∈ G.po. We thus have a
G.po
→ ξ1.rux

G.hb
→ ξ2.plx

G.po
→ b. That is,

as G.po ⊆ G.hb and G is transitively closed, we have (a, b) ∈ G.hb, as required.
Similarly, in case (1.ii), since we have (a, c) ∈ G ′.poT, from the construction of

G ′.po we have (a, ξ1.wux) ∈ G.po. We thus have a
G.po
→ ξ1.wux

G.hb
→ ξ2.rlx

G.po
→ b.

That is, as G.po ⊆ G.hb and G is transitively closed, we have (a, b) ∈ G.hb, as
required.

In case (2), from Lemma 3 we have ξ1.wux
G.hb
→ ξ2.rlx. Moreover, we have

(c, ξ1.wux) ∈ G.po and. (ξ2.rlx, b) ∈ G.po. We thus have, a
G.hb
→ c

G.po
→ ξ1.wux

G.hb
→

ξ2.rlx
G.po
→ b. That is, as G.po ⊆ G.hb and G is transitively closed, we have

(a, b) ∈ G.hb, as required.

RTS. (Part 2)
For the first conjunct, pick an arbitrary (a, b) ∈ G ′.moT; we are then required to
show that (a, b) ∈ G.hb.

From the definition of G ′.moT and the construction of G ′ we know there
exist ξ1, ξ2, d, e such that ξ1 6= ξ2, (d, e) ∈ G ′.mo, a, d ∈ Tξ1 and b, e ∈ Tξ2 . Let

loc(d) = loc(e) = y. We then know a
G.po
→ ξ1.wuy, ξ1.rly

G.po
→ d

G.po
→ ξ1.wuy,

ξ2.rly
G.po
→ b and ξ2.rly

G.po
→ e

G.po
→ ξ2.wuy.

From Lemma 3 we then know ξ1.wuy
G.hb
→ ξ2.rly. As such, we have a

G.po
→

ξ1.wuy
G.hb
→ ξ2.rly

G.po
→ b. As G.po ∈ G.hb and G.hb is transitively closed, we

have a
G.hb
→ b, as required.

For the second conjunct, pick an arbitrary c such that (b, c) ∈ G ′.rbT. We are
then required to show that (a, c) ∈ G.hb. From the definition of G ′.rbT we then
know there exist ξ3, r, w such that ξ3 6= ξ2, r ∈ Tξ2 , c, w ∈ Tξ3 and (r, w) ∈ G ′.rb.
Let loc(r) = loc(w) = x. We then know that x ∈ RSξ2 ∪ WSξ2 , x ∈ WSξ3 , and
that there exists wx such that (wx, r) ∈ G ′.rf and (wx, w) ∈ G ′.mo. From the
construction of G ′.mo we then have (wx, w) ∈ G.mo. From the construction of
G ′.rf there are now two cases to consider: 1) (wx, ξ2.rsx) ∈ G.rf; or 2) x ∈ WSξ2 ,
wx ∈ ξ2 and (wx, r) ∈ G.po.

In case (1) we then have (ξ2.rsx, w) ∈ G.rb. Moreover, from Lemma 3 we have

either i) x 6∈ WSξ2 ∧ ξ2.rux
G.hb
→ ξ3.plx; or ii) x ∈ WSξ2 ∧ ξ2.wux

G.hb
→ ξ3.rlx. In case

(1.i), from the proof of the first conjunct recall that we have a
G.po
→ ξ1.wuy

G.hb
→

ξ2.rly. Also, from the shape of G traces we know that ξ2.rly
G.po
→ ξ2.rux. As

such, we have a
G.po
→ ξ1.wuy

G.hb
→ ξ2.rly

G.po
→ ξ2.rux

G.hb
→ ξ3.plx

G.po
→ c. That is, as

G.po ⊆ G.hb and G is transitively closed, we have (a, c) ∈ G.hb, as required.

Similarly, in case (1.ii), from the proof of the first conjunct recall that we

have a
G.po
→ ξ1.wuy

G.hb
→ ξ2.rly. Also, from the shape of G traces we know that

ξ2.rly
G.po
→ ξ2.wux. As such, we have a

G.po
→ ξ1.wuy

G.hb
→ ξ2.rly

G.po
→ ξ2.wux

G.hb
→

ξ3.rlx
G.po
→ c. That is, as G.po ⊆ G.hb and G is transitively closed, we have

(a, c) ∈ G.hb, as required.

In case (2) from Lemma 3 we have ξ2.wux
G.hb
→ ξ3.rlx. Recall that with the first

conjunct we demonstrated that (a, b) ∈ G.hb. Moreover, we have (b, ξ2.wux) ∈

G.po and (ξ3.rlx, c) ∈ G.po. We thus have, a
G.hb
→ b

G.po
→ ξ2.wux

G.hb
→ ξ3.rlx

G.po
→ c.

That is, as G.po ⊆ G.hb and G is transitively closed, we have (a, b) ∈ G.hb, as
required.

RTS. (Part 3)
For the first conjunct, pick an arbitrary (a, b) ∈ G ′.rfT; we are then required to
show that (a, b) ∈ G.hb.

From the definition of G ′.rfT and the construction of G ′ we know there exist
ξ1, ξ2, wy, ry such that ξ1 6= ξ2, (wy, ry) ∈ G ′.rf, a, wy ∈ ξ1 and b, ry ∈ ξ2. Let

loc(w) = loc(r) = y. We then know ξ1.rly
G.po
→ ξ1.pl y

G.po
→ wy

G.po
→ ξ1.wuy and

a
G.po
→ ξ1.wuy.

Let wy = W(y, v) and ry = R(y, v). From the construction of G ′ we know that

(wy , ξ2.rsy) ∈ G.rf. On the other hand, from Lemma 3 we have ξ1.wuy
G.hb
→ ξ2.rly.

We then have a
G.po
→ ξ1.wuy

G.hb
→ ξ2.rly

G.po
→ b. That is, as G.po ⊆ G.hb, we have

a
G.hb
→ b, as required.

For the second conjunct, pick an arbitrary c such that (b, c) ∈ G ′.rbT. We are
then required to show that (a, c) ∈ G.hb. From the definition of G ′.rbT we then
know there exist ξ3, r, w such that ξ3 6= ξ2, r ∈ Tξ2 , c, w ∈ Tξ3 and (r, w) ∈ G ′.rb.
Let loc(r) = loc(w) = x. We then know that x ∈ RSξ2 ∪ WSξ2 , x ∈ WSξ3 , and
that there exists wx such that (wx, r) ∈ G ′.rf and (wx, w) ∈ G ′.mo. From the
construction of G ′.mo we then have (wx, w) ∈ G.mo. From the proof of the first

conjunct recall that we have a
G.po
→ ξ1.wuy

G.hb
→ ξ2.rly.

From the construction of G ′.rf there are now two cases to consider: 1) (wx, ξ2.rsx) ∈
G.rf; or 2) x ∈ WSξ2 , wx ∈ ξ2 and (wx, r) ∈ G.po.

In case (1) we then have (ξ2.rsx, w) ∈ G.rb. Moreover, from Lemma 3 we

have either: i) ξ2.rux
G.hb
→ ξ3.plx; or ii) ξ2.wux

G.hb
→ ξ3.rlx.

In case (1.i), from the shape of G traces we know that ξ2.rly
G.po
→ ξ2.rux. As

such, we have a
G.po
→ ξ1.wuy

G.hb
→ ξ2.rly

G.po
→ ξ2.rux

G.hb
→ ξ3.plx

G.po
→ c. That is, as

G.po ⊆ G.hb and G is transitively closed, we have (a, c) ∈ G.hb, as required.

Similarly, in case (1.ii), from the shape of G traces we know that ξ2.rly
G.po
→

ξ2.wux. As such, we have a
G.po
→ ξ1.wuy

G.hb
→ ξ2.rly

G.po
→ ξ2.wux

G.hb
→ ξ3.rlx

G.po
→ c.

That is, as G.po ⊆ G.hb and G is transitively closed, we have (a, c) ∈ G.hb, as
required.

In case (2), from Lemma 3 we have ξ2.wux
G.hb
→ ξ3.rlx. Recall that with the

first conjunct we demonstrated that (a, b) ∈ G.hb. Moreover, we have (b, ξ2.wux) ∈

G.po and (ξ3.rlx, c) ∈ G.po. We thus have, a
G.hb
→ b

G.po
→ ξ2.wux

G.hb
→ ξ3.rlx

G.po
→ c.

That is, as G.po ⊆ G.hb and G is transitively closed, we have (a, b) ∈ G.hb, as
required.

Theorem 7 (Soundness). For all execution graphs G of the implementation
and their counterpart SI execution graphs G ′ constructed as above,

RA-consistent(G) ⇒ si-consistent(G ′)

Proof. Pick an arbitrary execution graph G of the implementation such that
RA-consistent(G) holds, and its associated SI execution graph G ′ constructed as
described above.

RTS. acyclic(G ′.((poT ∪ rfT ∪moT); rbT
?))

We proceed by contradiction. Let us assume

RA-consistent(G) ∧ ¬acyclic(G ′.((poT ∪ rfT ∪moT); rbT
?)) (18)

From the definition of RA-consistent(.) we then know that there exists a such that

(a, a) ∈
(

(G ′.poT ∪ G ′.rfT ∪ G ′.moT);G
′.rbT

)+
. Consequently, from Lemma 4

we have (a, a) ∈ G.hb+. That is, since G.hb is transitively closed, we have
(a, a) ∈ G.hb, contradicting our assumption that G is RA-consistent.

RTS. rfI ∪moI ∪ rbI ⊆ po

Follows immediately from the construction of G ′.

C.2 Implementation Completeness

In order to establish the completeness of our implementation, it suffices to show
that given an SI-consistent execution graph G ′ = (E , po, rf,mo, lo), we can con-
struct a corresponding RA-consistent execution graph G of the implementa-
tion. Before proceeding with the construction of a corresponding implementation
graph, we describe several auxiliary definitions.

Given an abstract transaction class Tξ ∈ G ′.T /st, we write WSξ for the set
of locations written to by Tξ: WSξ =

⋃

e∈Tξ∩W loc(e). Similarly, we write RSξ
for the set of locations read from by Tξ, prior to being written by Tξ. For each
location x read from by Tξ, we additionally record the first read event in Tξ that
retrieved the value of x. That is,

RSTξ
,

{

(x, r) r ∈ Ti ∩Rx ∧ ¬∃e ∈ Tξ ∩ E x. e
po
→ r

}

Note that the execution trace for each transaction Tξ ∈ G ′.T /st is of the form

θ′ξ = t ′1
po|imm

→ · · ·
po|imm

→ t ′k for some k, where each t ′i is a read or write event. As
such, we have G ′.E = G ′.T =

⋃

Tξ∈G′.T /st Tξ = θ′ξ.E .

Let RSTξ
∪ WSTξ

= {x1 · · · xn}. We then construct the implementation trace
θξ as:

θξ = Rs
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ts
po|imm

→ Us

where

– Rs = rlx1
po|imm

→ · · ·
po|imm

→ rlxn
po|imm

→ Sx1
po|imm

→ · · ·
po|imm

→ Sxn , where the
identifiers of all constituent events of Rs are picked fresh, and

rlxj = RL(xj) Sxj =

{

rsxj
po|imm

→ wsxj if ∃r. (xj , r) ∈ RSξ ∧ valr(r) = vj

∅ otherwise

with rsxj , R(xj , vj) and wsxj , W(s[xj], vj).

– RUs = rux1

po|imm

→ · · ·
po|imm

→ ruxn , where the identifiers of all constituent
events of RUs are picked fresh, and for all j ∈ {1 · · ·n}:

ruxj =











RU(xj) if xj 6∈ WSξ

∅ otherwise

– PLs = plx1
po|imm

→ · · ·
po|imm

→ plxn , where the identifiers of all constituent
events of PLs are picked fresh, and for all j ∈ {1 · · ·n}:

plxj =











PL(xj) if xj ∈ WSξ

∅ otherwise

– Ts = t1
po|imm

→ · · ·
po|imm

→ tk, where for all m ∈ {1 · · · k}:

tm =

{

R(s[xn], vn) if t ′m=R(xn, vn)

W(xn, vn)
po|imm

→ W(s[xn], vn) if t ′m=W(xn, vn)

such that in the first case the identifier of tm is that of t ′m; and in the second
case the identifier of the first event in tm is that of t ′m and the identifier of
the second event is picked fresh.

– Us = wux1

po|imm

→ · · ·
po|imm

→ wuxn , where the identifiers of all constituent
events of Us are picked fresh, and

wuxj =

{

WU(xj) if xj ∈ WSξ

∅ otherwise

We use the ξ. prefix to project the various events of the implementation trace
θξ (e.g. ξ.rlxj).

Given the transaction classes T /st of G ′, we construct a strict total order
TCO : T /st × T /st as an extension of G ′.(rbT

?; (poT ∪ moT ∪ rfT))
+. That is,

construct TCO as a total order such that:

∀e, e′. (e, e′) ∈ G ′.(rbT
?; (poT ∪moT ∪ rfT))

+ ⇒ ([e]st , [e
′]st) ∈ TCO

Recall that since G ′ is SI-consistent, we know acyclic((poT ∪ moT ∪ rfT); rbT
?)

holds, i.e. acyclic(rbT
?; (poT∪moT∪ rfT)). As such, it is always possible to extend

(rbT
?; (poT ∪moT ∪ rfT)

+ to a total order as described above.
For each location x, letWT x ,

{

Tξ ∈ T /st Wx ∩ Tξ 6= ∅
}

denote those trans-

actions that write to x. We then define TMOx , TCO|WT x
as a strict total order

on WT x. Given a strict total order r, we write r|i for the ith item of r, indexed
from 0 (e.g. TMOx|i). For i ∈ N, we then define:

S x
0 ,

{

Tξ TMOx|0 =Tξ ∨ ∃r ∈ Tξ. (initx, r) ∈ G ′.rf
}

S x
i+1 ,

{

Tξ TMOx|i+1 =Tξ ∨ ∃r ∈ Tξ. ∃w ∈ TMOx|i . (w, r) ∈ G ′.rf \ rfI
}

where initx denotes the write event initialising the value of x (with zero).
For all locations x and i ∈ N, let Px

i , TCO|Sx
i
. Note that for each i ∈ N, the

S x
i contains at most one transaction that writes to x. We denote this transaction

by Px
i .writer. For each lock x we then define:

LOx ,























































(Px
i .writer.plx,P

x
i .writer.wux),

(Px
i .writer.plx, P

x
k |j .rlx),

(Px
i .writer.plx, P

x
k |j .rux),

(Px
i .writer.plx,P

x
k .writer.pl x),

(Px
i .writer.plx,P

x
k .writer.wux),

(Px
i .writer.wux, P

x
k |j .rlx),

(Px
i .writer.wux, P

x
k |j .rux),

(Px
i .writer.wux,P

x
k .writer.pl x),

(Px
i .writer.wux,P

x
k .writer.wux)

i ∈ N ∧ k > i ∧ 0 ≤ j < |S x
k |























































∪















(Px
i |j .rlx,P

x
k .writer.pl x),

(Px
i |j .rux,P

x
k .writer.plx),

(Px
i |j .rlx,P

x
k .writer.wux),

(Px
i |j .rux,P

x
k .writer.wux),

i ∈ N ∧ k ≥ i ∧ 0 ≤ j < |S x
i |















RLOx , LOx ∪























(Px
i |j .rlx, P

x
i |j .rux),

(Px
i |j .rlx, P

x
i′ |j′ .rlx),

(Px
i |j .rlx, P

x
i′ |j′ .rux),

(Px
i |j .rux, P

x
i′ |j′ .rlx),

(Px
i |j .rux, P

x
i′ |j′ .rux),

i, i′ ∈ N ∧ 0 ≤ j < |S x
i | ∧ 0 ≤ j′ < |S x

i′ |
∧
(

(i = i′ ∧ j < j′) ∨ (i < i′)
)























Remark 4. Let lo1 ,
⋃

x∈Loc LOx and lo2 ,
⋃

x∈Loc RLOx. Note that both
lo1 and lo2 satisfy the conditions stated in Def. 4. The lo2 additionally satisfies

the ‘read-read-synchronisation’ property in (RSync). In what follows we demon-
strate that given an SI-consistent execution graph G ′, it is always possible to
construct an RA-consistent execution graph G of the implementation with its
lock order defined as lo2. Note that as lo1 ⊆ lo2, it is straightforward to show
that replacing lo2 in such a G with lo1, preserves the RA-consistency of G, as
defined in Def. 4. In other words, as lo1 ⊆ lo2, we have:

acyclic(hbloc ∪mo ∪ rb) with hb , (po ∪ rf ∪ lo2)
+ ⇒

acyclic(hbloc ∪mo ∪ rb) with hb , (po ∪ rf ∪ lo1)
+

As such, by establishing the completeness of our implementation with respect
to lo2, we also establish its completeness with respect to lo1. In other words, we
demonstrate the completeness of our implementation with respect to both lock
implementations presented earlier in Appendix A.

We now demonstrate the completeness of our implementation. Given an SI-
consistent graph, we construct an implementation graphG as follows and demon-
strate that it is RA-consistent.

– G.E =
⋃

Tξ∈G′.T /st

θξ.E , with the tx(e) = 0, for all e ∈ G.E .

Observe that G ′.E ⊆ G.E .
– G.po is defined as G ′.po extended by the po for the additional events of G,

given by each θξ trace defined above. Note that G.po does not introduce
additional orderings between events of G ′.E . That is, ∀a, b ∈ G ′.E . (a, b) ∈
G ′.po ⇔ (a, b) ∈ G.po.

– G.rf =
⋃

x∈Locs

{

(w, ξ.rsx) ∃r. (x, r) ∈ RSξ ∧ (w, r) ∈ G ′.rf
}

.
– G.mo = G ′.mo

– G.lo =
⋃

x∈Loc RLOx, with RLOx as defined above.

Notation Given an implementation graph G as constructed above (with
G.T = ∅), and a relation r ⊆ G.E × G.E , we override the rE notation and
write rE for:

{

(a, b) ∈ r ∃ξa, ξb. a ∈ θξa .E ∧ b ∈ θξb .E ∧ ξa 6= ξb
}

Analogously, we write rI for
{

(a, b) ∈ r ∃ξ. a, b ∈ θξ.E
}

.

Lemma 5. For all SI-consistent execution graphs G ′ = (E , po, rf,mo, lo), and
for all x ∈ Loc, ξa, ξb ∈ TXId, and i ∈ N:

ξa ∈ S x
i ∧ ξb ∈ S x

i+1 ⇒ (ξa, ξb) ∈ TCO

Proof. Pick arbitrary SI-consistent execution graph G ′ = (E , po, rf,mo, T), x ∈
Loc, ξa, ξb ∈ TXId, and i ∈ N. There are now four cases to consider: 1) ξa =
Px
i .writer and ξb = Px

i+1.writer; 2) ξa = Px
i .writer and ξb 6= Px

i+1.writer; 3) ξa 6=
Px
i .writer and ξb = Px

i+1.writer; and 4) ξa 6= Px
i .writer and ξb 6= Px

i+1.writer.
In case (1) from the definitions of S x

i and Px
i .writer we have Tξa × Tξb ⊆

moT and thus from the definition of TCO we have (ξa, ξb) ∈ TCO, as required.

Similarly, in case (2) from the definitions of S x
i and Px

i .writer we have Tξa ×
Tξb ⊆∈ rfT and thus from the definition of TCO we have (ξa, ξb) ∈ TCO, as
required.

In case (3), from the definition of S x
i we know there exist r ∈ Tξa ∩Rx and

w ∈ Px
i .writer ∩ Wx such that (r, w) ∈ rb and thus (a, w) ∈ rbT. On the other

hand from the definitions of S x
i and S x

i+1 we know there exists w′ ∈ Tξb ∩Wx such
that (w,w′) ∈ mo and thus (w,w′) ∈ moT. As such we have (a, w′) ∈ rbT;moT
and thus from the definition of TCO we have (ξa, ξb) ∈ TCO, as required.

In case (4), from the definition of S x
i we know there exist r ∈ Tξa ∩Rx and

w ∈ Px
i .writer ∩ Wx such that (r, w) ∈ rb and thus (a, w) ∈ rbT. On the other

hand from the definitions of S x
i and S x

i+1 we know there exists r′ ∈ Tξb ∩Rx such
that (w, r′) ∈ rf and thus (w, r′) ∈ rfT. As such we have (a, r′) ∈ rbT; rfT and
thus from the definition of TCO we have (ξa, ξb) ∈ TCO, as required.

Corollary 1. For all SI-consistent execution graphs G ′ = (E , po, rf,mo, lo), and
for all x ∈ Loc, ξa, ξb ∈ TXId, and i, j ∈ N:

ξa ∈ S x
i ∧ ξb ∈ S x

j ∧ i < j ⇒ (ξa, ξb) ∈ TCO

Proof. Follows by induction from Lemma 5.

Given an implementation graph G = (E , po, rf,mo, lo), let

hb′ ,









po ∪ rf ∪ lo \















(ξ1.rlx, ξ2.plx) ∈ lox,
(ξ1.rux, ξ2.plx) ∈ lox,
(ξ1.rlx, ξ2.wux) ∈ lox,
(ξ1.rux, ξ2.wux) ∈ lox

∃i, j, k. Px
i |j =ξ1 ∧ Px

i |k =ξ2 ∧ j > k























+

Lemma 6. For all implementation graphs G = (E , po, rf,mo, lo) constructed as
above,

∀a, b, ξa, ξb. a ∈ θξa .E ∧ b ∈ θξb .E ∧ a
hb′

→ b
⇒ (a, b) ∈ G.poI ∨ (ξa, ξb) ∈ TCO

Proof. Pick an arbitrary implementation graph G = (E , po, rf,mo, lo) constructed
as above. Since hb′ is a transitive closure, it is straightforward to demonstrate
that hb′ =

⋃

i∈N

hb′i, where:

hb′0 = po∪rf∪lo\















(ξ1.rlx, ξ2.pl x) ∈ lox,
(ξ1.rux, ξ2.plx) ∈ lox,
(ξ1.rlx, ξ2.wux) ∈ lox,
(ξ1.rux, ξ2.wux) ∈ lox

∃i, j, k. Px
i |j =ξ1 ∧ Px

i |k =ξ2 ∧ j > k















and hb′i+1 = hb′0; hb
′
i. It thus suffices to show:

∀i ∈ N. ∀a, b, ξa, ξb. a ∈ θξa .E ∧ b ∈ θξb .E ∧ a
hb′i→ b

⇒ (a, b) ∈ G.poI ∨ (ξa, ξb) ∈ TCO

We proceed by induction over i.

Base case i = 0

Pick arbitrary a, b, ξa, ξb such that a ∈ θξa .E and b ∈ θξb .E, a
hb′0→ b. There are

then four cases to consider: 1) a
G.poI∪rfI∪loI

→ b; or 2) a
G.poE→ b; 3) a

G.rfE→ b; or 4)

a
G.loE→ b.

In case (1), from the construction of G.rfI we have G.rfI ⊆ G.poI; moreover,
from the construction of G.loI we have G.loI ⊆ G.poI. Consequently we have

a
G.poI
→ b, as required.

In case (2) from the construction of G.po we then know that Tξa×Tξb ⊆ G ′.po
and thus from the definition of TCO we have (ξa, ξb) ∈ TCO, as required.

In case (3) from the construction of G.rf we then know that Tξa×Tξb ⊆ G ′.rfT
and thus from the definition of TCO we have (ξa, ξb) ∈ TCO, as required.

In case (4) from the definition of hb′0 we know that there exists i, j, i′, j′ such
that ξa= Px

i |j, ξb= Px
i′ |j′ and either i) i < i′; or ii) i = i′ ∧ j < j′.

In case (4.i) from Corollary 1 we have (ξa, ξb) ∈ TCO, as required. In case
(4.ii) from the definitions of Px

i we have (ξa, ξb) ∈ TCO, as required.

Inductive case i = n+1

Pick arbitrary a, b, ξa, ξb such that a ∈ θξa .E, b ∈ θξb .E and a
hb′i→ b.

∀j ≤ n. ∀c, d, ξc, ξd. c ∈ θξc .E ∧ d ∈ θξd .E ∧ c
hb′j
→ d

⇒ (c, d) ∈ G.poI ∨ (ξc, ξd) ∈ TCO
(I.H.)

From the definition of hb′n+1 we then know there exists e such that (a, e) ∈ hb′0
and (e, b) ∈ hb′n. Let e ∈ ξe.E. Consequently, from the proof of the base case
we then know that (a, e) ∈ G.poI ∨ (ξa, ξe) ∈ TCO. Similarly, from (I.H.) we
have (e, b) ∈ G.poI ∨ (ξe, ξb) ∈ TCO. There are now four cases to consider: 1)
(a, e) ∈ G.poI and (e, b) ∈ G.poI; 2) (a, e) ∈ G.poI and (ξe, ξb) ∈ TCO; 3)
(ξa, ξe) ∈ TCO and (e, b) ∈ G.poI; 4) (ξa, ξe) ∈ TCO and (ξe, ξb) ∈ TCO.

In case (1) from the definition of G.poI we have (a, b) ∈ G.poI. In cases (2-4)
from the definitions of G.poI, TCO we have (ξa, ξb) ∈ TCO, as required.

Given an implementation graph G = (E , po, rf,mo, lo) constructed as above,
let stg(.) : G.E → {1, 2, 3} denote the event stage reflecting whether it is in the
snapshot phase (1), reader lock release phase (2), or the update phase (3). That
is,

stg(e) ,















1 ∃ξ, x. e ∈
{

ξ.rlx, ξ.rsx, ξ.wsx

}

2 ∃ξ, x. e = ξ.rux

3 otherwise

Lemma 7. For all implementation graphs G = (E , po, rf,mo, lo) constructed as
above, and for all x ∈ Loc, ξa, ξ1, ξ2 ∈ TXId and a ∈ θξa .E:













(ξ1.rlx
lo
→ ξ2.plx ∧ ξ2.pl x

hb
→ a)

∨ (ξ1.rux
lo
→ ξ2.pl x ∧ ξ2.plx

hb
→ a)

∨ (ξ1.rlx
lo
→ ξ2.wux ∧ ξ2.wux

hb
→ a)

∨ (ξ1.rux
lo
→ ξ2.wux ∧ ξ2.wux

hb
→ a)













∧ ∃j, k, l. Px
j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l

⇒ stg(ξ1.rux) < stg(a) ∨ (ξ1, ξa) ∈ TCO

Proof. Pick an arbitrary implementation graph G = (E , po, rf,mo, lo) constructed
as above, and pick arbitrary x ∈ Loc, ξa, ξ1, ξ2 ∈ TXId and a ∈ θξa .E such that
(

(ξ1.rlx
lo
→ ξ2.pl x ∧ ξ2.plx

hb
→ a) ∨ (ξ1.rux

lo
→ ξ2.plx ∧ ξ2.plx

hb
→ a) ∨ (ξ1.rlx

lo
→

ξ2.wux∧ξ2.wux
hb
→ a)∨ (ξ1.rux

lo
→ ξ2.wux∧ξ2.wux

hb
→ a)

)

and ∃j, k, l. Px
j

∣

∣

k
=ξ1∧

Px
j

∣

∣

l
=ξ2 ∧k > l. In case of the first disjunct from the construction of lo we then

also have ξ1.rux
lo
→ ξ2.plx ∧ ξ2.plx

hb
→ a. Similarly, in case of the third and fourth

disjuncts from the construction of lo we also have ξ1.rux
lo
→ ξ2.plx ∧ ξ2.wux

hb
→ a.

Moreover, since we have ξ2.plx
po
→ ξ2.wux and po ⊆ hb, we also have ξ1.rux

lo
→

ξ2.plx ∧ ξ2.plx
hb
→ a. It thus suffices to show:

ξ1.rux
lo
→ ξ2.pl x ∧ ξ2.plx

hb
→ a ∧ ∃j, k, l. Px

j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l

⇒ stg(ξ1.rux) < stg(a) ∨ (ξ1, ξa) ∈ TCO

Since G.hb is a transitive closure, it is straightforward to demonstrate that
G.hb =

⋃

i∈N

hbi, where hb0 = G.po ∪ G.rf ∪ G.lo and hbi+1 = hb0; hbi. It thus

suffices to show:

∀i ∈ N. ∀x ∈ Loc, ξa, ξ1, ξ2 ∈ TXId, a ∈ θξa .E .

ξ1.rux
lo
→ ξ2.plx ∧ ξ2.pl x

hbi→ a ∧ ∃j, k, l. Px
j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l

⇒ stg(ξ1.rux) < stg(a) ∨ (ξ1, ξa) ∈ TCO

We thus proceed by induction over i.

Base case i = 0
Pick arbitrary x ∈ Loc, ξa, ξ1, ξ2 ∈ TXId and a ∈ θξa .E such that ξ1.rux

lo
→

ξ2.plx, ξ2.plx
hb0→ a and ∃j, k, l. Px

j

∣

∣

k
=ξ1∧Px

j

∣

∣

l
=ξ2∧k > l. From the construction

of G we know that there exists r ∈ G ′.Tξ1 and w ∈ G ′.Tξ2 such that (r, w) ∈ G ′.rb.

Moreover, since k 6= l we know that (r, w) ∈ G ′.rbT. Since we have ξ2.plx
hb0→ a,

there are four cases to consider: 1) ξ2.pl x
G.poI∪rfI∪loI

→ a; or 2) ξ2.plx
G.poE→ a; or

3) ξ2.plx
G.rfE→ a; or 4) ξ2.plx

G.loE→ a.

In case (1), from the construction of G.rfI we have G.rfI ⊆ G.poI; more-
over, from the construction of G.loI we have G.loI ⊆ G.poI. We thus have

ξ2.plx
G.poI
→ a. On the other hand, from the definition of stg(.) we know stg(a) ≥

stg(ξ2.plx) > stg(ξ1.rux), and thus stg(a) > stg(ξ1.rux), as required.

In case (2), since ξ2.pl x
poE→ a, we have (w, a) ∈ G ′.poT. As such, we have

(r, a) ∈ G ′.(rbT; poT). From the definition of TCO we thus have (ξ1, ξa) ∈ TCO,
as required.

Case (3) cannot happen as there are no rf edges from lock events. In case
(4), from the construction of lo we know there exists m,n such that m > j, and
ξa = Px

m|n. As such, from Corollary 1 we have (ξ1, ξa) ∈ TCO, as required.

Inductive case i = n+1

Pick arbitrary x ∈ Loc and ξa, ξ1, ξ2 ∈ TXId and a ∈ θξa .E such that ξ1.rux
lo
→

ξ2.plx, ξ2.plx
hbi→ a and ∃j, k, l. Px

j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l.

∀j ≤ n. ∀y ∈ Loc, ξa′ , ξ3, ξ4 ∈ TXId, a′ ∈ θξa′
.E .

(ξ3.rux
lo
→ ξ4.plx ∧ ξ4.plx

hbj
→ a′) ∧ ∃j, k, l. Px

j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l

⇒ stg(ξ3.ruy) < stg(a′) ∨ (ξ3, ξa′) ∈ TCO

(I.H.)

There are two cases to consider:

1) ξ2.plx
(poI∪rfI∪loI)

+

→ a; or

2) ξ2.plx
(poI∪rfI∪loI)

∗;(poE∪rfE∪loE);hbm
→ a, where m ≤ n.

In case (1), from the construction of G.rfI we have G.rfI ⊆ G.poI; moreover,

from the construction of G.loI we have G.loI ⊆ G.poI. We thus have ξ2.pl x
poI

+

→ a,

i.e. ξ2.plx
poI
→ a. As such, from the proof of the base case we have stg(a) >

stg(ξ1.rux), as required.
In case (2) from the construction of G we know that there exists r ∈ θξ1 .E and

w ∈ θξ2 .E such that (r, w) ∈ G ′.rb. Moreover, since k 6= l, from the construction
of G we know that ξ1 6= ξ2 and thus we have (r, w) ∈ G ′.rbT. On the other hand,

we know that there exist b, c such that ξ2.plx
(poI∪rfI∪loI)

∗

→ b
poE∪rfE∪loE→ c

hbm→ a. From
the construction of G.rfI we have G.rfI ⊆ G.poI; moreover, from the construction

of G.loI we have G.loI ⊆ G.poI. We thus have ξ2.pl x
poI

∗

→ b. As such we have

ξ2.plx
poI

∗

→ b
poE∪rfE∪loE→ c. Let c ∈ θξc . There are now three cases to consider: a)

b
poE→ c; or b) b

rfE→ c; or c) b
loE→ c. We first demonstrate that in all three cases we

have (ξ1, ξc) ∈ TCO.

In case (2.a), since ξ2.plx
poE→ c, we know there exists c′ ∈ Tξc such that

(w, c′) ∈ G ′.poT. As such, we have (r, c′) ∈ G ′.(rbT; poT). From the definition of
TCO we thus have (ξ1, ξc) ∈ TCO. In case (2.b), from the definition of G.rf we
know there exists c′ ∈ Tξc such that (w, c′) ∈ G ′.rfT. As such, we have (r, c) ∈
G ′.(rbT; rfT). From the definition of TCO we thus have (ξ1, ξc) ∈ TCO. In case
(2.c) from the construction of lo we know there exists z such that either b = ξ2.pl z
or b = ξ2.wuz, and that there exist p, q such that ξ2 ∈ S z

p , ξc ∈ S z
q and p < q.

Given the definition of S z we then know that there exists wz ∈ G ′.Tξ2 where either

i) there exists w′
z ∈ Tξc such that (wz , w

′
z) ∈ G ′.moT; or ii) there exists rz ∈ Tξc

such that (wz , rz) ∈ G ′.rfT; or ii) there exists rz ∈ Tξc such that (wz , rz) ∈
G ′.(moT; rfT). That is, we have either (w,w′

z) ∈ G ′.moT, or (w, rz) ∈ G ′.rfT, or
(w, rz) ∈ G ′.(moT; rfT). Moreover, since we have (r, w) ∈ G ′.rbT, we then have
(r, w′

z) ∈ G ′.(rbT;moT), or (r, rz) ∈ G ′.(rbT; rfT), or (r, rz) ∈ G ′.(rbT;moT; rfT).
From the definition of TCO we thus have (ξ1, ξc) ∈ TCO.

Since c
hbm→ a, there are now two cases to consider: i) c

hb′

→ a; or ii) c 6
hb′

→ a.
In case (2.i), from Lemma 6 we have (c, a) ∈ poI ∨ (ξc, ξa) ∈ TCO. As we

have (ξ1, ξc) ∈ TCO, we thus have (ξ1, ξa) ∈ TCO, as required.
In case (2.ii) let us split the path from c at the first occurrence of a non-

hb′ edge. That is, pick ξ3, ξ4, g, h, y, p, q, s, k such that c
hb′

→ ξ3.g
lo
→ ξ4.h

hbk→ a,
k < m, Py

s |p = Tξ3 , Py
s |q = Tξ4 , p > q and either a) g = rly ∧ h = ply; or b)

g = ruy ∧ h = ply; or c) g = rly ∧ h = wuy; or d) g = ruy ∧ h = wuy. From
Lemma 6 we then have (c, ξ3.g) ∈ poI∨(ξc, ξ3) ∈ TCO. As we have (ξ1, ξc) ∈ TCO,
we also have (ξ1, ξ3) ∈ TCO. We next demonstrate that in all cases (2.ii.a-2.ii.d)

there exists t such that t ≤ m and ξ3.ruy
lo
→ ξ4.ply

hbt→ a.

In case (2.ii.a) from the definition of lo we also have ξ3.ruy
lo
→ ξ4.plx. As

such, we have ξ3.ruy
lo
→ ξ4.pl y

hbk→ a. In case (2.ii.b) the desired result holds
immediately.

In cases (2.ii.c-2.ii.d) from the construction of lo we have ξ3.ruy
lo
→ ξ4.ply.

Moreover, since we have ξ4.pl y
po
→ ξ4.wuy, we also have ξ4.ply

po
→ ξ4.wuy

hbk→ a.

As po ⊆ hb and hb is transitively closed, we have ξ4.pl y
hbk+1

→ a. As such, we

have ξ3.ruy
lo
→ ξ4.ply

hbk+1

→ a. As k < m, the desired result holds immediately.
Consequently, from (I.H.) we have stg(ξ3.ruy) < stg(a) ∨ (ξ3, ξa) ∈ TCO.

In the case of the first disjunct we have stg(ξ3.ruy)=stg(ξ1.rux) < stg(a), as
required. In the case of the second disjunct, since we also have (ξ1, ξ3) ∈ TCO

and TCO is transitively closed, we have (ξ1, ξa) ∈ TCO, as required.

Theorem 8 (Completeness). For all SI execution graphs G ′ and their coun-
terpart implementation graphs G constructed as above,

si-consistent(G ′) ⇒ RA-consistent(G)

Proof. Pick an arbitrary SI execution graph G ′ and its counterpart implementa-
tion graph G constructed as above and assume si-consistent(G ′) holds. From the
definition of RA-consistent(G) it suffices to show:

1. irreflexive(G.hb)
2. irreflexive(G.mo;G.hb)
3. irreflexive(G.rb;G.hb)

RTS. part 1
We proceed by contradiction. Let us assume that there exists a, θξ such that a ∈
θξ.E and (a, a) ∈ G.hb. There are now two cases to consider: 1) (a, a) ∈ hb′; or
2) (a, a) 6∈ hb′.

In case (1), from Lemma 6 we have (a, a) ∈ G.poI∨(Tξ, Tξ) ∈ TCO. The first
disjunct leads to a contradiction as the construction of G.po yields an acyclic
relation. The second disjunct leads to a contradiction as TCO is a strict total
order.

In case (2), let us split the a
hb
→ a at the first occurrence of a non-hb′ edge.

That is, pick ξ1, ξ2, x, i, j, k, g, h such that a
hb
→ ξ1.g

lo\hb′

→ ξ2.h
hb
→ a, Px

i |j = Tξ1 ,

Px
i |k = Tξ2 and j > k. As we have ξ1.g

lo\hb′

→ ξ2.h
hb
→ a

hb
→ ξ1.g, from Lemma 7

and the definition of hb we then have stg(ξ1.g) < ξ1.g ∨ (ξ1, ξ1) ∈ TCO, leading
to a contradiction in both disjuncts (the second disjunct yields a contradiction as
TCO is a strict total order).

RTS. part 2
We proceed by contradiction. Let us assume that there exists a, θξa , b, θξa such that
a ∈ θξa .E, b ∈ θξb .E, (a, b) ∈ G.hb and (b, a) ∈ G.mo. Let loc(a) = loc(b) = x

for some shared location x. There are now two cases to consider: 1) (b, a) ∈
G.moI; or 2) (b, a) ∈ G.moE.

In case (1) we then have (b, a) ∈ G ′.moI ⊆ G ′.poI. That is, we have (b, a) ∈

G.po ⊆ G.hb. We thus have a
G.hb
→ b

G.hb
→ a, contradicting our proof in part 1. In

case (2), from the construction of G.mo we have (b, a) ∈ G ′.moT and thus from
the construction of G.lo we then have (ξb.wux, ξa.rlx) ∈ G.lo. As such we have

a
G.hb
→ b

G.po
→ ξb.wux

G.lo
→ ξa.rlx

G.po
→ a. That is, we have a

G.hb
→ a, contradicting

our proof in part 1.

RTS. part 3
We proceed by contradiction. Let us assume that there exists a, θξa , b, θξa such
that a ∈ θξa .E, b ∈ θξb .E, (a, b) ∈ G.hb and (b, a) ∈ G.rb.

Let loc(a) = loc(b) = x for some shared location x. There are now two cases
to consider: 1) (b, a) ∈ G.rbI; or 2) (b, a) ∈ G.rbE.

In case (1) we then have (b, a) ∈ G ′.rbI ⊆ G ′.poI. That is, we have (b, a) ∈

G.po ⊆ G.hb. We thus have a
G.hb
→ b

G.hb
→ a, contradicting our proof in part 1. In

case (2), from the construction of G.rb we have (b, a) ∈ G ′.rbT and thus from the
construction of G.lo we then have either (b, ξb.wux) ∈ G.po and (ξb.wux, ξa.rlx) ∈
G.lo; or (b, ξb.rux) ∈ po and (ξb.rux, ξa.plx) ∈ G.lo. As such in both cases we have

(b, a) ∈ G.hb. Consequently, we have a
G.hb
→ b

G.hb
→ a, contradicting our proof in

part 1.

D Soundness and Completeness of the Lazy SI
Implementation

Given an execution graph G of the lazy SI implementation, let us assign a
transaction identifier to each transaction executed by the program; and given a
transaction ξ. Let RS0

ξ = WS0
ξ = ∅. Observe that given a transaction ξ of the

lazy SI implementation, the trace of ξ, written θξ, is of the form:

Fs
po|imm

→ Is
po|imm

→ Ts
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ws
po|imm

→ Us

where:

– Fs denotes the sequence of events failing to obtain the necessary locks, i.e.
those iterations that do not succeed in promoting the writer locks;

– Is denotes the sequence of events initialising the values of LS,RS and WS with
∅, and initialising s[x] with ⊥ for each location x;

– Ts denotes the sequence of events corresponding to the execution of JTK and

is of the form t1
po|imm

→ · · ·
po|imm

→ tk, where for all m ∈ {1 · · ·k}:

tm =







rd(xm, vm,RSm−1,WSm−1)
po|imm

→ lr xm if Om=R(xm, vm)

wr(xm, vm,RSm−1,WSm−1)
po|imm

→ wwsxm
po|imm

→ lw xm if Om=W(xm, vm)

where Om denotes the mth event in the trace of the original T; lrxm ,

R(s[xm], vm); lwxm , W(s[xm], vm);

rd(xm, vm,RSm−1,WSm−1) ,



































































R(s[xm],⊥) if xm 6∈ RSm−1 ∪WSm−1

po|imm→ fsm
po|imm→ rl xm
po|imm→ wrsxm
po|imm→ rsxm
po|imm→ wsxm

∅ otherwise

fsm denotes the sequence of events attempting (but failing) to acquire the
read lock on xm, rlxm , RL(xlm), wrsxm , W(RS,RSm), rsxm , R(xm, vm),
and wsxm , W(s[xm], vm); and for all m > 0:

RSm+1 ,

{

RSm ∪ {xm} if Om=R(xm,−)

RSm otherwise

and

wr(xm, vm,RSm−1,WSm−1) ,











R(s[xm],⊥) if xm 6∈ RSm−1 ∪WSm−1

po|imm→ fsm
po|imm→ rl xm∅ otherwise

lwxm=W(s[xm], vm), wwsxm , W(WS,WSm); fsm and rlxm are as defined
above; and

WSm+1 ,

{

WSm ∪ {xm} if Om=W(xm,−)

WSm otherwise

Let RSξ = RSm and WSξ = WSm; let RSξ ∪ WSξ be enumerated as {x1 · · · xi}
for some i.

– RUs denotes the sequence of events releasing the reader locks (when the given

location is in the read set only) and is of the form rux1

po|imm

→ · · ·
po|imm

→ ruxi ,
where for all n ∈ {1 · · · i}:

ruxn =

{

RU(xln) if xn 6∈ WSξ

∅ otherwise

– PLs denotes the sequence of events promoting the reader locks to writer ones

(when the given location is in the write set), and is of the form plx1
po|imm

→

· · ·
po|imm

→ pl xi , where for all n ∈ {1 · · · i}:

plxn =

{

PL(xln) if xn ∈ WSξ

∅ otherwise

– Ws denotes the sequence of events committing the writes of JTK and is of

the form cx1
po|imm

→ · · ·
po|imm

→ cxi , where for all n ∈ {1 · · · i}:

cxn =

{

R(s[xn], vn)
po|imm

→ wxn=W(xn, vn) if xn ∈ WSξ

∅ otherwise

– Us denotes the sequence of events releasing the locks on the write set, and

is of the form wux1

po|imm

→ · · ·
po|imm

→ wuxi , where for all n ∈ {1 · · · i}:

wuxn =

{

WU(xln) if xn ∈ WSξ

∅ otherwise

Given a transaction trace θξ, we write e.g. ξ.Us to refer to its constituent Us
sub-trace and write Us.E for the set of events related by po in Us . Similarly, we
write ξ.E for the set of events related by po in θξ. Note that G.E =

⋃

ξ∈Tx

ξ.E .

Note that for each transaction ξ and each location x, the ξ.rlx, ξ.rsx, ξ.rux,
ξ.plx, ξ.wux and ξ.wx are uniquely identified when they exist.

For each location x ∈ WSξ, let fw x denote the maximal write (in po order

within ξ) logging a write for x in s[x]. That is, when θξ = t1
po|imm

→ · · ·
po|imm

→ tm,
let fw x = wmax(x, [t1 · · · tm]), where

wmax(x, []) undefined

wmax(x, L++[t]) ,

{

lwx if t=wr(x,−,−,−)
po
→ lwx

po
→ wwsx

wmax(x, L) otherwise

Similarly, for each location x ∈ WSξ, let iwx denote the minimal write (in po order

within ξ) logging a write for x in s[x]. That is, when θξ = t1
po|imm

→ · · ·
po|imm

→ tm,
let iw x = wmin(x, [t1 · · · tm]), where

wmin(x, []) undefined

wmin(x, [t]++L) ,

{

lwx if t=wr(x,−,−,−)
po
→ lwx

po
→ wwsx

wmin(x, L) otherwise

D.1 Implementation Soundness

In order to establish the soundness of our implementation, it suffices to show
that given an RA-consistent execution graph of the implementation G, we can
construct a corresponding SI-consistent execution graph G ′ with the same out-
come.

Given a transaction ξ ∈ Tx with RSξ∪WSξ = {x1 · · ·xi} and trace θξ as above

with Ts = t1
po|imm

→ · · ·
po|imm

→ tk, we construct the corresponding SI execution
trace θ′ξ as follows:

θ′ξ , t ′1
po|imm

→ · · ·
po|imm

→ t ′k

where for all m ∈ {1 · · ·k}:

t ′m=R(xm, vm) when tm = rd(xm, vm, Sm)
po|imm

→ lrxm

t ′m=W(xm, vm) when tm = wr(xm, vm, Sm)
po|imm

→ lwxm

po|imm

→ wwsxm

such that in the first case the identifier of t ′m is that of lrxm ; and in the second
case the identifier of t ′m is that of lwxm . We then define:

RFξ ,



























(w, t′j)

t′j ∈ θ′ξ.E ∧ ∃x, v. t′j=R(x, v) ∧w=W(x, v)

∧(w ∈ ξ.E ⇒ w
po
→ t′j ∧

(∀e ∈ ξ.E . w
po
→ e

po
→ t′j ⇒ (loc(e)6=x ∨ e 6∈W)))

∧(w 6∈ ξ.E ⇒ (∀e ∈ ξ.E . (e
po
→ t′j ⇒ (loc(e) 6= x ∨ e 6∈ W))

∧∃ξ′. (ξ′.wx, ξ.rsx) ∈ G.rf) ∧ w=ξ′.fwx



























Similarly, we define:

MO ,

{

(w1, w2),
(w3, w4)

∃ξ. w1, w2 ∈ ξ.E ∩W ∧ loc(w1)=loc(w2) ∧ (w1, w2) ∈ G.po
∧∃ξ1, ξ2, x. w3=ξ1.fwx ∧w4=ξ1.iw x ∧ (ξ1.wx, ξ2.wx) ∈ G.mo

}+

We are now in a position to demonstrate the soundness of our implementation.
Given an RA-consistent execution graph G of the implementation, we construct
an SI execution graph G ′ as follows and demonstrate that si-consistent(G ′) holds.

– G ′.E =
⋃

ξ∈Tx

θ′ξ.E , with the tx(.) function defined as:

tx(a) , ξ where a ∈ θ′ξ

– G ′.po = G.po|G′.E

– G ′.rf =
⋃

ξ∈Tx
RFξ

– G ′.mo = MO

– G ′.lo = ∅

Observe that the events of each θ′ξ trace coincides with those of the equivalence
class Tξ of G ′. That is, θ′ξ.E = Tξ.

Lemma 8. Given an RA-consistent execution graph G of the implementation
and its corresponding SI execution graph G ′ constructed as above, for all a, b, ξa, ξb, x:

ξa 6= ξb ∧ a ∈ ξa.E ∧ b ∈ ξb.E ∧ loc(a) = loc(b) = x ⇒

((a, b) ∈ G
′
.rf ⇒ ξa.wux

G.hb
→ ξb.rl x) (19)

∧ ((a, b) ∈ G
′
.mo ⇒ ξa.wux

G.hb
→ ξb.rl x) (20)

∧
(
(a, b) ∈ G

′
.rb ⇒ (x ∈ WSξa ∧ ξa.wux

G.hb
→ ξb.rl x) ∨ (x 6∈ WSξa ∧ ξa.rux

G.hb
→ ξb.pl x)

)

(21)

Proof. Pick an arbitrary RA-consistent execution graph G of the implementation
and its corresponding SI execution graph G ′ constructed as above. Pick an arbi-
trary a, b, ξa, ξb, x such that ξa 6= ξb, a ∈ ξa.E, a ∈ ξa.E, and loc(a) = loc(b) =
x.

RTS. (19)
Assume (a, b) ∈ G ′.rf. From the definition of G ′.rf we then know (ξa.wx, ξb.rsx) ∈
G.rf. On the other hand, from Lemma 2 we know that either i) x ∈ WSξb and

ξb.wux
G.hb
→ ξa.rlx; or ii) x 6∈ WSξb and ξb.rux

G.hb
→ ξa.plx; or iii) ξa.wux

G.hb
→

ξb.rlx. In case (i) we then have ξa.wx
G.rf
→ ξb.rsx

G.po
→ ξb.wux

G.hb
→ ξa.rlx

G.po
→

ξa.wx. That is, we have ξa.wx
G.hbloc→ ξa.wx, contradicting the assumption that G

is RA-consistent. Similarly in case (ii) we have ξa.wx
G.rf
→ ξb.rsx

G.po
→ ξb.rux

G.hb
→

ξa.plx
G.po
→ ξa.wx. That is, we have ξa.wx

G.hbloc→ ξa.wx, contradicting the assump-
tion that G is RA-consistent. In case (iii) the desired result holds trivially.

RTS. (20)
Assume (a, b) ∈ G ′.mo. From the definition of G ′.mo we then know (ξa.wx, ξb.wx) ∈

G.mo. On the other hand, from Lemma 2 we know that either i) ξb.wux
G.hb
→

ξa.rlx; or ii) ξa.wux
G.hb
→ ξb.rlx. In case (i) we then have ξa.wx

G.mo
→ ξb.wx

G.po
→

ξb.wux
G.hb
→ ξa.rlx

G.po
→ ξa.wx. That is, we have ξa.wx

G.mo
→ ξb.wx

G.hbloc→ ξa.wx,
contradicting the assumption that G is RA-consistent. In case (ii) the desired
result holds trivially.

RTS. (21)
Assume (a, b) ∈ G ′.rb. From the definition of G ′.rb we then know that either
(ξa.wx, ξb.wx) ∈ G.mo or (ξa.rsx, ξb.wx) ∈ G.rb. In the former case the de-
sired result follows immediately from the proof of part (20). In the latter case,

from Lemma 2 we know that either i) ξb.wux
G.hb
→ ξa.rlx; or ii) x 6∈ WSξa

and ξa.rux
G.hb
→ ξa.plx; or iii) x ∈ WSξa and ξa.wux

G.hb
→ ξb.rlx. In case (i)

we then have ξb.wx

G.po
→ ξb.wux

G.hb
→ ξa.rlx

G.po
→ ξa.rsx

G.rb
→ ξb.wx. That is, we

have ξb.wx
G.hbloc→ ξa.rsx

G.rb
→ ξb.wx, contradicting the assumption that G is RA-

consistent. In cases (ii-iii) the desired result holds trivially.

Lemma 9. For all RA-consistent execution graphs G of the implementation and
their counterpart SI execution graphs G ′ constructed as above:

∀ξa, ξb. ∀a ∈ G ′.Tξa , b ∈ G ′.Tξb .
(a, b) ∈ G ′.(poT ∪ rfT ∪moT)

+ ⇒
∃d ∈ G ′.Tξb . ∀c ∈ G ′.Tξa . (c, d) ∈ G.hb
∧(∃y. (ξa.wuy, d) ∈ G.hb ∨ ∀c ∈ ξa.E . (c, d) ∈ G.hb)

Proof. Let S0 = G ′.(poT ∪ rfT ∪ moT), and Sn+1 = S0;Sn, for all n >= 0. It
is straightforward to demonstrate that G ′.(poT ∪ rfT ∪moT)

+ =
⋃

i∈N

Si. We thus

demonstrate instead that:

∀i ∈ N. ∀ξa, ξb. ∀a ∈ G ′.Tξa , b ∈ G ′.Tξb .
(a, b) ∈ Si ⇒ ∃d ∈ G ′.Tξb . ∀c ∈ G ′.Tξa . (c, d) ∈ G.hb

∧(∃y. (ξa.wuy, d) ∈ G.hb ∨ ∀c ∈ ξa.E . (c, d) ∈ G.hb)

We proceed by induction on i.

Base case i = 0
Pick arbitrary ξa, ξb, a ∈ G ′.Tξa , b ∈ G ′.Tξb such that (a, b) ∈ S0. There are
now three cases to consider: 1) (a, b) ∈ G ′.poT; or 2) (a, b) ∈ G ′.rfT; or 3)
(a, b) ∈ G ′.moT.

In case (1), pick an arbitrary c ∈ G ′.Tξa . From the definition of G ′.poT we
have (c, b) ∈ G.po ⊆ G.hb, as required. Pick an arbitrary c ∈ ξa.E. From the
definition of G ′.poT we have (c, b) ∈ G.po ⊆ G.hb, as required.

In case (2), we then know there exists w ∈ G ′.Tξa and r ∈ G ′.Tξb such
that (w, r) ∈ G ′.rf. Let loc(w) = loc(r) = x. From Lemma 8 we then have

ξa.wux
G.hb
→ ξb.rlx. Pick an arbitrary c ∈ G ′.Tξa . As such we have c

G.po
→ ξa.wux

G.hb
→

ξb.rlx
G.po
→ ξb.rsx. That is, we have (c, ξb.rsx), (ξa.wux, ξb.rsx) ∈ G.hb, as required.

In case (3), we then know there exists w ∈ G ′.Tξa and w′ ∈ G ′.Tξb such
that (w,w′) ∈ G ′.mo. Let loc(w) = loc(w′) = x. From Lemma 8 we then have

ξa.wux
G.hb
→ ξb.rlx. Pick an arbitrary c ∈ G ′.Tξa . As we also have ξb.rlx

G.po
→ w′,

and c
G.po
→ ξa.wux, we then have (c, w′), (ξa.wux, w

′) ∈ G.hb, as required.

Inductive case i=n+1

∀j ∈ N. ∀ξa, ξb. ∀a ∈ G ′.Tξa , b ∈ G ′.Tξb .
(a, b) ∈ Sj ∧ j ≤ n ⇒

∃d ∈ G ′.Tξb . ∀c ∈ G ′.Tξa . (c, d) ∈ G.hb
∧(∃y. (ξa.wuy, d) ∈ G.hb ∨ ∀c ∈ ξa.E . (c, d) ∈ G.hb)

(I.H.)

Pick arbitrary ξa, ξb, a ∈ G ′.Tξa , b ∈ G ′.Tξb such that (a, b) ∈ Si. From the
definition of Si we then know there exist e, ξe such that e ∈ G ′.Tξe , (a, e) ∈ S0

and (e, b) ∈ Sn. Since (e, b) ∈ Sn, from (I.H.) we know there exists d ∈ G ′.Tξb
such that ∀f ′ ∈ G ′.Tξe . (f

′, d) ∈ G.hb. On the other hand, from the proof of the
base case we know there exists f ∈ G ′.Tξe such that ∀c′ ∈ G ′.Tξa . (c

′, f) ∈ G.hb;
and that ∃y. (ξe.wuy, f) ∈ G.hb ∨ ∀c′ ∈ ξa.E . (c′, f) ∈ G.hb. Pick an arbitrary
c ∈ G ′.Tξa . We thus know that (c, f) ∈ G.hb. As f ∈ G ′.Tξe , we thus have
(f, d) ∈ G.hb. As G.hb is transitively closed and we have (c, f), (f, d) ∈ G.hb and
∃y. (ξe.wuy, f) ∈ G.hb ∨ ∀c′ ∈ ξa.E . (c′, f) ∈ G.hb, we then have (c, d) ∈ G.hb,
and ∃y. (ξe.wuy, d) ∈ G.hb ∨ ∀c′ ∈ ξa.E . (c′, d) ∈ G.hb, as required.

Theorem 9 (Soundness). For all execution graphs G of the implementation
and their counterpart SI execution graphs G ′ constructed as above,

RA-consistent(G) ⇒ si-consistent(G ′)

Proof. Pick an arbitrary execution graph G of the implementation such that
RA-consistent(G) holds, and its associated SI execution graph G ′ constructed as
described above.

RTS. irreflexive(si-hb)
We proceed by contradiction. Let us assume ¬irreflexive(G ′.(poT ∪ rfT ∪ moT ∪
si-rb)). Let S = G ′.(poT ∪ rfT ∪ moT)

+. There are ow two cases to consider:
either there is a cycle without a si-rb edge; or there is a cycle with one or more
si-rb edges. That is, either 1) there exists a such that (a, a) ∈ S; or 2) there exist

a1, b1, · · · , an, bn such that a1
G

′.si-rb
→ b1

S
→ a2

G
′.si-rb
→ b2

S
→ · · ·

S
→ an

G
′.si-rb
→ bn

S
→

a1.

In case (1) we then know there exists ξ such that a ∈ G ′.Tξa . As such, from
Lemma 9 we know that there exists d ∈ G ′.Tξa such that for all c ∈ G ′.Tξa ,
(c, d) ∈ G.hb. As such, we have (d, d) ∈ G.hb, contradicting the assumption that
G is RA-consistent.

In case (2), for an arbitrary i ∈ {1 · · ·n}, let j = i+1 when i 6= n; and j = 1

when i = n. As ai
G

′.si-rb
→ bi, we know there exists ξai

, ξbi such that ai ∈ Tξai
,

bi ∈ Tξbi , and that there exist ri ∈ Tξai
∩ RE and wi ∈ Tξbi ∩ W such that

(ri, wi) ∈ G ′.rb. Let loc(ri) = loc(wi) = xi. From Lemma 8 we then know that

either i) ξai
.ruxi

G.hb
→ ξbi .pl xi ; or ii) ξai

.wuxi

G.hb
→ ξbi .rlxi . Note that for all y

such that ξbi .wuy exists, we know ξbi .rlxi
G.po
→ ξbi .wuy and ξbi .pl xi

G.po
→ ξbi .wuy.

As such, as (bi, aj) ∈ S, from Lemma 9 and since G.hb is transitively closed, we

know there exists dj ∈ Tξaj
such that either ξai

.ruxi

G.hb
→ dj, or ξai

.wuxi

G.hb
→ dj.

That is, ξai
.uxi

G.hb
→ dj, where either uxi = ruxi or uxi = wuxi . On the other

hand, observe that for all di ∈ Tξai
we have di

G.po
→ ξai

.uxi i.e. di
G.hb
→ ξai

.uxi . As

such, we have dj
G.hb
→ ξaj

.uxj . As we also have ξai
.uxi

G.hb
→ dj and G.hb is transi-

tively closed, we have ξai
.uxi

G.hb
→ ξaj

.uxj . We then have ξa1
.ux1

G.hb
→ ξa2

.ux2
G.hb
→

· · ·
G.hb
→ ξan

.uxn
G.hb
→ ξa1

.ux1 . That is, ξa1
.ux1

G.hb
→ ξa1

.ux1 , contradicting the as-
sumption that G is RA-consistent.

RTS. rfI ∪moI ∪ rbI ⊆ po

Follows immediately from the construction of G ′.

D.2 Implementation Completeness

In order to establish the completeness of our implementation, it suffices to show
that given an SI-consistent execution graph G ′ = (E , po, rf,mo, lo), we can con-
struct a corresponding RA-consistent execution graph G of the implementation.

Note that the execution trace for each transaction Tξ ∈ G ′.T /st is of the

form θ′ξ = t ′1
po|imm

→ · · ·
po|imm

→ t ′k for some k, where each t ′i is a read or write event.
As such, we have G ′.E = G ′.T =

⋃

Tξ∈G′.T /st Tξ = θ′ξ.E . We thus construct the
implementation trace θξ as follows:

Is
po|imm

→ Ts
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ws
po|imm

→ Us

where:

– Is denotes the sequence of events initialising the values of RS and WS with ∅,
and initialising s[x] with ⊥ for each location x;

– Ts is of the form t1
po|imm

→ · · ·
po|imm

→ tk, where for all m ∈ {1 · · ·k}:

tm =







rd(xm, vm,RSm−1,WSm−1)
po|imm

→ lr xm if t′m=R(xm, vm)

wr(xm, vm,RSm−1,WSm−1)
po|imm

→ wwsxm
po|imm

→ lw xm if t′m=W(xm, vm)

where lrxm , R(s[xm], vm); lwxm , W(s[xm], vm); the identifiers of lrxm
and lw xm are those of t′m, whilst the identifiers of other events in tm are
picked fresh;

rd(xm, vm,RSm−1,WSm−1) ,



























































R(s[xm],⊥) if xm 6∈ RSm−1 ∪WSm−1

po|imm→ wrsxm
po|imm→ fsm
po|imm→ rl xm
po|imm→ rsxm
po|imm→ wsxm

∅ otherwise

wrsxm , W(RS,RSm), fsm denotes the sequence of events attempting (but
failing) to acquire the read lock on xm, rlxm , RL(xlm), rsxm , R(xm, vm),
and wsxm , W(s[xm], vm); RS0=∅ and for all m > 0:

RSm+1 ,

{

RSm ∪ {xm} if t′m=R(xm,−)

RSm otherwise

and

wr(xm, vm,RSm−1,WSm−1) ,











R(s[xm],⊥) if xm 6∈ RSm−1 ∪WSm−1

po|imm→ fsm
po|imm→ rl xm∅ otherwise

lwxm=W(s[xm], vm), wwsxm , W(WS,WSm); fsmand rlxm are as defined
above; and

WSm+1 ,

{

WSm ∪ {xm} if t′m=W(xm,−)

WSm otherwise

Let RSξ = RSm and WSξ = WSm; let RSξ ∪ WSξ be enumerated as {x1 · · · xi}
for some i.

– RUs denotes the sequence of events releasing the reader locks (when the given

location is in the read set only) and is of the form rux1

po|imm

→ · · ·
po|imm

→ ruxi ,
where for all n ∈ {1 · · · i}:

ruxn =

{

RU(xln) if xn 6∈ WSξ

∅ otherwise

with the identifier of each ruxn picked fresh;
– PLs denotes the sequence of events promoting the reader locks to writer ones

(when the given location is in the write set), and is of the form plx1
po|imm

→

· · ·
po|imm

→ pl xi , where for all n ∈ {1 · · · i}:

plxn =

{

PL(xln) if xn ∈ WSξ

∅ otherwise

with the identifier of each ruxn picked fresh;
– Ws denotes the sequence of events committing the writes of JTK and is of

the form cx1
po|imm

→ · · ·
po|imm

→ cxi , where for all n ∈ {1 · · · i}:

cxn =

{

R(s[xn], vn)
po|imm

→ wxn=W(xn, vn) if xn ∈ WSξ

∅ otherwise

with the identifiers of events in each cxn picked fresh;
– Us denotes the sequence of events releasing the locks on the write set, and

is of the form wux1

po|imm

→ · · ·
po|imm

→ wuxi , where for all n ∈ {1 · · · i}:

wuxn =

{

WU(xln) if xn ∈ WSξ

∅ otherwise

with the identifier of each wuxn picked fresh.

We use the ξ. prefix to project the various events of the implementation trace
θξ (e.g. ξ.rlxj). Note that for each transaction ξ and each location x, the ξ.rlx,
ξ.rsx, ξ.rux, ξ.plx, ξ.wux and ξ.wx are uniquely identified when they exist.

For each location x ∈ WSξ, let fw x denote the maximal write (in po order

within ξ) logging a write for x in s[x]. That is, when θξ = t1
po|imm

→ · · ·
po|imm

→ tm,
let fw x = wmax(x, [t1 · · · tm]), where

wmax(x, []) undefined

wmax(x, L++[t]) ,

{

lwx if t=wr(x,−,−,−)
po
→ lwx

po
→ wwsx

wmax(x, L) otherwise

Similarly, for each location x ∈ WSξ, let iwx denote the minimal write (in po order

within ξ) logging a write for x in s[x]. That is, when θξ = t1
po|imm

→ · · ·
po|imm

→ tm,
let iw x = wmin(x, [t1 · · · tm]), where

wmin(x, []) undefined

wmin(x, [t]++L) ,

{

lwx if t=wr(x,−,−,−)
po
→ lwx

po
→ wwsx

wmin(x, L) otherwise

Analogously, for each location x ∈ RSξ, let ir x denote the minimal read (in po

order within ξ) reading the value of x. That is, when θξ = t1
po|imm

→ · · ·
po|imm

→ tm,
let irx = rmin(x, [t1 · · · tm]), where

rmin(x, []) undefined

rmin(x, [t]++L) ,

{

lrx if t=rd(x,−,−,−)
po
→ lrx

rmin(x, L) otherwise

Given the G ′ classes T /st, let us construct the strict total order TCO : T /st×
T /st as described in Appendix C.2. For each location x and i ∈ N, let us similarly
define S x

i , P
x
i , P

x
i .writer, LOx, RLOx, lo1 and lo2.

Remark 5. Recall that both lo1 and lo2 satisfy the conditions stated in Def. 4;
lo2 additionally satisfies the ‘read-read-synchronisation’ property in (RSync).
As before, we demonstrate that given an SI-consistent execution graph G ′, it
is always possible to construct an RA-consistent execution graph G of the im-
plementation with its lock order defined as lo2. Recall that as lo1 ⊆ lo2, it is
straightforward to show that replacing lo2 in such a G with lo1, preserves the
RA-consistency of G, as defined in Def. 4. In other words, as lo1 ⊆ lo2, we have:

acyclic(hbloc ∪mo ∪ rb) with hb , (po ∪ rf ∪ lo2)
+ ⇒

acyclic(hbloc ∪mo ∪ rb) with hb , (po ∪ rf ∪ lo1)
+

As such, by establishing the completeness of our implementation with respect
to lo2, we also establish its completeness with respect to lo1. In other words, we
demonstrate the completeness of our implementation with respect to both lock
implementations presented earlier in Appendix A.

We now demonstrate the completeness of our implementation. Given an SI-
consistent graph, we construct an implementation graphG as follows and demon-
strate that it is RA-consistent.

– G.E =
⋃

Tξ∈G′.T /st

θξ.E , with the tx(e) = 0, for all e ∈ G.E .

– G.po is defined as G ′.po extended by the po for the additional events of G,
given by each θξ trace defined above. Note that G.po does not introduce
additional orderings between events of G ′.E . That is, ∀a, b ∈ G ′.E . (a, b) ∈
G ′.po ⇔ (a, b) ∈ G.po.

– G.rf =
⋃

ξ∈Tx
RFξ with RFξ ,

{

(w, ξ.rsx) x ∈ Loc ∧ (w, ξ.ir x) ∈ G ′.rf
}

.

– G.mo =
{

(ξ1.wx, ξ2.wx) ξ1, ξ2,∈ Tx ∧ x ∈ Loc ∧ (ξ1.fw x, ξ2.iw x) ∈ G ′.mo
}+

.
– G.lo =

⋃

x∈Loc RLOx, with RLOx as defined above.

Notation Given an implementation graph G as constructed above (with
G.T = ∅), and a relation r ⊆ G.E × G.E , we override the rE notation and
write rE for:

{

(a, b) ∈ r ∃ξa, ξb. a ∈ θξa .E ∧ b ∈ θξb .E ∧ ξa 6= ξb
}

Analogously, we write rI for
{

(a, b) ∈ r ∃ξ. a, b ∈ θξ.E
}

.

Lemma 10. For all SI-consistent execution graphs G ′ = (E , po, rf,mo, lo), and
for all x ∈ Loc, ξa, ξb ∈ TXId, and i, j ∈ N:

ξa ∈ S x
i ∧ ξb ∈ S x

j ∧ i < j ⇒ (ξa, ξb) ∈ TCO

Proof. Follows immediately from Corollary 1.

Given an implementation graph G = (E , po, rf,mo, lo), let us define hb′ and
hb′i as described in Appendix C.2 for all i ∈ N.

Lemma 11. For all implementation graphs G = (E , po, rf,mo, lo) constructed
as above,

∀a, b, ξa, ξb. a ∈ θξa .E ∧ b ∈ θξb .E ∧ a
hb′

→ b
⇒ (a, b) ∈ G.poI ∨ (ξa, ξb) ∈ TCO

Proof. Pick an arbitrary implementation graph G = (E , po, rf,mo, lo) constructed
as above. Since hb′ is a transitive closure, it is straightforward to demonstrate
that hb′ =

⋃

i∈N

hb′i. It thus suffices to show:

∀i ∈ N. ∀a, b, ξa, ξb. a ∈ θξa .E ∧ b ∈ θξb .E ∧ a
hb′i→ b

⇒ (a, b) ∈ G.poI ∨ (ξa, ξb) ∈ TCO

We proceed by induction over i.

Base case i = 0

Pick arbitrary a, b, ξa, ξb such that a ∈ θξa .E and b ∈ θξb .E, a
hb′0→ b. There are

then four cases to consider: 1) a
G.poI∪rfI∪loI

→ b; or 2) a
G.poE→ b; 3) a

G.rfE→ b; or 4)

a
G.loE→ b.

In case (1), from the construction of G.rfI we have G.rfI ⊆ G.poI; moreover,
from the construction of G.loI we have G.loI ⊆ G.poI. Consequently we have

a
G.poI
→ b, as required.

In case (2) from the construction of G.po we then know that Tξa×Tξb ⊆ G ′.po
and thus from the definition of TCO we have (ξa, ξb) ∈ TCO, as required.

In case (3) from the construction of G.rf we then know that Tξa×Tξb ⊆ G ′.rfT
and thus from the definition of TCO we have (ξa, ξb) ∈ TCO, as required.

In case (4) from the definition of hb′0 we know that there exists i, j, i′, j′ such
that ξa= Px

i |j, ξb= Px
i′ |j′ and either i) i < i′; or ii) i = i′ ∧ j < j′.

In case (4.i) from Lemma 10 we have (ξa, ξb) ∈ TCO, as required. In case
(4.ii) from the definitions of Px

i we have (ξa, ξb) ∈ TCO, as required.

Inductive case i = n+1

Pick arbitrary a, b, ξa, ξb such that a ∈ θξa .E, b ∈ θξb .E and a
hb′i→ b.

∀j ≤ n. ∀c, d, ξc, ξd. c ∈ θξc .E ∧ d ∈ θξd .E ∧ c
hb′j
→ d

⇒ (c, d) ∈ G.poI ∨ (ξc, ξd) ∈ TCO
(I.H.)

From the definition of hb′n+1 we then know there exists e such that (a, e) ∈ hb′0
and (e, b) ∈ hb′n. Let e ∈ ξe.E. Consequently, from the proof of the base case
we then know that (a, e) ∈ G.poI ∨ (ξa, ξe) ∈ TCO. Similarly, from (I.H.) we
have (e, b) ∈ G.poI ∨ (ξe, ξb) ∈ TCO. There are now four cases to consider: 1)
(a, e) ∈ G.poI and (e, b) ∈ G.poI; 2) (a, e) ∈ G.poI and (ξe, ξb) ∈ TCO; 3)
(ξa, ξe) ∈ TCO and (e, b) ∈ G.poI; 4) (ξa, ξe) ∈ TCO and (ξe, ξb) ∈ TCO.

In case (1) from the definition of G.poI we have (a, b) ∈ G.poI. In cases (2-4)
from the definitions of G.poI, TCO we have (ξa, ξb) ∈ TCO, as required.

Given an implementation graph G = (E , po, rf,mo, lo) constructed as above,
let stg(.) : G.E → {1, 2, 3} denote the event stage as follows:

stg(e) ,











1 ∃ξ. e ∈ ξ.Ts

2 ∃ξ, x. e = ξ.rux

3 otherwise

Lemma 12. For all implementation graphs G = (E , po, rf,mo, lo) constructed
as above, and for all x ∈ Loc, ξa, ξ1, ξ2 ∈ TXId and a ∈ θξa .E:













(ξ1.rlx
lo
→ ξ2.plx ∧ ξ2.pl x

hb
→ a)

∨ (ξ1.rux
lo
→ ξ2.pl x ∧ ξ2.plx

hb
→ a)

∨ (ξ1.rlx
lo
→ ξ2.wux ∧ ξ2.wux

hb
→ a)

∨ (ξ1.rux
lo
→ ξ2.wux ∧ ξ2.wux

hb
→ a)













∧ ∃j, k, l. Px
j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l

⇒ stg(ξ1.rux) < stg(a) ∨ (ξ1, ξa) ∈ TCO

Proof. Pick an arbitrary implementation graph G = (E , po, rf,mo, lo) constructed
as above, and pick arbitrary x ∈ Loc, ξa, ξ1, ξ2 ∈ TXId and a ∈ θξa .E such that
(

(ξ1.rlx
lo
→ ξ2.pl x ∧ ξ2.plx

hb
→ a) ∨ (ξ1.rux

lo
→ ξ2.plx ∧ ξ2.plx

hb
→ a) ∨ (ξ1.rlx

lo
→

ξ2.wux∧ξ2.wux
hb
→ a)∨ (ξ1.rux

lo
→ ξ2.wux∧ξ2.wux

hb
→ a)

)

and ∃j, k, l. Px
j

∣

∣

k
=ξ1∧

Px
j

∣

∣

l
=ξ2 ∧k > l. In case of the first disjunct from the construction of lo we then

also have ξ1.rux
lo
→ ξ2.plx ∧ ξ2.plx

hb
→ a. Similarly, in case of the third and fourth

disjuncts from the construction of lo we also have ξ1.rux
lo
→ ξ2.plx ∧ ξ2.wux

hb
→ a.

Moreover, since we have ξ2.plx
po
→ ξ2.wux and po ⊆ hb, we also have ξ1.rux

lo
→

ξ2.plx ∧ ξ2.plx
hb
→ a. It thus suffices to show:

ξ1.rux
lo
→ ξ2.pl x ∧ ξ2.plx

hb
→ a ∧ ∃j, k, l. Px

j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l

⇒ stg(ξ1.rux) < stg(a) ∨ (ξ1, ξa) ∈ TCO

Since G.hb is a transitive closure, it is straightforward to demonstrate that
G.hb =

⋃

i∈N

hbi, where hb0 = G.po ∪ G.rf ∪ G.lo and hbi+1 = hb0; hbi. It thus

suffices to show:

∀i ∈ N. ∀x ∈ Loc, ξa, ξ1, ξ2 ∈ TXId, a ∈ θξa .E .

ξ1.rux
lo
→ ξ2.plx ∧ ξ2.pl x

hbi→ a ∧ ∃j, k, l. Px
j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l

⇒ stg(ξ1.rux) < stg(a) ∨ (ξ1, ξa) ∈ TCO

We thus proceed by induction over i.

Base case i = 0
Pick arbitrary x ∈ Loc, ξa, ξ1, ξ2 ∈ TXId and a ∈ θξa .E such that ξ1.rux

lo
→

ξ2.plx, ξ2.plx
hb0→ a and ∃j, k, l. Px

j

∣

∣

k
=ξ1∧Px

j

∣

∣

l
=ξ2∧k > l. From the construction

of G we know that there exists r ∈ G ′.Tξ1 and w ∈ G ′.Tξ2 such that (r, w) ∈ G ′.rb.

Moreover, since k 6= l we know that (r, w) ∈ G ′.rbT. Since we have ξ2.plx
hb0→ a,

there are four cases to consider: 1) ξ2.pl x
G.poI∪rfI∪loI

→ a; or 2) ξ2.plx
G.poE→ a; or

3) ξ2.plx
G.rfE→ a; or 4) ξ2.plx

G.loE→ a.

In case (1), from the construction of G.rfI we have G.rfI ⊆ G.poI; more-
over, from the construction of G.loI we have G.loI ⊆ G.poI. We thus have

ξ2.plx
G.poI
→ a. On the other hand, from the definition of stg(.) we know stg(a) ≥

stg(ξ2.plx) > stg(ξ1.rux), and thus stg(a) > stg(ξ1.rux), as required.

In case (2), since ξ2.plx
poE→ a, we know there exists a′ ∈ Tξa such that (w, a′) ∈

G ′.poT. As such, we have (r, a′) ∈ G ′.(rbT; poT). From the definition of TCO we
thus have (ξ1, ξa) ∈ TCO, as required.

Case (3) cannot happen as there are no rf edges from lock events. In case
(4), from the construction of lo we know there exists m,n such that m > j, and
ξa = Px

m|n. As such, from Lemma 10 we have (ξ1, ξa) ∈ TCO, as required.

Inductive case i = n+1

Pick arbitrary x ∈ Loc and ξa, ξ1, ξ2 ∈ TXId and a ∈ θξa .E such that ξ1.rux
lo
→

ξ2.plx, ξ2.plx
hbi→ a and ∃j, k, l. Px

j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l.

∀j ≤ n. ∀y ∈ Loc, ξa′ , ξ3, ξ4 ∈ TXId, a′ ∈ θξa′
.E .

(ξ3.rux
lo
→ ξ4.plx ∧ ξ4.pl x

hbj
→ a′) ∧ ∃j, k, l. Px

j

∣

∣

k
=ξ1 ∧ Px

j

∣

∣

l
=ξ2 ∧ k > l

⇒ stg(ξ3.ruy) < stg(a′) ∨ (ξ3, ξa′) ∈ TCO

(I.H.)

There are two cases to consider:

1) ξ2.plx
(poI∪rfI∪loI)

+

→ a; or

2) ξ2.plx
(poI∪rfI∪loI)

∗;(poE∪rfE∪loE);hbm
→ a, where m ≤ n.

In case (1), from the construction of G.rfI we have G.rfI ⊆ G.poI; moreover,

from the construction of G.loI we have G.loI ⊆ G.poI. We thus have ξ2.pl x
poI

+

→ a,

i.e. ξ2.plx
poI
→ a. As such, from the proof of the base case we have stg(a) >

stg(ξ1.rux), as required.
In case (2) from the construction of G we know that there exists r ∈ θξ1 .E and

w ∈ θξ2 .E such that (r, w) ∈ G ′.rb. Moreover, since k 6= l, from the construction
of G we know that ξ1 6= ξ2 and thus we have (r, w) ∈ G ′.rbT. On the other hand,

we know that there exist b, c such that ξ2.plx
(poI∪rfI∪loI)

∗

→ b
poE∪rfE∪loE→ c

hbm→ a. From
the construction of G.rfI we have G.rfI ⊆ G.poI; moreover, from the construction

of G.loI we have G.loI ⊆ G.poI. We thus have ξ2.pl x
poI

∗

→ b. As such we have

ξ2.plx
poI

∗

→ b
poE∪rfE∪loE→ c. Let c ∈ θξc . There are now three cases to consider: a)

b
poE→ c; or b) b

rfE→ c; or c) b
loE→ c. We first demonstrate that in all three cases we

have (ξ1, ξc) ∈ TCO.

In case (2.a), since ξ2.plx
poE→ c, we know there exists c′ ∈ Tξc such that

(w, c′) ∈ G ′.poT. As such, we have (r, c′) ∈ G ′.(rbT; poT). From the definition of
TCO we thus have (ξ1, ξc) ∈ TCO. In case (2.b), from the definition of G.rf we
know there exists c′ ∈ Tξc such that (w, c′) ∈ G ′.rfT. As such, we have (r, c) ∈
G ′.(rbT; rfT). From the definition of TCO we thus have (ξ1, ξc) ∈ TCO. In case
(2.c) from the construction of lo we know there exists z such that either b = ξ2.pl z
or b = ξ2.wuz, and that there exist p, q such that ξ2 ∈ S z

p , ξc ∈ S z
q and p < q.

Given the definition of S z we then know that there exists wz ∈ G ′.Tξ2 where either

i) there exists w′
z ∈ Tξc such that (wz , w

′
z) ∈ G ′.moT; or ii) there exists rz ∈ Tξc

such that (wz , rz) ∈ G ′.rfT; or ii) there exists rz ∈ Tξc such that (wz , rz) ∈
G ′.(moT; rfT). That is, we have either (w,w′

z) ∈ G ′.moT, or (w, rz) ∈ G ′.rfT, or
(w, rz) ∈ G ′.(moT; rfT). Moreover, since we have (r, w) ∈ G ′.rbT, we then have
(r, w′

z) ∈ G ′.(rbT;moT), or (r, rz) ∈ G ′.(rbT; rfT), or (r, rz) ∈ G ′.(rbT;moT; rfT).
From the definition of TCO we thus have (ξ1, ξc) ∈ TCO.

Since c
hbm→ a, there are now two cases to consider: i) c

hb′

→ a; or ii) c 6
hb′

→ a.
In case (2.i), from Lemma 11 we have (c, a) ∈ poI ∨ (ξc, ξa) ∈ TCO. As we

have (ξ1, ξc) ∈ TCO, we thus have (ξ1, ξa) ∈ TCO, as required.
In case (2.ii) let us split the path from c at the first occurrence of a non-

hb′ edge. That is, pick ξ3, ξ4, g, h, y, p, q, s, k such that c
hb′

→ ξ3.g
lo
→ ξ4.h

hbk→ a,
k < m, Py

s |p = Tξ3 , Py
s |q = Tξ4 , p > q and either a) g = rly ∧ h = ply; or

b) g = ruy ∧ h = ply; or c) g = rly ∧ h = wuy; or d) g = ruy ∧ h = wuy.
From Lemma 11 we then have (c, ξ3.g) ∈ poI ∨ (ξc, ξ3) ∈ TCO. As we have
(ξ1, ξc) ∈ TCO, we also have (ξ1, ξ3) ∈ TCO. We next demonstrate that in all

cases (2.ii.a-2.ii.d) there exists t such that t ≤ m and ξ3.ruy
lo
→ ξ4.ply

hbt→ a.

In case (2.ii.a) from the definition of lo we also have ξ3.ruy
lo
→ ξ4.plx. As

such, we have ξ3.ruy
lo
→ ξ4.pl y

hbk→ a. In case (2.ii.b) the desired result holds
immediately.

In cases (2.ii.c-2.ii.d) from the construction of lo we have ξ3.ruy
lo
→ ξ4.ply.

Moreover, since we have ξ4.pl y
po
→ ξ4.wuy, we also have ξ4.ply

po
→ ξ4.wuy

hbk→ a.

As po ⊆ hb and hb is transitively closed, we have ξ4.pl y
hbk+1

→ a. As such, we

have ξ3.ruy
lo
→ ξ4.ply

hbk+1

→ a. As k < m, the desired result holds immediately.
Consequently, from (I.H.) we have stg(ξ3.ruy) < stg(a) ∨ (ξ3, ξa) ∈ TCO.

In the case of the first disjunct we have stg(ξ3.ruy)=stg(ξ1.rux) < stg(a), as
required. In the case of the second disjunct, since we also have (ξ1, ξ3) ∈ TCO

and TCO is transitively closed, we have (ξ1, ξa) ∈ TCO, as required.

Theorem 10 (Completeness). For all SI execution graphs G ′ and their coun-
terpart implementation graphs G constructed as above,

si-consistent(G ′) ⇒ RA-consistent(G)

Proof. Pick an arbitrary SI execution graph G ′ and its counterpart implementa-
tion graph G constructed as above and assume si-consistent(G ′) holds. From the
definition of RA-consistent(G) it suffices to show:

1. irreflexive(G.hb)
2. irreflexive(G.mo;G.hb)
3. irreflexive(G.rb;G.hb)

RTS. part 1
We proceed by contradiction. Let us assume that there exists a, θξ such that a ∈
θξ.E and (a, a) ∈ G.hb. There are now two cases to consider: 1) (a, a) ∈ hb′; or
2) (a, a) 6∈ hb′.

In case (1), from Lemma 11 we have (a, a) ∈ G.poI∨(Tξ, Tξ) ∈ TCO. The first
disjunct leads to a contradiction as the construction of G.po yields an acyclic
relation. The second disjunct leads to a contradiction as TCO is a strict total
order.

In case (2), let us split the a
hb
→ a at the first occurrence of a non-hb′ edge.

That is, pick ξ1, ξ2, x, i, j, k, g, h such that a
hb
→ ξ1.g

lo\hb′

→ ξ2.h
hb
→ a, Px

i |j = Tξ1 ,

Px
i |k = Tξ2 and j > k. As we have ξ1.g

lo\hb′

→ ξ2.h
hb
→ a

hb
→ ξ1.g, from Lemma 12

and the definition of hb we then have stg(ξ1.g) < ξ1.g ∨ (ξ1, ξ1) ∈ TCO, leading
to a contradiction in both disjuncts (the second disjunct yields a contradiction as
TCO is a strict total order).

RTS. part 2
We proceed by contradiction. Let us assume that there exists a, θξa , b, θξa such that
a ∈ θξa .E, b ∈ θξb .E, (a, b) ∈ G.hb and (b, a) ∈ G.mo. Let loc(a) = loc(b) = x

for some shared location x. There are now two cases to consider: 1) (b, a) ∈
G.moI; or 2) (b, a) ∈ G.moE.

In case (1) we then have (b, a) ∈ G ′.moI ⊆ G ′.poI. That is, we have (b, a) ∈

G.po ⊆ G.hb. We thus have a
G.hb
→ b

G.hb
→ a, contradicting our proof in part 1. In

case (2), from the construction of G.mo we have (b, a) ∈ G ′.moT and thus from
the construction of G.lo we then have (ξb.wux, ξa.rlx) ∈ G.lo. As such we have

a
G.hb
→ b

G.po
→ ξb.wux

G.lo
→ ξa.rlx

G.po
→ a. That is, we have a

G.hb
→ a, contradicting

our proof in part 1.

RTS. part 3
We proceed by contradiction. Let us assume that there exists a, θξa , b, θξa such
that a ∈ θξa .E, b ∈ θξb .E, (a, b) ∈ G.hb and (b, a) ∈ G.rb.

Let loc(a) = loc(b) = x for some shared location x. There are now two cases
to consider: 1) (b, a) ∈ G.rbI; or 2) (b, a) ∈ G.rbE.

In case (1) we then have (b, a) ∈ G ′.rbI ⊆ G ′.poI. That is, we have (b, a) ∈

G.po ⊆ G.hb. We thus have a
G.hb
→ b

G.hb
→ a, contradicting our proof in part 1. In

case (2), from the construction of G.rb we have (b, a) ∈ G ′.rbT and thus from the
construction of G.lo we then have either (b, ξb.wux) ∈ G.po and (ξb.wux, ξa.rlx) ∈
G.lo; or (b, ξb.rux) ∈ po and (ξb.rux, ξa.plx) ∈ G.lo. As such in both cases we have

(b, a) ∈ G.hb. Consequently, we have a
G.hb
→ b

G.hb
→ a, contradicting our proof in

part 1.

E Soundness and Completeness of the Eager RSI
Implementation

Notation Given an execution graph (E , po, rf,mo, lo) we write T /st for the
set of equivalence classes of T induced by st; [a]st for the equivalence class that

contains a; and Tξ for the equivalence class of transaction ξ ∈ TXId: Tξ ,
{

a tx(a)=ξ
}

. We write rsi-consistent(G ′) to denote that G ′ is RSI-consistent;
and write RA-consistent(G) to denote that G is RA-consistent.

Given an execution graphG of the RSI implementation in Fig. 3, let us assign
a transaction identifier to each transaction executed by the program; and given
a transaction ξ, let RSξ and WSξ denote its read and write sets, respectively.
Observe that given a transaction ξ of the RSI implementation in Fig. 3 with
RSξ ∪ WSξ =

{

x1, · · · , xi
}

, the trace of ξ, written θξ, is of the following form:

θξ = FS ∗ po|imm

→ Rs
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ts
po|imm

→ Us

where

– FS ∗
ξ denotes the sequence of events failing to obtain a valid snapshot.

– Rs denotes the sequence of events acquiring a valid snapshot, and is of the

form rlx1
po|imm

→ · · ·
po|imm

→ rlxi
po|imm

→ Sx1
po|imm

→ · · ·
po|imm

→ Sxi
po|imm

→ Vx1

po|imm

→

· · ·
po|imm

→ Vxi , where for all n ∈ {1 · · · i}:

rlxn=RL(xn) Sxn=

{

rsxn
po|imm

→ wsxn if x ∈ RSξ

∅ otherwise
Vxn=

{

vsxn if x ∈ RSξ

∅ otherwise

with rsxn , R(xn, vn), wsxn , W(s[xn], vn) and vsxn , R(xn, vn), for some
vn.

– RUs denotes the sequence of events releasing the reader locks (when the given

location is in the read set only), and is of the form rux1

po|imm

→ · · ·
po|imm

→ ruxi ,
where for all n ∈ {1 · · · i}:

ruxn =

{

RU(xn) if xn 6∈ WSξ

∅ otherwise

– PLs denotes the sequence of events promoting the reader locks to writer ones

(when the given location is in the write set), and is of the form plx1
po|imm

→

· · ·
po|imm

→ pl xi , where for all n ∈ {1 · · · i}:

plxn =

{

PL(xn) if xn ∈ WSξ

∅ otherwise

– Ts denotes the sequence of events corresponding to the execution of JTK in

Fig. 3 and is of the form t1
po|imm

→ · · ·
po|imm

→ tk, where for all m ∈ {1 · · ·k}:

tm =

{

R(s[xn], vn) if Om=R(xn, vn)

W(xn, vn)
po|imm

→ W(s[xn], vn) if Om=W(xn, vn)

where Om denotes the mth event in the trace of the original T;
– Us denotes the sequence of events releasing the locks on the write set. That

is, the events in Us correspond to the execution of the last line of the imple-

mentation in Fig. 3, and is of the form wux1

po|imm

→ · · ·
po|imm

→ wuxi , where for
all n ∈ {1 · · · i}:

wuxn =

{

WU(yln) if xn ∈ WSξ

∅ otherwise

Given a transaction trace θξ, we write e.g. ξ.Ls to refer to its constituent Ls
sub-trace and write Ls .E for the set of events related by po in Ls . Similarly, we
write ξ.E for the set of events related by po in θξ. Note that G.E =

⋃

ξ∈Tx

ξ.E .

E.1 Implementation Soundness

In order to establish the soundness of our implementation, it suffices to show that
given an RA-consistent execution graph of the implementationG = (E , po, rf,mo, lo),
we can construct a corresponding RSI-consistent execution graph G ′ with the
same outcome.

Given a transaction ξ ∈ Tx with RSξ ∪ WSξ = {x1 · · · xi} and trace θξ =

Fs∗
po|imm

→ Rs
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ts
po|imm

→ Us, with Ts = t1
po|imm

→

· · ·
po|imm

→ tk, we define θ′ξ , t ′1
po|imm

→ · · ·
po|imm

→ t ′k, such that for all m ∈ {1 · · ·k}:

t ′m=R(xn, rbn) when tm = R(s[xn], rbn)

t ′m=W(xn, rbn) when tm = W(xn, rbn)
po|imm

→ W(s[xn], rbn)

such that in the first case the identifier of t ′m is that of tm; and in the second
case the identifier of t ′m is that of the first event in tm. We then define:

RFξ ,



























(w, t′j)

t′j ∈ Ts ′ξ ∧ ∃x, v. t′j=R(x, v) ∧ w=W(x, v)

∧(w ∈ ξ.E ⇒ w
po
→ t′j ∧

(∀e ∈ ξ.E . w
po
→ e

po
→ t′j ⇒ (loc(e)6=x ∨ e 6∈W)))

∧(w 6∈ ξ.E ⇒ (∀e ∈ ξ.E . (e
po
→ t′j ⇒ (loc(e) 6= x ∨ e 6∈ W))

∧ (w, ξ.rsx), (w, ξ.vsx) ∈ G.rf)



























We are now in a position to demonstrate the soundness of our implementation.
Let G.NT , G.E \ (

⋃

ξ∈Tx
θξ.E). Given an RA-consistent execution graph G

of the implementation, we construct an RSI execution graph G ′ as follows and
demonstrate that rsi-consistent(G ′) holds.

– G ′.E =
⋃

ξ∈Tx

θ′ξ.E , with the tx(.) function defined as:

tx(a) ,

{

ξ if a ∈ θ′ξ
0 otherwise

– G ′.po = G.po|G′.E

– G ′.rf =
(
⋃

ξ∈Tx
RFξ

)

∪
(

G.rf ∩G.E ×G.NT)
– G ′.mo = G.mo

– G ′.lo = ∅

Observe that the events of each θ′ξ trace coincides with those of the equivalence
class Tξ of G ′. That is, θ′ξ.E = Tξ.

Lemma 13. Given an RA-consistent execution graph G of the implementa-
tion and its corresponding RSI execution graph G ′ constructed as above, for
all a, b, ξa, ξb, x:

ξa 6= ξb ∧ a ∈ ξa.E ∧ b ∈ ξb.E ∧ loc(a) = loc(b) = x ⇒

((a, b) ∈ G
′
.rf ⇒ ξa.wux

G.hb
→ ξb.rl x) (22)

∧ ((a, b) ∈ G
′
.mo ⇒ ξa.wux

G.hb
→ ξb.rl x) (23)

∧ ((a, b) ∈ G
′
.mo; rf ⇒ ξa.wux

G.hb
→ ξb.rl x) (24)

∧
(
(a, b) ∈ G

′
.rb ⇒ (x ∈ WSξa ∧ ξa.wux

G.hb
→ ξb.rl x) ∨ (x 6∈ WSξa ∧ ξa.rux

G.hb
→ ξb.pl x)

)

(25)

Proof. Pick an arbitrary RA-consistent execution graph G of the implementa-
tion and its corresponding RSI execution graph G ′ constructed as above. Pick
an arbitrary a, b, ξa, ξb, x such that ξa 6= ξb, a ∈ ξa.E, a ∈ ξa.E, and loc(a) =
loc(b) = x.

RTS. (22)
Assume (a, b) ∈ G ′.rf. From the definition of G ′.rf we then know (a, ξa.rsx), (a, ξa.vsx) ∈
G.rf. On the other hand, from Lemma 2 we know that either i) x ∈ WSξb and

ξb.wux
G.hb
→ ξa.rlx; or ii) x 6∈ WSξb and ξb.rux

G.hb
→ ξa.plx; or iii) ξa.wux

G.hb
→

ξb.rlx. In case (i) we then have a
G.rf
→ ξa.rsx

G.po
→ ξb.wux

G.hb
→ ξa.rlx

G.po
→ a. That

is, we have a
G.hbloc→ a, contradicting the assumption that G is RA-consistent.

Similarly in case (ii) we have a
G.rf
→ ξa.rsx

G.po
→ ξb.rux

G.hb
→ ξa.plx

G.po
→ a. That

is, we have a
G.hbloc→ a, contradicting the assumption that G is RA-consistent. In

case (iii) the desired result holds trivially.

RTS. (23)
Assume (a, b) ∈ G ′.mo. From the definition of G ′.mo we then know (a, b) ∈ G.mo.

On the other hand, from Lemma 2 we know that either i) ξb.wux
G.hb
→ ξa.rlx;

or ii) ξa.wux
G.hb
→ ξb.rlx. In case (i) we then have a

G.mo
→ b

G.po
→ ξb.wux

G.hb
→

ξa.rlx
G.po
→ a. That is, we have a

G.hbloc→ a, contradicting the assumption that G
is RA-consistent. In case (ii) the desired result holds trivially.

RTS. (24)
Assume (a, b) ∈ G ′.mo; rf. We then know there exists w such that (a, w) ∈ G ′.mo

and (w, b) ∈ G ′.rf. From the definition of G ′.mo we then know (a, w) ∈ G.mo.
There are now two cases to consider: 1) w ∈ ξb; or 2) w 6∈ ξb. In case (1) since
(a, w) ∈ G ′.mo the desired result follows from part 23.

In case (2) from the definition of G ′.rf we know that (w, ξb.rsx) ∈ G.rf.

From Lemma 2 we know that either i) x ∈ WSξb and ξb.wux
G.hb
→ ξa.rlx; or

ii) x 6∈ WSξb and ξb.rux
G.hb
→ ξa.plx; or iii) ξa.wux

G.hb
→ ξb.rlx. In case (i) we

then have a
G.mo
→ w

G.rf
→ ξa.rsx

G.po
→ ξb.wux

G.hb
→ ξa.rlx

G.po
→ a. That is, we have

a
G.mo
→ w

G.hbloc→ a, contradicting the assumption that G is RA-consistent. Sim-

ilarly in case (ii) we have a
G.mo
→ w

G.rf
→ ξa.rsx

G.po
→ ξb.rux

G.hb
→ ξa.plx

G.po
→ a.

That is, we have a
G.mo
→ w

G.hbloc→ a, contradicting the assumption that G is RA-
consistent. In case (iii) the desired result holds trivially.

RTS. (25)
Assume (a, b) ∈ G ′.rb. From the definition of G ′.rb we know (ξa.rsx, b), (ξa.vsx, b) ∈

G.rb. On the other hand, from Lemma 2 we know that either i) ξb.wux
G.hb
→ ξa.rlx;

or ii) x 6∈ WSξa and ξa.rux
G.hb
→ ξa.plx; or iii) x ∈ WSξa and ξa.wux

G.hb
→ ξb.rlx.

In case (i) we then have b
G.po
→ ξb.wux

G.hb
→ ξa.rlx

G.po
→ ξa.rsx

G.rb
→ b. That is, we

have b
G.hbloc→ ξa.rsx

G.rb
→ b, contradicting the assumption that G is RA-consistent.

In cases (ii-iii) the desired result holds trivially.

Let

rsi-hb′ , rsi-hb \ (si-rb; rsi-hb?)

Lemma 14. For all RA-consistent execution graphs G of the implementation
and their counterpart RSI execution graphs G ′ constructed as above,

1. (G ′.rsi-po ⊆ G.hb) ∧ (G ′.(rsi-po; si-rb) ⊆ G.hb)
2. (G ′.rsi-mo ⊆ G.hb) ∧ (G ′.(rsi-mo; si-rb) ⊆ G.hb)
3. (G ′.rsi-rf ⊆ G.hb) ∧ (G ′.(rsi-rf; si-rb) ⊆ G.hb)
4. (G ′.rsi-hb′ ⊆ G.hb)

Proof (Proof (Part 1)). Pick an arbitrary RA-consistent execution graph G of
the implementation and its counterpart RSI execution graph G ′ constructed as
above. Pick arbitrary (a, b) ∈ G ′.rsi-po and (b, c) ∈ G ′.si-rb. There are then two
cases to consider: 1) (a, b) 6∈ G ′.rsi-poI; or 2) (a, b) ∈ G ′.rsi-poI.

In case (1) from the construction of rsi-po we then have (a, b) ∈ G.po ⊆ G.hb,
as required by the first conjunct. For the second conjunct, we know there exists
ξb, ξc, r, w such that b, r ∈ ξb.RE, c, w ∈ ξc.W, and (r, w) ∈ G ′.rb. Let loc(r) =
loc(w) = x. Given the definition of RE and the construction of G ′ we know
(ξb.rsx, w) ∈ G.rb.

As we have (a, b) 6∈ G ′.rsi-poI and b and ξb.rsx are both transactional events
in ξb, from the definition of G ′.po and G.po we then know (a, ξb.rsx) ∈ G.po. On

the other hand, from Lemma 13 we have either i) x ∈ WSξb and ξb.wux
G.hb
→ ξc.rlx;

or ii) x 6∈ WSξb and ξb.rux
G.hb
→ ξc.plx. In case (i) we have a

G.po
→ rsx

G.po
→

ξa.wux
G.hb
→ ξb.rlx

G.po
→ c, i.e. a

G.hb
→ c, as required. Similarly, in case (ii) have

a
G.po
→ rsx

G.po
→ ξa.rux

G.hb
→ ξb.plx

G.po
→ c, i.e. a

G.hb
→ c, as required.

In case (2) from the definition of G ′.rsi-poI we then know that a, b ∈ G ′.W
and thus from the construction of G ′.rsi-poI we have (a, b) ∈ G.po ⊆ G.hb, as
required by the first conjunct. For the second conjunct, since we have b ∈ G ′.W,
we cannot have (b, c) ∈ G ′.si-rb and thus the desired result holds vacuously.

Proof (Proof (Part 2)). Pick an arbitrary RA-consistent execution graph G of
the implementation and its counterpart RSI execution graph G ′ constructed as
above. For the first conjunct pick arbitrary (a, b) ∈ G ′.rsi-mo. From the definition
of G ′.rsi-mo we then know there exists w,w′, ξa, ξb such that ξa 6= ξb, w, a ∈ ξa.E,
w′, b ∈ ξb.E and (w,w′) ∈ G ′.mo. From the definition of G ′.mo we then have
(w,w′) ∈ G.mo. Let loc(w) = loc(w′) = x. From Lemma 13 we then know that

ξa.wux
G.hb
→ ξb.rlx. We then have a

G.po
→ ξa.wux

G.hb
→ ξb.rlx

G.po
→ b, i.e. a

G.hb
→ b, as

required.

For the second conjunct pick arbitrary c such that (b, c) ∈ si-rb. From the def-
inition of si-rb and the construction of G ′ we then know there exist y, ry , wy, ξc
such that ξc 6= ξb, loc(wy) = loc(ry) = y, (ry , wy) ∈ G ′.rb, and wy , c ∈ ξc.W.

As we demonstrated for the first conjunct we have a
G.po
→ ξa.wux

G.hb
→ ξb.rlx. That

is, a
G.hb
→ ξb.rlx. On the other hand, from Lemma 13 we then know that either i)

y ∈ WSξb and ξb.wuy
G.hb
→ ξc.rly; or ii) y 6∈ WSξb and ξb.ruy

G.hb
→ ξc.ply. In case (i)

we have a
G.hb
→ ξb.rlx

G.po
→ ξa.wuy

G.hb
→ ξb.rly

G.po
→ c, i.e. a

G.hb
→ c, as required. Sim-

ilarly, in case (ii) we have a
G.hb
→ ξb.rlx

G.po
→ ξa.ruy

G.hb
→ ξb.ply

G.po
→ c, i.e. a

G.hb
→ c,

as required.

Proof (Proof (Part 3)). Pick an arbitrary RA-consistent execution graph G of
the implementation and its counterpart RSI execution graph G ′ constructed as
above. It suffices to show that:

G ′.([NT]; rf; st) ⊆ G.hb (26)

G ′.([NT]; rf; st);G ′.si-rb ⊆ G.hb (27)

G ′.rfT ⊆ G.hb (28)

G ′.rfT;G
′.si-rb ⊆ G.hb (29)

G ′.(mo; rf)T ⊆ G.hb (30)

G ′.(mo; rf)T;G
′.si-rb ⊆ G.hb (31)

G ′.(rf; [NT]) ⊆ G.hb (32)

G ′.(rf; [NT]);G ′.si-rb ⊆ G.hb (33)

RTS. (26)
Pick arbitrary (w, a) ∈ G ′.([NT]; rf; st) where a ∈ ξa.E. Let loc(w) = x. From
the construction of G ′.rf we then know (w, ξa.rsx), (w, ξa.vsx) ∈ G.rf and (ξa.rsx, a), (ξa.vsx, a) ∈

G.po. As such we have w
G.rf
→ ξa.rsx

G.po
→ a, i.e. w

G.hb
→ a, as required.

RTS. (27)
Pick arbitrary (w, c) ∈ G ′.([NT]; rf; st);G ′.si-rb. We then know there exist a, ξa, ξc
such that (w, a) ∈ G ′.([NT]; rf; st), (a, c) ∈ G ′.si-rb. a ∈ ξa.E, c ∈ ξc.E and
ξa 6= ξc. Let loc(w) = x. As we demonstrated in the previous part we then know
(w, ξa.rsx), (w, ξa.vsx) ∈ G.rf and (ξa.rsx, a), (ξa.vsx, a) ∈ G.po. Moreover, from
the definition of si-rb and the construction of G ′ we know there exist y, ry , wy, ξc
such that loc(wy) = loc(ry) = y, (ry , wy) ∈ G ′.rb, and wy, c ∈ ξc.W. From
the construction of G ′.rb we then know that (ξa.rsy, wy), (ξa.vsy, wy) ∈ G.rb.
On the other hand, from Lemma 13 we know that either i) y ∈ WSξa and

ξa.wuy
G.hb
→ ξc.rly; or ii) y 6∈ WSξa and ξa.ruy

G.hb
→ ξc.ply. In case (i) we have

w
G.rf
→ ξa.rsx

G.po
→ ξa.vsy

G.po
→ ξa.wuy

G.hb
→ ξb.rly

G.po
→ c, i.e. a

G.hb
→ c, as required.

Similarly, in case (ii) we have w
G.rf
→ ξa.rsx

G.po
→ ξa.vsy

G.po
→ ξa.ruy

G.hb
→ ξb.ply

G.po
→

c, i.e. w
G.hb
→ c, as required.

RTS. (28)
Pick arbitrary (a, b) ∈ G ′.rfT. We then know there exist w, r, ξa, ξb such thatw, a ∈
ξa.E, r, b ∈ ξb.E, ξa 6= ξb and (w, r) ∈ G ′.rf. Let loc(w) = loc(r) = x. From

Lemma 13 we then know that ξa.wux
G.hb
→ ξb.rlx. Consequently from the struc-

ture of G and the construction of G ′ we have a
G.po
→ ξa.wux

G.hb
→ ξb.rlx

G.po
→ b,

i.e. a
G.hb
→ b, as required.

RTS. (29)
Pick arbitrary (a, c) ∈ G ′.rfT;G

′.si-rb. b such that (a, b) ∈ G ′.rfT and (b, c) ∈
G ′.si-rb. From the definition of G ′.rfT we then know there exist w, r, ξa, ξb such
thatw, a ∈ ξa.E, r, b ∈ ξb.E, ξa 6= ξb and (w, r) ∈ G ′.rf. Let loc(w) = loc(r) = x.

From Lemma 13 we then know that ξa.wux
G.hb
→ ξb.rlx.

On the other hand, from the definition of G ′.si-rb we know there exist r′, w′, ξc
such that r′ ∈ ξb.E, w′, c ∈ ξc.W, ξc 6= ξb and (r′, w′) ∈ G ′.rb. Let loc(w′) =

loc(r′) = y. From Lemma 13 we then know that either i) y ∈ WSξb and ξb.wuy
G.hb
→

ξc.rly; or ii) y 6∈ WSξb and ξb.ruy
G.hb
→ ξc.ply.

In case (i) we have a
G.po
→ ξa.wux

G.hb
→ ξb.rlx

G.po
→ ξb.wuy

G.hb
→ ξc.rly

G.po
→

c. That is, (a, c) ∈ G.hb, as required. Similarly, In case (ii) we have a
G.po
→

ξa.wux
G.hb
→ ξb.rlx

G.po
→ ξb.ruy

G.hb
→ ξc.ply

G.po
→ c. That is, (a, c) ∈ G.hb, as re-

quired.

RTS. (30)
Pick arbitrary (a, b) ∈ G ′.(mo; rf)T. We then know there exist ξa, ξb, w, w

′, r such
that w, a ∈ ξa.E, r, b ∈ ξb.E, ξa 6= ξb, (w,w

′) ∈ G ′.mo and (w′, r) ∈ G ′.rf.

From Lemma 13 we then have ξa.wux
G.hb
→ ξb.rlx. Consequently from the

structure of G and the construction of G ′ we have a
G.po
→ ξa.wux

G.hb
→ ξb.rlx

G.po
→ b,

i.e. a
G.hb
→ b, as required.

RTS. (31)
Pick arbitrary (a, c) ∈ G ′.(mo; rf)T;G

′.si-rb. We then know there exist b such that
(a, b) ∈ G ′.(mo; rf)T and (b, c) ∈ G ′.si-rb. From the definition of G ′.(mo; rf)T we
then know there exist ξa, ξb, w, w

′, r such that w, a ∈ ξa.E, r, b ∈ ξb.E, ξa 6= ξb,

(w,w′) ∈ G ′.mo and (w′, r) ∈ G ′.rf. From Lemma 13 we then have ξa.wux
G.hb
→

ξb.rlx.
On the other hand, from the definition of G ′.si-rb we know there exist r′′, w′′, ξc

such that r′′ ∈ ξb.E, w′′, c ∈ ξc.W, ξc 6= ξb and (r′′, w′′) ∈ G ′.rb. Let loc(w′′) =
loc(r′′) = y. From Lemma 13 we then know that either i) y ∈ WSξb and

ξb.wuy
G.hb
→ ξc.rly; or ii) y 6∈ WSξb and ξb.ruy

G.hb
→ ξc.ply.

In case (i) we then have a
G.po
→ ξa.wux

G.hb
→ ξb.rlx

G.po
→ ξb.wuy

G.hb
→ ξc.rly

G.po
→

c. That is, (a, c) ∈ G.hb, as required. Similarly, In case (ii) we then have

a
G.po
→ ξa.wux

G.hb
→ ξb.rlx

G.po
→ ξb.ruy

G.hb
→ ξc.ply

G.po
→ c. That is, (a, c) ∈ G.hb, as

required.

RTS. (32)
Pick arbitrary (w, r) ∈ G ′.(rf; [NT]). As r ∈ G ′.NT , from the construction of
G ′.rf we have (w, r) ∈ G.rf ⊆ G.hb, as required.

RTS. (33)
The desired result holds trivially as G ′.(rf; [NT]);G ′.si-rb = ∅.

Proof (Proof (part 4)). Let rsi-hb0 , rsi-po∪rsi-rf∪rsi-mo∪si-rb and rsi-hbn+1 ,

rsi-hb0; rsi-hbn, for all n ≥ 0. Similarly, let rsi-hb′0 , rsi-hb0\si-rb and rsi-hb′n+1 ,

rsi-hb′0; rsi-hbn, for all n ≥ 0. It is then straightforward to demonstrate that
rsi-hb′ ,

⋃

n∈N

rsi-hb′n. It thus suffices to show that:

∀n ∈ N. rsi-hb′n ⊆ G.hb

We proceed by induction on n.

Base case n = 0
Follows immediately from the definition of rsi-hb′0 and the results established in
1-3.

Inductive case n = m+1

∀i ∈ N. i < n ⇒ rsi-hb′i ⊆ G.hb (I.H.)

Pick arbitrary (a, b) ∈ rsi-hb′n. From the definition of rsi-hb′n we then know
there exists c such that (a, c) ∈ rsi-hb′0 and (c, b) ∈ rsi-hbm. Let rsi-hb−1 , id.
There are now two cases to consider: 1) (c, b) ∈ rsi-hb′0; rsi-hbm−1; or (c, b) ∈
si-rb; rsi-hbm−1. In case (1) from the proof of base case we have (a, c) ∈ G.hb.
On the other hand from the definition of rsi-hb′m we have (c, b) ∈ rsi-hb′m and
thus from (I.H.) we have (c, b) ∈ G.hb. Consequently, since G.hb is transitively
closed we have (a, b) ∈ G.hb as required.

In case (2) we know there exists d such that (c, d) ∈ si-rb; and (d, b) ∈
rsi-hbm−1. Since we have (a, c) ∈ rsi-hb′0 and (c, d) ∈ si-rb, from the definition
of rsi-hb′0 and the proofs of parts 1-3 we have (a, d) ∈ G.hb. Moreover we either
have i) m = 0; or ii) m > 0. In case (2.i) since (d, b) ∈ rsi-hbm−1, from the
definition of rsi-hbm−1 we have b = d and thus (a, b) ∈ G.hb, as required. In case
(2.ii) from (I.H.) we then have (d, b) ∈ G.hb. As such, since G.hb is transitively
closed, we have (a, b) ∈ G.hb, as required.

Lemma 15. For all RA-consistent execution graphs G of the implementation
and their counterpart RSI execution graphs G ′ constructed as above:

∀n ∈ N. ∀a, b, w, ξ, x.
(a, b) ∈ G ′.rsi-hbn ∧ a ∈ G ′.W ∧ b ∈ G ′.(R ∩ Tξ) ⇒

(w ∈ G ′.(W ∩ Tξ) ⇒ (a, w) ∈ G.hb) ∧ (ξ.vsx defined ⇒ (a, ξ.vsx) ∈ G.hb)

where rsi-hb0 , rsi-po ∪ rsi-rf ∪ rsi-mo ∪ si-rb and rsi-hbn+1 , rsi-hbn; rsi-hb0, for
all n ≥ 0.

Proof. Pick an arbitrary RA-consistent execution graph G of the implementa-
tion and its counterpart RSI execution graph G ′ constructed as above. We then
proceed by induction on n.

Base case n = 0
Pick arbitrary a, b, ξ, x such that (a, b) ∈ (rsi-hb0), a ∈ G ′.W, b ∈ G ′.(R ∩ Tξ),
ξ.vsx defined and w ∈ G ′.(W ∩ Tξ). From the definition of rsi-hb0 we then have
either 1) (a, b) ∈ G ′.rsi-po ∧ a 6∈ G ′.Tξ; or 2) (a, b) ∈ G ′.(moT ∪ rfT ∪ (mo; rf)T);
or 3) (a, b) ∈ G ′.([NT]; rf; st).

In case (1) from the definition of G ′.rsi-po we then know that {a} × θξ.E ⊆
G.po and thus (a, ξ.vsx), (a, w) ∈ G.po ⊆ G.hb, as required.

In case (2) from the definitions of rfT, moT, (mo; rf)T we know there exists
ξ′, c, d, y such that a, c ∈ G ′.Tξ′ , a, c ∈ ξ′.E, b, d ∈ G ′.Tξ, b, d ∈ ξ.E, (c, d) ∈
G ′.(mo∪rf∪(mo; rf)) and loc(c) = loc(d) = y. As such, from Lemma 13 we know

ξ′.wuy
G.hb
→ ξ.rly. On the other hand we have a

G.po
→ ξ′.wuy, ξ.rly

G.po
→ ξ.vsx and

ξ.rly
G.po
→ w. As such we have a

G.po
→ ξ′.wuy

G.hb
→ ξ.rly

G.po
→ ξ.vsx, i.e. a

G.hb
→ ξ.vsx,

as required. Similarly we have a
G.po
→ ξ′.wuy

G.hb
→ ξ.rly

G.po
→ w, i.e. a

G.hb
→ w, as

required.
In case (3) from the construction of G ′ we know there exists y such that

loc(a) = y, and (a, ξ.rsy), (a, ξ.vsy) ∈ G.rf. As such we have a
G.rf
→ ξ.rsy

G.po
→

ξ.vsx, i.e. a
G.hb
→ ξ.vsx, as required. Moreover, since we have ξ.rsy

G.po
→ w, we

have a
G.hb
→ ξ.rsy

G.po
→ w, i.e. a

G.hb
→ w, as required.

Inductive case n = m+1
Pick arbitrary a, b, ξ, x such that (a, b) ∈ (rsi-hbn), a ∈ G ′.W, b ∈ G ′.(R ∩ Tξ),
ξ.vsx defined and w ∈ G ′.(W ∩Tξ). From the definition of rsi-hbn we then know
there exists c such that (a, c) ∈ rsi-hbm and (c, b) ∈ rsi-hb0. There are then two
cases to consider: 1) c ∈ Tξ; or 2) c 6∈ Tξ.

Case (1) leads to contradiction as (c, b) ∈ rsi-hb0, c, b ∈ Tξ, b ∈ R and rsi-hb0
does not include any internal edges to read events.

In case (2) since a is a write event, from the definition of rsi-hb′ we then have
(a, c) ∈ rsi-hb′ and thus from Lemma 14 we have (a, c) ∈ G.hb. On the other hand,
since c 6∈ Tξ, (c, b) ∈ rsi-hb0 and b is a read event, from the definition of rsi-hb0
we know that either 1) (c, b) ∈ G ′.rsi-po ∧ c 6∈ Tξ; or 2) (c, b) ∈ G ′.(moT ∪ rfT ∪
(mo; rf)T); or 3) (c, b) ∈ G ′.([NT]; rf; st). Following an analogous argument as

that in the base case, we then have c
G.hb
→ ξ.vsx and c

G.hb
→ w. As such, we have

a
G.hb
→ c

G.hb
→ ξ.vsx, i.e. a

G.hb
→ ξ.vsx, as required. Similarly, we have a

G.hb
→ c

G.hb
→

w, i.e. a
G.hb
→ w, as required.

Theorem 11 (Soundness). For all execution graphs G of the implementation
and their counterpart RSI execution graphs G ′ constructed as above,

RA-consistent(G) ⇒ rsi-consistent(G ′)

Proof. Pick an arbitrary execution graph G of the implementation such that
RA-consistent(G), and its associated RSI execution graph G ′ constructed as de-
scribed above. It then suffices to show 1) rfI∪moI∪rbI ⊆ po; 2) acyclic(G ′.rsi-hbloc);
3) acyclic(G ′.(rsi-hbloc;mo)); and 4) acyclic(G ′.(rsi-hbloc; rb)).

RTS. rfI ∪moI ∪ rbI ⊆ po

Follows immediately from the construction of G ′ and the RA-consistency of G.

RTS. acyclic(G ′.rsi-hbloc)
We proceed by contradiction. Let us assume there exists a such that (a, a) ∈
G ′.rsi-hbloc. There are then two cases to consider: i) (a, a) ∈ rsi-hb′; or ii) (a, a) ∈
rsi-hb \ rsi-hb′. In case (1) from Lemma 14 part 4 we then have (a, a) ∈ G.hb,
contradicting the assumption that G is RA-consistent. In case (2) we then know
there exists b such that a ∈ G ′.RE, b ∈ G ′.W, (a, b) ∈ si-rb and (b, a) ∈ rsi-hb.

Moreover, since b ∈ G ′.W, from the definition of si-rb and rsi-hb′ we have
(b, a) ∈ rsi-hb′. Since we also have (a, b) ∈ si-rb ⊆ rsi-hb, from the definition
rsi-hb′ we have (b, b) ∈ rsi-hb′. Consequently, from Lemma 14 part 4 we have
(b, b) ∈ G.hb, contradicting the assumption that G is RA-consistent.

RTS. acyclic(G ′.(rsi-hbloc;mo))
We proceed by contradiction. Let us assume there exist a, b such that (a, b) ∈
G ′.rsi-hbloc and (b, a) ∈ G ′.mo. From the definition of G ′.mo we then know
that a, b ∈ G ′.W and (a, b) ∈ G.mo. On the other hand, since a ∈ G ′.W and
(a, b) ∈ rsi-hb, from the definition of rsi-hb′ we have (a, b) ∈ rsi-hb′. Consequently,

from Lemma 14 part 4 we have (a, b) ∈ G.hb. We then have a
G.hb
→ b

G.mo
→ a, con-

tradicting the assumption that G is RA-consistent.

RTS. acyclic(G ′.(rsi-hbloc; rb))
We proceed by contradiction. Let us assume there exist w, r such that (w, r) ∈
G ′.rsi-hbloc and (r, w) ∈ G ′.rb. From the definition of G ′.rb we then know that
w ∈ G ′.W, r ∈ G ′.R. Since w ∈ G ′.W, from the definition of rsi-hb′ we have
(w, r) ∈ rsi-hb′. Consequently, from Lemma 14 part 4 we have (w, r) ∈ G.hb. Let
loc(w) = loc(r) = x. There are then two cases to consider: 1) r ∈ G ′.NT ; or
2) ∃ξr. r ∈ ξr.E.

In case (1) from the definition of G ′.rb we know (r, w) ∈ G.rb. As such, we

have w
G.hb
→ r

G.rb
→ w, contradicting the assumption that G is RA-consistent.

In case (2) we then know there exists w′ such that (w′, r) ∈ G ′.rf (w′, w) ∈
G ′.mo. There are now three cases to consider: a) w ∈ ξr.E; or b) w 6∈ ξr.E ∧
w′ ∈ ξr.E; or c) w,w′ 6∈ ξr.E. In case (2.a.) from the construction of G ′ (in
particular, G ′.rf) we know that (r, w) ∈ G ′.poI ⊆ G.poI ⊆ G.hb. As such, we

have w
G.hb
→ r

G.hb
→ w, contradicting our assumption that G is RA-consistent.

In case (2.b), since w′ is a write event, w′ ∈ ξr.E, r is a read event, w is
a write event and (w, r) ∈ G ′.rsi-hb, from Lemma 15 we have (w,w′) ∈ G.hb.
Moreover, since (w′, w) ∈ G ′.mo, from the definition of G ′.mo we also have

(w′, w) ∈ G.mo. As such we have w
G.hb
→ w′ G.mo

→ w, contradicting the assumption
that G is RA-consistent.

In case (2.c), from the construction of G ′ we then know (ξr .rsx, w) ∈ G.rb
and (ξr.vsx, w) ∈ G.rb. On the other hand, since r is a read event, w is a write
event and (w, r) ∈ G ′.rsi-hb, from Lemma 15 we have (w, ξr .vsx) ∈ G.hb. As

such we have w
G.hb
→ ξr.vsx

G.rb
→ w, contradicting the assumption that G is RA-

consistent.

E.2 Implementation Completeness

In order to establish the completeness of our implementation, it suffices to show
that given an RSI-consistent execution graph G ′ = (E , po, rf,mo, lo), we can
construct a corresponding RA-consistent execution graph G of the implementa-
tion. Before proceeding with the construction of a corresponding implementation
graph, we describe several auxiliary definitions.

Given a transaction class Tξ ∈ G ′.T /st, we write WSξ for the set of locations
written to by Tξ: WSξ =

⋃

e∈Tξ∩W loc(e). Similarly, we write RSξ for the set of
locations read from by Tξ, prior to being written by Tξ. For each location x read
from by Tξ, we additionally record the first read event in Tξ that retrieved the
value of x. That is,

RSTξ
,

{

(x, r) r ∈ Ti ∩Rx ∧ ¬∃e ∈ Tξ ∩ E x. e
po
→ r

}

Note that the execution trace for each transaction Tξ ∈ G ′.T /st is of the form

θ′ξ = t ′1
po|imm

→ · · ·
po|imm

→ t ′k, comprising a series of read or write events. As such,
we have G ′.E = G ′.T =

⋃

Tξ∈G′.T /st Tξ = θ′ξ.E . Let RSTξ
∪ WSTξ

= {x1 · · · xn}.
We then construct the implementation trace θξ as:

θξ = Rs
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ts
po|imm

→ Us

where

– Rs = rlx1
po|imm

→ · · ·
po|imm

→ rlxn
po|imm

→ Sx1
po|imm

→ · · ·
po|imm

→ Sxn
po|imm

→ Vx1

po|imm

→

· · ·
po|imm

→ Vxn , where the identifiers of all constituent events of Rs are picked
fresh, and

rlxj=RL(xj) Sxj=

{

rsxj
po|imm

→ wsxj if ∃r. (xj , r) ∈ RSξ ∧ valr(r) = vj

∅ otherwise

Vxj=

{

vsxj if ∃r. (xj , r) ∈ RSξ ∧ valr(r) = vj

∅ otherwise

with rsxj , R(xj , vj), vsxj , R(xj , vj) and wsxj , W(s[xj], vj).

– RUs = rux1

po|imm

→ · · ·
po|imm

→ ruxn , where the identifiers of all constituent
events of RUs are picked fresh, and for all j ∈ {1 · · ·n}:

ruxj =











RU(xj) if xj 6∈ WSξ

∅ otherwise

– PLs = plx1
po|imm

→ · · ·
po|imm

→ plxn , where the identifiers of all constituent
events of PLs are picked fresh, and for all j ∈ {1 · · ·n}:

plxj =











PL(xj) if xj ∈ WSξ

∅ otherwise

– Ts = t1
po|imm

→ · · ·
po|imm

→ tk, where for all m ∈ {1 · · · k}:

tm =

{

R(s[xn], vn) if t ′m=R(xn, vn)

W(xn, vn)
po|imm

→ W(s[xn], vn) if t ′m=W(xn, vn)

such that in the first case the identifier of tm is that of t ′m; and in the second
case the identifier of the first event in tm is that of t ′m and the identifier of
the second event is picked fresh.

– Us = wux1

po|imm

→ · · ·
po|imm

→ wuxn , where the identifiers of all constituent
events of Us are picked fresh, and

wuxj =

{

WU(xj) if xj ∈ WSξ

∅ otherwise

In what follows we write E ξ as a shorthand for the events in the implementation

trace of θξ, i.e. E ξ ,
{

a a ∈ θξ.E
}

. We use the ξ. prefix to project the various
events of the implementation trace θξ (e.g. ξ.rlxj).

For each location x we then define:

LOx ,
{

(ξ.rlx, ξ.plx), (ξ.rl x, ξ.wux), (ξ.pl x, ξ.wux) G ′.Tξ ∩Wx 6= ∅
}

∪















(ξ.rlx, ξ
′.plx), (ξ.rlx, ξ

′.wux),
(ξ.rux, ξ

′.plx), (ξ.rux, ξ
′.wux)

ξ 6= ξ′ ∧ ∃a, b, x.
a ∈ G ′.Tξ ∧ b ∈ G ′.T ′

ξ

∧loc(a) = loc(b) = x

∧ a ∈ G ′.RE ∧ (a, b) ∈ G ′.rb















∪























(ξ.rlx, ξ
′.plx), (ξ.rlx, ξ

′.wux),
(ξ.pl x, ξ

′.rlx), (ξ.pl x, ξ
′.plx),

(ξ.pl x, ξ
′.wux),

(ξ.wux, ξ
′.rlx), (ξ.wux, ξ

′.plx),
(ξ.wux, ξ

′.wux)

ξ 6= ξ′ ∧ ∃a, b, x.
a ∈ G ′.Tξ ∧ b ∈ G ′.Tξ′
∧ loc(a) = loc(b) = x

∧ (a, b) ∈ G ′.mo























∪























(ξ.pl x, ξ
′.rlx), (ξ.pl x, ξ

′.rux),
(ξ.wux, ξ

′.rlx), (ξ.wux, ξ
′.rux)

ξ 6= ξ′ ∧ ∃a, b, x.
a ∈ G ′.Tξ ∧ b ∈ G ′.Tξ′
∧G ′.Tξ′ ∩Wx = ∅
∧ loc(a)=loc(b)=x

∧(a, b) ∈ G ′.(mo?; rf)























Note that each LOx satisfies the conditions in Def. 4.
We are now in a position to demonstrate the completeness of our implemen-

tation. Given an RSI-consistent execution graph G ′, we construct an execution
graphG of the implementation as follows and demonstrate that RA-consistent(G)
holds.

– G.E =
⋃

Tξ∈G′.T /st

θξ.E ∪G ′.NT . Observe that G ′.E ⊆ G.E .

– G.po is defined as G ′.po extended by the po for the additional events of G,
given by each θξ trace defined above. Note that G.po does not introduce
additional orderings between events of G ′.E . That is, ∀a, b ∈ G ′.E . (a, b) ∈
G ′.po ⇔ (a, b) ∈ G.po.

– G.rf =
⋃

x∈Locs

{

(w, ξ.rsx),
(w, ξ.vsx)

∃r. (x, r) ∈ RSξ
∧ (w, r) ∈ G ′.rf

}

∪
(

G ′.rf ∩G ′.E × G ′.NT).

– G.mo = G ′.mo.
– G.lo =

⋃

x∈Locs
LOx, with LOx as defined above.

Notation In what follows, given an RSI implementation graph G as con-
structed above we writeG.NT for the non-transactional events ofG, i.e.G.NT ,
{

a ¬∃ξ. a ∈ G.E ξ

}

. Moreover, as before, given a relation r ⊆ G.E × G.E , we

override the rI notation and write rI for
{

(a, b) ∈ r ∃ξ. a, b ∈ θξ.E
}

.

Lemma 16. Given an RSI-consistent execution graph G ′ and its corresponding
implementation graph G constructed as above, for all a, b, ξa, ξb:

(a, b) ∈ G.hb ⇒
(∃ξ. a, b ∈ G.E ξ ⇒ (a, b) ∈ G.po)

∧
(

¬∃ξ. a, b ∈ G.E ξ ⇒

∃A,B. ∅ ⊂ A×B ⊆ G ′.rsi-hb
∧ (a ∈ G.NT ⇒ A={a}) ∧ (b ∈ G.NT ⇒ B={b})
∧ [a ∈ G.E ξa ⇒

A=G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧A=G ′.Tξa ∩RE)

∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d})]
∧ [b ∈ G.E ξb ⇒

B=G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B=G ′.Tξb ∩W)]
)

where

stg(a, ξa) ,



















1 if a ∈ ξa.Rsξa
2 if a ∈ ξa.RUsξa
3 if a ∈ ξa.PLsξa
4 otherwise

Proof. Pick an arbitrary RSI-consistent execution graph G ′ and its corresponding
implementation graph G constructed as above. Let hb0 , G.(po ∪ rf ∪ lo) and
hbn+1 , hb0; hbn, for all n ∈ N. It is then straightforward to demonstrate that
G.hb =

⋃

i∈N
hbi. We thus demonstrate instead that:

∀n ∈ N. ∀a, b, ξa, ξb. (a, b) ∈ G.hbn ⇒
(∃ξ. a, b ∈ G.E ξ ⇒ (a, b) ∈ G.po)

∧
(

¬∃ξ. a, b ∈ G.E ξ ⇒

∃A,B. ∅ ⊂ A×B ⊆ G ′.rsi-hb
∧ (a ∈ G.NT ⇒ A={a}) ∧ (b ∈ G.NT ⇒ B={b})
∧ [a ∈ G.E ξa ⇒

A=G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧A=G ′.Tξa ∩RE)

∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d})]
∧ [b ∈ G.E ξb ⇒

B=G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B=G ′.Tξb ∩W)]
)

We proceed by induction on n.

Base case n = 0
There are three cases to consider: 1) (a, b) ∈ G.po; or 2) (a, b) ∈ G.rf; or 3)
(a, b) ∈ G.lo.

In case (1) there are five cases to consider: a) ∃ξ. (a, b) ∈ G.E ξ; or b)
a, b ∈ G.NT ; or c) a ∈ G.NT and b ∈ G.E ξb ; or d) a ∈ G.E ξa and b ∈
G.NT ; or e) a ∈ G.E ξa , b ∈ G.E ξb and ξa 6= ξb. In case (1.a) we then have
(a, b) ∈ G.poI, as required. In case (1.b) from the construction of G.po we have
(a, b) ∈ G ′.po, as required. In case (1.c) from the construction of G.po we have
({a} ×G ′.Tξb) ∈ G ′.po, as required. In case (1.d) from the construction of G.po
we have (G ′.Tξa × {b}) ∈ G ′.po, as required. In case (1.e) from the construction
of G.po we have (G ′.Tξa ×G ′.Tξb) ∈ G ′.po, as required.

In case (2) there are five cases to consider: a) ∃ξ. (a, b) ∈ G.E ξ; or b)
a, b ∈ G.NT ; or c) a ∈ G.NT and b ∈ G.E ξb ; or d) a ∈ G.E ξa and b ∈
G.NT ; or e) a ∈ G.E ξa , b ∈ G.E ξb and ξa 6= ξb. Case (2.a) holds vacuously as
(a, b) ∈ G.rfI = ∅. In case (2.b) from the construction of G.rf we have (a, b) ∈
G ′.rf, as required. In case (2.c) from the construction of G.rf we know that there
exists r ∈ G ′.Tξb such that (a, r) ∈ G ′.rf. As such we have ({w} × G ′.Tξb) ⊆
G ′.([NT]; rf; st) ⊆ G ′.rsi-hb, as required. In case (2.d) from the construction of

G.rf we then have (a, b) ∈ G ′.rf; that is a
G.po?

→ a and (a, b) ∈ G ′.rf, as required.
In case (2.e) from the construction of G.rf we know that there exists r ∈ G ′.Tξb
such that (a, r) ∈ G ′.rf. As such we have (G ′.Tξa ×G ′.Tξb) ⊆ G ′.rfT ⊆ G ′.rsi-hb,
as required.

In case (3) there are five cases to consider: a) ∃ξ. (a, b) ∈ G.E ξ; or b)
a, b ∈ G.NT ; or c) a ∈ G.NT and b ∈ G.E ξb ; or d) a ∈ G.E ξa and b ∈ G.NT ;
or e) a ∈ G.E ξa , b ∈ G.E ξb and ξa 6= ξb. In case (3.a) from the construction
of lo we have (a, b) ∈ G.po, as required. Cases (3.b-3.d) hold vacuously as there
are no lo edge to or from non-transactional events. In case (3.e) from the con-
struction of lo we know there exist x, c, d such that c ∈ G ′.Tξa , d ∈ G ′.Tξb , and
either i) (c, d) ∈ G ′.rf; or ii) (c, d) ∈ G ′.(mo; rf); or iii) (c, d) ∈ G ′.mo; or iv)
loc(c) = loc(d) = x, a = ξa.rlx ∨ a = ξa.rux, b = ξa.plx ∨ b = ξa.wux and
c ∈ G ′.RE and (c, d) ∈ G ′.rb. In cases (3.e.i, 3.e.ii) we have G ′.Tξa × G ′.Tξb ⊆
G ′.(rfT ∪ (mo; rf)T) ⊆ rsi-rf ⊆ rsi-hb, as required. In case (3.e.iii) we have
G ′.Tξa × G ′.Tξb ⊆ G ′.moT ⊆ rsi-hb, as required. In case (3.e.iv) we then have
stg(a, ξa) ≤ 2, stg(b, ξb) ≥ 3, and G ′.(Tξa ∩ RE) × G ′.(Tξb ∩ W) ⊆ G ′.si-rb ⊆
rsi-hb, as required.

Inductive case n = m+1

∀i ∈ N. ∀a, b, ξa, ξb. i ≤ m ∧ (a, b) ∈ G.hbi ⇒
(∃ξ. a, b ∈ G.E ξ ⇒ (a, b) ∈ G.po)

∧
(

¬∃ξ. a, b ∈ G.E ξ ⇒

∃A,B. ∅ ⊂ A×B ⊆ G ′.rsi-hb
∧ (a ∈ G.NT ⇒ A={a}) ∧ (b ∈ G.NT ⇒ B={b})
∧ [a ∈ G.E ξa ⇒

A=G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧A=G ′.Tξa ∩RE)

∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d})]
∧ [b ∈ G.E ξb ⇒

B=G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B=G ′.Tξb ∩W)]
)

(I.H.)

Since (a, b) ∈ hbn, from the definition of hbn we know there exists c such
that (a, c) ∈ hb0 and (c, b) ∈ hbm. There are then five cases to consider: 1)
∃ξ. (a, b) ∈ G.E ξ; or 2) a, b ∈ G.NT ; or 3) a ∈ G.NT and b ∈ G.E ξb ; or 4)
a ∈ G.E ξa and b ∈ G.NT ; or 5) a ∈ G.E ξa , b ∈ G.E ξb and ξa 6= ξb.

Case 1
In case (1) pick arbitrary ξ such that a, b ∈ G.E ξ. There are then three additional
cases to consider: a) c ∈ G.NT ; b) c ∈ G.E ξ; or c) there exists ξ′ 6= ξ such that
c ∈ G.E ξ′ .

In case (1.a) from the proof of the base case and the (I.H.) we know there
exist A,B,C 6= ∅ such that C = {c}, A× C ⊆ G ′.rsi-hb, C ×B ⊆ G ′.rsi-hb and
thus A×B ⊆ G ′.rsi-hb and either: i) A = G ′.Tξ and B = G ′.Tξ; or ii) A = G ′.Tξ
and B = (G ′.(Tξ ∩W); or iii) stg(a, ξ) ≤ 2, A = G ′.(Tξ ∩ RE) and B = G ′.Tξ;
or iv) stg(a, ξ) ≤ 2, A = G ′.(Tξ ∩ RE), stg(b, ξ) ≥ 3 and B = G ′.(Tξ ∩ W);

or v) stg(a, ξ) ≤ 4, ∃d ∈ ξ.W . a
G.po?

→ d ∧ A = {d} and B = G ′.Tξ; or vi)

stg(a, ξ) ≤ 4, ∃d ∈ ξ.W . a
G.po?

→ d ∧ A = {d} and B = G ′.(Tξ ∩W).
Case (i) cannot arise as we would have A = B and thus A × A ⊆ G ′.rsi-hb,

contradicting the assumption that G ′ is RSI-consistent. Case (ii) cannot arise
as we would have (G ′.(Tξ ∩ W) × (G ′.(Tξ ∩ W) ⊆ G ′.rsi-hb, contradicting the
assumption that G ′ is RSI-consistent. Case (iii) cannot arise as we would have
(G ′.(Tξ∩RE)×(G ′.(Tξ∩RE) ⊆ G ′.rsi-hb, contradicting the assumption that G ′ is
RSI-consistent. In case (iv) since we have stg(a, ξ) ≤ 2 and stg(b, ξ) ≥ 3, from
the definition of stg(., .) and the construction of G we have (a, b) ∈ G.po, as
required. Cases (v-vi) cannot arise as we would have ∃d ∈ ξ.W . (d, d) ∈ G ′.rsi-hb,
contradicting the assumption that G ′ is RSI-consistent.

In case (1.b) from the proof of the base case we have (a, c) ∈ G.po. On the
other hand from (I.H.) we have (c, b) ∈ G.po. As G.po is transitively closed, we
have (a, b) ∈ G.po, as required.

In case (1.c) from the proof of the base case (in cases 1.e, 2.e and 3.e) we
have either A) G ′.Tξ×G ′.Tξ′ ⊆ G ′.rsi-hb; or B) stg(a, ξ) ≤ 2, stg(c, ξ′) ≥ 3, and
∅ ⊂ G ′.(Tξ ∩RE)×G ′.(Tξ′ ∩W) ⊆ G ′.rsi-hb. On the other hand from (I.H.) we
know there exist C,B 6= ∅ such that C ×B ⊆ G ′.rsi-hb and either: i) C = G ′.Tξ′
and B = G ′.Tξ; or ii) C = G ′.Tξ′ , stg(b, ξ) ≥ 3 and B = G ′.(Tξ ∩ W); or
iii) stg(c, ξ′) ≤ 2, C = G ′.(Tξ′ ∩ RE) and B = G ′.Tξ; or iv) stg(c, ξ′) ≤ 2,
C = G ′.(Tξ′ ∩ RE), stg(b, ξ) ≥ 3 and B = G ′.(Tξ ∩ W); or v) stg(c, ξ′) ≤ 4,

∃d ∈ ξ′.W . c
G.po?

→ d ∧ C = {d} and B = G ′.Tξ; or vi) stg(c, ξ′) ≤ 4, ∃d ∈

ξ′.W . c
G.po?

→ d ∧ C = {d}, stg(b, ξ) ≥ 3 and B = G ′.(Tξ ∩W).

Cases (A.i-A.vi) lead to a cycle in G ′.rsi-hb, contradicting the assumption
that G ′ is RSI-consistent. In cases (B.ii, B.iv, B.vi) we then have stg(a, ξ) ≤ 2
and stg(b, ξ) ≥ 3. Consequently from the definition of stg(., .) and the con-
struction of G we have (a, b) ∈ G.po, as required. Case (B.i) leads to a cycle in
G ′.rsi-hb, contradicting the assumption that G ′ is RSI-consistent. In cases (B.iii)
we have stg(c, ξ′) ≥ 3 and stg(c, ξ′) ≤ 2, leading to a contradiction. In case
(B.v) we then know ∃d ∈ ξ′.W . ∅ ⊂ G ′.(Tξ∩RE)×{d} ⊆ G ′.rsi-hb∧{d}×G ′.Tξ ⊆
G ′.rsi-hb. That is, we have ∅ ⊂ G ′.(Tξ ∩RE)×G ′.(Tξ ∩RE) ⊆ G ′.rsi-hb, contra-
dicting the assumption that G ′ is RSI-consistent.

Case 2
There are two additional cases to consider: a) c ∈ G.NT ; or b) there exists ξ
such that c ∈ G.E ξ.

In case (2.a) from the proof of the base case we have (a, c) ∈ G ′.rsi-hb. On
the other hand from (I.H.) we have (c, b) ∈ G ′.rsi-hb. As G ′.rsi-hb is transitively
closed, we have (a, b) ∈ G ′.rsi-hb, as required.

In case (2.b) from the proof of the base case we know there exists C1 6= ∅ such
that {a} × C1 ⊆ G ′.rsi-hb and either: A) C1 = G ′.Tξ; or B) stg(c, ξ) ≥ 3 and
C1 = G ′.(Tξ ∩W). On the other hand, from (I.H.) we know there exists C2 6= ∅
such that C2 ×{b} ∈ G ′rsi-hb and either: i) C2 = G ′.Tξ; or ii) stg(c, ξ) ≤ 2 and

C2 = G ′.(Tξ ∩RE); or iii) stg(c, ξ) ≤ 4 and ∃d ∈ ξ.W . c
G.po?

→ d ∧C2 = {d}.
In cases (A.i-A.iii) and (B.i, B.iii) from the transitivity of G ′.rsi-hb we have

(a, b) ∈ G ′.rsi-hb, as required. Case (B.ii) cannot arise as otherwise we would
have 3 ≤ stg(c, ξ) ≤ 2, leading to a contradiction.

Case 3
There are three additional cases to consider: a) c ∈ G.NT ; b) c ∈ G.E ξb ; or c)
there exists ξc 6= ξb such that c ∈ G.E ξc .

In case (3.a) from the proof of the base case we have (a, c) ∈ G ′.rsi-hb. On the
other hand from (I.H.) we know there exists B 6= ∅ such that {c}×B ⊆ G ′.rsi-hb
and B = G ′.Tξb ∨(stg(b, ξb) ≥ 3∧B = G ′.(Tξb ∩W)). As G ′.rsi-hb is transitively
closed we then know there exists B 6= ∅ such that {a} × B ⊆ G ′.rsi-hb and
B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)), as required.

In case (3.b) from the proof of the base case we know there exists B 6= ∅ such
that {a} ×B ⊆ G ′.rsi-hb and B = G ′.Tξb ∨ (stg(c, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)).

On the other hand, from (I.H.) we have c
G.po
→ b and thus from the definition of

stg(., .) and the construction of G we have stg(b, ξb) ≥ stg(c, ξb). As such, we
we know there exists B 6= ∅ such that {a} × B ⊆ G ′.rsi-hb and B = G ′.Tξb ∨
(stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)), as required.

In case (3.c) from the proof of the base case we know there exists C1 6= ∅ such
{a} × C1 ⊆ G ′.rsi-hb and either A) C1 = G ′.Tξc ; or B)(stg(c, ξc) ≥ 3 ∧ C1 =
G ′.(Tξc ∩ W)). On the other hand, from (I.H.) we know there exist C2, B 6= ∅
such that C2 × B ∈ G ′.rsi-hb and either: i) C2 = G ′.Tξc and B = G ′.Tξb ; or ii)
C2 = G ′.Tξc and (stg(b, ξb) ≥ 3∧B = G ′.(Tξb∩W)); or iii) stg(c, ξc) ≤ 2∧C2 =
G ′.(Tξc ∩ RE) and B = G ′.Tξb ; or iv) stg(c, ξc) ≤ 2 ∧ C2 = G ′.(Tξc ∩ RE) and

(stg(b, ξb) ≥ 3∧B = G ′.(Tξb ∩W)); or v) stg(c, ξc) ≤ 4∧∃d ∈ ξc.W . c
G.po?

→ d∧

C2 = {d} and B = G ′.Tξb ; or vi) stg(c, ξc) ≤ 4∧∃d ∈ ξc.W . c
G.po?

→ d∧C2 = {d}
and (stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)).

In cases (A.i-A.vi) and (B.i, B.ii, B.v, B.vi) from the transitivity of G ′.rsi-hb
we know there exists B 6= ∅ such that {a} × B ⊆ G ′.rsi-hb and B = G ′.Tξb ∨
(stg(b, ξb) ≥ 3∧B = G ′.(Tξb ∩W)), as required. Cases (B.iii, B.iv) cannot arise
as we would otherwise have 3 ≤ stg(c, ξc) ≤ 2, leading to a contradiction.

Case 4
There are three additional cases to consider: a) c ∈ G.NT ; b) c ∈ G.E ξa ; or c)
there exists ξc 6= ξa such that c ∈ G.E ξc .

In case (4.a) from (I.H.) we have (c, b) ∈ G ′.rsi-hb. On the other hand from
the base case we know there exists A 6= ∅ such that A×{c} ⊆ G ′.rsi-hb and A =

G ′.Tξa∨(stg(a, ξa) ≤ 2∧A = G ′.(Tξa ∩RE))∨stg(a, ξa) ≤ 4∧∃d ∈ ξa.W . a
G.po?

→
d∧A = {d}. As G ′.rsi-hb is transitively closed we then know we know there exists
A 6= ∅ such that A × {b} ⊆ G ′.rsi-hb and A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A =

G ′.(Tξa ∩RE)) ∨ stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d}, as required.

In case (4.b) from (I.H.) we know there exists A 6= ∅ such that A × {b} ⊆
G ′.rsi-hb and A = G ′.Tξa ∨ (stg(c, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩ RE)) ∨ stg(c, ξa) ≤

4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d}. On the other hand, from the proof of

the base case we have a
G.po
→ c and thus from the definition of stg(., .) and the

construction of G we have stg(a, ξa) ≤ stg(c, ξa). As such, we know there exists
A 6= ∅ such that A × {b} ⊆ G ′.rsi-hb and A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A =

G ′.(Tξa ∩RE)) ∨ stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d}, as required.

In case (4.c) from the proof of the base case we know there exist A,C1 6= ∅
such that A × C1 ⊆ G ′.rsi-hb and either: i) A = G ′.Tξa and C1 = G ′.Tξc ; or ii)
A = G ′.Tξa and (stg(c, ξc) ≥ 3∧C1 = G ′.(Tξc ∩W)); or iii) stg(a, ξa) ≤ 2∧A =
G ′.(Tξa ∩ RE) and C1 = G ′.Tξc ; or iv) stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩ RE) and

(stg(c, ξc) ≥ 3∧C1 = G ′.(Tξc∩W)); or v) stg(a, ξa) ≤ 4∧∃d ∈ ξa.W . a
G.po?

→ d∧

A = {d} and C1 = G ′.Tξc ; or vi) stg(a, ξa) ≤ 4∧∃d ∈ ξa.W . a
G.po?

→ d∧A = {d}
and (stg(c, ξc) ≥ 3 ∧ C1 = G ′.(Tξc ∩W)).

On the other hand, from (I.H.) we know there exists C2 6= ∅ such C2 ×{b} ⊆
G ′.rsi-hb and either A) C2 = G ′.Tξc ; or B) (stg(c, ξc) ≤ 2∧C2 = G ′.(Tξc ∩RE));

or C) (stg(c, ξc) ≤ 4 ∧ ∃e ∈ ξc.W . c
G.po?

→ e ∧ C2 = {e}).

In cases (A.i-A.vi), (C.i-C.vi) and (B.i, B.iii, B.v) from the transitivity
of G ′.rsi-hb we know there exists A 6= ∅ such that A × {b} ⊆ G ′.rsi-hb and
A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩ RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈

ξa.W . a
G.po?

→ d ∧A = {d}), as required. Cases (B.ii, B.iv, B.vi) cannot arise as
we would otherwise have 3 ≤ stg(c, ξc) ≤ 2, leading to a contradiction.

Case 5
There are four additional cases to consider: a) c ∈ G.NT ; b) c ∈ G.E ξa ; or c)
c ∈ G.E ξb ; or d) there exists ξc such that ξc 6= ξa, ξc 6= ξb and c ∈ G.E ξc .

In case (5.a) from the proof of the base case we know there exists A 6= ∅
such that A× {c} ⊆ G ′.rsi-hb and A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧A = G ′.(Tξa ∩

RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d}). On the other hand
from (I.H.) we know there exists B 6= ∅ such that {c} × B ⊆ G ′.rsi-hb and
B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧ B = G ′.(Tξb ∩ W)). As such, sine G ′.rsi-hb is
transitive we know there exist A,B 6= ∅ such that A × B ⊆ G ′.rsi-hb; that A =

G ′.Tξa∨(stg(a, ξa) ≤ 2∧A = G ′.(Tξa∩RE))∨(stg(a, ξa) ≤ 4∧∃d ∈ ξa.W . a
G.po?

→
d ∧ A = {d}); and that B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧ B = G ′.(Tξb ∩ W)), as
required.

In case (5.b) from (I.H.) we know there exist A,B 6= ∅ such that A × B ⊆
G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(c, ξa) ≤ 2∧A = G ′.(Tξa ∩RE))∨ (stg(c, ξa) ≤

4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d}); and that B = G ′.Tξb ∨ (stg(b, ξb) ≥
3 ∧ B = G ′.(Tξb ∩ W)). On the other hand from the proof of the base case we
have (a, c) ∈ G ′.po and thus from the definition of stg(., .) and the construction
of G we have stg(a, ξa) ≤ stg(c, ξa). As such we know there exist A,B 6= ∅
such that A×B ⊆ G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩

RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d}) and that B =
G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)), as required.

In case (5.c) from the proof of the base case we know there exist A,B 6= ∅
such that A×B ⊆ G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩

RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d}), and that B =
G ′.Tξb ∨ (stg(c, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)). On the other hand from (I.H.) we
have (c, b) ∈ G ′.po and thus from the definition of stg(., .) and the construction
of G we have stg(c, ξa) ≤ stg(b, ξa). As such we know there exist A,B 6= ∅
such that A×B ⊆ G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩

RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d}) and that B =
G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)), as required.

In case (5.d) from the proof of the base case we know there exist A,C1 6= ∅
such that A×C1 ⊆ G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2∧A = G ′.(Tξa ∩

RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d}), and that either A)
C1 = G ′.Tξc ; or B) (stg(c, ξc) ≥ 3 ∧ C1 = G ′.(Tξc ∩W)).

On the other hand, from (I.H.) we know there exist C2, B 6= ∅ such that
C2 × B ⊆ G ′.rsi-hb; that B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧ B = G ′.(Tξb ∩ W));
and that either: i) C2 = G ′.Tξc ; or ii) stg(c, ξc) ≤ 2 ∧ C2 = G ′.(Tξc ∩ RE); iii)

stg(c, ξc) ≤ 4 ∧ ∃d ∈ ξc.W . c
G.po?

→ d ∧C2 = {d}).
In cases (A.i-A.iii) and (B.i, B.iii) from the transitivity of G ′.rsi-hb we know

there exists A,B 6= ∅ such that A×B ⊆ G ′.rsi-hb; that A = G ′.Tξa∨(stg(a, ξa) ≤

2 ∧ A = G ′.(Tξa ∩ RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {d});
and that B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧ B = G ′.(Tξb ∩ W)), as required. Case
(B.ii) cannot arise as we would otherwise have 3 ≤ stg(c, ξc) ≤ 2, leading to a
contradiction.

Theorem 12 (Completeness). For all RSI execution graphs G ′ and their
counterpart implementation graphs G constructed as above,

rsi-consistent(G ′) ⇒ RA-consistent(G)

Proof. Pick an arbitrary RSI execution graph G ′ and its counterpart implemen-
tation graph G constructed as above and let us assume that rsi-consistent(G ′)
holds. From the definition of RA-consistent(G) it then suffices to show:

1. irreflexive(G.hb)
2. irreflexive(G.mo;G.hb)
3. irreflexive(G.rb;G.hb)

RTS. part 1
We proceed by contradiction. Let us assume that there exists a such that (a, a) ∈
G.hb. There are now two cases to consider: 1) a ∈ G.NT ; or 2) ∃ξ. a ∈ G.E ξ

In case (1) from Lemma 16 we have (a, a) ∈ G ′.rsi-hb, contradicting the assump-
tion that G ′ is RSI-consistent. Similarly, in case (2) from Lemma 16 we have
(a, a) ∈ G.po, leading to a contradiction as G.po is acyclic by construction.

RTS. part 2
We proceed by contradiction. Let us assume that there exist a, b such that (a, b) ∈
G.hb and (b, a) ∈ G.mo. From the construction of G.mo we then know that
(b, a) ∈ G ′.mo. Let loc(a) = loc(b) = x. There are then five cases to consider:
1) ∃ξ. (a, b) ∈ G.E ξ; or 2) a, b ∈ G.NT ; or 3) a ∈ G.NT and b ∈ G.E ξb ; or 4)
a ∈ G.E ξa and b ∈ G.NT ; or 5) a ∈ G.E ξa , b ∈ G.E ξb and ξa 6= ξb.

In case (1) from Lemma 16 we have (a, b) ∈ G.po, and since a, b ∈ G.W =
G ′.W, from the construction of G.po we have (a, b) ∈ G ′.po. Moreover, since
a, b are write events in the same transaction ξ, (a, b) ∈ G ′.poI ∩W2 ⊆ G ′.rsi-hb.

As such we have a
G

′.rsi-hb
→ b

G
′.mo
→ a, contradicting the assumption that G ′ is

RSI-consistent.

In cases (2, 3) since a, b ∈ G.W = G ′.W, from Lemma 16 we have (a, b) ∈

G ′.rsi-hb. As such we have a
G

′.rsi-hb
→ b

G
′.mo
→ a, contradicting the assumption that

G ′ is RSI-consistent.

Similarly, in cases (4, 5) since a, b ∈ G.W = G ′.W, from Lemma 16 we

have either i) (a, b) ∈ G ′.rsi-hb; or ii) ∃d ∈ ξa.W . a
G.po?

→ d ∧ (d, b) ∈ G ′.rsi-hb.

On the other hand, since in case (ii) a, d ∈ G.E ξa , a
G.po?

→ d and a, d are both

write events, we also have a
G

′.po?

→ d. Moreover, since G ′.poI ∩ W2 ⊆ G ′.rsi-hb,

we have (a, d) ∈ G ′.rsi-hb?. As such we have a
G

′.rsi-hb?
→ d

G
′.rsi-hb
→ b and from the

transitivity of G ′.rsi-hb in both cases we have (a, b) ∈ G ′.rsi-hb. Consequently, we

have a
G

′.rsi-hb
→ b

G
′.mo
→ a, contradicting the assumption that G ′ is RSI-consistent.

RTS. part 3
We proceed by contradiction. Let us assume that there exists a, b such that (a, b) ∈
G.hb and (b, a) ∈ G.rb. Let loc(a) = loc(b) = x. There are then five cases to
consider: 1) ∃ξ. (a, b) ∈ G.E ξ; or 2) a, b ∈ G.NT ; or 3) a ∈ G.NT and
b ∈ G.E ξb ; or 4) a ∈ G.E ξa and b ∈ G.NT ; or 5) a ∈ G.E ξa , b ∈ G.E ξb and
ξa 6= ξb.

In case (1) from Lemma 16 we have (a, b) ∈ G.po. On the other hand since
(b, a) ∈ G.rb, from the construction of G we know that (b, a) ∈ G.po. As such,

since G.po is transitively closed and a
G.po
→ b

G.po
→ a, we have (a, a) ∈ G.po,

leading to a contradiction as G is acyclic by construction.

In case (2) from the construction of G.rb we know that (a, b) ∈ G ′.rb. On
the other hand, from Lemma 16 we have (a, b) ∈ G ′.rsi-hb. As such we have

a
G

′.rsi-hb
→ b

G
′.rb
→ a, contradicting the assumption that G ′ is RSI-consistent.

In case (3) from the construction of G.rb we know that b = ξb.rsx∨b = ξb.vsx.
Consequently, from Lemma 16 we have {a} × G ′.Tξb ⊆ G ′.rsi-hb. On the other
hand, from the construction of G.rb we know there exists r ∈ G ′.Tξb such that

(r, a) ∈ G ′.rb. As such, we have a
G

′.rsi-hb
→ r

G
′.rb
→ a, contradicting the assumption

that G ′ is RSI-consistent.

In case (4) from the construction of G.rb we know that (a, b) ∈ G ′.rb. More-
over, since a ∈ G.W, from Lemma 16 we have either i) (a, b) ∈ G ′.rsi-hb; or ii)

∃d ∈ ξa.W . a
G.po?

→ d∧ (d, b) ∈ G ′.rsi-hb. As such, since a, d are both write events

and a
G.po?

→ d, we also have a
G

′.po?

→ d. Moreover, since G ′.poI ∩W2 ⊆ G ′.rsi-hb,

we have (a, d) ∈ G ′.rsi-hb?. As such we have a
G

′.rsi-hb?
→ d

G
′.rsi-hb
→ b and from

the transitivity of G ′.rsi-hb in both cases (i, ii) we have (a, b) ∈ G ′.rsi-hb. Con-

sequently, we have a
G

′.rsi-hb
→ b

G
′.rb
→ a, contradicting the assumption that G ′ is

RSI-consistent.

In case (5) from the construction of G.rb we know that b = ξb.rsx∨b = ξb.vsx.
Consequently, from Lemma 16 and since a is a write event, we have either i)

G ′.Tξa ×G ′.Tξb ⊆ G ′.rsi-hb; or ii) ∃d ∈ ξa.W . a
G.po?

→ d∧{d}×G ′.Tξb ⊆ G ′.rsi-hb.

As such, since a, d are both write events and a
G.po?

→ d, we also have a
G

′.po?

→ d.
Moreover, since G ′.poI∩W2 ⊆ G ′.rsi-hb, we have (a, d) ∈ G ′.rsi-hb?. As such we

have a
G

′.rsi-hb?

→ d
G

′.rsi-hb
→ b and from the transitivity of G ′.rsi-hb in both cases (i,

ii) we have {a}×G ′.Tξb ⊆ G ′.rsi-hb. On the other hand, from the construction of
G.rb we know there exists r ∈ G ′.Tξb such that (r, a) ∈ G ′.rb. Consequently, we

have a
G

′.rsi-hb
→ b

G
′.rb
→ a, contradicting the assumption that G ′ is RSI-consistent.

F Soundness and Completeness of the Lazy RSI
Implementation

Given an execution graph G of the lazy RSI implementation, let us assign a
transaction identifier to each transaction executed by the program; and given a
transaction ξ. Let RS0

ξ = WS 0
ξ = ∅. Let us write G.NT for those events in G.E

that do not occur in a transaction. Observe that given a transaction ξ of the
lazy RSI implementation, the trace of ξ, written θξ, is of the form:

Fs
po|imm

→ Is
po|imm

→ Ts
po|imm

→ VRs
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ws
po|imm

→ Us

where:

– Fs denotes the sequence of events failing to obtain the necessary locks (i.e.
those iterations that do not succeed in promoting the writer locks) or validate
the snapshot;

– Is denotes the sequence of events initialising the values of LS, RS and WS with
∅, initialising ws with [] and initialising s[x] with (⊥,⊥) for each location
x;

– Ts denotes the sequence of events corresponding to the execution of JTK and

is of the form t1
po|imm

→ · · ·
po|imm

→ tk, where for all m ∈ {1 · · ·k}:

tm=















rd(xm, vm,RSm−1,WSm−1)
po|imm

→ lr xm if Om=R(xm, vm)

wr(xm, vm,RSm−1,WSm−1)
po|imm

→ wwsxm if Om=W(xm, vm)
po|imm

→ R(s[xm], (v′m,−))
po|imm

→ lw xm

po|imm

→ W(ws,wsm)

where Om denotes the mth event in the trace of T; lrxm , R(s[xm], (−, vm));

rd(xm, vm,RSm−1,WSm−1) ,



























































R(s[xm], (⊥,⊥)) if xm 6∈ RSm−1 ∪WSm−1

po|imm→ fsm
po|imm→ rlxm
po|imm→ wrsxm
po|imm→ rsxm
po|imm→ wsxm

∅ otherwise

fsm denotes the sequence of events attempting (but failing) to acquire the
read lock on xm, rlxm , RL(xlm), wrsxm , W(RS,RSm), rsxm , R(xm, v0xm),

wsxm , W(s[xm], (v0xm , v0xm)); and for all m > 0:

RSm+1 ,

{

RSm ∪ {xm} if Om=R(xm,−)

RSm otherwise

and

wr(xm, vm,RSm−1,WSm−1) ,











R(s[xm], (⊥,⊥)) if xm 6∈ RSm−1 ∪WSm−1

po|imm→ fsm
po|imm→ rlxm∅ otherwise

wwsxm , W(WS,WSm); lwxm , W(s[xm], (v′m, vm)); fsm and rlxm are as
defined above; and for all m > 0:

WSm+1 ,

{

WSm ∪ {xm} if Om=W(xm,−)

WSm otherwise

wsm+1 ,

{

wsm++[(xm, vm)] if Om=W(xm, vm)

wsm otherwise

Let RSξ = RSm, WSξ = WSm, and wsξ = wsm; let RSξ ∪ WSξ be enumerated
as {x1 · · · xi} for some i, and wsξ be enumerated as {(x1, v1) · · · (xj , vj)} for
some j.

– VRs denotes the sequence of events validating the reads and is of the form

vx1
po|imm

→ · · ·
po|imm

→ vxi , where for all n ∈ {1 · · · i}:

vxn =

{

R(s[xn], (v
0
xn
,−))

po|imm

→ vrxn=R(xn, v
0
xn
) if xn ∈ RSξ

∅ otherwise

– RUs denotes the sequence of events releasing the reader locks (when the given

location is in the read set only) and is of the form rux1

po|imm

→ · · ·
po|imm

→ ruxi ,
where for all n ∈ {1 · · · i}:

ruxn =

{

RU(xln) if xn 6∈ WSξ

∅ otherwise

– PLs denotes the sequence of events promoting the reader locks to writer ones

(when the given location is in the write set), and is of the form plx1
po|imm

→

· · ·
po|imm

→ pl xi , where for all n ∈ {1 · · · i}:

plxn =

{

PL(xln) if xn ∈ WSξ

∅ otherwise

– Ws denotes the sequence of events committing the writes of JTK and is of

the form cx1,v1
po|imm

→ · · ·
po|imm

→ cxj ,vj , where for all n ∈ {1 · · · j}: cxn,vn =
W(xn, vn)

– Us denotes the sequence of events releasing the locks on the write set, and

is of the form wux1

po|imm

→ · · ·
po|imm

→ wuxi , where for all n ∈ {1 · · · i}:

wuxn =

{

WU(xln) if xn ∈ WSξ

∅ otherwise

Given a transaction trace θξ, we write e.g. ξ.Us to refer to its constituent Us
sub-trace and write Us.E for the set of events related by po in Us . Similarly, we
write ξ.E for the set of events related by po in θξ. Note that G.E =

⋃

ξ∈Tx

ξ.E .

Note that for each transaction ξ and each location x, the ξ.rlx, ξ.rsx, ξ.vrx,
ξ.rux, ξ.plx and ξ.wux are uniquely identified when they exist. Let ξ.wx the last
(in po order) write to x in Ws , when it exists.

For each location x ∈ WSξ, let fw x denote the maximal write (in po order

within ξ) logging a write for x in s[x]. That is, when θξ = t1
po|imm

→ · · ·
po|imm

→ tm,
let fw x = wmax(x, [t1 · · · tm]), where

wmax(x, []) undefined

wmax(x, L++[t]) ,

{

lwx if t=wr(x,−,−,−)
po
→ lwx

po
→ wwsx

wmax(x, L) otherwise

F.1 Implementation Soundness

In order to establish the soundness of our implementation, it suffices to show
that given an RA-consistent execution graph of the implementation G, we can
construct a corresponding RSI-consistent execution graph G ′ with the same
outcome.

Given a transaction ξ ∈ Tx with RSξ∪WSξ = {x1 · · ·xi} and trace θξ as above

with Ts = t1
po|imm

→ · · ·
po|imm

→ tk, we construct the corresponding RSI execution
trace θ′ξ as follows:

θ′ξ , t ′1
po|imm

→ · · ·
po|imm

→ t ′k

where for all m ∈ {1 · · ·k}:

t ′m=R(xm, vm) when tm = rd(xm, vm, Sm)
po|imm

→ lrxm

t ′m=W(xm, vm) when tm = wr(xm, vm, Sm)
po|imm

→ wwsxm
po|imm

→ · · ·

such that in the first case the identifier of t ′m is that of lrxm ; and in the second
case the identifier of t ′m is that of lw xm . Note that for each write operation w in
θ′ξ, there exists a matching write operation in θξ.Ws , denoted by mw(w). That
is,

mw(w)=w′ def
⇐⇒ ∃i. ∧ (θ′ξ.E ∩W)

∣

∣

i
= w ∧ (θξ.Ws)|i = w′

We then define:

RFξ ,



































(w, t′j)

t′j ∈ θ′ξ.E ∧ ∃x, v. t′j=R(x, v) ∧w=W(x, v)

∧(w ∈ ξ.E ⇒ w
po
→ t′j ∧

(∀e ∈ ξ.E . w
po
→ e

po
→ t′j ⇒ (loc(e)6=x ∨ e 6∈W)))

∧(w 6∈ ξ.E ⇒ (∀e ∈ ξ.E . (e
po
→ t′j ⇒ (loc(e) 6= x ∨ e 6∈ W))

∧
(

(∃ξ′. (ξ′.wx, ξ.rsx) ∈ G.rf) ∧ w=ξ′.fw x)
∨(w ∈ G.NT ∧ (w, rsx) ∈ G.rf)

)



































∪







(w, r)
r ∈ G.NT ∧
(

(w ∈ G.NT ∧ (w, r) ∈ G.rf)
∨(∃w′. w′ = mw(w) ∧ (w′, r) ∈ G.rf)

)







Similarly, we define:

MO ,
{

(w1, w2) ∃w′
1, w

′
2. w

′
1 = mw(w1) ∧ w′

2 = mw(w2) ∧ (w′
1, w

′
2) ∈ G.mo

}

∪
{

(w,w′) w,w′ ∈ G.NT ∧ (w,w′) ∈ G.mo
}

∪
{

(w,w′) w′ ∈ G.NT ∧ ∃w′′. w′′ = mw(w) ∧ (w′′, w′) ∈ G.mo
}

∪
{

(w′, w) w′ ∈ G.NT ∧ ∃w′′. w′′ = mw(w) ∧ (w′, w′′) ∈ G.mo
}

We are now in a position to demonstrate the soundness of our implementation.
Given an RA-consistent execution graph G of the implementation, we construct
an RSI execution graph G ′ as follows and demonstrate that rsi-consistent(G ′)
holds.

– G ′.E =
⋃

ξ∈Tx

θ′ξ.E ∪G.NT , with the tx(.) function defined as:

tx(a) , ξ when a ∈ θ′ξ tx(a) , 0 when a ∈ G.NT

– G ′.po = G.po|G′.E

– G ′.rf =
⋃

ξ∈Tx
RFξ

– G ′.mo = MO

– G ′.lo = ∅

Observe that the events of each θ′ξ trace coincides with those of the equivalence
class Tξ of G ′. That is, θ′ξ.E = Tξ.

Lemma 17. Given an RA-consistent execution graph G of the implementa-
tion and its corresponding RSI execution graph G ′ constructed as above, for
all a, b, ξa, ξb, x:

ξa 6= ξb ∧ a ∈ ξa.E ∧ b ∈ ξb.E ∧ loc(a) = loc(b) = x ⇒

((a, b) ∈ G
′
.rf ⇒ ξa.wux

G.hb
→ ξb.rl x) (34)

∧ ((a, b) ∈ G
′
.mo ⇒ ξa.wux

G.hb
→ ξb.rl x) (35)

∧
(
(a, b) ∈ G

′
.rb ⇒ (x ∈ WSξa ∧ ξa.wux

G.hb
→ ξb.rl x) ∨ (x 6∈ WSξa ∧ ξa.rux

G.hb
→ ξb.pl x)

)

(36)

∧ ((a, b) ∈ G
′
.(mo; rf) ⇒ ξa.wux

G.hb
→ ξb.rlx) (37)

Proof. Pick an arbitrary RA-consistent execution graph G of the implementa-
tion and its corresponding RSI execution graph G ′ constructed as above. Pick
an arbitrary a, b, ξa, ξb, x such that ξa 6= ξb, a ∈ ξa.E, a ∈ ξa.E, and loc(a) =
loc(b) = x.

RTS. (34)
Assume (a, b) ∈ G ′.rf. From the definition of G ′.rf we then know (ξa.wx, ξb.rsx) ∈
G.rf. On the other hand, from Lemma 2 we know that either i) x ∈ WSξb and

ξb.wux
G.hb
→ ξa.rlx; or ii) x 6∈ WSξb and ξb.rux

G.hb
→ ξa.plx; or iii) ξa.wux

G.hb
→

ξb.rlx. In case (i) we then have ξa.wx
G.rf
→ ξb.rsx

G.po
→ ξb.wux

G.hb
→ ξa.rlx

G.po
→

ξa.wx. That is, we have ξa.wx

G.hbloc→ ξa.wx, contradicting the assumption that G

is RA-consistent. Similarly in case (ii) we have ξa.wx
G.rf
→ ξb.rsx

G.po
→ ξb.rux

G.hb
→

ξa.plx
G.po
→ ξa.wx. That is, we have ξa.wx

G.hbloc→ ξa.wx, contradicting the assump-
tion that G is RA-consistent. In case (iii) the desired result holds trivially.

RTS. (35)
Assume (a, b) ∈ G ′.mo. From the definition of G ′.mo we then know there ex-
ist w1 ∈ ξa.Ws and w2 ∈ ξb.Ws such that (w1, w2) ∈ G.mo and loc(w1) =

loc(w2) = x. On the other hand, from Lemma 2 we know that either i) ξb.wux
G.hb
→

ξa.rlx; or ii) ξa.wux
G.hb
→ ξb.rlx. In case (i) we then have w1

G.mo
→ w2

G.po
→

ξb.wux
G.hb
→ ξa.rlx

G.po
→ w1. That is, we have w1

G.mo
→ w2

G.hbloc→ w1, contradict-
ing the assumption that G is RA-consistent. In case (ii) the desired result holds
trivially.

RTS. (36)
Assume (a, b) ∈ G ′.rb. From the definition of G ′.rb we then know that there exist
w ∈ ξb.Ws such that loc(w) = x and (ξa.rsx, w) ∈ G.rb. From Lemma 2 we then

know that either i) ξb.wux
G.hb
→ ξa.rlx; or ii) x 6∈ WSξa and ξa.rux

G.hb
→ ξa.plx; or

iii) x ∈ WSξa and ξa.wux
G.hb
→ ξb.rlx. In case (i) we then have w

G.po
→ ξb.wux

G.hb
→

ξa.rlx
G.po
→ ξa.rsx

G.rb
→ w. That is, we have w

G.hbloc→ ξa.rsx
G.rb
→ w, contradicting

the assumption that G is RA-consistent. In cases (ii-iii) the desired result holds
trivially.

Lemma 18. For all RA-consistent execution graphs G of the implementation
and their counterpart RSI execution graphs G ′ constructed as above and S ,

G ′.(rsi-po ∪ rsi-rf ∪moT)
+:

∀ξa, ξb, a, b. ∀a, b.
(a, b) ∈ S ⇒ (a, b ∈ G ′.NT ∧ (a, b) ∈ G.hb)

∨(a ∈ G ′.Tξa ∧ b ∈ G ′.Tξb ∧ ξa = ξb ∧ (a, b) ∈ G.po)

∨





a ∈ G ′.Tξa ∧ b ∈ G ′.Tξb ∧ ξa 6= ξb
∧∃d ∈ G ′.Tξb . ∀c ∈ G ′.Tξa . (c, d) ∈ G.hb
∧ a ∈ W ⇒ (mw(a), d) ∈ G.hb





∨

(

a ∈ G ′.NT ∧ b ∈ G ′.Tξb
∧∃d ∈ G ′.Tξb . (a, d) ∈ G.hb

)

∨





a ∈ G ′.Tξa ∧ b ∈ G ′.NT
∧∀c ∈ G ′.Tξa . (c, b) ∈ G.hb
∧ (∃e ∈ ξa.Ws . (e, b) ∈ G.hb ∨ ∀c ∈ ξa.E . (c, b) ∈ G.hb)





Proof. Let S0 = G ′.(rsi-po∪ rsi-rf ∪moT), and Sn+1 = S0;Sn, for all n >= 0. It
is straightforward to demonstrate that S =

⋃

i∈N

Si. We thus demonstrate instead

that:

∀i ∈ N. ∀ξa, ξb, a, b. ∀a, b.
(a, b) ∈ Si ⇒ (a, b ∈ G ′.NT ∧ (a, b) ∈ G.hb)

∨(a ∈ G ′.Tξa ∧ b ∈ G ′.Tξb ∧ ξa = ξb ∧ (a, b) ∈ G.po)

∨









a ∈ G ′.Tξa ∧ b ∈ G ′.Tξb ∧ ξa 6= ξb
∧∃d ∈ G ′.Tξb . ∀c ∈ G ′.Tξa . (c, d) ∈ G.hb
∧ (∃e ∈ ξa.Ws . (e, d) ∈ G.hb

∨∀c ∈ ξa.E . (c, d) ∈ G.hb)









∨

(

a ∈ G ′.NT ∧ b ∈ G ′.Tξb
∧∃d ∈ G ′.Tξb . (a, d) ∈ G.hb

)

∨









a ∈ G ′.Tξa ∧ b ∈ G ′.NT
∧∀c ∈ G ′.Tξa . (c, b) ∈ G.hb
∧ (∃e ∈ ξa.Ws . (e, b) ∈ G.hb

∨∀c ∈ ξa.E . (c, b) ∈ G.hb)









We proceed by induction on i.

Base case i = 0
Pick arbitrary ξa, ξb, a, b such that ξa 6= ξb and (a, b) ∈ S0. There are now
four cases to consider: A) a ∈ G ′.Tξa , b ∈ G ′.Tξb ; or B) a, b ∈ G ′.NT ; or C)
a ∈ G ′.NT , b ∈ G ′.Tξb ; or D) a ∈ G ′.Tξa , b ∈ G ′.NT .

In case (A) there are three additional cases to consider: 1) (a, b) ∈ G ′.rsi-po;
or 2) (a, b) ∈ G ′.rsi-rf; or 3) (a, b) ∈ G ′.moT.

In case (A.1), pick an arbitrary c ∈ G ′.Tξa . From the definition of G ′.poT
we have (c, b) ∈ G.po ⊆ G.hb, as required. Now assume that a ∈ W. From the
definition of G ′.po we then have (mw(a), d) ∈ G.po ⊆ G.hb, as required.

In case (A.2), we then know there exists w ∈ G ′.Tξa and r ∈ G ′.Tξb such
that (w, r) ∈ G ′.rf. Let loc(w) = loc(r) = x. From Lemma 17 we then have

ξa.wux
G.hb
→ ξb.rlx. Pick an arbitrary c ∈ G ′.Tξa . As such we have c

G.po
→ ξa.wux

G.hb
→

ξb.rlx
G.po
→ ξb.rsx. That is, we have (c, ξb.rsx) ∈ G.hb, as required. Now assume

that a ∈ W. We then have (mw(a), ξa.wux) ∈ G.po. As such, from the transitivity
of G.hb we also have (mw(a), ξb.rsx) ∈ G.hb, as required.

In case (A.3), we then know there exists w ∈ G ′.Tξa and w′ ∈ G ′.Tξb such
that (w,w′) ∈ G ′.mo. Let loc(w) = loc(w′) = x. From Lemma 17 we then have

ξa.wux
G.hb
→ ξb.rlx. Pick an arbitrary c ∈ G ′.Tξa . As we also have ξb.rlx

G.po
→ w2,

w1
G.po
→ ξa.wux, and c

G.po
→ ξa.wux, we then have (c, w2) ∈ G.hb and (w1, w2) ∈

G.hb, as required. Now assume that a ∈ W. We then have (mw(a), ξa.wux) ∈
G.po. As such, from the transitivity of G.hb we also have (mw(a), w2) ∈ G.hb, as
required.

In case (B) there are three additional cases to consider: 1) (a, b) ∈ G ′.rsi-po;
or 2) (a, b) ∈ G ′.rsi-rf; or 3) (a, b) ∈ G ′.moT.

In case (B.1) we then have (a, b) ∈ G ′.po and from the definition of G ′.po we
have (a, b) ∈ G.po ⊆ G.hb, as required. In case (B.2) we then have (a, b) ∈ G ′.rf
and from the definition of G ′.rf we have (a, b) ∈ G.rf ⊆ G.hb, as required. Case
(B.3) does not apply as a, b ∈ G ′.NT .

In case (C) there are three additional cases to consider: 1) (a, b) ∈ G ′.rsi-po;
or 2) (a, b) ∈ G ′.rsi-rf; or 3) (a, b) ∈ G ′.moT.

In case (C.1) we then have (a, b) ∈ G ′.po and from the definition of G ′.po
we have (a, b) ∈ G.po ⊆ G.hb, as required. In case (C.2) we know there exists
r ∈ G ′.Tξb such that (a, r) ∈ G ′.rf. Let loc(a) = loc(r) = x. From the definition
of G ′.rf we then have (a, ξb.rsx) ∈ G.rf ⊆ G.hb, as required. Case (C.3) does not
apply as a ∈ G ′.NT .

In case (D) there are three additional cases to consider: 1) (a, b) ∈ G ′.rsi-po;
or 2) (a, b) ∈ G ′.rsi-rf; or 3) (a, b) ∈ G ′.moT.

In case (D.1) we then have (a, b) ∈ G ′.po. Pick an arbitrary c ∈ G ′.Tξa . From
the definition of G ′.po we have (c, b) ∈ G ′.po. As such, from the definition of
G ′.po we have (c, b) ∈ G.po ⊆ G.hb, as required. Now assume that a ∈ W. We
then have (mw(a), b) ∈ G.po ⊆ G.hb, as required.

In case (D.2) we then have (a, b) ∈ G ′.rf and from the definition of G ′.rf
we know that mw(a) ∈ ξa.Ws and (mw(a), b) ∈ G.rf ⊆ G.hb, as required. Pick

an arbitrary c ∈ G ′.Tξa . We then know (c, mw(a)) ∈ G.po. We then have c
G.po
→

mw(a)
G.rf
→ b. As such, from the definition of G.hb we have (c, b) ∈ G.hb, as re-

quired. Case (D.3) does not apply as b ∈ G ′.NT .

Inductive case i=n+1

∀j ∈ N. ∀ξa, ξb, a, b. ∀a, b.
(a, b) ∈ Sj ∧ j ≤ n ⇒ (a, b ∈ G ′.NT ∧ (a, b) ∈ G.hb)

∨(a ∈ G ′.Tξa ∧ b ∈ G ′.Tξb ∧ ξa = ξb ∧ (a, b) ∈ G.po)

∨









a ∈ G ′.Tξa ∧ b ∈ G ′.Tξb ∧ ξa 6= ξb
∃d ∈ G ′.Tξb . ∀c ∈ G ′.Tξa . (c, d) ∈ G.hb
∧ (∃e ∈ ξa.Ws . (e, d) ∈ G.hb

∨∀c ∈ ξa.E . (c, d) ∈ G.hb)









∨

(

a ∈ G ′.NT ∧ b ∈ G ′.Tξb
∧∃d ∈ G ′.Tξb . (a, d) ∈ G.hb

)

∨









a ∈ G ′.Tξa ∧ b ∈ G ′.NT
∧∀c ∈ G ′.Tξa . (c, b) ∈ G.hb
∧ (∃e ∈ ξa.Ws . (e, b) ∈ G.hb

∨∀c ∈ ξa.E . (c, b) ∈ G.hb)









(I.H.)

Pick arbitrary ξa, ξb, a ∈ G ′.Tξa , b ∈ G ′.Tξb such that (a, b) ∈ Si. From the
definition of Si we then know there exist e, ξe such that e ∈ G ′.Tξe , (a, e) ∈ S0

and (e, b) ∈ Sn. The desired result then follows from the inductive hypothesis and
case analysis on a, b annd c.

Theorem 13 (Soundness). For all execution graphs G of the implementation
and their counterpart RSI execution graphs G ′ constructed as above,

RA-consistent(G) ⇒ rsi-consistent(G ′)

Proof. Pick an arbitrary execution graph G of the implementation such that
RA-consistent(G) holds, and its associated RSI execution graph G ′ constructed
as described above.

RTS. irreflexive(G ′.rsi-hb)
We proceed by contradiction. Let us assume ¬irreflexive(G ′.rsi-hb) Let S = G ′.(rsi-po∪
rsi-rf∪moT)

+. There are now two cases to consider: either there is an rsi-hb cycle
without a si-rb edge; or there is a cycle with one or more si-rb edges. That is,
either 1) there exists a such that (a, a) ∈ S; or 2) there exist a1, b1, · · · , an, bn

such that a1
G

′.si-rb
→ b1

S
→ a2

G
′.si-rb
→ b2

S
→ · · ·

S
→ an

G
′.si-rb
→ bn

S
→ a1.

In case (1) we then know that either i) there exists ξ such that a ∈ G ′.Tξa ;
or ii) a ∈ G ′.NT . In case (1.i) from Lemma 18 we then have (a, a) ∈ G.po,
contradicting the assumption that G is RA-consistent. Similarly, in case (1.ii)
from Lemma 18 we know that (a, a) ∈ G.hb, contradicting the assumption that
G is RA-consistent.

In case (2), for an arbitrary i ∈ {1 · · ·n}, let j = i+1 when i 6= n; and

j = 1 when i = n. As ai
G

′.si-rb
→ bi, we know there exists ξai

, ξbi such that
ai ∈ Tξai

, bi ∈ Tξbi , and that there exist ri ∈ Tξai
∩ RE and wi ∈ Tξbi ∩ W

such that (ri, wi) ∈ G ′.rb. Let loc(ri) = loc(wi) = xi. From Lemma 17 we then

know that either i) ξai
.ruxi

G.hb
→ ξbi .plxi ; or ii) ξai

.wuxi

G.hb
→ ξbi .rlxi . Note that

for all w′ ∈ ξbi .Ws, we know ξbi .rlxi
G.po
→ w′ and ξbi .plxi

G.po
→ w′. As such, as

(bi, aj) ∈ S, from Lemma 18 and since G.hb is transitively closed, we know there

exists dj ∈ Tξaj
such that either ξai

.ruxi

G.hb
→ dj, or ξai

.wuxi

G.hb
→ dj . That is,

ξai
.uxi

G.hb
→ dj, where either uxi = ruxi or uxi = wuxi . On the other hand, observe

that for all di ∈ Tξai
we have di

G.po
→ ξai

.uxi i.e. di
G.hb
→ ξai

.uxi . As such, we have

dj
G.hb
→ ξaj

.uxj . As we also have ξai
.uxi

G.hb
→ dj and G.hb is transitively closed,

we have ξai
.uxi

G.hb
→ ξaj

.uxj . We then have ξa1
.ux1

G.hb
→ ξa2

.ux2
G.hb
→ · · ·

G.hb
→

ξan
.uxn

G.hb
→ ξa1

.ux1 . That is, ξa1
.ux1

G.hb
→ ξa1

.ux1 , contradicting the assumption
that G is RA-consistent.

RTS. rfI ∪moI ∪ rbI ⊆ po

Follows immediately from the construction of G ′.

RTS. irreflexive(G ′.(rsi-hb;mo))
We proceed by contradiction. Let us assume ¬irreflexive(G ′.(rsi-hb;mo)).
That is, there exists a, b such that (a, b) ∈ rsi-hb and (b, a) ∈ mo. There are now
five cases to consider: 1) there exists ξ such that a, b ∈ Tξ; or 2) there exists
ξa, ξb such that ξa 6= ξb, a ∈ Tξa and b ∈ Tξb ; or 3) there exists ξ such that a ∈ Tξ
and b ∈ G ′.NT ; or 4) there exists ξ such that b ∈ Tξ and a ∈ G ′.NT ; or 5)
a, b ∈ G ′.NT .

In case (1) we then have (b, a) ∈ moI ⊆ poI (from the proof of the previous
part) and since a, b are both write events, we have (b, a) ⊆ rsi-hb. We then have

a
rsi-hb
→ b

rsi-hb
→ a, contradicting our proof above that rsi-hb is irreflexive.

In case (2) we then have (b, a) ∈ moT ⊆ rsi-hb. We then have a
rsi-hb
→ b

rsi-hb
→ a,

contradicting our proof above that rsi-hb is irreflexive.

In case (3) from Lemma 18 we know (mw(a), b) ∈ G.hb. From the definition

of G ′.mo we also have (b, mw(a)) ∈ G.mo. We then have mw(a)
G.hb
→ b

G.mo
→ mw(a),

contradicting the assumption that G is RA-consistent.

In case (4) from Lemma 18 we know there exists d ∈ Tξ such that (a, d) ∈
G.hb. From the definition of G ′.mo we also have (mw(b), a) ∈ G.mo. Moreover,

from the construction of G ′ we know (d, mw(b)) ∈ G.po We then have a
G.hb
→

d
G.po
→ mw(b)

G.mo
→ a, contradicting the assumption that G is RA-consistent.

In case (5) from Lemma 18 we know (a, b) ∈ G.hb. From the definition of

G ′.mo we also have (b, a) ∈ G.mo. We then have a
G.hb
→ b

G.mo
→ a, contradicting

the assumption that G is RA-consistent.

RTS. irreflexive(G ′.(rsi-hb; rb))
We proceed by contradiction. Let us assume ¬irreflexive(G ′.(rsi-hb; rb)).
That is, there exists a, b such that (a, b) ∈ rsi-hb and (b, a) ∈ rb. There are now
five cases to consider: 1) there exists ξ such that a, b ∈ Tξ; or 2) there exists

ξa, ξb such that ξa 6= ξb, a ∈ Tξa and b ∈ Tξb ; or 3) there exists ξ such that a ∈ Tξ
and b ∈ G ′.NT ; or 4) there exists ξ such that b ∈ Tξ and a ∈ G ′.NT ; or 5)
a, b ∈ G ′.NT .

In case (1) we then have (b, a) ∈ rbI ⊆ poI (from the proof of the earlier part)
and thus (b, a) ∈ G.po. Moreover, from Lemma 18 we know (a, b) ∈ G.po We

then have a
G.po
→ b

G.po
→ a, contradicting the assumption that G is RA-consistent.

In case (2) we then have (b, a) ∈ si-rb ∪ moT ⊆ rsi-hb. We then have a
rsi-hb
→

b
rsi-hb
→ a, contradicting our proof above that rsi-hb is irreflexive.

In case (3) from Lemma 18 we know (mw(a), b) ∈ G.hb. From the definition

of G ′.rb we also have (b, mw(a)) ∈ G.rb. We then have mw(a)
G.hb
→ b

G.rb
→ mw(a),

contradicting the assumption that G is RA-consistent.

In case (4) from Lemma 18 we know there exists d ∈ Tξ such that (a, d) ∈
G.hb. Let loc(a) = loc(b) = x. From the definition of G ′.rb and our race-
freedom stipulation of non-transactional writes with the same transaction we
also have (ξb.vrx, a) ∈ G.rb. Moreover, from the construction of G ′ we know

(d, ξb.vr x, b) ∈ G.po We then have a
G.hb
→ d

G.po
→ ξb.vrx,

G.rb
→ a, contradicting the

assumption that G is RA-consistent.

In case (5) from Lemma 18 we know (a, b) ∈ G.hb. From the definition of

G ′.rb we also have (b, a) ∈ G.rb. We then have a
G.hb
→ b

G.rb
→ a, contradicting the

assumption that G is RA-consistent.

F.2 Implementation Completeness

In order to establish the completeness of our implementation, it suffices to show
that given an RSI-consistent execution graph G ′ = (E , po, rf,mo, lo), we can con-
struct a corresponding RA-consistent execution graph G of the implementation.

Note that the execution trace for each transaction Tξ ∈ G ′.T /st is of the

form θ′ξ = t ′1
po|imm

→ · · ·
po|imm

→ t ′k for some k, where each t ′i is a read or write
event. As such, we have G ′.T =

⋃

Tξ∈G′.T /st Tξ = θ′ξ.E . For each transaction ξ,
we construct the implementation trace θξ as follows:

Fs
po|imm

→ Is
po|imm

→ Ts
po|imm

→ VRs
po|imm

→ RUs
po|imm

→ PLs
po|imm

→ Ws
po|imm

→ Us

where:

– Fs denotes the sequence of events failing to obtain the necessary locks (i.e.
those iterations that do not succeed in promoting the writer locks) or validate
the snapshot;

– Is denotes the sequence of events initialising the values of LS, RS and WS with
∅, initialising ws with [] and initialising s[x] with (⊥,⊥) for each location
x;

– Ts denotes the sequence of events corresponding to the execution of JTK and

is of the form t1
po|imm

→ · · ·
po|imm

→ tk, where for all m ∈ {1 · · ·k}:

tm=















rd(xm, vm,RSm−1,WSm−1)
po|imm

→ lrxm if Om=R(xm, vm)

wr(xm, vm,RSm−1,WSm−1)
po|imm

→ wwsxm if Om=W(xm, vm)
po|imm

→ R(s[xm], (v′m,−))
po|imm

→ lwxm

po|imm

→ W(ws,wsm)

where Om denotes the mth event in the trace of T; lrxm , R(s[xm], (−, vm));

rd(xm, vm,RSm−1,WSm−1) ,



























































R(s[xm], (⊥,⊥)) if xm 6∈ RSm−1 ∪WSm−1

po|imm→ fsm
po|imm→ rlxm
po|imm→ wrsxm
po|imm→ rsxm
po|imm→ wsxm

∅ otherwise

fsm denotes the sequence of events attempting (but failing) to acquire the
read lock on xm, rlxm , RL(xlm), wrsxm , W(RS,RSm), rsxm , R(xm, v0xm),

wsxm , W(s[xm], (v0xm , v0xm)); and for all m > 0:

RSm+1 ,

{

RSm ∪ {xm} if Om=R(xm,−)

RSm otherwise

and

wr(xm, vm,RSm−1,WSm−1) ,











R(s[xm], (⊥,⊥)) if xm 6∈ RSm−1 ∪WSm−1

po|imm→ fsm
po|imm→ rl xm∅ otherwise

wwsxm , W(WS,WSm); lwxm , W(s[xm], (v′m, vm)); fsm and rlxm are as
defined above; and for all m > 0:

WSm+1 ,

{

WSm ∪ {xm} if Om=W(xm,−)

WSm otherwise

wsm+1 ,

{

wsm++[(xm, vm)] if Om=W(xm, vm)

wsm otherwise

Let RSξ = RSm, WSξ = WSm, and wsξ = wsm; let RSξ ∪ WSξ be enumerated
as {x1 · · · xi} for some i, and wsξ be enumerated as {(x1, v1) · · · (xj , vj)} for
some j.

– VRs denotes the sequence of events validating the reads and is of the form

vx1
po|imm

→ · · ·
po|imm

→ vxi , where for all n ∈ {1 · · · i}:

vxn =

{

R(s[xn], (v
0
xn
,−))

po|imm

→ vrxn=R(xn, v
0
xn
) if xn ∈ RSξ

∅ otherwise

– RUs denotes the sequence of events releasing the reader locks (when the given

location is in the read set only) and is of the form rux1

po|imm

→ · · ·
po|imm

→ ruxi ,
where for all n ∈ {1 · · · i}:

ruxn =

{

RU(xln) if xn 6∈ WSξ

∅ otherwise

– PLs denotes the sequence of events promoting the reader locks to writer ones

(when the given location is in the write set), and is of the form plx1
po|imm

→

· · ·
po|imm

→ pl xi , where for all n ∈ {1 · · · i}:

plxn =

{

PL(xln) if xn ∈ WSξ

∅ otherwise

– Ws denotes the sequence of events committing the writes of JTK and is of

the form cx1,v1
po|imm

→ · · ·
po|imm

→ cxj ,vj , where for all n ∈ {1 · · · j}: cxn,vn =
W(xn, vn)

– Us denotes the sequence of events releasing the locks on the write set, and

is of the form wux1

po|imm

→ · · ·
po|imm

→ wuxi , where for all n ∈ {1 · · · i}:

wuxn =

{

WU(xln) if xn ∈ WSξ

∅ otherwise

Given a transaction trace θξ, we write e.g. ξ.Us to refer to its constituent Us
sub-trace and write Us.E for the set of events related by po in Us . Similarly, we
write ξ.E for the set of events related by po in θξ. Note that G.E =

⋃

ξ∈Tx

ξ.E .

Note that for each transaction ξ and each location x, the ξ.rlx, ξ.rsx, ξ.vrx,
ξ.rux, ξ.plx and ξ.wux are uniquely identified when they exist. Let ξ.wx the last
(in po order) write to x in Ws , when it exists.

Note that for each write operation w in θ′ξ, there exists a matching write
operation in θξ.Ws , denoted by mw(w) is a one-to-one function such that: That
is,

mw(w)=w′ def
⇐⇒ ∃i. ∧ (θ′ξ.E ∩W)

∣

∣

i
= w ∧ (θξ.Ws)|i = w′

We then define:

RF ,







(w, r)
r ∈ G ′.NT
∧
(

(w ∈ G.NT ∧ (w, r) ∈ G ′.rf)
∨ (∃ξ′. ∃w′ ∈ ξ′.E ∩W . (w′, r) ∈ G ′.rf ∧ w=mw(w′))

)







∪

{

(w, ξ.rsx),
(w, ξ.vr x)

(w ∈ G.NT ∧ (w, ξ.rsx) ∈ G ′.rf)
∨ (∃ξ′. ∃w′ ∈ ξ′.E ∩W . (w′, ξ.rsx) ∈ G ′.rf ∧w=mw(w′))

}

Similarly, we define:

MO ,
{

(w1, w2) ∃w′
1, w

′
2. w1 = mw(w′

1) ∧ w2 = mw(w′
2) ∧ (w′

1, w
′
2) ∈ G ′.mo

}

∪
{

(w,w′) w,w′ ∈ G.NT ∧ (w,w′) ∈ G ′.mo
}

∪
{

(w,w′) w′ ∈ G.NT ∧ ∃w′′. w = mw(w′′) ∧ (w′′, w′) ∈ G ′.mo
}

∪
{

(w′, w) w′ ∈ G.NT ∧ ∃w′′. w = mw(w′′) ∧ (w′, w′′) ∈ G ′.mo
}

For each location x we then define:

LOx ,
{

(ξ.rl x, ξ.plx), (ξ.rl x, ξ.wux), (ξ.pl x, ξ.wux) G ′.Tξ ∩Wx 6= ∅
}

∪















(ξ.rlx, ξ
′.pl x), (ξ.rlx, ξ

′.wux),
(ξ.rux, ξ

′.plx), (ξ.rux, ξ
′.wux)

ξ 6= ξ′ ∧ ∃a, b, x.
a ∈ G ′.Tξ ∧ b ∈ G ′.T ′

ξ

∧loc(a) = loc(b) = x

∧ a ∈ G ′.RE ∧ (a, b) ∈ G ′.rb















∪















(ξ.rlx, ξ
′.pl x), (ξ.rlx, ξ

′.wux),
(ξ.pl x, ξ

′.rlx), (ξ.pl x, ξ
′.plx), (ξ.pl x, ξ

′.wux),
(ξ.wux, ξ

′.rlx), (ξ.wux, ξ
′.plx), (ξ.wux, ξ

′.wux)

ξ 6= ξ′ ∧ ∃a, b, x.
a ∈ G ′.Tξ ∧ b ∈ G ′.Tξ′
∧ loc(a) = loc(b) = x

∧ (a, b) ∈ G ′.mo















∪























(ξ.pl x, ξ
′.rlx), (ξ.pl x, ξ

′.rux),
(ξ.wux, ξ

′.rlx), (ξ.wux, ξ
′.rux)

ξ 6= ξ′ ∧ ∃a, b, x.
a ∈ G ′.Tξ ∧ b ∈ G ′.Tξ′
∧G ′.Tξ′ ∩Wx = ∅
∧ loc(a)=loc(b)=x

∧(a, b) ∈ G ′.(mo?; rf)























Note that each LOx satisfies the conditions in Def. 4.

We are now in a position to demonstrate the completeness of our implemen-
tation. Given an RSI-consistent execution graph G ′, we construct an execution
graphG of the implementation as follows and demonstrate that RA-consistent(G)
holds.

– G.E =
⋃

Tξ∈G′.T /st

θξ.E ∪G ′.NT . Observe that G ′.E ⊆ G.E .

– G.po is defined as G ′.po extended by the po for the additional events of G,
given by each θξ trace defined above. Note that G.po does not introduce
additional orderings between events of G ′.E . That is, ∀a, b ∈ G ′.E . (a, b) ∈
G ′.po ⇔ (a, b) ∈ G.po.

– G.rf = RF.

– G.mo = MO.
– G.lo =

⋃

x∈Locs
LOx, with LOx as defined above.

Notation In what follows, given an RSI implementation graph G as con-
structed above we writeG.NT for the non-transactional events ofG, i.e.G.NT ,
{

a ¬∃ξ. a ∈ G.E ξ

}

. Moreover, as before, given a relation r ⊆ G.E × G.E , we

override the rI notation and write rI for
{

(a, b) ∈ r ∃ξ. a, b ∈ θξ.E
}

.

Lemma 19. Given an RSI-consistent execution graph G ′ and its corresponding
implementation graph G constructed as above, for all a, b, ξa, ξb:

(a, b) ∈ G.hb ⇒
(∃ξ. a, b ∈ G.E ξ ⇒ (a, b) ∈ G.po)

∧
(

¬∃ξ. a, b ∈ G.E ξ ⇒

∃A,B. ∅ ⊂ A×B ⊆ G ′.rsi-hb
∧ (a ∈ G.NT ⇒ A={a}) ∧ (b ∈ G.NT ⇒ B={b})
∧ [a ∈ G.E ξa ⇒

A=G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧A=G ′.Tξa ∩RE)

∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)})]
∧ [b ∈ G.E ξb ⇒

B=G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B=G ′.Tξb ∩W)]
)

where

stg(a, ξa) ,



















1 if a 6∈∈ ξa.RUsξa ∪ ξa.PLsξa ∪ ξa.Wsξa ∪ ξa.Usξa
2 if a ∈ ξa.RUsξa
3 if a ∈ ξa.PLsξa
4 otherwise

Proof. Pick an arbitrary RSI-consistent execution graph G ′ and its corresponding
implementation graph G constructed as above. Let hb0 , G.(po ∪ rf ∪ lo) and
hbn+1 , hb0; hbn, for all n ∈ N. It is then straightforward to demonstrate that
G.hb =

⋃

i∈N
hbi. We thus demonstrate instead that:

∀n ∈ N. ∀a, b, ξa, ξb. (a, b) ∈ G.hbn ⇒
(∃ξ. a, b ∈ G.E ξ ⇒ (a, b) ∈ G.po)

∧
(

¬∃ξ. a, b ∈ G.E ξ ⇒

∃A,B. ∅ ⊂ A×B ⊆ G ′.rsi-hb
∧ (a ∈ G.NT ⇒ A={a}) ∧ (b ∈ G.NT ⇒ B={b})
∧ [a ∈ G.E ξa ⇒

A=G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧A=G ′.Tξa ∩RE)

∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)})]
∧ [b ∈ G.E ξb ⇒

B=G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B=G ′.Tξb ∩W)]
)

We proceed by induction on n.

Base case n = 0
There are three cases to consider: 1) (a, b) ∈ G.po; or 2) (a, b) ∈ G.rf; or 3)
(a, b) ∈ G.lo.

In case (1) there are five cases to consider: a) ∃ξ. (a, b) ∈ G.E ξ; or b)
a, b ∈ G.NT ; or c) a ∈ G.NT and b ∈ G.E ξb ; or d) a ∈ G.E ξa and b ∈
G.NT ; or e) a ∈ G.E ξa , b ∈ G.E ξb and ξa 6= ξb. In case (1.a) we then have
(a, b) ∈ G.poI, as required. In case (1.b) from the construction of G.po we have
(a, b) ∈ G ′.po, as required. In case (1.c) from the construction of G.po we have
({a} ×G ′.Tξb) ∈ G ′.po, as required. In case (1.d) from the construction of G.po
we have (G ′.Tξa × {b}) ∈ G ′.po, as required. In case (1.e) from the construction
of G.po we have (G ′.Tξa ×G ′.Tξb) ∈ G ′.po, as required.

In case (2) there are five cases to consider: a) ∃ξ. (a, b) ∈ G.E ξ; or b) a, b ∈
G.NT ; or c) a ∈ G.NT and b ∈ G.E ξb ; or d) a ∈ G.E ξa and b ∈ G.NT ; or e)
a ∈ G.E ξa , b ∈ G.E ξb and ξa 6= ξb. Case (2.a) holds vacuously as (a, b) ∈ G.rfI =
∅. In case (2.b) from the construction of G.rf we have (a, b) ∈ G ′.rf, as required.
In case (2.c) from the construction of G.rf we know that there exists r ∈ G ′.Tξb
such that (a, r) ∈ G ′.rf. As such we have ({w} × G ′.Tξb) ⊆ G ′.([NT]; rf; st) ⊆
G ′.rsi-hb, as required. In case (2.d) from the construction of G.rf we then have

(mw−1(a), b) ∈ G ′.rf; that is a
G.po?

→ a and (mw−1(a), b) ∈ G ′.rf, as required. In
case (2.e) from the construction of G.rf we know that there exists w ∈ G ′.Tξa ,
r ∈ G ′.Tξb such that (w, r) ∈ G ′.rf. As such we have (G ′.Tξa×G ′.Tξb) ⊆ G ′.rfT ⊆
G ′.rsi-hb, as required.

In case (3) there are five cases to consider: a) ∃ξ. (a, b) ∈ G.E ξ; or b)
a, b ∈ G.NT ; or c) a ∈ G.NT and b ∈ G.E ξb ; or d) a ∈ G.E ξa and b ∈ G.NT ;
or e) a ∈ G.E ξa , b ∈ G.E ξb and ξa 6= ξb. In case (3.a) from the construction
of lo we have (a, b) ∈ G.po, as required. Cases (3.b-3.d) hold vacuously as there
are no lo edge to or from non-transactional events. In case (3.e) from the con-
struction of lo we know there exist x, c, d such that c ∈ G ′.Tξa , d ∈ G ′.Tξb , and
either i) (c, d) ∈ G ′.rf; or ii) (c, d) ∈ G ′.(mo; rf); or iii) (c, d) ∈ G ′.mo; or iv)
loc(c) = loc(d) = x, a = ξa.rlx ∨ a = ξa.rux, b = ξa.plx ∨ b = ξa.wux and
c ∈ G ′.RE and (c, d) ∈ G ′.rb. In cases (3.e.i, 3.e.ii) we have G ′.Tξa × G ′.Tξb ⊆
G ′.(rfT ∪ (mo; rf)T) ⊆ rsi-rf ⊆ rsi-hb, as required. In case (3.e.iii) we have
G ′.Tξa × G ′.Tξb ⊆ G ′.moT ⊆ rsi-hb, as required. In case (3.e.iv) we then have
stg(a, ξa) ≤ 2, stg(b, ξb) ≥ 3, and G ′.(Tξa ∩ RE) × G ′.(Tξb ∩ W) ⊆ G ′.si-rb ⊆
rsi-hb, as required.

Inductive case n = m+1

∀i ∈ N. ∀a, b, ξa, ξb. i ≤ m ∧ (a, b) ∈ G.hbi ⇒
(∃ξ. a, b ∈ G.E ξ ⇒ (a, b) ∈ G.po)

∧
(

¬∃ξ. a, b ∈ G.E ξ ⇒

∃A,B. ∅ ⊂ A×B ⊆ G ′.rsi-hb
∧ (a ∈ G.NT ⇒ A={a}) ∧ (b ∈ G.NT ⇒ B={b})
∧ [a ∈ G.E ξa ⇒

A=G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧A=G ′.Tξa ∩RE)

∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)})]
∧ [b ∈ G.E ξb ⇒

B=G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B=G ′.Tξb ∩W)]
)

(I.H.)

Since (a, b) ∈ hbn, from the definition of hbn we know there exists c such
that (a, c) ∈ hb0 and (c, b) ∈ hbm. There are then five cases to consider: 1)
∃ξ. (a, b) ∈ G.E ξ; or 2) a, b ∈ G.NT ; or 3) a ∈ G.NT and b ∈ G.E ξb ; or 4)
a ∈ G.E ξa and b ∈ G.NT ; or 5) a ∈ G.E ξa , b ∈ G.E ξb and ξa 6= ξb.

Case 1
In case (1) pick arbitrary ξ such that a, b ∈ G.E ξ. There are then three additional
cases to consider: a) c ∈ G.NT ; b) c ∈ G.E ξ; or c) there exists ξ′ 6= ξ such that
c ∈ G.E ξ′ .

In case (1.a) from the proof of the base case and the (I.H.) we know there
exist A,B,C 6= ∅ such that C = {c}, A× C ⊆ G ′.rsi-hb, C ×B ⊆ G ′.rsi-hb and
thus A×B ⊆ G ′.rsi-hb and either: i) A = G ′.Tξ and B = G ′.Tξ; or ii) A = G ′.Tξ
and B = (G ′.(Tξ ∩W); or iii) stg(a, ξ) ≤ 2, A = G ′.(Tξ ∩ RE) and B = G ′.Tξ;
or iv) stg(a, ξ) ≤ 2, A = G ′.(Tξ ∩RE), stg(b, ξ) ≥ 3 and B = G ′.(Tξ ∩W); or

v) stg(a, ξ) ≤ 4, ∃d ∈ ξ.W . a
G.po?

→ d ∧ A = {mw−1(d)} and B = G ′.Tξ; or vi)

stg(a, ξ) ≤ 4, ∃d ∈ ξ.W . a
G.po?

→ d ∧ A = {mw−1(d)} and B = G ′.(Tξ ∩W).

Case (i) cannot arise as we would have A = B and thus A × A ⊆ G ′.rsi-hb,
contradicting the assumption that G ′ is RSI-consistent. Case (ii) cannot arise as
we would have (G ′.(Tξ∩W)×(G ′.(Tξ∩W) ⊆ G ′.rsi-hb, contradicting the assump-
tion that G ′ is RSI-consistent. Case (iii) cannot arise as we would have (G ′.(Tξ∩
RE) × (G ′.(Tξ ∩ RE) ⊆ G ′.rsi-hb, contradicting the assumption that G ′ is RSI-
consistent. In case (iv) since we have stg(a, ξ) ≤ 2 and stg(b, ξ) ≥ 3, from the
definition of stg(., .) and the construction of G we have (a, b) ∈ G.po, as required.
Cases (v-vi) cannot arise as we would have ∃d ∈ ξ.W . (mw−1(d), mw−1(d)) ∈
G ′.rsi-hb, contradicting the assumption that G ′ is RSI-consistent.

In case (1.b) from the proof of the base case we have (a, c) ∈ G.po. On the
other hand from (I.H.) we have (c, b) ∈ G.po. As G.po is transitively closed, we

have (a, b) ∈ G.po, as required.

In case (1.c) from the proof of the base case (in cases 1.e, 2.e and 3.e) we
have either A) G ′.Tξ×G ′.Tξ′ ⊆ G ′.rsi-hb; or B) stg(a, ξ) ≤ 2, stg(c, ξ′) ≥ 3, and
∅ ⊂ G ′.(Tξ ∩RE)×G ′.(Tξ′ ∩W) ⊆ G ′.rsi-hb. On the other hand from (I.H.) we
know there exist C,B 6= ∅ such that C ×B ⊆ G ′.rsi-hb and either: i) C = G ′.Tξ′
and B = G ′.Tξ; or ii) C = G ′.Tξ′ , stg(b, ξ) ≥ 3 and B = G ′.(Tξ ∩ W); or
iii) stg(c, ξ′) ≤ 2, C = G ′.(Tξ′ ∩ RE) and B = G ′.Tξ; or iv) stg(c, ξ′) ≤ 2,
C = G ′.(Tξ′ ∩ RE), stg(b, ξ) ≥ 3 and B = G ′.(Tξ ∩ W); or v) stg(c, ξ′) ≤ 4,

∃d ∈ ξ′.W . c
G.po?

→ d ∧ C = {mw−1(d)} and B = G ′.Tξ; or vi) stg(c, ξ′) ≤ 4,

∃d ∈ ξ′.W . c
G.po?

→ d ∧ C = {mw−1(d)}, stg(b, ξ) ≥ 3 and B = G ′.(Tξ ∩W).

Cases (A.i-A.vi) lead to a cycle in G ′.rsi-hb, contradicting the assumption
that G ′ is RSI-consistent. In cases (B.ii, B.iv, B.vi) we then have stg(a, ξ) ≤ 2
and stg(b, ξ) ≥ 3. Consequently from the definition of stg(., .) and the con-
struction of G we have (a, b) ∈ G.po, as required. Case (B.i) leads to a cycle
in G ′.rsi-hb, contradicting the assumption that G ′ is RSI-consistent. In cases
(B.iii) we have stg(c, ξ′) ≥ 3 and stg(c, ξ′) ≤ 2, leading to a contradiction. In
case (B.v) we then know ∃d ∈ ξ′.W . ∅ ⊂ G ′.(Tξ ∩RE)×{mw−1(d)} ⊆ G ′.rsi-hb∧
{mw−1(d)}×G ′.Tξ ⊆ G ′.rsi-hb. That is, we have ∅ ⊂ G ′.(Tξ∩RE)×G ′.(Tξ∩RE) ⊆
G ′.rsi-hb, contradicting the assumption that G ′ is RSI-consistent.

Case 2
There are two additional cases to consider: a) c ∈ G.NT ; or b) there exists ξ
such that c ∈ G.E ξ.

In case (2.a) from the proof of the base case we have (a, c) ∈ G ′.rsi-hb. On
the other hand from (I.H.) we have (c, b) ∈ G ′.rsi-hb. As G ′.rsi-hb is transitively
closed, we have (a, b) ∈ G ′.rsi-hb, as required.

In case (2.b) from the proof of the base case we know there exists C1 6= ∅ such
that {a} × C1 ⊆ G ′.rsi-hb and either: A) C1 = G ′.Tξ; or B) stg(c, ξ) ≥ 3 and
C1 = G ′.(Tξ ∩W). On the other hand, from (I.H.) we know there exists C2 6= ∅
such that C2 × {b} ∈ G ′rsi-hb and either: i) C2 = G ′.Tξ; or ii) stg(c, ξ) ≤ 2

and C2 = G ′.(Tξ ∩ RE); or iii) stg(c, ξ) ≤ 4 and ∃d ∈ ξ.W . c
G.po?

→ d ∧ C2 =
{mw−1(d)}.

In cases (A.i-A.iii) and (B.i, B.iii) from the transitivity of G ′.rsi-hb we have
(a, b) ∈ G ′.rsi-hb, as required. Case (B.ii) cannot arise as otherwise we would
have 3 ≤ stg(c, ξ) ≤ 2, leading to a contradiction.

Case 3
There are three additional cases to consider: a) c ∈ G.NT ; b) c ∈ G.E ξb ; or c)
there exists ξc 6= ξb such that c ∈ G.E ξc .

In case (3.a) from the proof of the base case we have (a, c) ∈ G ′.rsi-hb. On the
other hand from (I.H.) we know there exists B 6= ∅ such that {c}×B ⊆ G ′.rsi-hb
and B = G ′.Tξb ∨(stg(b, ξb) ≥ 3∧B = G ′.(Tξb ∩W)). As G ′.rsi-hb is transitively

closed we then know there exists B 6= ∅ such that {a} × B ⊆ G ′.rsi-hb and
B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)), as required.

In case (3.b) from the proof of the base case we know there exists B 6= ∅ such
that {a} ×B ⊆ G ′.rsi-hb and B = G ′.Tξb ∨ (stg(c, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)).

On the other hand, from (I.H.) we have c
G.po
→ b and thus from the definition of

stg(., .) and the construction of G we have stg(b, ξb) ≥ stg(c, ξb). As such, we
we know there exists B 6= ∅ such that {a} × B ⊆ G ′.rsi-hb and B = G ′.Tξb ∨
(stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)), as required.

In case (3.c) from the proof of the base case we know there exists C1 6= ∅ such
{a} × C1 ⊆ G ′.rsi-hb and either A) C1 = G ′.Tξc ; or B)(stg(c, ξc) ≥ 3 ∧ C1 =
G ′.(Tξc ∩ W)). On the other hand, from (I.H.) we know there exist C2, B 6= ∅
such that C2 × B ∈ G ′.rsi-hb and either: i) C2 = G ′.Tξc and B = G ′.Tξb ; or
ii) C2 = G ′.Tξc and (stg(b, ξb) ≥ 3 ∧ B = G ′.(Tξb ∩ W)); or iii) stg(c, ξc) ≤
2∧C2 = G ′.(Tξc ∩RE) and B = G ′.Tξb ; or iv) stg(c, ξc) ≤ 2∧C2 = G ′.(Tξc ∩RE)

and (stg(b, ξb) ≥ 3∧B = G ′.(Tξb ∩W)); or v) stg(c, ξc) ≤ 4∧∃d ∈ ξc.W . c
G.po?

→

d ∧ C2 = {mw−1(d)} and B = G ′.Tξb ; or vi) stg(c, ξc) ≤ 4 ∧ ∃d ∈ ξc.W . c
G.po?

→
d ∧C2 = {mw−1(d)} and (stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)).

In cases (A.i-A.vi) and (B.i, B.ii, B.v, B.vi) from the transitivity of G ′.rsi-hb
we know there exists B 6= ∅ such that {a} × B ⊆ G ′.rsi-hb and B = G ′.Tξb ∨
(stg(b, ξb) ≥ 3∧B = G ′.(Tξb ∩W)), as required. Cases (B.iii, B.iv) cannot arise
as we would otherwise have 3 ≤ stg(c, ξc) ≤ 2, leading to a contradiction.

Case 4
There are three additional cases to consider: a) c ∈ G.NT ; b) c ∈ G.E ξa ; or c)
there exists ξc 6= ξa such that c ∈ G.E ξc .

In case (4.a) from (I.H.) we have (c, b) ∈ G ′.rsi-hb. On the other hand from
the base case we know there exists A 6= ∅ such that A×{c} ⊆ G ′.rsi-hb and A =

G ′.Tξa∨(stg(a, ξa) ≤ 2∧A = G ′.(Tξa ∩RE))∨stg(a, ξa) ≤ 4∧∃d ∈ ξa.W . a
G.po?

→
d ∧ A = {mw−1(d)}. As G ′.rsi-hb is transitively closed we then know we know
there exists A 6= ∅ such that A× {b} ⊆ G ′.rsi-hb and A = G ′.Tξa ∨ (stg(a, ξa) ≤

2∧A = G ′.(Tξa ∩RE)) ∨ stg(a, ξa) ≤ 4∧ ∃d ∈ ξa.W . a
G.po?

→ d∧A = {mw−1(d)},
as required.

In case (4.b) from (I.H.) we know there exists A 6= ∅ such that A × {b} ⊆
G ′.rsi-hb and A = G ′.Tξa ∨ (stg(c, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩ RE)) ∨ stg(c, ξa) ≤

4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧A = {mw−1(d)}. On the other hand, from the proof of

the base case we have a
G.po
→ c and thus from the definition of stg(., .) and the

construction of G we have stg(a, ξa) ≤ stg(c, ξa). As such, we know there exists
A 6= ∅ such that A × {b} ⊆ G ′.rsi-hb and A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A =

G ′.(Tξa ∩ RE)) ∨ stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)}, as
required.

In case (4.c) from the proof of the base case we know there exist A,C1 6= ∅
such that A × C1 ⊆ G ′.rsi-hb and either: i) A = G ′.Tξa and C1 = G ′.Tξc ; or ii)

A = G ′.Tξa and (stg(c, ξc) ≥ 3∧C1 = G ′.(Tξc ∩W)); or iii) stg(a, ξa) ≤ 2∧A =
G ′.(Tξa ∩ RE) and C1 = G ′.Tξc ; or iv) stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩ RE) and

(stg(c, ξc) ≥ 3 ∧ C1 = G ′.(Tξc ∩W)); or v) stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→

d ∧ A = {mw−1(d)} and C1 = G ′.Tξc ; or vi) stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→
d ∧A = {mw−1(d)} and (stg(c, ξc) ≥ 3 ∧ C1 = G ′.(Tξc ∩W)).

On the other hand, from (I.H.) we know there exists C2 6= ∅ such C2 ×{b} ⊆
G ′.rsi-hb and either A) C2 = G ′.Tξc ; or B) (stg(c, ξc) ≤ 2∧C2 = G ′.(Tξc ∩RE));

or C) (stg(c, ξc) ≤ 4 ∧ ∃e ∈ ξc.W . c
G.po?

→ e ∧ C2 = {mw−1(e)}).

In cases (A.i-A.vi), (C.i-C.vi) and (B.i, B.iii, B.v) from the transitivity
of G ′.rsi-hb we know there exists A 6= ∅ such that A × {b} ⊆ G ′.rsi-hb and
A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩ RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈

ξa.W . a
G.po?

→ d ∧A = {d}), as required. Cases (B.ii, B.iv, B.vi) cannot arise as
we would otherwise have 3 ≤ stg(c, ξc) ≤ 2, leading to a contradiction.

Case 5
There are four additional cases to consider: a) c ∈ G.NT ; b) c ∈ G.E ξa ; or c)
c ∈ G.E ξb ; or d) there exists ξc such that ξc 6= ξa, ξc 6= ξb and c ∈ G.E ξc .

In case (5.a) from the proof of the base case we know there exists A 6= ∅
such that A× {c} ⊆ G ′.rsi-hb and A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧A = G ′.(Tξa ∩

RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)}). On the other
hand from (I.H.) we know there exists B 6= ∅ such that {c} × B ⊆ G ′.rsi-hb
and B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧ B = G ′.(Tξb ∩W)). As such, sine G ′.rsi-hb
is transitive we know there exist A,B 6= ∅ such that A × B ⊆ G ′.rsi-hb; that
A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩ RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈

ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)}); and that B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B =
G ′.(Tξb ∩W)), as required.

In case (5.b) from (I.H.) we know there exist A,B 6= ∅ such that A × B ⊆
G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(c, ξa) ≤ 2∧A = G ′.(Tξa ∩RE))∨ (stg(c, ξa) ≤

4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)}); and that B = G ′.Tξb ∨ (stg(b, ξb) ≥
3 ∧ B = G ′.(Tξb ∩ W)). On the other hand from the proof of the base case we
have (a, c) ∈ G ′.po and thus from the definition of stg(., .) and the construction
of G we have stg(a, ξa) ≤ stg(c, ξa). As such we know there exist A,B 6= ∅
such that A×B ⊆ G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩

RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)}) and that
B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)), as required.

In case (5.c) from the proof of the base case we know there exist A,B 6= ∅
such that A×B ⊆ G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A = G ′.(Tξa ∩

RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)}), and that
B = G ′.Tξb ∨ (stg(c, ξb) ≥ 3 ∧ B = G ′.(Tξb ∩ W)). On the other hand from
(I.H.) we have (c, b) ∈ G ′.po and thus from the definition of stg(., .) and the
construction of G we have stg(c, ξa) ≤ stg(b, ξa). As such we know there exist

A,B 6= ∅ such that A× B ⊆ G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2 ∧ A =

G ′.(Tξa ∩ RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧ A = {mw−1(d)}) and
that B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧B = G ′.(Tξb ∩W)), as required.

In case (5.d) from the proof of the base case we know there exist A,C1 6= ∅
such that A×C1 ⊆ G ′.rsi-hb; that A = G ′.Tξa ∨ (stg(a, ξa) ≤ 2∧A = G ′.(Tξa ∩

RE)) ∨ (stg(a, ξa) ≤ 4 ∧ ∃d ∈ ξa.W . a
G.po?

→ d ∧A = {mw−1(d)}), and that either
A) C1 = G ′.Tξc ; or B) (stg(c, ξc) ≥ 3 ∧C1 = G ′.(Tξc ∩W)).

On the other hand, from (I.H.) we know there exist C2, B 6= ∅ such that
C2 × B ⊆ G ′.rsi-hb; that B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧ B = G ′.(Tξb ∩ W));
and that either: i) C2 = G ′.Tξc ; or ii) stg(c, ξc) ≤ 2 ∧ C2 = G ′.(Tξc ∩ RE); iii)

stg(c, ξc) ≤ 4 ∧ ∃e ∈ ξc.W . c
G.po?

→ e ∧ C2 = {mw−1(e)}).
In cases (A.i-A.iii) and (B.i, B.iii) from the transitivity of G ′.rsi-hb we know

there exists A,B 6= ∅ such that A×B ⊆ G ′.rsi-hb; that A = G ′.Tξa∨(stg(a, ξa) ≤

2∧A = G ′.(Tξa ∩RE))∨(stg(a, ξa) ≤ 4∧∃d ∈ ξa.W . a
G.po?

→ d∧A = {mw−1(d)});
and that B = G ′.Tξb ∨ (stg(b, ξb) ≥ 3 ∧ B = G ′.(Tξb ∩ W)), as required. Case
(B.ii) cannot arise as we would otherwise have 3 ≤ stg(c, ξc) ≤ 2, leading to a
contradiction.

Theorem 14 (Completeness). For all RSI execution graphs G ′ and their
counterpart implementation graphs G constructed as above,

rsi-consistent(G ′) ⇒ RA-consistent(G)

Proof. Pick an arbitrary RSI execution graph G ′ and its counterpart implemen-
tation graph G constructed as above and let us assume that rsi-consistent(G ′)
holds. From the definition of RA-consistent(G) it then suffices to show:

1. irreflexive(G.hb)
2. irreflexive(G.mo;G.hb)
3. irreflexive(G.rb;G.hb)

RTS. part 1
We proceed by contradiction. Let us assume that there exists a such that (a, a) ∈
G.hb. There are now two cases to consider: 1) a ∈ G.NT ; or 2) ∃ξ. a ∈ G.E ξ

In case (1) from Lemma 19 we have (a, a) ∈ G ′.rsi-hb, contradicting the assump-
tion that G ′ is RSI-consistent. Similarly, in case (2) from Lemma 19 we have
(a, a) ∈ G.po, leading to a contradiction as G.po is acyclic by construction.

RTS. part 2
We proceed by contradiction. Let us assume that there exist a, b such that (a, b) ∈
G.hb and (b, a) ∈ G.mo. Let loc(a) = loc(b) = x. There are then five cases
to consider: 1) ∃ξ. (a, b) ∈ G.E ξ; or 2) a, b ∈ G.NT ; or 3) a ∈ G.NT and
b ∈ G.E ξb ; or 4) a ∈ G.E ξa and b ∈ G.NT ; or 5) a ∈ G.E ξa , b ∈ G.E ξb and
ξa 6= ξb.

In case (1) from the construction of G.mo we have (mw−1(b), mw−1(a)) ∈
G ′.mo. Moreover, from Lemma 19 we have (a, b) ∈ G.po, and thus from the con-
struction of G.po we have (mw−1(a), mw−1(b)) ∈ G ′.po. Moreover, since mw−1(a), mw−1(b)
are write events in the same transaction ξ, we have (mw−1(a), mw−1(b)) ∈ G ′.poI∩

W2 ⊆ G ′.rsi-hb. As such we have mw−1(a)
G

′.rsi-hb
→ mw−1(b)

G
′.mo
→ mw−1(a), contra-

dicting the assumption that G ′ is RSI-consistent.

In case (2) from the construction of G.mo we have (b, a) ∈ G ′.mo. Moreover,

from Lemma 19 we have (a, b) ∈ G ′.rsi-hb. As such we have a
G

′.rsi-hb
→ b

G
′.mo
→ a,

contradicting the assumption that G ′ is RSI-consistent.

In case (3) from the construction of G.mo we have (mw−1(b), a) ∈ G ′.mo.
Moreover, since b ∈ G.W and thus mw−1(b) ∈ G ′.W, from Lemma 19 we have

(a, b) ∈ G ′.rsi-hb. As such we have a
G

′.rsi-hb
→ mw−1(b)

G
′.mo
→ a, contradicting the

assumption that G ′ is RSI-consistent.

In cases (4, 5) from the construction of G we know that mw−1(a)
G.po
→ a

G.hb
→

b, and thus from the transitivity of G.hb we have (mw−1(a), b) ∈ G.hb. As
stg(mw−1(a), ξa) = 1, from Lemma 19 we have (mw−1(a), b) ∈ G ′.rsi-hb. On the
other hand, from the construction of G.mo we have (b, mw−1(a)) ∈ G ′.mo. Con-

sequently, we have mw−1(a)
G

′.rsi-hb
→ b

G
′.mo
→ mw−1(a), contradicting the assumption

that G ′ is RSI-consistent.

RTS. part 3
We proceed by contradiction. Let us assume that there exists a, b such that (a, b) ∈
G.hb and (b, a) ∈ G.rb. Let loc(a) = loc(b) = x. There are then five cases to
consider: 1) ∃ξ. (a, b) ∈ G.E ξ; or 2) a, b ∈ G.NT ; or 3) a ∈ G.NT and
b ∈ G.E ξb ; or 4) a ∈ G.E ξa and b ∈ G.NT ; or 5) a ∈ G.E ξa , b ∈ G.E ξb and
ξa 6= ξb.

Case (1) cannot arise as from the definition of G.rb we know a is a write
event in ξ.Ws while b is a read event in ξ.Ts and no po edge exists between the
events of ξ.Ts and ξ.Ws.

In case (1) from Lemma 19 we have (a, b) ∈ G.po. This however leads to a
contradiction as from the definition of G.rb we know a is a write event in ξ.Ws
while b is a read event in ξ.Ts and no po edge exists between the events of ξ.Ws
and ξ.Ts.

In case (2) from the construction of G.rb we know that (a, b) ∈ G ′.rb. On
the other hand, from Lemma 19 we have (a, b) ∈ G ′.rsi-hb. As such we have

a
G

′.rsi-hb
→ b

G
′.rb
→ a, contradicting the assumption that G ′ is RSI-consistent.

In case (3), as b is a read event and thus stg(b, ξb) = 1, from Lemma 19
we have (a, b) ∈ G ′.rsi-hb. On the other hand, from the construction of G.rb we

have (b, a) ∈ G ′.rb. Consequently, we have a
G

′.rsi-hb
→ b

G
′.rb
→ a, contradicting the

assumption that G ′ is RSI-consistent.

In case (4) since a is a write, from the construction of G we know that

mw−1(a)
G.po
→ a

G.hb
→ b, and thus from the transitivity of G.hb we have (mw−1(a), b) ∈

G.hb. As stg(mw−1(a), ξa) = 1, from Lemma 19 we have (mw−1(a), b) ∈ G ′.rsi-hb.
On the other hand, from the construction of G.rb we have (b, mw−1(a)) ∈ G ′.rb.

Consequently, we have mw−1(a)
G

′.rsi-hb
→ b

G
′.rb
→ mw−1(a), contradicting the assump-

tion that G ′ is RSI-consistent.
Similarly, in case (5) since a is a write event, from the construction of G

we know that mw−1(a)
G.po
→ a

G.hb
→ b, and thus from the transitivity of G.hb we

have (mw−1(a), b) ∈ G.hb. As stg(mw−1(a), ξa) = stg(b, ξb) = 1, from Lemma 19
we have (mw−1(a), b) ∈ G ′.rsi-hb. On the other hand, from the construction of

G.rb we have (b, mw−1(a)) ∈ G ′.rb. Consequently, we have mw−1(a)
G

′.rsi-hb
→ b

G
′.rb
→

mw−1(a), contradicting the assumption that G ′ is RSI-consistent.

	On the Semantics of Snapshot Isolation

