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Abstract
The Loewner framework-(LF) in combination with Volterra series-(VS) offers a non-intrusive

approximation method that is capable to identify bilinear models from time domain measurements.

1 Introduction
In natural sciences, evolutionary phenomena can be modelled as dynamical systems. An ever-
increasing need for improving the approximation accuracy has motivated including more involved
and detailed features in the modelling process, thus inevitably leading to largerâĂŘscale dynamical
systems [3]. To overcome this problem, efficient finite methods heavily rely on model reduction.
Model reduction methods can be classified into two broad categories, namely, SVD-based andKrylov-
based (moment-matching).

The most prominent among the SVD-based methods is balanced truncation (BT). In general,
balancing methods are based on the computation of controllability and observability gramians and
lead to the elimination of states which are difficult to reach and to observe. Besides having high
computational cost of solving the associated matrix Lyapunov equations, the advantages of balancing
methods include the preservation of stability and an a priori computable error bound. For more details
on these topics as well as on other model reduction methods not treated here (e.g., proper orthogonal
decomposition (POD)/reduced basis (RB)), we refer the reader to the book [3] and the surveys [8, 12].

One way to perform model reduction is by employing interpolation. These methods are known
as rational Krylov methods or moment-matching methods. Krylov-based methods are numerically
efficient and have lower computational cost, but in general the preservation of other properties (e.g.,
stability or passivity) is not automatic. For an extensive study in interpolatory model reduction, we
refer the reader to the recent book [4]. In what follows we will consider exclusively interpolatory
model reduction methods and, in particular the (LF). For recent surveys on the (LF), see [2, 6, 24]
and on the sensitivity of noise in the (LF) are given in [25, 15].

When input-output data are offered, data-driven methods such as the (LF), (Dynamic Mode
Decomposition)-(DMD) [31], sparse identification of non-linear systems - SINDYc in [22], Vector
Fitting-(VF) [19], Hankel or subspacemethods [20, 21] and operator inference [27], remain the only
feasible approaches for recovering the hidden information.

DMD-based methods represent viable alternatives that require state-derivative estimations. In
such cases, the library construction allows a broad non-linear identification. Nevertheless, the
dimension of this library could be very large when accurate discretization of the physical domain is
performed.
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While the underlying dynamical systemacts as a black box,model identification tools are important
for the reliability of the discovered models (i.e., stability, prediction). At the same time, these
discoveredmodelsmight have large dimension and hence are not suitable for fast numerical simulation.
The (LF) is a direct data-driven interpolatory method able to identify and reduce models derived
directly from measurements. For measured data in the frequency domain, the (LF) is well established
for linear and non-linear systems (e.g., bilinear or quadratic-bilinear systems) see [5, 18]. In the case
of time domain data, the (LF) was already applied for approximating linear models [20, 26, 17]. The
mathematical description of dynamical systems uses the concept of DAEs1 which can simulate the
input-u(t) to output-y(t) relation as in Fig. 1, where the differential operator denoted as f and the
algebraic operator denoted as z.

u(t) Σ : Ûx(t) = f(x(t), u(t)), y(t) = z(x(t), u(t))
input

y(t)
output

Figure 1: Mathematical formalism for evolutionary phenomena.

2 System theory preliminaries
In this section, we will briefly present some important material from system theory starting from the
linear case.

2.1 Linear systems
Consider SISO linear, time-invariant systems with n internal variables (called "states" whenever the
matrix E is non-singular).

Σl :

{ E Ûx(t) = Ax(t) + Bu(t),

y(t) = Cx(t), t ≥ 0,
(1)

where E, A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n. In the sequel we will restrict our attention to invertible
matrix E and with zero D-term (D = 0) in the state-output equation2. The resulting system (1) is:

Σl :

{ Ûx(t) = Ax(t) + Bu(t),

y(t) = Cx(t), t ≥ 0.
(2)

The explicit solution with the convolution integral3 notation and the time domain linear kernel h(t)
as the impulse response of the system can be written as:

y(t) = CeAtx(0) + (h ∗ u)(t), t ≥ 0. (3)

By assuming zero initial conditions and performing a Laplace transform, we obtain the transfer
function description:

H(s) = Y (s)
U(s) = C(sI − A)−1B, s ∈ C, (4)

where Y (s),U(s) stand for the input and the output in the frequency domain.

2.2 Nonlinear systems
A large class of nonlinear systems can be described by means of the Volterra-Wiener approach in [30].
Other relevant works on nonlinear systems and nonlinear modelling/identification include Schetzen
(1980), Chen and Billings (1989), Boyd and Chua (1985) et. al.

1DAEs: Differential Algebraic Equations.
2The state-output equation often is represented as y(t) = Cx(t) + Du(t).
3(h ∗ u)(t) =

∫ ∞
−∞ h(τ)u(t − τ)dτ.
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The aim in this study is to identify and reduce special types of non-linear systems (s.a., bilinear)
from time domain measurements. By knowing only the input and the simulated or measured output in
the time domain as in Fig. 2, we will identify the hidden model which explains this phenomenon. In
such situations where only snapshots are available, beyond the linear fit which is very well established
to a series of methods, a non-linear fit of a special type will be able to capture the hidden non-linearity.

u(t) Σ : unknown
input

y(t)
output

Figure 2: The input-output mapping from the data-driven perspective with the unknown system Σ.
Although specific structures of the unknown system can be assumed/inspired by the physical problem.
For instance, if the underlying physical phenomenon is fluid flow inside a control volume, quadratic
models should be constructed e.g., [18].

2.2.1 Approximation of non-linear systems (Volterra series)
The input-output relationship for a wide class of non-linear systems [30] can be approximated by a
Volterra series up to a sufficiently high N as:

y(t) =
N∑
n=1

yn(t), yn(t) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, · · · , τn)

n∏
i=1

u(t − τi)dτi, (5)

where hn(τ1, · · · , τn) is a real-valued function of τ1, · · · , τn known as the nth order Volterra kernel.

Definition 2.1. The nth order generalized frequency response function (GFRF) is defined as:

Hn( jω1, · · · , jωn) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, · · · , τn)e(−j

∑n
i=1 ωiτi)dτ1 · · · dτn, (6)

which is the multidimensional Fourier4 transform of hn(τ1, · · · , τn).
By applying the inverse Fourier transform of the nth order GFRF, Eq. 6 can be written as:

yn(t) =
1
(2π)n

∫ ∞

−∞
· · ·

∫ ∞

−∞
Hn( jω1, · · · , jωn)

n∏
i=1

U( jωi)e j(ω1+· · ·+ωn)tdω1 · · ·ωn. (7)

The nth Volterra operator is defined:

Vn(u1, u2, ..., un) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, ..., τn)

n∏
i=1

ui(t − τi)dτi, (8)

so that it holds yn = Vn(u, u, ..., u).
Remark 2.1. Homogeneity of the Volterra operator The map u(t) → yn(t) is homogeneous of degree
n, that is, αu → αnyn. Each Volterra kernel hn(t) determines a symmetric multi-linear operator.
This will allow to order the non-linear terms in such a way that larger powers of the amplitude (αn)
will eliminate the corresponding dynamics term. That is precisely the sense of approximating weakly
non-linear systems with Volterra series (i.e., with 0 < α < 1, it holds αn → 0 as n→∞).

4As the frequency s = jω1 lies on the imaginary axis, the Laplace transform simplifies to Fourier transform.
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2.2.2 A single sinusoidal input
Consider the excitation of a system with an input consisting of two complex exponentials as in Eq. 9.
Such inputs are typically used in chemical engineering applications as [28].

u(t) = A cos(ωt) =
(

A
2

)
e jωt +

(
A
2

)
e−jωt, ( j2 = −1). (9)

By using the above input in Eq. 5, we can derive the first Volterra term with n = 1 as:

y1(t) =
∫ ∞

−∞
h1(τ1)[u(t − τ1)]dτ1

=
A
2

e jωt

∫ ∞

−∞
h1(τ1)e−jωτ1 dτ1︸                     ︷︷                     ︸

H1(jω)

+
A
2

e−jωt

∫ ∞

−∞
h1(τ1)e jωτ1 dτ1︸                   ︷︷                   ︸
H1(−jω)

⇒

y1(t) =
A
2

(
e jωtH1( jω) + e−jωtH1(− jω)

)
.

(10)

Similarly, for the second term we can derive:

y2(t) =
(

A
2

)2 [
e2jωH2( jω, jω) + 2e0H2( jω,− jω) + e−2jωH2(− jω,− jω)

]
. (11)

Remark 2.2. (Conjugate symmetry): H∗2 ( jω,− jω) = H2(− jω, jω), ∀ω ∈ R.
The input amplitude is A, the angular frequency is ω, the imaginary unit is j, the first order FRF5

is H1( jω), and Hn( jω, ..., jω), for n ≥ 2, are the higher-order FRFs or GFRFs. Then, the nth Volterra
term can be written as:

yn(t) =
(

A
2

)n ∑
p+q=n

nCqHp,q
n ( jω)e jωp,q t, ωp,q = (p − q)ω. (12)

where the following brief notations have been used:

Hp,q
n ( jω) = Hn( jω, ..., jω︸     ︷︷     ︸

p−times

;− jω, ...,− jω︸          ︷︷          ︸
q−times

), ωp,q = (p − q)ω, nCq =
n!

q!(n − q)! . (13)

2.2.3 Time domain representation of harmonics
The nth harmonic in the time domain is:

ynth (t) =
∞∑
i=1

2
(

A
2

)n+2i−2
n+2i−2Ci−1Hn+i−1,i−1

n+2i−2 ( jω)e jnωt . (14)

2.2.4 Frequency domain representation of harmonics
The nth harmonic in the frequency domain by applying Fourier transform in Eq. 14 is the following:

Ynth ( jnω) =
∞∑
i=1

2
(

A
2

)n+2i−2
n+2i−2Ci−1Hn+i−1,i−1

n+2i−2 ( jω)δ( jnω). (15)

where δ(·) is the Dirac delta distribution.

5FRF: Frequency Response Function and GFRF: Generalized FRF.
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Figure 3: An instance of the single-sided power spectrum with a singleton input with ω = 1 is depicted.
The underlying system is non-linear and as a result higher harmonics appeared with a DC (Direct Current
- non-periodic) term as well.

3 The Loewner framework
We start with an account of the Loewner framework (LF) in the linear case [2, 6, 24]. The (LF) as
an interpolation method seeks reduced models whose transfer function matches that of the original
system at selected interpolation points. An important attribute is that it provides a trade-off between
accuracy of fit and complexity of the model. It constructs models from given frequency data in
a straightforward manner. In the case of SISO systems, we have the rational scalar interpolation
problem to solve.

Consider a given set of data (abstract frequencies) as:

{(sk, fk(sk)) ∈ C × C : k = 1, . . . , 2n)}.

We partition the data in two disjoint sets:

S = [s1, . . . , sn︸     ︷︷     ︸
µ

, sn+1, . . . , s2n︸         ︷︷         ︸
λ

], F = [ f1, . . . , fn︸     ︷︷     ︸
V

, fn+1, . . . , f2n︸         ︷︷         ︸
W

],

where µi = si , λi = sn+i , vi = fi , wi = fn+i for i = 1, . . . , n.
The objective is to find H(s) ∈ C such that:

H(µi) = vi, i = 1, . . . , n, H(λj) = wj, j = 1, . . . , n. (16)

The left data is rearranged compactly as:

M = [µ1, · · · , µn] ∈ C1×n, V = [v1, · · · , vn] ∈ C1×n, (17)

while the right data as:

Λ = [λ1, · · · , λn]T ∈ Cn×1, W = [w1, · · · ,wn]T ∈ Cn×1. (18)

Interpolation points are determined by the problem or are selected to achieve given model reduction
goals. For ways of choosing the interpolation grids and of partitioning the data into the left and right
sets, we refer the reader to the recent survey [24].

3.1 The Loewner matrix
Given a row array of complex numbers (µj, vj), j = 1, . . . , n, and a column array, (λi,wi), i = 1, . . . , n,
(with λi and the µj mutually distinct) the associated Loewner matrix L and the shifted Loewner matrix
Ls are defined as:

L=


v1−w1
µ1−λ1

· · · v1−wn

µ1−λn
...

. . .
...

vn−w1
µn−λ1

· · · vn−wn

µn−λn

 ∈C
n×n, Ls=


µ1v1−λ1w1
µ1−λ1

· · · µ1v1−λnwn

µ1−λn
...

. . .
...

µnvn−λ1w1
µn−λ1

· · · µnvn−λnwn

µn−λn

 ∈C
n×n.
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Definition 3.1. If g is rational, i.e., g(s) = p(s)
q(s) , for appropriate polynomials p, q, the McMillan

degree or the complexity of g is deg g = max{deg(p), deg(q)}.
Now, if wi = g(λi), and vj = g(µj), are samples of a rational function g, the main property of

Loewner matrices asserts the following.

Theorem 3.1. [2] Let L be as above. If k, q ≥ deg g, then rankL = deg g. In other words the rank of
L encodes the complexity of the underlying rational function g. Furthermore, the same result holds
for matrix-valued functions g.

3.2 Construction of interpolants
If the pencil (Ls, L) is regular, then E = −L, A = −Ls, B = V, C =W, is a minimal realization
of an interpolant for the data, i.e., H(s) =W(Ls − sL)−1V, interpolates the data. Otherwise, as shown
in [2], the problem in Eq. 16 has a solution provided that

rank [s L − Ls] = rank [L, Ls] = rank
[
L
Ls

]
= r,

for all s ∈ {µi} ∪ {λj}. Consider then the short SVDs:

[L, Ls] = YΣ̂r X̃∗,
[
L
Ls

]
= ỸΣrX∗,

where Σ̂r , Σr ∈ Rr×r , Y ∈ Cn×r , X ∈ Cn×r , Ỹ ∈ C2n×r , X̃ ∈ Cr×2n.

Remark 3.1. r can be chosen as the numerical rank (as opposed to the exact rank) of the Loewner
pencil.

Theorem 3.2. The quadruple (Ẽ, Ã, B̃, C̃) of size r × r , r × r , r × 1, 1 × r , given by:

Ẽ = −YTLX, Ã = −YTLsX, B̃ = YTV, C̃ =WX,

is a descriptor realization of an (approximate) interpolant of the data with McMillan degree r =
rank(L), where H̃(s) = C̃(sẼ − Ã)−1B̃.

For more details on the construction/identification of linear systems with the (LF), we refer the
reader to [6, 24] where both the SISO and MIMO cases are addressed together with other more
technical aspects (e.g., how to impose the construction of real-valued models, etc.).

4 The special non-linear case of Bilinear systems
In recent years, projection-based Krylov methods have extensively been applied for model reduction
of bilinear systems. We mention the following contributions [5, 1, 7, 9, 10, 11, 14, 16, 29] and the
references within.

Bilinear systems are described by the following set of matrices; Σb = (C,E,A,N,B) and charac-
terized by the following equations:

Σb :

{
EÛx(t) = Ax(t) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t), (19)

where E,A,N ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and x ∈ Rn, u, y ∈ R. In what follows, we restrict our
analysis to systems with non-singular E matrices. Moreover, this matrix can be considered to be the
identity matrix.

6



4.1 The Growing Exponential Approach
The properties of the growing exponential approach can be adapted readily to the problem of finding
transfer functions descriptions from constant-parameter (stationary) state equations. Let us consider
the bilinear model in Eq. 19 with zero initial conditions.
A single oscillatory input with amplitude A < 1 is considered as in Eq. 9.

u(t) = A cos(ωt) = A
2

e jωt +
A
2

e−jωt = ae jωt + ae−jωt, (20)

where a = A/2 and a ∈ (0, ε) with 0 < ε < 1/2 and for all t ≥ 0. The steady state solution for the
differential equation in Eq. 19 can be written as:

x(t) =
∞∑

p,q∈N
Gp,q

n ( jω, . . . , jω︸       ︷︷       ︸
p−times

,− jω, ...,− jω︸          ︷︷          ︸
q−times

)ap+qe jω(p−q)t (21)

The symbol Gp,q
n 6 is the nth input to state frequency response containing p-times the frequencyω and

q-times the frequency −ω. By substituting in Eq. 19 and collecting the terms of the same exponential
(as the e jωmt ), we can derive the input to state frequency responses G for every n. By denoting the
resolventΦ( jω) = ( jωE − A)−1 ∈ Cn×n, we can explicitly derive the following input to state transfer
functions Gn:

Gn,0
n ( jω) = Φ(njω)NΦ((n − 1) jω)N · · ·NΦ( jω)B,

G0,n
n ( jω) = Φ(−njω)NΦ(−(n − 1) jω)N · · ·NΦ(− jω)B,

Gp,q
n ( jω) = Φ((p − q) jω)N

[
Gp,q−1

n−1 ( jω) +Gp−1,q
n−1 ( jω)

]
, p, q ≥ 1,

(22)

for n ≥ 1 and p + q = n. By multiplying with the output matrix C, we can further derive the
input-output generalized frequency responses GFRFs (generalized transfer functions) as:

Hn,0
n ( jω) = CΦ(njω)NΦ((n − 1) jω)N · · ·NΦ( jω)B,

H0,n
n ( jω) = CΦ(−njω)NΦ(−(n − 1) jω)N · · ·NΦ(− jω)B,

Hp,q
n ( jω) = CΦ((p − q) jω)N

[
Gp,q−1

n−1 ( jω) +Gp−1,q
n−1 ( jω)

]
, p, q ≥ 1.

(23)

At this point, we are capable to write the Volterra series by using the above specific structure
of the GFRFs that were derived with the growing exponential approach for the bilinear case. An
important property to notice is that the nth kernel is a multivariate function of order n. It is obvious
that the identification of the nth order involves an n-dimension frequency space. For that reason, next,
we derive the general second symmetric kernel for the bilinear case with a 2-tone input.
A double oscillatory input as:

u(t) = A1 cos(ω1t) + A2 cos(ω2t) =
2∑
i=1

αi(e jωi t + e−jωi t ), (24)

where α1 =
A1
2 and α2 =

A2
2 . In that case, with the growing exponential approach, we can write the

input to state solution in steady state as:

x(t) =
∞∑
m

Gm1,m2,m3,m4
n αm1+m2

1 αm3+m4
2 e j((m1−m2)ω1+(m2−m3)ω2)t . (25)

6Gp,q
n = G( jω, ..., jω︸     ︷︷     ︸

p−times

;− jω, ...,− jω︸          ︷︷          ︸
q−times

)

7



We are looking for the input to state frequency response G( jω1, jω2). By substituting to the
bilinear model in Eq. 19 and collecting the appropriate terms while at the same time using the
symmetry G( jω1, jω2) = G( jω2, jω1), we conclude to:

G2( jω1, jω2) =
1
2
[( jω1 + jω2)E − A]−1 N

[( jω1E − A)−1 + ( jω2E − A)−1] B, (26)

where by using the resolvent notation and multiplying with C, we derive the 2-order generalized
frequency response (symmetric kernel)

H2( jω1, jω2) =
1
2

CΦ( jω1 + jω2)N [Φ( jω1)B +Φ( jω2)B] . (27)

4.2 The kernel separation method
One way to measure Volterra kernels is by means of interpolation. This problem is equivalent to that
of estimating the coefficients of a noisy polynomial. This interpolation scheme builds a linear system
with a Vandermonde matrix. This matrix is invertible since the amplitudes are distinct and non-zero.
The inverse of a Vandermonde matrix can be explicitly computed and there are stable ways to solve
these equations. The nth harmonic in the frequency domain is derived by applying a (single-sided)
Fourier transform. More precisely, the explicit formulation is as follows:

Ynth ( jnω) =
∞∑
i=1

2
(

A
2

)n+2i−2
n+2i−2Ci−1︸                        ︷︷                        ︸

αn+2i−2

Hn+i−1,i−1
n+2i−2 ( jω)δ( jnω)

=

∞∑
i=1

αn+2i−2Hn+i−1,i−1
n+2(i−1) ( jω)δ( jnω).

(28)

We simplify the notation in order to reveal the adaptive method that will help us to estimate the
GFRFs up a specific order. We can write the system which connects the harmonic information with
the higher Volterra kernels as follows:

Yα(0 jω)

Yα(1 jω)
Yα(2 jω)

...

Yα(njω)


=



α0 α2 α4 . . .

α1 α3 α5 . . .

α2 α4 α6 . . .

...
...

...
...

αn αn+2 αn+4 . . .


©



H0,0
0 H1,1

2 H2,2
4 . . .

H1,0
1 H2,1

3 H3,2
5 . . .

H2,0
2 H3,1

4 H4,2
6 . . .

...
...

...
...

Hn,0
n Hn+1,1

n+2 Hn+2,2
n+4 . . .





1

1

1
...

1


By introducing the Hadamard product7 notation and simplify the δ’s contribution to ones, we can

compactly rewrite the above system in the following form:

Y(α,ω) = [Mα ◦ Pω] · e (29)

The above system offers the level of approximation we want to achieve. Note that the frequency
response Y depends on both the amplitude and the frequency, while the right hand side of Eq. 29
reveals the separation of the aforementioned quantities. As we neglect higher order Volterra kernels,
the measurement set tends to be more and more corrupted by noise.

Remark 4.1. Kernel separation and stage `- approximation For a given system, the procedure consists
in exciting it with an 1-tone input. By varying the driving frequency as well as, the amplitude, we
can approximate GFRFs by minimizing the (2-norm) of the remaining over-determined systems.

Yn+1,`( jnω, α`) =
[
Mn+1,`(α`) ◦ Pn+1,`( jnω)

] · en+1,1 (30)

7Hadamard product denotes as "◦" and means that the multiplication is element wise.
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where the n-"direction" gives us the threshold up to the specific harmonic that we would like to
measure. The `-"direction" give us the level of the kernel separation we want to achieve. For
instance, for the 2nd stage approximation ` = 2 with αm ≈ 0, ∀m > ` = 2, and that results to n = 2
(up to 2nd harmonic).

4.3 Identification of the matrix N
The only difference between linear and bilinear models is the presence of the product between the
input and the state that is scalled by the matrix N. As the (LF) is able to identify the linear part
(A,E,B,C) of the bilinear model the only thing that remains is the identification of the matrix N. The
matrix N enters linearly in the following kernels:

• With a 1-tone input the H1,1
2 can be written:

H2( jω1,− jω1) =
1
2

C (−A)−1 N
(
( jω1I − A)−1B + (− jω1I − A)−1B

)
. (31)

and the H2,0
2 as:

H2( jω1, jω1) = C (2 jω1I − A)−1 N( jω1I − A)−1B. (32)

• While with a 2-tone input the general H2 can be written:

H2( jω1, jω2) =
1
2

C ( j(ω1 + jω2)I − A)−1 N
(
( jω1I − A)−1B + ( jω2I − A)−1B

)
. (33)

We introduce the following notations:

O( jω1, jω2) =
1
2

C ( j(ω1 + jω2)I − A)−1 ∈ C1×n,

R( jω1, jω2) =
(
( jω1I − A)−1B + ( jω2I − A)−1B

)
∈ Cn×1.

(34)

Note that, Eq. 33 be compactly rewritten as:

H2( jω1, jω2) = O( jω1, jω2)NR( jω1, jω2). (35)

Assume that k measurements of the function H2 are available (measured) for k different pairs (ω1, ω2).
By vectorizing in respect to the measurement set, we have:

H2( jω1, jω2)︸          ︷︷          ︸
Yk,1

= O( jω1, jω2)︸         ︷︷         ︸
Ok,n

N︸︷︷︸
n×n

R( jω1, jω2)︸         ︷︷         ︸
Rn,k

,

Y(1:k,1) =
(
O(1:k,1:n) ⊗ RT(1:k,1:n)

)
︸                       ︷︷                       ︸

(1:k,1:n2)

vec (N)︸  ︷︷  ︸
(1:n2,1)

(36)

Note that Eqs. (31, 32, 33) can be equivalently rewritten as one linear matrix equation, i.e., the
one given in Eq. 36. By filling out the matrix [O ⊗ R] with the information from H2( jω1,− jω1)
and from H2( jω1, jω1), has full rank. Hence, we are able to solve equation (36) and then identify
the matrix N. All the symmetry properties of the kernels are appropriately used, e.g., conjugate-real
symmetry. For n denoting the dimension of the bilinear model and k the number of measurements,
we have the following two cases:

1. k < n2 underdetermined→ LS solution (minimizing the 2-norm) as in [23],
2. k ≥ n2 overdetermined→ identification of N,

Lemma 4.1. For k ≥ n2 measurements with ω1,k, ω2,k ∈ C distinct pairs, it holds:

rank
(O(1:k,1:n) ⊗ R(1:k,1:n)

)
= n2 (37)

As the above lemma indicates, we need at least n2 measurements to identify the matrix N from a
bilinear system of dimension n.
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within the blue dots, we construct frequency bandwidths with an unique (ω1 + ω2).
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Figure 5: Left pane: Overlapping harmonics with invalid φ = 0.5. Right pane: Uniquely defined
harmonic at (ω1 + ω2) with valid φ = 1.5. Here, it holds (n = k + l).

4.4 A harmonic separation strategy for the 2nd kernel
To identify the nth Volterra kernel, we need an n-tone input signal. As we want to identify the
2nd kernel, the input signal needs to be chosen as a double sinusoidal Eq. 24. The propagating
harmonics are: e(j(m1−m2)ω1+j(m3−m4)ω2)t or more compactly e(±k jω1±l jω2)t , where k, l ∈ N. The aim
is to differentiate the (ω1+ω2) harmonic from the others harmonics. By succeeding that, there will be
no overlapping (commensurate frequencies) and we know what exactly we measure in the spectrum.
More precisely, we want the following result to hold:

ω1 + ω2 , kω1 + lω2, ∀(k, l) ∈ Z × Z \ {1, 1}. (38)

Suppose ω2 = φω1, φ ∈ R. What are the suitable φ’s where Eq. 38 holds?

ω1 + φω1 = kω1 + lφω1 ⇒
1 + φ = k + lφ⇒

φ =
k − 1
1 − l

, k, l ∈ Z \ {1}.
(39)

By choosing φ that the equality in Eq. 39 doesn’t hold, with harmonic mixing index as m = k + l
(i.e., for 2nd stage approximation m = 2), it makes the harmonic (ω1 + ω2) uniquely defined in the
frequency spectrum up to the mth harmonic.

To visualize this feature, we choose ω1 = 1, and ω2 = ω1φ = φ, for harmonic mixing index
m = 2. Then, the constrains of φ in Fig. 4 are depicted with blue dots.

Next, in Fig. 5 and on the left pane, one φ constraint that occurs commensurate harmonics is
depicted, and on the right pane, one unique harmonic construction at (ω1 + ω2) is presented.

The next theoretical result allows us to construct sweeping frequency schemes to get enough
measurements for the H2( jω1, jω2). So, for every ω1 > 0 the following should hold :

ω2 ∈ (φi−1ω1, φiω1) , i = 1, . . . (40)

where φi are the constrains (see Fig. 4 blue dots).
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Remark 4.2. With the framework that we have developed, we force the separation of ω1 + ω2
harmonic only under a specific mixing order m. We do not offer any general solution of the harmonic
separation problem for multi-tone input, although techniques have been introduced such as in [13].
There, it was also stated that the solution of the full separation of harmonics is in general, not possible.

4.5 The Loewner-Volterra algorithm for time domain bilinear identification
We start with a set of 1-tone inputs as u(t) = α1 cos(ωit), i = 1, ..., n, with α1 < 1. For those n
measurements we can estimate the linear kernel H1( jωi), the H2( jωi, jωi) and the H2( jωi,− jωi) by
simply measuring the first harmonic as Y1, the second harmonic as Y2, and the DC term as Y0, from
the frequency spectrum in Fig. 3.

We can increase the accuracy of the method to `-stage by varying the amplitude α` as explained
in section 4.2.

Since the (LF) reveals the underlying order of the system denoted with r , the value of n should
be at least equal to 2r . Then, we can take the decision by analysing the singular value decay. Up to
the previous step, we have identified the linear part with the (LF), and, we have filled the LS problem
Eq. 36 with measurements from the diagonal of the 2nd kernel and from the the perpendicular
to the diagonal axis (ω1,−ω1). Those measurements contribute to the LS problem, but with an
underdetermined (rank deficient) LS problem.

We need more measurements of H2 to reach the full rank (r2) solution that will lead to the
identification of N. So, we proceed by measuring the H2 off the diagonal with a 2-tone input as
u(t) = α` cos(ω1,k t) + β` cos(ω2,k t), for a set of frequency pairs (ω1, ω2) up to r2. The harmonic
separation problem for the frequency (ω1, ω2) appears now. To deal with this problem, we follow the
solution proposed in section 4.4 (up to a mixing degree). Last, we solve the LS problem described in
Eq. 36 by using all the symmetric properties of these kernels (i.e., real symmetry, conjugate symmetry
and the fact that H2( jω1, jω2) = H2( jω2, jω1)). An algorithm that summarizes the above procedure
is presented below.

Program 4.1. (Algorithm 2) A Loewner-Volterra algorithm for bilinear identification/reduction from
time domain data.

Input: Use as control input the signals: u(t) = α` cos(ω1,k t)+β` cos(ω2,k t), t ≥ 0, by sweeping
the small amplitudes (< 1) and a particular range of frequencies.

Output: A reduced bilinear system of dimension-r: Σr : (Er,Ar,Br,Cr,Nr )

1. Apply one-tone input u(t) with β` = 0, ω1,k for k = 1, . . . , n and collect the snapshots y(t) in
steady state. Improve the measurements by solving system Eq. 29 by sweeping the amplitude
for each frequency.

2. Apply Fourier transform for each frequency and collect the following k measurements:
• DC term: YO(0 · jω1,k),
• 1st harmonic: YI (1 · jω1,k),
• 2nd harmonic: YI I (2 · jω1,k).

3. Apply the linear the (LF), see Algorithm 1 in [24] by using the measurements (e.g., H1( jω1,k) =
2YI ( jω1,k)/α1,` for the 2nd stage approximation) and get the the order r reduced linear model.
If the second harmonic and higher harmonics are equal with zero, the underlying system is
linear so N is the zero matrix 0r×r as well. Otherwise the system is nonlinear and computing
the bilinear matrix N will improve the accuracy.

4. Apply the 2-tone input u(t) = α` cos(ω1,k t)+ β` cos(ω2,k t) to get enough measurements (≤ r2)
to produce a full rank LS problem. Measure the (ω1 +ω2) harmonic as explained in section 4.4
and get the estimations for the 2nd kernel as: H2( jω1,k, jω2,k) = 2YI I ( jω1,k, jω2,k)/(α`β`).
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5. Solve the full rank least square problem described in Eq. 36 and compute the real-valued bilinear
matrix N.

5 Applications
Example 5.1 (A small bilinear identification). The aim in this example is to identify the bilinear
model from time domain measurements. Consider the following controllable/observable bilinear
model Eq. 19 of dimension-2 with a non-symmetric matrix N, zero initial condition and matrices as:

E =
[

1 0
0 1

]
A =

[ −1 −10
10 −1

]
, N =

[
1 −2
3 −4

]
, B =

[
1
1

]
, C =

[
1 1

]
. (41)

We simulate the system in time domain with a single sinusoidal input u(t) = 0.01 cos(2πωt), by
varying the frequencyω ∈ [0.5 1 1.5 2], with time step dt = 1e−4. Next, the 2nd-stage approximation
results for the linear kernel H̃1 in comparisonwith the theoretical values of H1 are presented in Table 1.

Table 1: Measurements of the first (linear) kernel
Frequency ω(Hz) Ĥ1( jω)-2nd stage H1( jω)-theoretical
0.5 0.019928 + 0.01223i 0.020033 + 0.012241i
1 0.020634 + 0.024733i 0.020742 + 0.024755i
1.5 0.021871 + 0.037798i 0.021988 + 0.037836i
2 0.023741 + 0.05176i 0.023874 + 0.051821i

a With 2nd-stage approximation H̃1( jω) = 2Y1( jω)/α.

With the estimations of the linear transfer function and by using the (LF) as the data-driven
identification and reduction tool for linear systems, we identify the linear system (Ẽ, Ã, B̃, C̃). We
stopped at the 4thmeasurement due to the fact that the underlying system is of second order (McMillan
degree 2). Otherwise, more measurements will be needed to have a reviling decay of the singular
values as in the next Fig. 6. The singular values decay offers a choice of reduction. As long as the
simulation of the system is done, with time step dt = 1e − 4, the singular values with magnitude
below that threshold are neglected.
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Figure 6: The singular value decay of the (LF) as a fundamental characterization of the McMillan degree
of the underlying linear system. Here, a truncation scheme of order r = 2 is recommended where the 2nd
stage approximation gave σ3/σ1 = 4.721 · 10−5, while for the noise free case the third singular values has
reached the machine precision.

Construction of the linear systemwith order r = 2 by using the theoretical noise-freemeasurements
(subscript "t") appears next:

Ãt =

[ −1.4513 −8.8181
11.363 −0.54868

]
, B̃t =

[ −0.92979
1.3967

]
, C̃t =

[ −0.76857 0.9203
]
, (42)
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while by using the measured data with 2nd-stage approximation results to the following:

Ã =
[ −1.4581 −8.8137

11.367 −0.55163

]
, B̃ =

[ −0.93423
1.4

]
, C̃ =

[ −0.76751 0.9161
]
. (43)

Remark 5.1. Identified linear dynamics Even if the coordinate system is different, one crucial
qualitative result is to compute the poles and zeros of the linear transfer function. For the identified
system with the theoretical measurements (noise free), the poles and zeros are exactly as the original:
p̃t = −1± 10i and the zero is: z̃t = −1 while for the 2nd stage approximation to the linear system, the
corresponding results are: p̃ = −1.0048 ± 9.9989i, z̃ = −1.0042.

At this point, we have recovered the linear part of the bilinear system up to an accuracy due to the
truncation of Volterra series. The inexact simulations of the continuous system which are done with a
finite time step dt = 1e − 4, and the Fourier accuracy led to quite accurate results with a perturbation
of the order ∼ O(1e − 3) by comparing the theoretical poles and zeros. We proceed by collecting the
measurements of the second kernel. The following Table 2, contains measurements of the 2nd kernel
with 1-tone input.

Table 2: Measurements of the H2 on the diagonal and perpendicular to the diagonal.
Frequency ω H̃2( jω, jω) H2( jω, jω) H̃2( jω,− jω) H2( jω,− jω)
0.5 +0.15580 − 0.07747i +0.15588 − 0.07729i +0.10645 +0.10644
1 −0.26539 + 0.04057i −0.26564 + 0.04093i +0.15537 +0.15537
1.5 −0.03805 + 0.19171i −0.03844 + 0.19233i +0.30293 +0.30446
2 +0.03684 − 0.00528i +0.036891 − 0.0054i -0.12612 -0.12651

b The estimation of the second kernel with 2nd stage approximation on the diagonal as
H̃2( jω, jω) = 2Y2( jω, jω)/α2 and perpendicular of the diagonal as H̃2( jω,− jω) = 2Y2( jω,− jω)/α2.

We can get a matrix N by solving the least square problem by just minimizing the 2-norm as in
[23]. This result was not towards the identification of the matrix N and here is the new approach
working towards the identification of bilinear systems.

Question 5.1. Can we identify the matrix N? The improvement here relies on the rank deficiency
problem is produced by solving the least square problem without taking under consideration mea-
surements off the diagonal of the 2nd kernel H2 along (ω1, ω2) with (ω1 , ω2). By filling the LS
problem Eq. 36 with a full rank, the answer is affirmative.

Back to our introductory example, the rank of the least square problem is less than r2 = 4. So,
we need to increase the rank. We take measurements (≤ 4) off the diagonal from the 2nd kernel by
using the 2-tone input. The following Tab. 3 includes the theoretical and measured results.

Table 3: Measurements of the second kernel (off the diagonal)
Frequencies (ω1, ω2) H̃2( jω1, jω2) H2( jω1, jω2)
(0.2, 0.3) 0.10735 − 0.021434i 0.10734 − 0.021388i
(0.2, 0.6) 0.13170 − 0.046818i 0.13171 − 0.046718i
(0.4, 0.3) 0.12011 − 0.035526i 0.12010 − 0.035449i
(0.4, 0.6) 0.15665 − 0.078110i 0.15671 − 0.077938i

c The estimation of the second kernel as H̃2( jω1, jω2) = Y2( jω1, jω2)/(α1α2).
Here we use φ = 1.5, to avoid the harmonic overlapping as explained in section 4.4.

The full rankLS solution gave for the theoretical noise free case and for the 2nd stage approximation
the following results respectively:

Ñt =

[ −4.6753 −2.2605
−1.5564 −0.32474

]
, Ñ =

[ −4.6691 −2.2667
−1.5656 −0.33364

]
(44)
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Remark 5.2. Coordinate transformation By transforming all the matrices to the same coordinate
system as in [21], we conclude:

• Noise free case - exact identification

Ăt =

[ −1.0 −10.0
10.0 −1.0

]
, N̆t =

[
1.0 −2.0
3.0 −4.0

]
, B̆t =

[
1.0
1.0

]
, C̆t =

[
1.0
1.0

]T
. (45)

• Simulated case - approximated identification

Ă =
[ −1.0038 −9.9941

10.004 −1.0059

]
, N̆ =

[ −1.0055 2.0008
3.0038 −3.9972

]
, B̆ =

[
0.99925
1.0004

]
, C̆ =

[
1.0
1.0

]T
.

(46)

Next, in Fig. 7, evaluation results for the linear and the second order generalized transfer function
are presented:
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Figure 7: The identified first and second kernel with 2nd-stage approximation in comparison with the
theoretical kernels.

Finally, time domain simulations for each system performed in Fig. 8 with a larger amplitude than
the probing one.
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The noise free case has reached machine precision.
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Example 5.2. Burger’s Equation. This example illustrating the bilinear modeling and reduction
concepts proposed in [5] for the viscous Burger’s equation from time domain simulations. We kept
the same set up, as in the introductory example and we present the corresponding results with initial
system dimension n = 110 reduced by the proposed method to order r = 2 with the first neglected
singular value to be σ3/σ1 = 2.576 ·10−5. In Fig. 9, evaluation results are presented. Last, in Fig. 10,
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Figure 9: The first and the second kernel evaluations in comparison with the originals.

a simulation reveals that the proposed method can improve the accuracy by fitting a non-linear model.
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Figure 10: Time domain simulation for the original Burger’s example with viscosity parameter as 1 and
with dimension 110. A comparison among the identified/reduced bilinear of order r = 2 with the linear
is depicted. The input is u(t) = (1 + 2 sin(4πt))e−t for t ∈ [0, 5] and the maximum error for the reduced
bilinear is of the order O(10−2).

6 Conclusion
What makes this algorithm feasible is the combination of the data-driven Loewner framework with
the non-linear Volterra series framework. The proposed method offers approximate bilinear system
identification from time domain measurements, since it is not possible to measure the corresponding
kernels exactly. Our proposed method uses only input-output measurements without requiring state-
space access.
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Table 4: Summary of the results from the two examples.
Error quantification Example 1 Example 2 (Burger’s)
‖H1 − H̃1‖max 5.077 · 10−3 3.301 · 10−3

‖y(t) − yl(t)‖max 1.213 · 10−1 1.856 · 10−1

‖H2 − H̃2‖max 2.794 · 10−2 8.089 · 10−4

‖y(t) − ỹb(t)‖max 2.739 · 10−4 1.917 · 10−2

d The evaluations of the kernels and the outputs (yl: linear, ỹb reduced bilinear (r=2)) took place over
the domains that depicted in Figs. (8,7,9,10).

We have shown that for the noise free case, the proposed method offers system identification from
time domain measurements through the symmetric kernels. Further study is required to quantify the
effects of the noise introduced by the truncation of the Volterra series (in the `-stage approximation).

The variational approach is a theoretical method to identify regular kernels which are appropriate
for system identification purposes [30]. However, these kernels do not have a physical meaning, i.e.,
can not be directly measured from time domain simulations. This is not an issue for the growing
exponential approach. The derived transfer functions by means of this method can be measured from
time domain data. The difficulty in combining both derivations, i.e., symmetric and regular is also
explained from the nth dimensional integral that connects those through the triangular kernels.

Extension to the MIMO case and for other non-linearity structures (s.a., quadratic, bilinear-
quadratic etc.) is under future research.
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