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Vocal production learning (VPL), or the ability to modify vocalizations
through the imitation of sounds, is a rare trait in the animal kingdom. While
humans are exceptional vocal learners, few other mammalian species share
this trait. Owing to their singular ecology and lifestyle, bats are highly special-
ized for the precise emission and reception of acoustic signals. This
specialization makes them ideal candidates for the study of vocal learning,
and several bat species have previously shown evidence supportive of vocal
learning. Here we use a sophisticated automated set-up and a contingency
training paradigm to explore the vocal learning capacity of pale spear-nosed
bats. We show that these bats are capable of directional change of the funda-
mental frequency of their calls according to an auditory target. With this
study, we further highlight the importance of bats for the study of vocal learn-
ing and provide evidence for the VPL capacity of the pale spear-nosed bat.
1. Introduction
Bats are highly specialized in the use of their auditory system, which allows
them not only to orientate in the dark, but also to discriminate prey and surface
structures and identify conspecifics with a high temporal and spectral resol-
ution [1–7]. Bats have been shown to adjust several parameters of their
echolocation and social calls in response to their social environment [8–12],
which is thought to support group cohesion [6,13,14] and individual recog-
nition [15]. Recently bats have also attracted increased attention owing to
their capacity for vocal production learning (VPL), defined as the capacity to
modify vocalizations ‘in form as a result of experience with those of other indi-
viduals’ [16, p. 59]. VPL is related to vocal plasticity in that a change from
baseline vocal parameters must occur; however, it goes beyond plasticity as it
involves acoustic perception to induce a learned change towards or away
from a target sound [16]. VPL can have different degrees of complexity
[17,18]. While gradual vocal parameter changes towards an acoustic target
have been described as a limited form of VPL, the acquisition of artificial or het-
erospecific vocalizations is described as complex VPL [17,19]. VPL is also
distinct from vocal usage learning, which involves learning to use vocalizations
in new contexts, regardless of whether they are learned or innate [16,19].

Our previous research showed that pale spear-nosed bats have volitional
control over their vocalizations and possess vocal plasticity allowing them to
adjust temporal and amplitude parameters of their vocalizations in a context-
specific task [20]. Here, we take these experiments further and test the bats’
ability to directionally change the fundamental frequency of their vocalizations
according to an auditory target. Based on previous research on VPL in birds
and cetaceans [21–23], we developed a multi-stage training plan, which was
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used to train six adult pale spear-nosed bats to adjust their
calls according to artificially modified auditory input, via
an ultrasonic intercom.
 lsocietypublishing.org/journal/rsbl
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2. Material and methods
Six adult male pale spear-nosed bats (Phyllostomus discolor) were
trained for up to 4 h per day, 5 days per week from December
2017 until August 2018. Outside of the training periods, they
were housed with 24 conspecifics. This experiment was approved
by the German Regierung von Oberbayern (approval 55.2-1-54-
2532-34-2015). The six bats were trained in separate boxes,
which were described in detail previously [20]. All bats had par-
ticipated in vocal conditioning experiments in these boxes before
[20]. Each box was equipped with one ultrasound microphone,
a photoelectric barrier, a light emitting diode (LED), a remote-
controlled feeding device and a loudspeaker for stimulus playback
(see the electronic supplementary material for details (table S1)).

(a) Data acquisition
Data acquisition was controlled via a custom-written Matlab
script. The experiment was split into two phases: in phase 1,
the bats were each presented with six randomly chosen, unmodi-
fied playbacks of their own ‘typical’ calls that had been recorded
in a previous experiment [20]. In phase 2, the same six template
calls were presented downward-pitch-shifted by four semi-tones
(electronic supplementary material, figure S1). The bats actively
started a run by interrupting the photoelectric barrier, which acti-
vated the LED for up to 5 s, indicating the reactive state of the
feeder. In both phases, a continuously recorded ring buffer (of
250 ms length; sampling rate: 192 kHz) was saved, if a vocaliza-
tion exceeded the call level threshold (40 dB sound pressure level
integrated over the total buffer size) within this 5 s interval.
Specifically, when the photoelectric barrier was interrupted in
phase 1, a single, randomly chosen playback of one of the six
unmodified calls was started. If the bats then emitted a call
that exceeded the call level threshold within the 5 s interval a
food reward was triggered and the LED was switched off. In
phase 2, the bats were presented with the downward-shifted ver-
sions of their own calls. In this second phase, a spectral low-pass
criterion for the feeder trigger was activated, allowing only those
calls that exceeded the call level threshold in a frequency range
below the low-pass cut-off frequency to trigger the feeder.
Even though not all calls emitted within the reactive 5 s interval
triggered the feeder, all calls were still saved if they exceeded the
call level threshold [24]. The low-pass, cut-off frequency was
initially set to 27, 28 or 30 kHz and was then adjusted depending
on the individual training success to final frequencies between
13.1 and 15.6 kHz (electronic supplementary material, figure
S2). The six bats were recorded in phase 2 for varying durations
(64–94 days, electronic supplementary material, figure S2), which
allowed us to compare the datasets after 30 and after 60 days of
training for all individuals.

In order to test whether the active low-pass criterion
(indication for usage learning), or the presentation of frequency-
shifted playbacks (indication for production learning) caused
the observed change in mean f0, four bats were used for a
follow-up experiment directly subsequent to their training in
phase 2. Two bats (Bats 1 and 3) did not enter the follow-up
experiment as they began data collection later than the other
four. In the follow-up experiment, the low-pass criterion was
deactivated for 5 days (the templates were still frequency-shifted
(‘criterion deactivated’ data)), thus all calls exceeding the level
threshold triggered a food reward. Subsequently, the unmodified
‘typical’ calls were used again as templates (‘unshifted template’
data) for a further 5 days. If the bats were following the template,
we expected to see no change or even a further decrease in the f0
of their calls when the low-pass criterion was deactivated, but an
increase in f0 when unshifted templates were presented.

(b) Analysis
In the 250 ms long recordings, individual calls were automatically
detected by a custom-written Matlab script, and call duration,
level and mean f0 were extracted. To determine the f0 of a call,
the YIN algorithm [25] was employed and detected f0 jumps
were corrected for. From the trace of f0 over time, the mean f0
was calculated. In order to conservatively exclude echolocation
calls from the analyses, only calls with a minimum duration of
5 ms were considered in the analyses. A correlation analysis was
conducted on all calls of each individual to test for correlation
between mean f0 and call duration. Owing to the low sample
size, we conducted all statistical analyses within the individual
subjects. In order to detect a change of f0 over time, we compared
‘baseline’ data with data ‘after 30 days of training’ and ‘after 60
days of training’. For these datasets, we pooled all calls from
each bat separately over 5 days (i.e. data 5 days before phase 2
and from days 28–32 and 58–62 in phase 2). With the one-
sample Kolmogorov–Smirnov test for continuous data, we con-
firmed that all our datasets differed significantly from normal
distributions. Thus, we used the Wilcoxon rank-sum test to com-
pare the datasets for each bat individually and report the
number of analysed calls, median, interquartile ranges and p-
values of the Wilcoxon rank-sum test [24].
3. Results
In the course of the experiment, 28 452 calls were recorded
within the different datasets, each encompassing recordings
from 5 days. The number of emitted calls increased when
the low-pass filter was activated and decreased again after
its deactivation (electronic supplementary material, tables
S2 and S3). Together with a strong reduction in success rate
whenever the low-pass filter was further lowered (electronic
supplementary material, figure S2), this highlights the diffi-
culty the low-pass filter presented to the bats.

All six bats significantly lowered the mean f0 of their calls
within the first 30 days of training with pitch-shifted template
calls (in each case p < 0.01, figure 1, electronic supplementary
material table S2). Five of them further decreased their f0
within the next 30 training days, while one bat started to
slightly increase the f0 of its calls again (Bat 5, figure 1b).
However, after 60 days of training, the mean f0 of the calls
of all six bats was significantly lower than in the ‘baseline’
data (average reduction of mean f0: 637 Hz, electronic sup-
plementary material, table S2). All bats also significantly
prolonged their calls in response to the training regime (elec-
tronic supplementary material, table S3). Mean f0 and call
duration were negatively correlated for most bats (Bats 2–6),
but slightly positively correlated for Bat 1 (electronic sup-
plementary material, figure S3). Call level change was also
noted in the different datasets; the maximal median level
increase, however, was below 5 dB and lay within the vari-
ation arising from the bats’ free movement in the set-up
(electronic supplementary material, figure S4).

The individual bats reacted differently to the deactivation
of the low-pass filter criterion and the presentation of an
unshifted template. Two out of four bats (Bats 2 and 6)
increased the f0 of their calls significantly after the low-pass cri-
terion was deactivated (for both bats p < 0.01, electronic
supplementary material, table S2). Neither of them signifi-
cantly changed the f0 after the unshifted templates were
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Figure 1. Change of mean fundamental frequency. (a) Exemplary trajectory of the f0 decrease of Bat 1. The data are displayed continuously over the first 62 days of
acquisition and presented with a smoothed mean (bin: 5 days). The mean f0 of the baseline data (approx. 16 kHz, indicated by dotted blue line) and the actual
mean f0 trajectory (solid black line) are shown. Standard error of the mean (s.e.m.) is indicated in dark grey and the standard deviation in light grey. The linear
regression slope of the mean f0 is indicated with a solid red line. Yellow areas indicate the time points ‘30 days of training’ and ‘60 days of training’. (b) This shows
the change of mean f0 of all six bats, pooled over 5 days in the different datasets. The different bats are represented by colours and grey error bars indicate the
s.e.m. Bats 2 and 4–6 were tested in a follow-up experiment investigating their response to the deactivation of the low-pass filter criterion and the presentation of
unshifted templates. These follow-up data were collected directly subsequent to training in phase 2 for all four bats. However, the duration of training in phase 2
differed between individuals (indicated by the dashed lines), details of which can be found in electronic supplementary material, figure S2.
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played back (p = 0.78 (Bat 2) and p= 0.21 (Bat 6), figure 1b; elec-
tronic supplementary material, table S2). Another bat (Bat 5),
did not show a significant change in pitch after the low-pass
criterion was deactivated (p= 0.78), but significantly increased
the f0 of its calls after unshifted templates were presented again
(p< 0.01, figure 1b; electronic supplementary material, table
S2). Bat 4 continued to decrease the f0 of its calls even after
the low-pass filter criterion was deactivated and increased its
f0 only after unshifted templates were presented (p < 0.01,
figure 1b; electronic supplementary material, table S2).

4. Discussion
Using a set-up and training regime modified from the bird
literature [21], we here demonstrate that P. discolor can direc-
tionally shift the fundamental frequency ( f0) of their social
calls. All six bats decreased the f0 of their calls significantly
after 30 days of training, following playback of a pitch-shifted
version of their own calls and a low-pass criterion for food
reward. This decrease in f0 occurred gradually (figure 1a),
suggesting that the f0 decrease is not a result of trial and
error, but rather that it is guided by the presented pitch-
shifted templates. The maximal observed decrease in mean
f0 (990 Hz or 6.2%; electronic supplementary material,
table S2) was a smaller pitch shift than the shift applied to
the presented template call (24%). As the physiological
range of pitch production for these specific calls is unknown,
the limited decrease in mean f0 could be caused by limitations
in the structural plasticity of their calls. Nevertheless, the
pitch shift produced by all experimental animals is perceiva-
ble by this species (they can perceive a frequency change as
little as 1% [26]), and the bats lowered the f0 of their calls
actively and in a directional manner, demonstrating their
capacity to directionally modify the spectral parameters of
their vocalizations.

To test the driving force behind the decrease in f0, we first
deactivated the low-pass criterion and only later presented
unshifted templates. If the bats were driven by the template
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in order to adjust their f0, we would expect an increase in f0
only once the unshifted templates were presented (i.e. indi-
cation for VPL). If the bats were driven solely by the
pressure exerted by the low-pass criterion, we would expect
a prompt upward shift after the reward criterion was deacti-
vated (i.e. indication for non-auditory learning). The results
show that the experimental bats reacted differently in the train-
ing paradigm. Two out of four bats (Bats 2 and 6) started to
increase the f0 of their calls when when the low-pass reward
criterion was deactivated but the presented templates were
still downwards-pitch-shifted (figure 1b). Bat 4, however,
was driven by the pitch-shifted acoustic template and only
increased its pitch after the unshifted templates were pre-
sented (figure 1b). This gradual vocal parameter change
towards an acoustic target presents a case of limited VPL in
this species. This was only shown clearly in a single animal,
and as such this argues that the species has the capacity for
this ability, even if it is not always employed. To further differ-
entiate between vocal production and vocal usage learning,
future experiments should also investigate these bats’ capacity
for structural call imitation outside the normal species-specific
repertoire. The ability to imitate such call templates would
provide evidence for more complex VPL.
5. Conclusion
In this study, we demonstrate that isolated adult pale spear-
nosed bats show the capacity for directional pitch shift of
their vocalizations. Some bats were driven by the low-pass
filter reward threshold instead of the playback, as two bats
responded directly to the low-pass filter deactivation. How-
ever, one of the bats used auditory experience, rather than
reward, to adjust the pitch of its calls, thus demonstrating
limited VPL under strictly controlled experimental con-
ditions. As for previous cases where individual animals
demonstrated the extent of vocal learning in isolated individ-
uals [23,27,28], this single case demonstrates the capacity of
pale spear-nosed bats to perform limited VPL.
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