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1   General Introduction 
 

“I find it fascinating that there are seven thousand different ways to do 

what we’re doing right now.” 

John McWhorter 

 

The evolution of language and the origin of linguistic diversity have been 

occupying people since the dawn of days. Multiple myths and folk tales 

attempt to explain how languages began, and why they became so 

different from each other. According to the biblical account, all humans 

once spoke the same language (Genesis 11:1-9). Having only one shared 

language allowed people to cooperate with one another and engage in 

large-scale endeavors to challenge God (i.e., The Tower of Babel). In 

return, God punished the people by “confusing”1 their languages and 

scattering them around the world, ensuring that humankind would no 

longer be able to globally understand each other. This biblical story is 

probably the most well-known origin myth regarding the evolution of 

language and the source of linguistic diversity today, but is far from being 

the only one: very similar tales have been documented in Sumerian 

mythology, Ancient Greek mythology, Central American religions and 

tribal legends in Africa (Boas, Teit, Farrand, Gould, & Spinden, 1917; 

Kramer, 1968; Maher, 2017; Teit, 1917). 

But was there really once a single language that all people could 

understand? The truth is that linguists just don’t know. The biggest 

challenge in the field of language evolution is the lack of direct evidence 

regarding the origin and development of the first human languages: we do 

not have access to the minds and languages of our ancestors who lived 

hundreds of thousands of years ago. We therefore have no information on 

how the very first language (or languages) looked like: did early humans 

use gestures or vocalizations? Did they imitate sounds they heard in their 

environment, or babbled randomly until certain sounds took on meaning? 

Without a time-travel device, none of these questions can be answered 

directly. Therefore, all evidence favoring one theory or another comes 

from indirect and analogous observations, ranging from babies’ language 

development trajectories, to the communication systems of primates and 

                                                             
1 The name of the city Babel is derived from the Hebrew verb root B.B.L, which means 

“confuse”. 
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other non-human animals, to computational models and experimental 

paradigms mimicking the transition from a state of no language or proto-

language to a state of complex language.  

Although the origin of languages remains mysterious, the thought of 

everyone in the world speaking the same language is an interesting one. 

If we view language as evolving primarily for the sake of communication, 

it seems very reasonable that we should all be able to understand each 

other and use one common tongue. It is easy to imagine how the past and 

present world would benefit from speaking a universal language. Indeed, 

in the past centuries there have been multiple attempts to impose a Lingua 

Franca (e.g., Latin), and even several attempts to artificially create such a 

language (e.g., Esperanto). But despite the theoretical (though unlikely) 

possibility of all languages deriving from a single origin, and despite the 

potential appeal of having a universal language, that is obviously not the 

case: There are about 7,000 different languages around the world today, 

and these languages vary greatly from one another2. 

 

The origins of linguistic diversity 

Why are there so many different languages? What are the sources of this 

astonishing linguistic diversity? While some questions about the evolution 

of language are impossible to answer, it turns out that we can provide 

some answers to these two questions. People speculate that languages 

differ due to cultural differences, environmental differences, historical 

changes, etc. The main principle underlying these intuitions is that 

languages are constantly changing: even if we had a common language 

once, it would probably not be the same 200 years later. Moreover, if 

groups of people split and migrate to different areas and engage in 

different activities, these changes would probably not look the same 

across different groups. Languages develop under different conditions, 

and such differences may lead to the formation of different languages and 

to ongoing changes in their sounds, their lexicon and their grammar. In 

short, languages are dynamic and adapt to their environment.  

One explanation for why languages differ is that they exist in diverse 

physical environments: languages are used in mountains and in open 

                                                             
2 Of course, one can also focus on the similarities between languages (i.e., linguistic 

universals): all natural languages serve communicative goals and are constrained by 

humans’ cognitive capacities; therefore, they inevitably share some features (Hockett, 

1960). 
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plains, in deserts and in forests, in tropical climates and in freezing 

weather conditions. Importantly, these environmental differences can 

shape the languages that evolve in each region. Specifically, several 

geographic–linguistic correlational studies have tested the association 

between environmental features (such as climate and altitude) and 

linguistic features (such as sound systems). These studies report 

significant differences between languages evolving under different 

physical conditions, and highlight the physical affordances of various 

climates and landscapes. Specifically, our bodies react differently to 

different temperatures and air pressures: organs that are involved in the 

process of language production and comprehension (e.g., lungs, lips, 

vocal cords, ears) may respond differently to different conditions, making 

some linguistic elements harder or easier to produce and comprehend.  

For example, languages that are spoken in dry and cold climates are 

less likely to develop a tonal distinction between words, like that found in 

Chinese (Everett, Blasi, & Roberts, 2015). This is because in such dry 

climates, it is slightly harder to control the vocal cords and, 

consequentially, the tone of our voice. As such, almost all languages that 

make use of complex tones (and therefore require precise manipulation of 

pitch) are found in more humid regions. Another example is the 

prevalence of ejective consonants almost uniquely in mountain areas 

(Everett, 2013). Ejective consonants, which are produced by compressing 

a pocket of air in the throat instead of the lungs, are very common in high 

elevation regions around the world, but are very rare in other landscapes. 

This geographic correlation is mainly attributed to the fact that ejectives 

are much easier to produce in high altitudes, since low air pressure 

dramatically reduces the physiological effort required for the compression 

of air in the pharyngeal cavity. Another study found that languages spoken 

in rugged terrains and higher elevations typically have more consonants, 

while languages spoken in regions with higher tree-cover, warmer 

temperatures, and more precipitation typically have fewer consonants 

(Maddieson & Coupé, 2015). This finding has been attributed to 

difficulties in comprehension, and more specifically, to the effectiveness 

of transmission of different types of sounds in different environments: 

consonants are transmitted less reliably in an environment with more 

disruption (e.g., denser vegetation). In sum, these studies show that 

languages can adapt to fit their environments, and can help explain 

patterns of linguistic diversity world-wide.  
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Social structure and language diversity 

Languages are also used in different social environments. Languages 

evolve in different communities, with different population sizes, different 

social structures, and different social needs. If languages evolved first and 

foremost for providing for speakers' communicative goals, they should 

adapt to fit these social needs as well. In other words, since languages are 

adaptive systems that can be shaped by their environment, they are also 

bound to be shaped by relevant social factors in their environment. A 

simple, yet powerful, example for this idea comes from the well-known 

(albeit erroneous) myth of Eskimos having over 50 different words for 

snow, or of Dutch people having over 50 different words for rain. Such 

common statements are inaccurate (e.g., Inuktitut has far fewer than 

50ways of describing snow and ice, and even these are mostly complex 

polysyntactic words created by combining a stem and affixes (Krupnik & 

Müller-Wille, 2010)), but they nevertheless support the intuitive idea that 

languages adapt to fit their speakers’ communicative needs: if it is relevant 

and/or important for speakers to frequently differentiate and distinguish 

between different types of snow (or any other category, for that matter), 

then their language is likely to reflect that need by having suitable words 

(Regier, Carstensen, & Kemp, 2016). Another simple example comes 

from the constant addition of new words to languages’ lexicons whenever 

new technologies or concepts are introduced: words like “internet”, “fax”, 

“blog” and “Brexit” were invented in response to relevant things people 

wanted to be able to talk about efficiently. Such lexical adaptations, while 

simple, help to demonstrate how languages can be affected by people’s 

social needs.  

Languages may also be affected by socio-demographic features of the 

community in which they are spoken. For example, languages may differ 

depending on the way people interact with each other, the frequency of 

these interactions, the number of people in the community, how far they 

live from each other, the degree of familiarity and hierarchy between 

speakers, etc. Such social characteristics can potentially influence 

languages on many levels: from their grammatical structure (e.g., how 

systematic and transparent languages are in terms of their morphology), 

to their stabilization patterns and rates of change (e.g., how fast 

innovations spread in the community and become norms), to their level of 

uniformity and convergence (i.e., how much dialectal variability exists in 

the community). Indeed, diachronic studies, typological analyses, and 

computational models suggest that languages are shaped by the social 
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properties of the culture in which they evolved, and attribute special roles 

to the variables of community size, network structure, and the degree of 

isolation vs. contact with outsiders (Baxter, 2016; Bentz, Dediu, Verkerk, 

& Jäger, 2018; Bentz & Winter, 2013; Dale & Lupyan, 2012; Fagyal, 

Swarup, Escobar, Gasser, & Lakkaraju, 2010; Gong, Baronchelli, Puglisi, 

& Loreto, 2012; Ke, Gong, & Wang, 2008; Lewis & Frank, 2016; Lou‐

Magnuson & Onnis, 2018; Lupyan & Dale, 2010; Meir, Israel, Sandler, 

Padden, & Aronoff, 2012; Milroy & Milroy, 1985; Nettle, 2012; S. G. 

Roberts & Winters, 2012; Trudgill, 1992, 2008, 2009; Vogt, 2007; 

Wichmann, Stauffer, Schulze, & Holman, 2008; Wray & Grace, 2007; 

Zubek et al., 2017)3.  

The literature on language change often draws a distinction between 

languages spoken in Esoteric vs. Exoteric communities (Milroy & Milroy, 

1985; Roberts & Winters, 2012; Trudgill, 1992, 2002, 2009; Wray & 

Grace, 2007). Generally speaking, esoteric communities are small, closed 

societies that have little contact with outsiders, while exoteric 

communities are considerably bigger and more open, so that there is a 

higher degree of interaction with outsiders and more non-native speakers. 

For the sake of illustration, imagine the difference between a small and 

isolated community in the Amazons of Peru or in the Papua New Guinea, 

and a big and wide-spread community in Europe or in Central America. 

Such communities may vary greatly in their social structures and social 

needs, and, consequently, in their languages.  

Many researchers speculate that esoteric and exoteric societies would 

develop different types of languages given that they are subjected to 

different communicative pressures (Meir et al., 2012; Trudgill, 1992, 

2002; Wray & Grace, 2007). For example, members of esoteric 

communities are typically highly familiar with each other and share much 

common ground. Such intimate relations can potentially lead to more 

alignment and uniformity in the language community, but also to higher 

chances of developing rich and non-transparent grammatical structures 

that rely heavily on context. On the other hand, members of exoteric 

communities are far more likely to interact with strangers and outsiders 

they’ve never met before, and the community has a higher proportion of 

adult second-language learners who are not native speakers of the 

language. Given speakers’ inability to rely on shared history when talking 

                                                             
3 The literature introduced in this chapter will be presented and discussed multiple times 

throughout this dissertation. This repetition was unavoidable since all experimental 

chapters were submitted as individual journal publications. 
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to strangers, and given the well-known difficulty of adults in learning 

complex and opaque languages later in life (Birdsong, 2006; DeKeyser, 

2013), exoteric communities may be under a stronger pressure to simplify 

their languages, and develop more transparent and systematic structures. 

However, while such claims are interesting and theoretically motivated, 

they have remained mostly untested until recently. 

In a highly influential cross-linguistic study that looked at thousands 

of languages around the world, Lupyan and Dale (2010) tested whether 

exoteric and exoteric societies differ in how complex vs. simpler their 

languages are. To this end, they examined the correlation between three 

social-demographic features that typically differentiate esoteric and 

exoteric societies (i.e., the size of the population, the geographical spread, 

and degree of language contact) and 28 structural-linguistic features that 

are related to morphological complexity (e.g., the prevalence of 

inflectional morphology, the number of cases, the degree of syncretism, 

the presence of markers for coding plurality, evidentiality, possessives, 

etc.). Their results showed that morphological complexity was 

significantly related to all these features, but most strongly correlated with 

population size: languages with many speakers had simpler 

morphological structures overall. For example, big communities typically 

have languages that are less inflected, have simpler noun and verb 

agreement systems, have simpler inflectional verb morphology and fewer 

tenses, and often lack inflectional morphological for negation, 

evidentiality, and aspect (all of which are expressed lexically using 

individual words instead). Together, the findings of Lupyan and Dale 

(2010) provided empirical support for the idea that differences in social 

structure can help explain patterns of linguistic diversity, and suggested 

that there are important differences between language spoken in big 

communities and languages spoken in small communities.  

However, based on this study alone it is still hard to say whether the 

number of people speaking the language is really what is driving the 

observed pattern of results. First, we cannot draw any causal conclusions 

from correlational studies – the association between community size and 

language structure cannot be taken as proof that differences in community 

size lead to differences in language structure. Second, community size is 

only one characteristic of a given society in real-world settings, and is 

naturally confounded with many other social features (e.g., network 

structure, the degree of language contact). While these confounding social 

features are the exact characteristics underlying the distinction between 

esoteric and exoteric societies, they make it highly problematic to evaluate 
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the unique contribution of each factor separately. For example, the fact 

that small communities also tend to be tightly-knit and highly connected 

(i.e., most people in the community know each other) can be mediating 

the effect of community size, and potentially serve as an alternative 

explanation for why small communities show higher levels of 

grammatical complexity. Similarly, the relative morphological simplicity 

documented in big communities can be driven by the fact that big 

communities also tend to have more adult non-natives speakers, who 

struggle more with learning a new language. In fact, this is the explanation 

that Lupyan and Dale (2010) offer for their results: they argue that 

community size is merely a proxy for the proportion of second-language 

learners, which is the true underlying reason for why we see a correlation 

between community size and language complexity. The idea is that bigger 

groups have simpler languages as a result of accommodating to adults’ 

learning difficulties: if simpler languages are easier to learn, having many 

non-natives will lead to simplification of the language over time. 

In any case, it is not possible to disentangle the individual roles of 

group size, network connectivity, and the proportion L2 learners using 

correlational studies. Moreover, such studies do not promote our 

understanding of the mechanisms behind social structure effects. Some 

agent-based simulations attempted to shed light on the individual 

contribution of social features by manipulating and examining one 

specific parameter at a time, and seeing how it affects various linguistic 

outcomes. These models suggest that the different social properties that 

characterize esoteric and exoteric societies (i.e., community size, network 

structure, and the proportion of non-native speakers in the population) are 

each associated with different communicative pressures, yet all seem to 

contribute in parallel to the differences reported between the languages of 

esoteric and exoteric communities. For instance, community size seems 

to be a relevant feature for the emergence of systematic grammars: one 

model found that compositionality (i.e., systematic and transparent 

mapping between parts of meaning and parts of speech) tended to emerge 

more extensively in larger populations of agents due to an increase in the 

number of words, which increased the likelihood of finding regular 

patterns between utterances and meanings (Vogt, 2007, 2009). Moreover, 

different network structures can potentially account for differences in the 

overall structure of languages. Specifically, sparse networks that have 

highly-connected agents (i.e., “hubs” or “leaders”) tend to develop 

categorization in color terms much faster than sparse networks without 

such agents (Gong et al., 2012), while networks with high connectivity 
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between agents are more likely to develop languages with complex 

morphological structures (Lou‐Magnuson & Onnis, 2018). Finally, a high 

proportion of adult non-native learners can lead to greater morphological 

simplification when assuming that adult agents have a prior bias against 

complexity (but child agents don’t), and this trend seems to be modulated 

by population size: Dale & Lupyan (2012) reported that in small 

populations of agents, having only child learners (with only the bias to 

imitate) significantly increased the chances that the language will develop 

complex morphology, while in slightly bigger populations of agents, 

inflections disappear.  

Although computational models support the hypothesis that the social 

environment can affect the development of languages, they offer only 

limited insights into the effect of different features on linguistic diversity, 

and are not sufficient to confirm the claim that different social structures 

lead to differences in linguistic structure. Specifically, such models are 

not tested against empirical data, and are often minimalistic and bear little 

resemblance to real human social dynamics and cognition. For example, 

the agents in most computational models have unlimited memory capacity 

(which humans clearly do not have), and often update their lexical 

inventories after every interaction by overriding all previous variants 

(which humans clearly do not do). As such, these models warrant further 

experimental validation.  

In sum, there is little empirical evidence for the causal role of different 

social factors in explaining patterns of linguistic diversity, and such claims 

rely mostly on theoretical models and correlational studies. While some 

empirical work offers relevant (albeit indirect) evidence for the role of 

community size and adult second-language learning on linguistic 

complexity (Atkinson, Kirby, & Smith, 2015; Atkinson, Mills, & Smith, 

2018; Atkinson, Smith, & Kirby, 2018), the exact effects of social 

structure on linguistic structure remain unconfirmed. Crucially, no 

experimental work has directly examined how differences in community 

size, network structure and the proportion of non-native speakers affect 

languages in laboratory settings. Nevertheless, carefully designed 

experiments are a promising way to examine the causal role of these social 

factors: Although population size, network structure and the proportion of 

L2 learners are confounded in real-world communities, using controlled 

experiments in laboratory settings can enable us to manipulate each of 

these factors separately, and examine changes in linguistic outcomes as a 

result. 
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The current thesis 

The goal of my PhD project was to experimentally tease apart these 

confounding social parameters, and directly test their unique contribution 

to the formation of languages. I was inspired by behavioral studies with 

human participants that examine the creation of novel communicative 

systems in the lab (Christensen, Fusaroli, & Tylén, 2016; Fay, Arbib, & 

Garrod, 2013; Fay, Garrod, Roberts, & Swoboda, 2010; Kirby, Cornish, 

& Smith, 2008; Kirby, Tamariz, Cornish, & Smith, 2015; Roberts & 

Galantucci, 2012; Selten & Warglien, 2007), and developed a new 

paradigm for examining the formation and the nature of new artificial 

languages created by groups of interacting participants. The motivation 

for developing this paradigm was that it allows us to look at how 

languages evolve in real-time in a micro society depending on its specific 

social features. In particular, I manipulated the size of groups and the way 

participants were connected to each other (i.e., network structure) and 

examined how these changes affected the languages that evolved in each 

group. I also examined the underlying mechanism behind community size 

and network structure effects (i.e., differences in input variability), and 

tested the premise that more systematic languages are easier to learn. 

Originally, I also planned to examine the role of non-native speakers in 

the population. However, it was not possible to complete this study due to 

several technical and theoretical constraints. I outline the planned design 

for this study and provide a detailed discussion of these constraints in 

Chapter 6 (the General Discussion). 

The basic design of the group communication game used in Chapters 

2-4 is as follows: groups of participants came to the lab and were asked, 

over the course of several hours, to create a new artificial language to 

communicate with each other. Participants were not allowed to use Dutch, 

English, or any other language they knew, and could only use nonsense 

and Gibberish words they invented on-the-go (e.g., ‘wape’, ‘tes-ik’). 

Participants’ goal was to successfully interact about different types of 

simple dynamic scenes, which always included one of four novel shapes 

moving on the screen in some direction. The shape in each scene also had 

a unique texture. Participants needed to come up with words to describe 

these scenes, and earned points when they successfully understood each 

other (i.e., if they managed to choose the right scene from a set of possible 

scenes given a word). Participants in the same group interacted for several 

rounds in alternating pairs, so that they were paired with a different person 

in every round. In each round, paired participants took turns in guessing 
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and producing words – experiencing both being a producer and a 

comprehender. In each interaction, one participant produced a word, and 

the other participant had to choose the scene they thought their partner 

meant from a set of possible scenes. The number of scenes participants 

needed to refer to gradually increased over rounds, so participants had 

more and more meanings to communicate about over time. At the 

beginning of the experiment, the participants were guessing the names and 

making words up randomly. But over the course of several hours, they 

could start developing linguistic structure and regularities, such as 

creating a specific morpheme for each shape or each direction. 

I then looked at the languages participants created throughout the 

course of the entire experiment, and characterized them based on four 

measures: (1) the degree of communicative success (i.e., how accurately 

participants understood each other); (2) the degree of convergence on a 

shared lexicon (i.e., whether different participants used the same words); 

(3) the degree of stability (i.e., how much languages changed over time); 

and (4) the degree of compositional linguistic structure in the language 

(i.e., whether similar scenes were labeled systematically using consistent 

morphemes/words). Looking at these four measures and how they 

changed over time allowed me to characterize the emerging languages, 

and provided valuable insights into the live formation of grammar as a 

result of communicative needs. Contrasting these measures across 

different experimental conditions sheds light on whether and how 

differences in social structure affect different linguistic properties. In 

order to promote open science, reproducibility and scientific transparency, 

the data and code for all analyses reported in this dissertation is openly 

available online for readers and reviewers.  

Chapter 2 introduces the paradigm in detail, and establishes its 

validity and effectiveness in terms of language emergence during 

communication. In this chapter, I analyzed the behavior of different 

groups of four interacting participants as they created a new language in 

the lab, and examined the emerging languages in terms of communicative 

success, convergence, stability and linguistic structure. Most notably, I 

tested whether groups in this paradigm can develop systematic 

compositional structure (one of the hallmarks of natural languages) purely 

as a result of members’ communicative needs. This was an important 

point because previous experiments on the evolution of language 

suggested that this type of linguistic structure can only emerge when there 

is also a learnability pressure, i.e., when languages are transmitted across 

multiple generations (Kirby et al., 2015). Therefore, the main goal of this 
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chapter was to show that, in contrast to previous assumptions, 

communicative pressures alone can shape languages’ grammar in 

meaningful ways, even in the absence of learning pressures as a result of 

generation turnover. Specifically, I tested how two aspects of real-world 

communication, namely, interaction with multiple people and interaction 

about an expanding meaning space, can introduce a pressure for 

generalization and systematization that leads to the creation of 

compositional languages. I also examined the unique contribution of each 

of these aspects in order to determine the relevant communicative 

pressures that give rise to linguistic structure.  

Chapter 3 directly tests the role of community size in the formation of 

languages using the group communication paradigm. In this chapter, I 

compared small groups of four participants, to larger groups of eight 

participants, and contrasted their behaviors along the same four measures 

described above. My main predication was that community size would 

have a significant and causal effect on languages’ structure, so that larger 

groups would create more systematically structured languages – 

corresponding to the claim that big communities tend to have simpler and 

more regular languages (Lupyan & Dale, 2010; Wray & Grace, 2007). 

Although both group sizes are considerably smaller than real-world 

communities, I hypothesized that given the miniature nature of the 

experiment, doubling the number of people in the group would already 

make a significant difference in the languages these groups would create. 

Specifically, having more people to interact with should lead to more 

input variability (i.e., more lexical variants) and less shared history 

between group members. Given this greater communicative challenge, I 

hypothesized that members of larger groups would be under stronger 

pressure to converge on a shared language that is simple, predictable, and 

more systematically structured – leading them to create more 

compositional languages. I also tested two of the postulated mechanisms 

underlying community sizes effects, namely, the idea that differences in 

input variability and in shared history between small and larger groups 

lead to differences in their achieved levels of systematic structures.  

Chapter 4 directly tests the individual role of social network structure 

using the same group communication paradigm and the same linguistic 

measures. In this chapter, I examined the formation of new languages that 

developed in different micro-societies that varied in their network 

structure. Community size was kept constant across conditions, so that all 

networks were comprised of eight participants, yet differed in their degree 

of connectivity (i.e., how many people each participant interacts with) and 
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homogeneity (i.e., whether all participants are equally connected). 

Specifically, I contrasted three different types of networks, which are 

typically used in computational models: (1) Fully connected networks, in 

which all members interact with each other; (2) Small-world networks, 

which are much sparser and have many members that never interact, 

although these “strangers” are nevertheless linked indirectly via a short 

chain of shared connections; And (3) Scale-free networks, which are as 

sparse as small-world networks, but whose members' distribution of 

connectivity roughly follows a power law so that one of the participants 

is highly connected to almost everyone in the network (a “hub”) and 

others are much less connected. My main prediction was that sparser 

networks would develop more systematic languages, as a result of higher 

levels of input variability and diversity in such networks, which increase 

the pressure for generalization and systematization (Lou‐Magnuson & 

Onnis, 2018; Wray & Grace, 2007). I also predicted that scale-free 

networks would develop even more compositional languages compared to 

small-world networks, since the existence of a “hub” can further promote 

the spread of compositional innovations (Fagyal et al., 2010; Gong et al., 

2012; Zubek et al., 2017). Following the findings of Chapter 3, I also 

examined difference in input variability as a potential underlying 

mechanism behind network structure effects.   

Chapter 5 is a pre-registered study that tested the causal relationship 

between systematic linguistic structure and language learnability. In this 

chapter, I tackled a crucial premise underlying all previous chapters, as 

well as theories on language evolution, second language learning and the 

origin of linguistic diversity: the highly influential assumption that more 

systematic languages (i.e., languages with more regular, compositional 

and transparent grammars) are easier to learn. For example, iterated 

language earning studies have shown that language learnability and 

linguistic structure both increase over the course of cultural transmission, 

and suppose that these two patterns are inherently linked: languages are 

argued to become more learnable because they become more structured 

(Cornish, 2010; Cornish, Tamariz, & Kirby, 2009; Kirby et al., 2008; 

Smith, 2011; Zuidema, 2003).  Although direct empirical evidence for this 

argument is lacking, it serves as an essential component in the theoretical 

reasoning of such iterated learning models, and are also essential for the 

claim that community size effects are driven by adults’ difficulty in 

learning complex and opaque languages (Dale & Lupyan, 2012; Lupyan 

& Dale, 2010). In addition, I tested whether languages created by big 

communities were easier to learn, i.e., whether the larger groups in 
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Chapter 3 created languages that would be better acquired by new 

individuals. To this end, I used an artificial language learning paradigm 

with stimuli adapted from the group communication paradigm. In this 

experiment, individuals needed to learn a new miniature language with 

labels for describing the same scenes used in Chapters 2-4. Importantly, 

participants were trained on different input languages, all of which were 

created by either big or small groups from Chapter 3, and varied in their 

degree of systematic structure and in their group size origin, while being 

relatively similar in their average word length and internal confusability. 

After training, participants were tested on their knowledge of the input 

language in a memory test (measuring participants’ reproduction accuracy 

on the scene-label pairings) and in a generalization test (measuring 

participants’ ability to label new, unseen scenes). I compared the 

acquisition of these different languages with two predictions in mind: (1) 

that linguistic structure would significantly affect language learnability, 

so that more compositional languages with systematic form-to-meaning 

mappings would be easier to learn; (2) that group size would have an 

additional effect on language learnability, so that that across all structure 

levels, participants who learned languages that were created by big groups 

would show higher reproduction accuracy.  

Chapter 6 summarizes the main experimental findings of this thesis 

and discusses their theoretical implications. In this chapter, I also reflect 

on the original plan of this thesis, and introduce the methodological issues 

which prevented me from executing an additional experiment to test the 

role of second-language learners in the community. Finally, I speculate on 

other social factors that may contribute to linguistic diversity, and make 

recommendations for future work.  
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2   Compositional structure can emerge  

without generational transmission 

 

 

 

 

Abstract4 

Experimental work in the field of language evolution has shown that novel 

signal systems become more structured over time. In a recent paper, 

Kirby, Tamariz, Cornish, and Smith (2015) argued that compositional 

languages can emerge only when languages are transmitted across 

multiple generations. In the current paper, we show that compositional 

languages can emerge in a closed community within a single generation. 

We conducted a communication experiment in which we tested the 

emergence of linguistic structure in different micro-societies of four 

participants, who interacted in alternating dyads using an artificial 

language to refer to novel meanings. Importantly, the communication 

included two real-world aspects of language acquisition and use, which 

introduce compressibility pressures: (a) multiple interaction partners and 

(b) an expanding meaning space. Our results show that languages become 

significantly more structured over time, with participants converging on 

shared, stable, and compositional lexicons. These findings indicate that 

new learners are not necessary for the formation of linguistic structure 

within a community, and have implications for related fields such as 

developing sign languages and creoles. 

 

 

 

 

                                                             
4 This chapter is based on Raviv, L., Meyer, A. S., & Lev-Ari, S. (2019a). Compositional 

structure can emerge without generational transmission. Cognition, 182, 151-164. 

doi:10.1016/j.cognition.2018.09.010 
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Introduction 

Amongst the most important questions in the field of language evolution 

are how and why linguistic structure emerged, and under which pressures 

it evolved (Bickerton, 2007). According to usage-based theories, language 

is an adaptive and culturally transmitted system that has evolved to fit 

speakers' cognitive biases and constraints (Deacon, 1997; Reali & 

Griffiths, 2009; Smith, 2011) and to maximize their communicative 

success (Beckner et al., 2009; Mirolli & Parisi, 2008). A critical phase in 

the process of language evolution is the transition from an unstructured 

proto-language to a state of a full-blown language that exhibits 

compositional structure (Jackendoff, 1999; Zlatev, 2008). 

Compositionality, i.e., the systematic recombination of small units to 

express different meanings, is considered one of the hallmarks of natural 

language, which differentiate it from animal communication systems 

(Hockett, 1960). Indeed, one of the things that makes natural languages 

so unique is their infinite expressive power, which is the direct result of 

compositionality: we can talk about an unlimited set of meanings thanks 

to our ability to recombine a limited set of sub-elements in systematic 

ways. 

In the past two decades, two different strands of experimental work 

have attempted to investigate the factors involved in the emergence of 

linguistic systems from two distinct perspectives. First, Experimental 

Semiotics studies focused on the communicative and social nature of 

language evolution, and examined how interactions between pairs or 

groups influence convergence, iconicity and complexity of visual signals 

(e.g., Galantucci & Garrod, 2011; Garrod, Fay, Lee, Oberlander & 

McLeod, 2007). In Experimental Semiotics studies, the main pressure is 

a communicative pressure for expressivity: signals should be expressive, 

informative and communicatively efficient in order to allow for reliable 

discrimination between potential referents, and should be shared across 

participants to allow for mutual understanding. Second, Iterated Learning 

studies focused on how individuals’ cognitive biases and constraints 

shape previously established signs over the repeated transmission to new 

generations of learners, and examined how signal systems change in terms 

of learnability and structure (e.g., Beckner, Pierrehumbert & Hay, 2017; 

Kirby, Cornish & Smith, 2008). In Iterated Learning studies, the main 

pressure is a learning pressure for compressibility: limitations on memory 

create a pressure for signals to become simpler, more compressed and 

more predictable, so that languages could be easily learned from a finite 
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set of exemplars, and generalizable to a new set of exemplars (Kirby, 

Griffiths & Smith, 2014; Kirby et al., 2008). Both these literatures have 

generated numerous novel findings with important implications for the 

evolution of language. For example, Experimental Semiotics paradigms 

have been used to examine the emergence of arbitrary signals from iconic 

signs (e.g., Garrod et al., 2007). Iterated Learning has typically been used 

to examine the creation of compositional regularities (e.g., Kirby et al., 

2008), but has also been used to examine the evolution of case markers 

(e.g., Smith & Wonnacott, 2010) and color terms (e.g., Xu, Dowman & 

Griffiths., 2013). 

In a recent and highly influential study, Kirby, Tamariz, Cornish, and 

Smith (2015) combined the paradigms of Experimental Semiotics and 

Iterated Learning and contrasted two experimental conditions: 

communication with transmission vs. communication without 

transmission. In the communication and transmission condition (the 

“chain” condition), pairs of participants communicated about a structured 

meaning space using an artificial language, and then their languages were 

transmitted to new pairs of participants over several generations. In the 

communication without transmission condition (the “closed group” 

condition), pairs interacted amongst themselves for several rounds, with 

no new learners being introduced over time. The results showed that when 

languages were transmitted over multiple generations of pairs, they 

developed compositional, morphology-like structures in which different 

affixes were systematically combined to express similarities in meanings. 

In contrast, when the same pairs communicated for repeated rounds 

without generational turnover, they created holistic, unstructured 

languages in which each item was assigned a unique label and feature 

overlap between items was not reflected in the labels.  

Kirby et al. (2015) argued that the reason that compositionality did not 

emerge in the closed-group condition is because pairs were able to get 

highly familiar with the signs, so there was no reason for them to develop 

compressed, systematic structures instead of holistic languages. They 

interpret their results as showing that (1) compositionality arises only as a 

tradeoff between expressivity and compressibility pressures; and (2) that 

expressivity and compressibility pressures stem from two independent 

sources - communication and transmission – which operate at different 

timescales. Kirby et al. (2015) view these two processes as bringing about 

conflicting constraints: while horizontal intra-generational 

communication pushes languages to become maximally expressive, 

vertical cross-generational transmission pushes languages to become 
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maximally compressed. By providing a systematic mapping between 

meanings and signals, compositionality offers an equilibrium between the 

need to minimize the associated memory and cognitive costs while 

maximizing languages’ expressivity. This idea suggests that the basic 

architecture of natural language can be explained by the interaction of 

conflicting weak cognitive biases and processing limitations, and by 

taking the pragmatic context in which languages evolve into account 

(Christiansen & Chater, 2016; Culbertson & Kirby, 2016).  

Importantly, Kirby et al. (2015) fully equate expressivity and 

compressibility pressures with communication and transmission 

respectively. They argue that horizontal communication gives rise to 

expressivity pressures due to people’s communicative goals: languages 

should be expressive given the need to interact and successfully 

discriminate between different meanings. Vertical transmission is argued 

to give rise to compressibility pressures due to people’s memory 

limitations and cognitive biases: languages should be simple and easy to 

learn given that are being repeatedly learned over generations by new 

people. They predict that compositionality emerges only when both 

communication and transmission are at play, as a solution to these 

competing pressures. On one hand, a compressibility pressure operating 

in isolation (e.g., languages are only transmitted across generations of 

learners, but not used for communication) leads to underspecified 

languages with minimalistic lexicons, where multiple meanings are 

represented with a single word (as found in Kirby et al., 2008). While such 

simple systems were highly compressed and easy to learn, they were 

degenerated, ambiguous and lacked expressivity. On the other hand, an 

expressivity pressure operating in isolation (e.g., languages are only used 

for communication, but never transmitted to new learners) should 

potentially result in languages with massive lexicons, where each meaning 

is represented with a unique word. While such holistic systems would be 

maximally expressive, they would also be incompressible and therefore 

hard to learn and remember by new individuals. If languages need to be 

both expressive and compressed (i.e., because they are being used for 

communication as well as being transmitted to new learners), developing 

regularities in the form of compositional structure will maintain their 

informativity while reducing the memory load and increasing languages’ 

learnability. This is because compositional languages allow for the 

expression of multiple different meanings using a recombination of the 

same basic elements. As such, a compositional language is highly 

compressed and simpler in comparison to a holistic language (where the 
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same set of meanings would require memorizing more unique words), 

while also being highly expressive and informative in comparison to a 

degenerated language (where the same set of meanings would be 

indistinguishable). In sum, Kirby et al. (2015) predict that both 

communication and transmission are necessary for the emergence of 

compositionality, and conclude that communication alone (i.e., without 

generation turnover) is not enough for compositionality to emerge. This 

finding has since been replicated with different meaning spaces (Carr, 

Smith, Cornish & Kirby, 2016; Winters, Kirby & Smith, 2015) and with 

artificial sign languages (Motamedi, Schouwstra, Smith & Kirby, 2016).  

This conclusion has far-reaching implications for the literature on the 

evolution of language, as well as for the broader field of cultural 

evolution. First, it directly relates to work on creolization and emerging 

sign language by suggesting that one of the “design features” of natural 

language may need several generations to emerge. Supporting this idea, 

studies on the developing Nicaraguan sign language have shown that 

complex linguistic structure emerges over multiple cohorts of learners 

(Senghas, Kita & Özyürek, 2004), and work on pidgins has suggested that 

new child learners are required in order to develop recursion (Bickerton, 

1983). Second, it affects the reasoning and predictions made about the 

structure of human lexicons over time: from understanding trends in 

metaphorical mappings (Xu, Malt & Srinivasan, 2017) to measuring the 

entropy and informativity of words (Bentz, Alikaniotis, Cysouw & Ferrer-

i-Cancho, 2017). Going beyond language evolution and change, this 

conclusion has already influenced work on a wide range of human 

behaviors. For example, compressibility pressures during cross-

generational transmission have been implied to play a role in explaining 

cross-cultural differences in folk tale complexity (Acerbi, Kendal & 

Tehrani, 2017), musical universals (Trehub, 2015), and the propagation 

and stabilization of behavioral conventions (Scott-Phillips, 2017).  

In the current paper we suggest that communication in the real world 

includes not only expressivity pressures, but also several sources for 

compressibility pressures. In other words, while we agree with Kirby et 

al. (2015) that both expressivity and compressibility pressures are 

necessary for the emergence of compositionality, we believe that both 

pressures are already present during real-world communication. 

Therefore, we predict that in contrast to Kirby et al.’s (2015) conclusion, 

compositionality can emerge during communication in a closed group 

without generational transmission. This prediction is in line with several 

non-linguistic communication studies, which found that compositional 
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structure can emerge in signal systems during interaction alone. First, 

Selten and Warglien (2007) found that when pairs of participants 

communicated using strings of consonants (e.g., RZ) to refer to a 

structured meaning space of shapes and patterns, 12% of pairs developed 

compositional codes where they systematically combined unique 

consonants that were assigned according to shape and pattern. Even 

though compositional structure was not prevalent in the codes developed 

by participants, this study does provide evidence that compositionality 

can emerge during dyadic interaction without additional learners. Second, 

Theisen, Oberlander and Kirby (2010) found that some compositionality 

existed in drawings in dyadic interaction, with participants’ drawings 

showing some re-use of smaller elements to express similarities in 

meanings (e.g., using squiggly lines to refer to activities/situations). 

However, the systematicity in these drawings was determined 

subjectively and existed already in the first round of interaction rather than 

developed with time over the course of communication. Third, Nölle et al. 

(2018) found that when pairs needed to communicated about items that 

were not immediately present in the moment of communication 

(simulating displacement), their silent gestures became more systematic 

so that some part-gestures were used at least twice to describe items that 

shared a meaning category. Finally, Verhoef, Walker and Marghetis 

(2016) report that visual signal systems (i.e., spatial lines generated by a 

vertical touch bar) for describing temporal concepts became significantly 

more compositional over the course of dyadic communication, with 

systematic re-use of visual signals to represent different meanings. An 

additional motivation for the idea that communication plays a role in the 

emergence of structure comes from a study that examined the negotiation 

of drawings in dyads and micro-societies over repeated interactions (Fay, 

Garrod, Roberts & Swoboda, 2010). While this study did not examine 

compositionality, it reported the refinement and the simplification of 

visual signs as a product of communication, so that drawings became 

more compressed and less iconic over time. Together, these findings 

suggest that communication can give rise to structure over time, even 

without generation turnover.  

In the current study we assess whether compositional structure can 

reliably emerge in an artificial language during communication in a closed 

group, when the interaction includes two real-world properties of 

languages acquisition and use that can give rise to communicative 

compressibility pressures: namely, talking to multiple people, and 

interacting over an expanding lexicon. We argue that these two properties 
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introduce compressibility pressures that can drive the formation of 

compositionality in languages during interaction in a closed group, even 

without transmission to new learners. In general, compressibility 

pressures emerge due to participants’ limited memory capacity: it is 

simply too hard to memorize many unique and unrelated labels in a 

relatively short time. Here we propose that such memory limitations can 

stem from different sources: compressibility pressures in transmission 

stem from biases and constraints on learning a given input language, while 

compressibility pressure in communication stem from the need to 

converge on a shared, expressive, and productive language with others. 

While communication in previous studies (e.g., Kirby et al., 2015; Selten 

& Warglien, 2007; Theisen et al., 2010) included communication with 

only one partner over a fixed set of meanings, communication in the real-

world involves talking to many different people, and referring to an open 

set of topics. Kirby et al. (2015) touch upon both of these properties in 

their discussion, but they do so only in relation to transmission: they 

discuss the consequences of learning languages with larger lexicons 

(p.98), and predict that chains with bigger populations will develop more 

structure over time (p. 99). Here, we suggest that these two properties of 

language acquisition and language use can introduce compressibility 

pressures during communication, which are sufficient for the emergence 

of compositionality.  

The first possible source of compressibility pressures in real-world 

communication is interaction with many different people. Models of 

language acquisition in early infancy stress the importance of receiving 

input from multiple speakers, who introduce variability in pronunciation, 

speaking rates, styles, and vocabulary (Kuhl, 2004). This input variability 

can highlight systematic differences and similarities in linguistic input, 

and help to separate relevant patterns and consistencies from irrelevant 

differences in the input. This idea is supported by language learning 

studies that demonstrate how an increase in input variability (e.g., learning 

from multiple speakers) can boost categorization, generalization and 

pattern detection in both infants and adults (Gomez, 2002; Lev-Ari & 

Shao, 2017; Lively, Logan & Pisoni, 1993; Maye, Werker & Gerken, 

2002; Perry, Samuelson, Malloy & Schiffer, 2010; Rost & McMurray, 

2009; 2010). In addition, communication seems to lead to the elimination 

of unpredictable variation (Fehér, Wonnacott & Smith, 2016). Indeed, 

talking to multiple people is considered a key factor in models of language 

contact and language change, pushing languages to develop more 

structure. Specifically, it has been argued that interaction with more 
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people results in more transparent and more simplified grammars (Nettle, 

2012; Wray & Grace, 2007). According to these models, interacting with 

more people introduces more input variability and more noise, which need 

to be overcome before the community can reach convention. Thus, 

interacting with more people can favor systemization in languages by 

introducing more input variability and therefore a stronger need for 

generalizations.  

In Kirby et al. (2015), communication included interaction with only 

one other person, so input variability was low and it was relatively easy 

to achieve convergence: Pairs were able to agree on a holistic, 

unstructured language that contained a unique label for each item. 

However, developing such a holistic lexicon is far more complicated when 

the unique labels of more than one partner need to be remembered, or 

when the lexicon should be shared across multiple people. When there are 

more people to interact with, input variability increases as each person 

introduces their own unique variations to each of the labels, which is 

taxing for memory. In addition, if labels are idiosyncratic and the language 

is unstructured, each label needs to be negotiated separately and 

independently with all partners. Therefore, the need to converge with 

multiple people introduces a memory limitation (i.e., compressibility 

pressure), pushing languages to become less holistic and develop more 

transparent and more predictable structures (e.g., by introducing 

compositionality), so that they can be easily shared across participants 

without negotiating each label separately. Supporting this claim, two 

computational models have shown that compositional languages can 

emerge over the course of multiple dyadic interactions in populations of 

five interacting agents (De Beule & Bergen, 2006; Gong, Ke, Minett & 

Wang, 2004). These models show that compositional languages are 

favored during repeated communication even within a single generation, 

and demonstrate how an increase in compositionality can facilitate 

communicative success and convergence between agents in the 

population.  

A second possible source of compressibility pressures in real-world 

communication is interaction over an expanding lexicon, a notable 

property of language use and acquisition. Children need to communicate 

and refer to more and more things over time. Furthermore, growth in 

vocabulary size is associated with increased generalization in language: 

knowing more words can boost children’s learning of lexical categories, 

morphological paradigms and syntactic structures (Blom, Paradis & 

Duncan, 2012; Goldberg, 1999; Perry, Axelsson & Horst, 2015; 
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Samuelson & Smith, 1999). Familiarity with more exemplars can help 

children detect significant patterns in the input and improve their ability 

to generalize the pattern to new, unfamiliar exemplars. Importantly, 

children’s ultimate goal is to learn how to produce and comprehend an 

infinite set of meanings from a finite set of exemplars. This point is also a 

main theme in computational work by Kirby and colleagues, which 

stressed the importance of a “learning bottleneck” during transmission for 

the formation of compositionality (e.g., Kirby et al., 2008; Kirby & 

Hurford, 2002; Smith, Brighton & Kirby, 2003): agents are usually not 

exposed to the entire repertoire of the language, and learn only a subset of 

the system. Despite their partial exposure, learners are later required to 

produce labels to new unfamiliar events. For example, Kirby et al. (2008) 

trained participants on only half of the items in the language, but tested 

them on all items. This learning bottleneck created a learnability pressure 

and promoted generalization. In Kirby et al. (2008)’s seminal set of 

experiments, this property of transmission and learning was introduced as 

the main pressure pushing languages to develop systematic structures over 

generations of learners (i.e., compressibility pressures). 

Such a bottleneck was absent in Kirby et al. (2015). In that study, pairs 

communicated about a fixed (and relatively small) number of items for 

several rounds, and got highly familiar with the entire meaning space of 

the language over time. Given sufficient time, memorizing a unique label 

for every item was feasible, and there was no pressure to develop a 

systematic and predictable way to label items. However, such a strategy 

will become problematic if the meaning space is much bigger, or if it 

expands over time: if participants develop holistic languages that have no 

inner structure, not only will they need to negotiate the labels for each new 

item separately and independently without the ability to rely on previously 

established labels, but they will also be faced with memory limitations 

once the language contains a large enough number of meanings. Thus, the 

need to discriminate between more and more items over time introduces 

a pressure for generalization and systemization similar to a “learning 

bottleneck”. As participants are exposed to more and more items (and 

consequentially, more input variability), they should be able to detect 

repeating patterns in their input, which can promote the development of 

more productive and more predictable labeling methods. This idea is also 

supported by the findings of Nölle et al. (2018), who report that 

participants’ gestures became more systematic when new meanings were 

introduced. The productive power of natural language, which stems from 

its compositional structure, is therefore motivated by the fact that some 
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elements in the input (real world or an artificial meaning space) are 

repeated in various contexts. Given this feature, compositionality will 

allow participants to efficiently express novel meanings and be 

immediately understood, due to the recombination of elements that have 

already been negotiated. In other words, interacting over an expanding 

meaning space (which is also structured to some extent) biases against 

holistic and unstructured systems.  

Some preliminary findings suggest that compositionality can indeed 

arise in these conditions, which are more ecologically valid and relate 

more to the way language is used in the real world. In particular, we 

conducted a pilot study in which three closed micro-societies of four 

participants communicated about novel items (Raviv, Meyer & Lev-Ari, 

2017). Participants interacted in alternating dyads using an artificial 

language, and needed to describe a set of items to each other in order to 

earn points in a communication game. Each item was one of four novel 

shapes, and appeared in a particular size ranging from 2 cm2 to 9 cm2. 

Additionally, each item had a unique fill pattern. At first, participants were 

exposed to only eight items and needed to name them using novel labels. 

Over the course of six rounds, we added more and more items to the game 

and examined changes in the languages created by the participants. As our 

goal was to create a paradigm where structure emerges in a closed group, 

we tried to maximize communicative compressibility pressures by 

including both pressures (i.e., communicating with multiple partners and 

an expanding meaning space), rather than teasing them apart. The results 

of this pilot study showed that linguistic structure (measured in the same 

way as in Kirby et al. 2015, see detailed description below) significantly 

increased over communication rounds, and some compositionality 

emerged even in the absence of generational transmission.  

While these results were encouraging, they were based on three groups 

only. Additionally, while the analysis over all groups showed a significant 

increase in compositionality, a closer look suggested that this might have 

been the case for only two out of the three groups. Finally, it seemed that 

languages mostly developed compositional coding for the dimension of 

shape, but less or not at all for the dimension of size. This result is in line 

with the “shape bias” reported during novel word learning: children and 

adults are much more likely to categorize novel items based on their 

shape, and much less likely to do so based on size (Landau, Smith & 

Jones, 1988). Therefore, to replicate and confirm our findings, in Study 1 

we ran twice as many groups of four participants each, and substituted the 

size dimension with a more salient dimension (i.e., motion) that turned the 
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items into dynamic, event-like scenes. The results of this study are 

reported in full below, and confirm that compositional structure can 

emerge during communication without generational turnover.  

In Study 2, we evaluated the relative contribution of the two 

compressibility pressures using a meta-analysis that included data from 

the six groups in Study 1 as well as 18 additional groups of either four or 

eight participants, which were tested using the same paradigm. The results 

of this meta-analysis replicated the main finding of Study 1 and show that 

interaction with multiple partners was the main driver for the emergence 

of compositionality during communication.  

 

Study 1 

The goal of this study was to test whether compositional structure can 

emerge without generational transmission. In particular, we examined 

whether introducing two compressibility pressures, i.e., interaction with 

multiple partners and an expanding meaning space, would suffice for 

triggering the emergence of compositionality. We used a group 

communication game in which different micro-societies of four members 

interacted in alternating pairs, so that each participant interacted with the 

other three members of the group at least twice. Importantly, participants 

communicated using an artificial language that referred to an expanding 

meaning space of novel scenes: the number of scenes in the game 

increased over time, such that by the end of the experiment participants 

needed to communicate about almost triple the number of scenes as 

compared to the beginning. Each scene in this experiment was composed 

of a shape moving in a given direction across the screen. We tested 

whether compositionality emerged over time, that is, whether similar 

meanings were referred to using similar labels. In addition, we examined 

convergence, stability, and communicative success in the languages to 

characterize the emerging communication systems and to better 

understand how these properties change over time. 

 

Method 

Participants 

24 adults (mean age: 23.2; 18 women) took part in the experiment reported 

here, comprising six closed groups with four members each. Though our 

pilot results suggested that three groups are sufficient to test the 
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emergence of compositionality, we doubled the sample size to ensure that 

the results are robust. All participants were native Dutch speakers and 

were recruited using the participant database of the Max Planck Institute 

for Psycholinguistics. Participants were paid between 20 and 26 Euros for 

their participation, depending on the amount of time they spent in the lab 

(ranging between 2:00 to 2:45 hours). In addition, four participants from 

the winning group received an additional 20 euros for collecting the 

highest number of points. Ethical approval was granted by the Faculty of 

Social Sciences of the Radboud University Nijmegen. The study was part 

of a bigger project whose goal is to test the effect of group size on 

compositionality, and thus included six additional groups of eight 

participants each. We report the results of the bigger project elsewhere 

(Raviv, Meyer & Lev-Ari, under review). Importantly, the 

compositionality results reported here hold if we analyze all 12 groups, or 

only the six other omitted groups (see also Study 2).  

 

Stimuli 

We created visual scenes that varied along two semantic dimensions: 

shape and angle of motion, creating a semi-structured, continuous 

meaning space. We created three different versions of the stimuli, which 

differed in the distribution of shapes and angles (for a full list of shapes 

and their associated angles see Appendix A). Each version contained 

exactly 23 scenes, and was presented to two different groups. Groups that 

played the same version were given the scenes in a reverse order during 

the communication phase. 

All scenes appeared on the screen surrounded by a white 8 cm2 frame, 

and the movement was restricted within those borders. Each scene 

included exactly one of four distinct shapes (sized 2.55cm2), which moved 

repeatedly from the center of the frame in a straight line in a given angle. 

The four shapes were created to be novel and ambiguous, in order to 

prevent easy labeling with existing words. In addition, each moving shape 

was associated with a unique fill pattern, giving each scene an 

idiosyncratic, unstructured feature.  

Our meaning space was therefore semi-structured: some semantic 

features (e.g., shape, direction of movement) repeated across different 

scenes, while some features (e.g., fill pattern) did not. This property of the 

meaning space was meant to simulate the real world, where some 

elements repeat in different combinations while others are unique. As 
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such, our meaning space promoted categorization and structure with 

respect to shape and motion, while it also allowed participants to adopt a 

holistic strategy in which scenes are individualized according to fill 

pattern. In addition, motion was a continuous rather than a categorical 

feature, so that participants were not encouraged to categorize it in any 

particular way: they could parse it in various ways, and could differ in the 

way they categorized what it “new” and what is a “recombination”. 

For each version of the stimuli, the 23 scenes were created in the 

following way: first, we selected 23 static items from an initial, fixed set 

of 28 static items, which contained seven tokens of each shape. Each token 

was associated with a unique blue-hued fill pattern. The 23 static items 

were randomly drawn from this fixed set with the constraint that each type 

of shape should appear between four to seven times. Then, each of the 23 

static items was associated with an angle in order to create a scene. Angles 

were randomly selected from a set of 16 angles within the 360-degree-

range (0⁰, 30⁰, 45⁰, 60⁰, 90⁰, 120⁰, 135⁰, 150⁰, 180⁰, 210⁰, 225⁰, 240⁰, 270⁰, 

300⁰, 315⁰, 330⁰)5, following the constraint that each type of shape had to 

be associated with at least one angle from each of the four quadrants. The 

rest of the items’ angles were randomly drawn from this set of angles.  

 

Procedure 

The experiment was designed as a group communication game, with each 

group comprised of four different members. Participants were told they 

were about to create a new “Fantasy Language” in the lab, and use it in 

order to communicate with each other about different novel scenes. No 

talking or gesturing was allowed during the experiment, and participants 

were instructed to use only the “Fantasy Language” and their assigned 

laptops in order to communicate. The experimenters actively monitored 

participants’ productions throughout the experiment to ensure they do not 

include known words. If a participant typed a label that contained a known 

word, they were required to change it. Notably, this method was highly 

successful, with only a few exceptions. Those exceptions were implicit in 

nature, and were not detected during the experiment by either the 

                                                             
5 Due to a technical error, during the last test round two groups were presented with 
angles selected from a set of 36 angles separated by 10 degrees (i.e., 0, 10, 20, 30, 40, 

50…). Given that participants have developed productive and systematic languages by 

that point, they did not notice this error and were easily able to name these scenes. 
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participants or the experimenters. Importantly, in most of these 

exceptions, the strings referred to the idiosyncratic fill pattern of the 

shapes, thus hindering rather than promoting compositionality. 

Participants’ letter inventory was restricted, and included five vowel 

characters (a,e,i,o,u) and ten consonants (w,t,p,s,f,g,h,k,n,m) which 

participants could combine freely. We restricted the number of consonants 

as a means to limit participants’ ability to construct known Dutch words. 

The consonants were chosen based on Dutch phonology, while not 

including letters like “r” and “l” in order to avoid the use of acronyms or 

shortcuts for indicating left and right. In addition to these letters (all in 

lower case), participants could also use a hyphen (but not the space bar). 

The experiment had eight rounds in total and took about two hours to 

complete. It included three unique phases: a group naming phase (round 

0), a communication phase (rounds 1-7) and a test phase (round 8). One 

or two experimenters were present during the entire duration of the 

experiment. 

For the initial naming phase (round 0), eight scenes were randomly 

drawn from the set of 23 scenes chosen for this group (see Stimuli) with 

the constraint that each shape and each quadrant were represented at least 

once. During this phase, participants sat together in a room next to a single 

computer, and were exposed to the eight selected scenes that appeared on 

the computer screen one by one in a random order. For each scene, one of 

the participants was asked to use their creativity and type a description for 

it using one or more nonsense words. Participants took turns in describing 

the scenes (i.e., typing them using the computer keyboard), so the first 

scene was described by participant A, the second scene was described by 

participant B, and so on. Importantly, no use of Dutch or any other 

language was allowed, and participants were instructed to come up with 

novel, “gibberish” labels. Once a participant had typed a description for a 

given scene, it was presented on a screen along with the scene to the rest 

of their group members for about five to seven seconds. This procedure 

was repeated until all eight scenes have been presented and named, with 

each participant describing exactly two scenes. After all scene-label 

combinations had been created and presented once, we presented the 

scene-description pairings to participants twice more in a random order in 

order to establish common ground. 

Following the group naming phase, participants were told that they had 

now created the initial vocabulary of the “Fantasy Language” and so they 

can start playing the actual game (the communication phase). The 



39 

participants were told that the goal of the game was to be communicative 

and earn as many points as possible as a group, with a point awarded for 

every successful interaction. The experimenters stressed that this was not 

a memory game but a communication game, and that participants could 

choose to use the labels produced during the group naming phase, but they 

did not have to. If a participant had a better label for a given scene that 

would be understood by their partner, they could choose to use that label 

instead.  

During the communication phase (rounds 1 to 7), group members 

interacted in alternating dyads, exchanging communication partners at 

every round such that each pair in the group interacted at least twice 

overall. At the beginning of each communication round, the group was 

split up into two pairs, who sat in different corners of the same room and 

were separated by a large room divider. Each participant was then 

assigned a laptop. In each communication round, paired participants 

played a total of 23 guessing games with each other, with participants 

alternating between the roles of producer and guesser. In a given game, 

the producer saw the target scene on their screen (see Figure 1A), and 

typed a description for it using their keyboard. Once the producer finished 

typing, they pressed Enter and the description appeared in a large font on 

their screen, without the target scene. They then rotated their screen using 

a rotating platform and presented only the description to their partner. The 

guesser was presented with a grid of eight different scenes on their screen 

(the target and seven distractors; see Figure 1B), with each scene 

associated with a number between 1 and 8. The guesser then pressed the 

number associated with the scene they thought their partner referred to 

using their laptop’s keyboard. Note that the numbers 1-8 were only 

available to the guesser during this phase, but were blocked from use in 

participants’ typed descriptions. The guesser then received feedback on 

their screen (see Figure 1C), which they rotated and shared with the 

producer, allowing participants to learn and align. If the interaction was 

successful, the pair was awarded with 1 point. At the end of each round, 

pairs saw the number of points that they accumulated in this round on their 

screens. Importantly, the total number of points earned by all pairs was 

added up to a group score, and participants’ goal was to maximize their 

score as a group. Groups were explicitly motivated to earn points: they 

were told that they were competing against other groups, and that the 

group with the highest score will win an additional prize of 20 euros. 
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Figure 1: Example of the computer interfaces in a single game in the communication phase. 
Arrows illustrate the shapes’ direction of movement on the screen. The producer saw the target 
scene on their screen (A) and typed a description for it using their keyboard. Once the guesser saw 
the description (presented on the producer’s screen), they selected a scene from a set of eight 
possible scenes that was presented on their screen (B). Finally, participants were given feedback, 
including the target and the chosen scene (C). 

 

Crucially, the number of different target scenes increased from round to 

round, creating an expanding meaning space. Round 1 included only the 

eight scenes described in the group naming phase, which repeated for a 

total of 23 games. In the next round, three new scenes were added to the 

eight familiar ones, resulting in 11 different target scenes. These appeared 

in random order for a total of 23 games, with the constraint that each 

familiar scene was presented at least once and that new scenes were 

presented at least twice. In round 3 we again added three more new scenes 

to the existing 11, and randomized these 14 scenes to fill 23 games 

according to the same principle. This continued for all following rounds 

until there were exactly 23 different scenes in round 6, each appearing 

once without repetition. No more scenes were introduced in round 7, 

allowing participants to communicate about the entire meaning space 

more than once. 

After the last communication round, each participant completed a test 

phase in which they were presented individually with all scenes in a 

PLEASE TYPE A DESCRIPTION FOR THIS SCENE 

(C) 

TARGET CHOSEN 
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random order, and were asked to type their descriptions using the “Fantasy 

Language”. After the test, participants also filled out a questionnaire about 

their performance in the experiment, including questions such as “Did you 

notice any structure in the scenes used in Fantasy Language?”, and “Did 

you try to adopt your partner’s language?”. Finally, all participants were 

debriefed by the experimenter.   

 

Results 

We examined the artificial languages developed in this experiment 

according to four measures: (1) communicative success, (2) degree of 

convergence, (3) language stability, and (4) compositional structure. 

While our main goal was to examine the emergence of compositionality 

(captured by the last-mentioned measure), looking at each of the four 

measures separately enabled us to better characterize the emerging 

communication systems and to understand how different linguistic 

properties changed over time.  

For all analyses reported in the paper, we used mixed effects regression 

models. Note that in these types of communication experiments, groups 

are treated as individual units, similar to single participants in traditional 

psychology experiments. All models were generated using the lme4 and 

pbkrtest packages in R (Bates, Maechler, Bolker & Walker, 2015; 

Halekoh & Højsgaard, 2014; R Core Team, 2016). The pbkrtest package 

provides p-value using the Kenward-Roger Approximation, which gives 

more conservative p-values for models based a relatively small number of 

observations. All models converged with the maximal random effects 

structure. Unless noted otherwise, this structure included random 

intercepts for each of the six groups and each of the 23 scenes, and random 

slopes for all fixed effects with respect to different groups and different 

scenes. We report the fixed effects structure of each model separately. The 

raw data and the code for running all analyses can be found at 

https://osf.io/wht86/. 

 

Communicative success 

Communicative success was measured as response accuracy during the 

communication phase. We used a logit mixed-effects regression model to 

predict accuracy (coded as 1 or 0) in a given turn. The fixed effects were 

ROUND NUMBER and ITEM CURRENT AGE (both centered). All items started 

https://osf.io/wht86/
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with an age of 1 (the first exposure), except for the eight scenes that were 

introduced in the naming phase, which started with an age of 2 (as we 

considered round 0 to be the first exposure). Therefore, ITEM CURRENT 

AGE codes the number of rounds a participant has been exposed to a 

specific scene until that point in the game, and measures the effect of 

familiarity with a given scene on performance. In contrast, ROUND 

NUMBER measures the effect of overall language proficiency and degree 

of shared history on performance. The model showed that participants 

became significantly more successful as rounds progressed (β=0.2, 

SE=0.06, z=3.1, p<0.01; see Table 1 and Figure 2). No other effect was 

significant. 

 

 

 

 

 

Figure 2: Summary statistics of mean accuracy by Round Number. The colored lines represent 

the six groups. The black line represents the model’s estimate for the effect of Round Number, and 
its shading represents the model’s standard error. Round Number ranged from 1 (the first 
communication round) to 7 (the last communication round).  

Table 1: Accuracy model 

 Estimate 
Std. 

Error 
z-value p-value 

(Intercept) -0.273937 0.2174 -1.26 0.207 

Item Current Age -0.000381 0.0213 -0.018 0.985 

Round Number 0.202047 0.0651 3.1 0.001 ** 
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Convergence 

Convergence was measured by calculating the differences between the 

labels produced by different participants for the same scene in a given 

round: for each scene in round n, convergence was calculated by 

averaging over the normalized Levenshtein distances between all labels 

produced by different participants for that scene. The normalized 

Levenshtein distance between two strings is the minimal number of 

insertions, substitutions, and deletions of a single character that is required 

in order to turn one string into the other, divided by the number of 

characters in the longer string of the two. This distance was then 

subtracted from 1 to represent string similarity, reflecting the degree of 

shared lexicon in the group by examining how aligned participants were. 

Convergence was expected to increase over time so that different 

participants will use increasingly similar labels.  

We used a mixed-effects linear regression model to predict 

convergence. The fixed effects were ROUND NUMBER and ITEM CURRENT 

AGE (both centered). The model showed a numeric increase in string 

similarities over rounds indicating an increase in convergence, but this 

was only marginal in our relatively conservative threshold for significance 

(β=0.02, SE=0.01, t=2, p=0.067; see Table 2 and Figure 3). No other 

effect was significant. The model thus suggests that the participants 

started developing a shared lexicon over time, and were marginally more 

converged as rounds progressed. Yet notably, participants were never 

fully aligned: even in the final round, the average similarity between 

labels produced by different participants for the same scenes was around 

0.5 (see Figure 3), indicating that participants used labels which shared on 

average about half of their characters. 

 

 

Table 2: Convergence model 

 Estimate Std. Error t-value p-value 

(Intercept) 0.38961 0.03813 10.218 < 0.001 *** 

Item Current Age 0.0012 0.00476 0.2526 0.806 

Round Number 0.02655 0.01266 2.096 0.067 . 
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Figure 3: Summary statistics of mean convergence by Round Number. Higher string similarities 
between participants indicate greater convergence. The different colored lines represent the six 
groups. The black line represents the model’s estimate for the effect of Round Number, and its 
shading represents the model’s standard error. Round Number ranged from 1 (first communication 
round) to 8 (the final test round). 

 

 

Stability 

Languages’ stability was measured by calculating the differences between 

the labels created by participants for the same scenes on consecutive 

rounds: for each scene in round n, stability was calculated by averaging 

over the normalized Levenshtein distances between all labels produced 

for that scene in round n and all labels produced for that scene in round 

n+1. This distance reflects the degree of change in participants’ 

reproduction of the labels over time. Note that this parameter is referred 

to as "Learnability" in Kirby et al. (2008; 2015), since it reflected the 

degree of transmission errors between learned and produced labels in each 

generation in an iterated learning paradigm. Here, the string differences 

are not measured over consecutive generations of different learners, but 

rather over consecutive rounds of communication, with the same people 

producing the strings (and modifying them). This distance was then 

subtracted from 1 to represent string similarity, reflecting how consistent 

participants were in reproducing the labels over consecutive rounds. Since 

in our design participants were not asked to memorize and recall the 

scenes but rather use the label they find most effective, this parameter 
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indicates the degree of language stability (and not transmission fidelity). 

Stability was expected to increase over time as participants become more 

familiar with the language. We used a mixed-effects linear regression 

model to predict stability. The fixed effects were ROUND NUMBER and 

ITEM CURRENT AGE (both centered). The model showed a numeric increase 

in string similarities over rounds, such that stability marginally increased 

with time (β=0.028, SE=0.01, t=2.19, p=0.06; see Table 3 and Figure 4). 

 

 

Table 3: Stability model 

 Estimate Std. Error t-value p-value 

(Intercept) 0.42706 0.03119 13.689 < 0.001 *** 

Item Current Age 0.00215 0.00615 0.3497 0.735 

Round Number 0.02811 0.01279 2.1967 0.0609 . 

 

 

 

 

Figure 4: Summary statistics of mean stability by Round Number. Higher string similarity 

between consecutive rounds indicate greater stability. The different colored lines represent the six 
groups. The black line represents the model’s estimate for the effect of Round Number, and its 
shading represents the model’s standard error. Round Number ranged from 1 (a comparison of the 
first communication round to the naming round) to 8 (a comparison of the final test phase to the 
last communication round). 
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Interestingly, examining the rate of stabilization for scenes as they entered 

the game revealed that newer scenes stabilized faster (Figure 5). For 

example, scenes that entered the game in the second round had a stability 

score of 0.35, but scenes that entered the game in the third, fourth, fifth, 

and sixth round had scores of 0.38, 0.41, 0.47, and 0.49, respectively. That 

is, the later scenes entered the game, the less they changed, presumably 

because over time, participants have developed structured languages that 

provided a predictable and consistent way of describing new meanings. 

Thus, new labels are already coined in a manner that fits the structure of 

the language.  

 

 

 

 

 

Figure 5: Summary statistics of mean stability by Round Number and Items’ Entrance Round for 
all labels that were introduced after the initial round. Higher string similarities between consecutive 
rounds indicate greater stability. Items’ Entrance Round reflects the point in time at which the item 
was introduced into the game, and ranged from 2 (the first items that entered the game in Round 
2) to 6 (the last items that entered the game in Round 6). The blue hued lines represent the starting 
round of new labels, with darker hues for items that entered the game in a later stage. Round 

Number ranged from 3 (compared to Round 2) to 8 (the final test phase compared to the last 
communication round). 
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Compositional structure 

Compositional structure was measured by calculating the correlations 

between labels’ string distances and scenes’ semantic distances in a given 

language. Semantic differences were calculated in the following way: 

first, scenes that differed in shape were given a difference score of 1, and 

scenes which contained the same shape were given a difference score of 

0. Then, we calculated the absolute difference between scenes’ angles, 

and divided it by the maximal possible distance between angles (180 

degrees) to yield a continuous, normalized score between 0 and 1. Given 

that motion was a continuous dimension and that differences between 

angles are perceptually smaller than the categorical difference between 

shapes, shape was considered a perceptually favorable feature. Therefore, 

we treated the maximal difference in angles (180 degrees) in the same way 

as a difference between shapes. Finally, the difference scores for shape 

and angle were added. Semantic distances therefore ranged between 0.18 

(the same shape moving in angles that are 10 degrees apart) and 2 

(different shapes moving in angles that are 180 degrees apart). Labels’ 

string distances were calculated using the normalized Levenshtein 

distances between all possible pairs of labels produced by participant p in 

round n, excluding pair-wise comparisons between labels produced for 

the same scene. The two sets of pair-wise distances (i.e., string distances 

and meaning distances) were then correlated using the Pearson product-

moment correlation. This measure reflects the amount of structure in the 

mapping between words and meanings in different participants’ languages 

over time, by examining the degree to which similar meanings are being 

expressed using similar strings. 

In most iterated learning studies (e.g., Kirby et al. 2008; 2015), an 

increase in structure over time is demonstrated by an increase in the z-

scores provided by the Mantel test for the correlations between meaning 

and string distances described above. However, this was problematic to 

do in the current design, since z-scores become larger as the number of 

observations increase. Since our meaning space was expanding over 

rounds, z-scores would have become inflated over rounds. Therefore, we 

chose to examine compositional structure by looking directly at the raw 

correlations. Running the analyses with z-scores rather than the raw 

correlation does not change the significance or direction of any of the 

reported effects. 

It is also important to note that the structure measure used here and in 

Kirby et al. (2015) cannot differentiate between different types of 
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linguistic structures (e.g., compositionality vs. structured ambiguities, like 

in the case of systematic use of homonyms), and only indicates how much 

structure is present in the language. In previous iterated learning studies, 

evidence for compositionality (e.g., re-use of sub-strings) was based 

solely on individual examples of signal systems with such structures, as 

analyzed manually by the authors. Here, we also tried to justify our claim 

about the emergence of compositionality by using a segmentation 

algorithm developed by Stadler (under preparation), which provides 

statistical support for the systematic re-use for sub-strings in addition to 

subjective observations.  

We used a mixed-effects linear regression model to predict the 

correlation between meanings and strings in participants’ languages in a 

given round. Following Beckner et al. (2017), we included both the linear 

and the quadratic term for centered ROUND NUMBER. The model had 

random intercepts for producers nested within groups (but not for scenes, 

as structure score was calculated over all scenes in a given round), as well 

as by-producer random slops for the effect of ROUND NUMBER. The model 

showed that structure increased significantly over rounds (β=1.19, 

SE=0.1, t=4.4, p<0.01; see Table 5). The quadratic term for ROUND 

NUMBER was not significant, indicating that structure increased in a linear 

manner. The model thus confirmed that the languages in this experiment 

became significantly more compositional over time despite the lack of 

generational transmission. As Figure 6 shows, there was a high degree of 

compositional structure in this experiment, with some groups reaching 

correlations as high as 0.6.  

 

 

 

 

 

 

 

Table 5: Structure model 

 Estimate Std. Error t-value p-value 

(Intercept) 0.44257 0.0375 11.78 < 0.001 *** 

Round Number (linear) 1.19169 0.2166 5.501 0.002 ** 

Round Number (quadratic) -0.20625 0.1984 -1.039 0.341 
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Figure 6: Summary statistics of the label-meaning correlations by Round Number. The different 
colored lines represent the six groups. The black line represents the model’s estimate for the effect 

of Round Number, and its shading represent the model’s standard error. Round number ranged 
from 0 (the group naming phase) to 8 (the final test phase). 

 

Figure 7 illustrates one type of compositional structure that emerged in 

this experiment, using an example from the sixth group. For visualization 

purposes, we highlighted each meaningful sub-string in a different color, 

and added a “dictionary” to the language. This segmentation was 

statistically motivated by the mutual predictability segmentation 

algorithm (Stadler, under preparation), which looks at a given semantic 

dimension (e.g., shape) in the language of a given participant in the final 

test phase, and searches for non-overlapping sub-strings that co-occur 

with each of the different meanings. Then, it selects the sub-string that has 

the highest mutual predictability for each meaning, while merging 

different meanings if they are predicted by exactly the same string. This 

provides a new way to statistically confirm the existence of 

compositionality in artificial languages. Importantly, the segmentation 

algorithm identified all the sub-strings indicated in Figure 76. 

                                                             
6 Since the label used to refer to Shape 2 had more variation in its final letters (i.e., 
“nena”, “nenu”), the algorithm was able to recognize only part of the string as predictive 

(i.e,. “nen”). In addition, although the algorithm recognized all the relevant sub-strings 

for directions with a mutual predictability score of 1, this was not statistically significant 

for some directions (e.g., down; 270 degrees) due to the small number of scenes with this 

property. 
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Figure 7: An example of a compositional language, produced in the final test phase by a participant 

in Group 6, along with a “dictionary”. Different box colors represent the four different shapes 
which appeared in the scenes, and the grey axes indicate the direction in which the shape was 
moving on the screen. Different font colors represent different meaningful part-labels, as 
segmented by the authors for illustration purposes. For example, the label in the black circle 
(“hakima-hi-mwahp”) was assigned to a scene in which shape 1 was moving in a 60⁰ angle. It is 
comprised of several predictable parts: “hakima” indicates the type of shape which appeared in the 
scene, and the additional “hi-mwahp” indicates the type of motion (up-right). This latter part-label 
can also be decomposed to two meaningful parts: “hi” stands for “up” and “mwahp” stands for 

“right”. 

 

As can been seen in Figure 7, the language presented in this example 

distinguishes between the four shapes in a systematic way, with each 

shape represented by a unique prefix. For example, the segmentation 
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algorithm confirmed that the prefix “wush” was significantly associated 

with all labels for scenes with Shape 4, and with none of the other shapes 

(mutual predictability=1, p<0.01). Interestingly, some prefixes for shape 

(e.g., “nenu” and “hakima”) originated from labels given during the 

naming phase to a specific scene with that shape. Over time, these strings 

spread to the rest of the group and were generalized to refer to all scenes 

containing that shape. Similar trajectories were observed in all groups. 

This process resembles the processes of Grammaticalization and semantic 

extension in natural languages, where specific lexical items can become 

functional markers over time, representing an entire class of items or 

events. Direction of motion was also systematically coded, with 

participants categorizing this continuous dimension into two orthogonal 

dimensions, horizontal and vertical: participants used one affix to encode 

right (“mwahp”) vs. left (“hinn”), and another affix to encode up (“hi”) 

vs. down (“na”). Participants combined these affixes in compositional 

ways to represent motion. For example, scenes that included a shape 

moving down-right (in 300, 315, or 330 degrees) were all given the suffix 

“na-mwahp” (mutual predictability=1, p<0.01).  

Importantly, not all groups categorized angles in this way, and other 

types of categorization of the meanings space emerged, associated with 

different compositional structures. For example, Group 1 categorized 

scenes into seven prototypical directions which were each associated with 

a unique single-character suffix, and Group 4 used different orders and 

doubling of affixes to differentiate between directions. Interestingly, there 

were also cases in which motion affixes originated from a label given to a 

specific scene, which had a similar direction of movement. 

 

Result Summary 

The results of Study 1 show that groups became more accurate over the 

course of interactions, and developed languages that became increasingly 

stable, shared and structured over time. Importantly, as predicted, 

compositional structure emerged in closed groups even without 

generation turnover.  

In the Introduction, we highlighted two mechanisms that may drive 

compressibility pressures in real language use and could lead to the 

emergence of compositionality during communication: (a) the need to 

interact with multiple people, and (b) the need to refer to and discriminate 

between more and more meanings over time. Since we wanted to 
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maximize the likelihood of compositional structure emerging, we 

included both pressures in our communication paradigm. Study 2 tries to 

tease apart these two pressures, and tests their individual role using a 

meta-analysis that included data from the six groups reported above, as 

well as data from 18 additional groups that were tested using an extended 

version of the same paradigm7.  

 

Study 2: Meta-analysis  

In order to examine the unique contribution of our two communicative 

pressures, namely, interacting with multiple people and an expanding 

meaning space, we conducted a meta-analysis over data from 24 groups: 

the six groups reported in Study 1 above, and 18 additional groups that 

were tested using the same paradigm. All 18 additional groups played an 

extended version of the communication game, including eight additional 

rounds (seven more communication rounds + an additional test round). Of 

these 18 additional groups, six were small groups of four participants, and 

12 were larger groups of eight participants. Below we report the details 

for these 18 additional groups. 

 

Method 

Participants 

The meta-analysis includes data from a total of 144 adults: the 24 

participants who took part in Study 1 (mean age: 23.2; 18 women), 

comprising of six small groups of four participants; and 120 additional 

participants who took part in the extended version (mean age: 24.9; 88 

women), comprising a total of 6 small groups of four participants, and 12 

larger groups of eight participants. Participants in Study 1 were paid 

between 20 and 26 Euros for their participation, depending on the amount 

of time they spent in the lab (ranging between 2:00 to 2:45 hours). 

Participants in the extended version were paid between 40 and 46 Euros 

for their participation, depending on the amount of time they spent in the 

lab (ranging between 4:30 to 5:15 hours, including a lunch break). All 

participants were native Dutch speakers and were recruited using the 

                                                             
7 These 18 additional groups were run using the same paradigm to test other hypotheses 

(see Discussion) and are reported in Chapter 3 (Raviv, Meyer & Lev-Ari, 2019b). 

Importantly, this specific analysis is not reported anywhere else.  
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participant database of the Max Planck Institute for Psycholinguistics. 

Ethical approval was granted by the Faculty of Social Sciences of the 

Radboud University Nijmegen.  

 

Stimuli 

Identical to the stimuli used in Study 1.  

 

Procedure 

The additional participants played an extended version of the 

communication game reported in Study 1, in which the communication 

phase and the test phase were repeated for a second time. Importantly, this 

extended version had the same procedure, same settings and same 

instructions as in Study 1, and the first eight rounds were identical. Note 

that in the big groups, due to their larger size, implementing the same 

procedure led to each participant naming only one item in the naming 

phase, and for each pair interacting only half as many times as each pair 

in the small groups. The additional eight rounds also followed the same 

procedure as in the first eight rounds of Study 1, except for one difference: 

no new items were introduced after the first eight rounds. That is, the 

meaning space did not expand further in the additional rounds, and 

included all 23 scenes from Study 1 and only them. 

After completing the first eight rounds, participants in the extended 

version had a lunch break (in which they were not allowed to talk about 

the experiment) and then reconvened to complete seven additional 

communication rounds (rounds 9-15) and an additional test round (round 

16) in the same settings. Therefore, the extended version included 16 

rounds in total, in three unique phases: a group naming phase (round 0), a 

communication phase (rounds 1-7, rounds 9-15) and a test phase (round 

8, round 16). 

 

Meta-analysis Results 

Our meta-analysis was based on data from 24 groups: six small groups 

that played the short version (the original data reported in Study 1), six 

small groups that played the extended version, and 12 big groups that 

played the same extended version. 
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First, we replicated our findings that compositionality emerges during 

communication by running the same model employed in Study 1 over data 

from all 24 groups (see Appendix B). We found that, as predicted, there 

was a significant linear increase in linguistic structure over rounds 

whether we examined only the first eight rounds (β=4.65, SE=0.3, t=15.4, 

p<0.001), only the additional eight rounds (β=0.77, SE=0.2, t=3.7, 

p<0.005), or all 16 rounds together (β=5.6, SE=0.4, t=13.6, p<0.001). 

Notably, this increase in structure leveled off in later rounds: the quadratic 

term for ROUND NUMBER was significant during the first eight rounds (β=-

0.74, SE=0.2, t=-3.6, p<0.005), and also when all rounds were taken into 

account (β=-2.4, SE=0.2, t=-11.1, p<0.001). Moreover, the effect of 

ROUND NUMBER was larger during the first eight rounds, as indicated by 

the effect sizes (i.e., the models’ coefficients: 4.65 vs. 0.77). That is, most 

of the increase in structure happened in the first eight rounds, when the 

meaning space was still expanding and when participants experienced an 

increase in the number of partners. Together, these results consist a direct 

replication of the results we reported above for the six original groups in 

Study 1, and strengthen our conclusion that compositionality can indeed 

emerge in a closed group, without generation turnover. Moreover, they 

imply that our communicative pressures played a role.  

Next, we examined the separate contribution of our two 

communicative pressures – multiple partners and an expanding meaning 

space – to the emergence of structure over time. To this end, we used 

mixed effects models similar to the one reported above to predict the 

structure scores at each round, with additional predictors for the NUMBER 

OF PARTNERS, the NUMBER OF SCENES, or both. First, we ran separate 

models that added to the model with ROUND NUMBER only one of the 

additional factors as a predictor. Then, we ran a full model that added both 

new predictors to the model, and compared the separate reduced models 

to the full model using model comparisons (likelihood ratio tests). This 

allowed us to examine the contribution of each additional predictor. 

All models included a centered fixed effect for ROUND NUMBER 

(ranging from 0 to 16 before centering, linear and quadratic terms), and 

had the same random effects structure which included random intercepts 

and random slopes for the effect of ROUND NUMBER with respect to 

different participants nested in different groups. In the separate models, 

we included either a fixed effect for the NUMBER OF SCENES participants 

were exposed to so far (ranging between 8 to 23 scenes before centering), 

or a fixed effect for the NUMBER OF PARTNERS participants interacted with 

so far (ranging between 1 and 3 for the small groups and between 1 and 7 
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for the larger groups before centering). In the full model, all predictors 

were included. Even though these predictors are closely related, the 

maximal Variance Inflation Factor (VIF) for all predictors in all models 

was <6, indicating that the collinearity of these models was acceptable 

(see Kennedy, 1992; Hair, Anderson, Tatham & Black, 1995).  

All models showed both linear and quadratic effects of ROUND 

NUMBER, indicating an increase in structure over rounds that leveled off 

in later rounds. Moreover, the separate models showed that both factors 

were significant positive predictors of linguistic structure on their own 

(see Appendix B): NUMBER OF PARTNERS, had a strong effect on structure 

(β=0.04, SE=0.005, t=7.05, p<0.001), and the NUMBER OF SCENES did too 

albeit with a smaller effect size (β=0.007, SE=0.002, t=2.9, p<0.01). 

Importantly, the full model was favored compared to the model that 

included only the NUMBER OF SCENES (∆AIC = 26, p<0.0001), but was 

similar to a model that included only the NUMBER OF PARTNERS (∆AIC = 

2, p=0.96). Thus, this model comparison showed that NUMBER OF 

PARTNERS improved the model, while NUMBER OF SCENES did not add a 

unique contribution. In support of this finding, the full model showed that 

interacting with multiple people had a strong positive effect on structure 

scores, while the expanding meaning space did not (Table 6; Figure 8): 

When all factors were included in the model, structure scores significantly 

increased with the NUMBER OF PARTNERS (β=0.04, SE=0.006, t=6.37, 

p<0.001) but not with the NUMBER OF SCENES (β=0.0001, SE=0.002, 

t=0.04, p=0.96). Together, these results suggest that interacting with 

multiple people introduces a stronger pressure for compositionality than 

an expanding meaning space, and was the main driver for the emergence 

of compositionality in our design.   

 

 

Table 6: Meta-Analysis Model 

 Estimate 
Std. 

Error 
t-value p-value 

(Intercept) 0.535 0.018 28.891 < 0.001 *** 

No. of Scenes 0.0001 0.002 0.0443 0.9646 

No. of Partners 0.0407 0.006 6.3739 < 0.001 *** 

Round Number (linear) 3.1029 0.642 4.8317 < 0.001 *** 

Round Number (quadratic) -0.8866 0.447 -1.9824 0.0481 * 
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Figure 8: Summary statistics of structure score by the number of items (A) and the number of 
partners (B) to which participants were exposed. The colored lines represent the different groups 

in the meta-analysis. The black line represents the models’ estimate, and its shading represent the 
models’ standard error. The number of items ranged from 8 (during the group naming phase and 
round 1) to 23 (from round 6 onwards). The number of partners ranged from 0 (during the group 
naming phase) to 3 (for small groups) or 7 (for big groups). 

 

 

General Discussion 

In this paper we tested whether compositionality, one of the hallmarks of 

natural language, can emerge during communication given 

compressibility pressures other than learning by new generations. Kirby 

et al. (2015) argued that cross-generational transmission is crucial for the 

emergence of compositionality. Here, we hypothesized that properties of 

real-world communication, namely, interacting with multiple people on 

an expanding meaning space, could impose compressibility pressures that 

would lead to the emergence of compositional languages already in a 

single generation. We predicted that the need to converge with different 

partners and the need to refer to more and more meanings over time would 

give rise to structured, compositional languages during communication in 

closed groups.  
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To examine this claim, we tested six micro-societies of four 

participants each, who communicated in alternating pairs using an 

artificial language to refer to an expanding meaning space. We found that 

the languages developed in our micro-societies became significantly more 

structured over rounds of interaction, and developed compositional 

structure despite the absence of generational transmission. In particular, 

the micro-societies in our experiment developed languages in which 

different affixes were systematically combined to express different 

meanings. Additionally, those languages became more shared, more 

consistent, and more communicatively successful across rounds. 

Participants converged on stable and structured lexicons that allowed 

them to refer to new meanings with increasing efficiency: as languages 

became more structured, labels for new scenes became more predictable 

and stabilized faster. Our findings show that compositionality reliably 

emerges during communication without generational turnover, and 

advances our understanding of how communal interaction shapes 

grammatical structure in the process of language evolution and language 

change. We also conducted a meta-analysis with data from 18 additional 

micro-societies of four or eight participants, which replicated our main 

finding and extended it to groups of varying sizes: the additional groups 

also showed a significant increase in linguistic structure during multiple 

communication rounds, and developed compositionality without 

transmission to new learners. Thus, we have expanded on the theory 

brought forth in Kirby et al. (2015) by showing that natural properties of 

language use other than learning by new members can give rise to strong 

compressibility pressures during communication and therefore to 

compositional structure within a single generation.  

One immediate implication of these findings is that compositionality 

can emerge in a linguistic signal system within the first generation, with 

no new learners needed. At first glance, these claims seem to be in conflict 

with the conclusions drawn from studies on developing sign languages 

and creoles, which stress the role of new learners in the formation of 

linguistic structure in the real world (Aronoff, Meir, Padden & Sandler, 

2008; Bickerton, 1984; Senghas & Coppola, 2001; Senghas, Kita & 

Özyürek, 2004). However, developing sign languages and pidgins clearly 

show evidence of sentence-level compositionality in the first generation, 

as speakers re-use small units (i.e., words or gestures) to create sentences 

and refer to complex events. For example, over a fifth of the signers in the 

first cohort of the developing Nicaraguan Sign Language showed 

compositionality in representing manner and path of motion, and all first 
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cohort signers were able to recombine different signs to form sentences 

(Senghas et al., 2004). Moreover, compositionality at the sentence-level 

is present already in home-sign (Goldin-Meadow & Mylander, 1990), as 

well as in pidgin languages (Arends & Bruyn, 1994). What seems to 

change in languages over the course of generations is not the presence of 

compositionality per se, but rather the degree of its regularity (e.g., word 

order) and the degree of more fine-grained compositionality at the word-

level (e.g., morphology). In our miniature language, there is no 

meaningful difference between sentence-level and word-level 

compositionality: descriptions in our paradigm could be interpreted as 

single words with different affixes, or alternatively as different words 

combined to a form a sentence (e.g., with a noun describing shape and a 

verb describing motion). Thus, our conclusions are in line with findings 

from developing sign languages, which also show that compositionality 

exists from very early stages.  

A possible limitation of our study is that it is based on the behavior of 

adult participants rather than children, who may differ from adults in their 

biases and general cognitive skills. However, this limitation is relatively 

weak for several reasons. First, while children are indeed the prototypical 

majority of languages learners in real-world settings, they are not the 

prototypical majority of language users. As such, adults have been argued 

to play a larger role in the process of language innovation and change 

compared to children, given that they typically have a stronger social 

influence in the society (Labov, 2007; Nettle, 1999; Roberts & Winters, 

2012). Second, the same cognitive principles outlined here (i.e., memory 

limitations; the need to communicate successfully) are likely to generalize 

to children as well. For example, children as young as four already adapt 

to their interlocutors by taking over structural and lexical forms used by 

their dialogue partners (e.g., Nilsenová & Nolting, 2010). Moreover, 

younger children are theoretically faced with an even stronger pressure 

for compressibility given their inferior working memory (e.g., Gathercole, 

Pickering, Ambridge & Wearing, 2004). Finally, a recent study compared 

children and adults’ performance on an iterated language learning 

paradigm (similar to that used in Kirby et al., 2008), and found that 

children, like adults, can create linguistic structure in artificial languages 

(Raviv & Arnon, 2018). While adults significantly outperformed children 

in all experiments, children were able to create languages with simple 

systematic structures similar to those created by adults and in Kirby et al. 

(2008). Even though children did not introduce compositionality in that 

paradigm, Raviv & Arnon (2018) argue that children do not have 
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qualitatively different structural biases compared to the adults, and show 

that this difference can be attributed to children’s worse learning overall. 

This study therefore suggests that our findings could be generalized to 

children (or more naturally, to mixed groups of children and adults).  

Importantly, our meta-analysis tested the relative contribution of the 

two communicative pressures in our design, and revealed that having 

multiple interaction partners introduced a stronger compressibility 

pressure than the expanding meaning space. While both factors were 

significant predictors of structure individually, the expanding meaning 

space did not introduce an additional compressibility pressure beyond the 

pressure introduced by the number of interaction partners. In other words, 

while the need to discriminate between more and more items can lead to 

the emergence of more systematic structure (see also Nölle et al., 2018), 

it seems to be less crucial when another strong pressure for 

compressibility (i.e., interacting with multiple partners) already exists. 

Together, this meta-analysis showed that interacting with multiple people 

played a central role in shaping this pattern of results, and could be 

considered as the main driver for the emergence of compositionality in 

this paradigm. It is possible that a more extreme manipulation of the 

expanding meaning space would yield a stronger compressibility 

pressure.  Future work could experimentally examine the emergence of 

compositionality when only one of these pressures is present, or use a 

computational model similar to the one used in Kirby et al. (2015) to 

examine the lower bound of each pressure and tweak the extent to which 

new meanings and new partners are introduced.  

One possible implication that can be drawn from these findings is that 

cross-cultural differences in interaction patterns (e.g., group size) can 

affect the formation of linguistic structure: given the strong effect of 

having multiple communication partners, we predict that increasing the 

number of communication partners (and therefore the degree of input 

variability) will impose a stronger pressure for systemization and 

generalization, and should therefore result in languages with more 

linguistic structure. This prediction resonates with models of language 

evolution and language change: an increase in community size is argued 

to be one of the main drivers for the evolution of natural language 

(Dunbar, 1993), and interaction with multiple people is argued to promote 

the simplification of morphological structure (e.g., Wray & Grace, 2007). 

Moreover, this idea is supported by typological studies showing that 

languages spoken by more people have more transparent and more regular 

structures (e.g., Lupyan & Dale, 2010), and by computational models that 



61 

predict community size to have dramatic effects on linguistic structure 

(e.g., Dale & Lupyan, 2012; Reali & Griffiths, 2009). Our paradigm 

provides an efficient way to test the emergence of compositional 

languages with larger groups of interlocutors in laboratory settings, 

allowing for the manipulation of features such as group size and 

community structure. In the following chapters we experimentally 

examined how differences in population size and network configuration 

may affect the emergence of compositionality.   

 

Conclusion 

The results of the experiment and the meta-analysis show that languages 

can develop compositional structure over the course of communication, 

even in the absence of generational transmission to new learners. In 

particular, we found that when groups of participants interacted with 

multiple partners, their languages became more compositionally 

structured, more stable and more communicatively successful over time. 

This is the first demonstration that compositionality can reliably emerge 

in an artificial language in a closed-group setting and supports the idea 

that compressibility pressures can be imposed during communication. 
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Appendix A: Materials 

 

For each version of the stimuli, 23 scenes were created in the following 

way: 

First, we created 28 static items (see initial set). The initial set 

contained exactly seven tokens of each of the four novel shapes, and each 

item was associated with a unique blue-hued fill pattern. For each version, 

23 items were randomly drawn from the 28 static items in the initial set, 

with the constraint that each type of shape should appear between four to 

seven times.  Then, each of these 23 static items was associated with an 

angle in order to create a moving scene. Angles were randomly selected 

from a set of 16 salient angles within the 360-degree-range (0⁰, 30⁰, 45⁰, 

60⁰, 90⁰, 120⁰, 135⁰, 150⁰, 180⁰, 210⁰, 225⁰, 240⁰, 270⁰, 300⁰, 315⁰, 330⁰), 

following the constraint that in each version, each type of shape had to be 

associated with at least one angle from each of the four quadrants. The 

rest of the items’ angles were randomly drawn from this set of angles.  

 

Initial Set: 

Item Number Shape Stimuli 

1 1 

 

2 1 

 

3 1 

 

4 1 
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5 1 

 

6 1 

 

7 1 

 

8 2 

 

9 2 

 

10 2 

 

11 2 

 

12 2 
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13 2 

 

14 2 

 

15 3 

 

16 3 

 

17 3 

 

18 3 

 

19 3 

 

20 3 
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21 3 

 

22 4 

 

23 4 

 

24 4 

 

25 4 

 

26 4 

 

27 4 

 

28 4 
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Version 1: 

Item Number Angle 

1 210 

2 270 

3 90 

4 330 

5 30 

6 300 

7 135 

8  

9 270 

10 150 

11 330 

12 30 

13  

14 120 

15  

16 45 

17 315 

18  

19 135 

20 240 

21 360 

22 60 

23 360 

24 180 

25 315 

26  

27 120 

28 225 

 

 

Version 2: 

Item Number Angle 

1 150 

2 30 

3 210 

4 90 

5 300 

6 360 

7 240 

8 120 

9 45 

10 225 

11 300 

12  

13 180 

14 330 

15 60 

16 180 

17 315 

18  

19  

20  

21 240 

22 90 

23 135 

24 210 

25 45 

26 270 

27  

28 330 

 

 

Version 3: 

Item Number Angle 

1 150 

2  

3 360 

4 210 

5 60 

6 240 

7 315 

8 270 

9 90 

10 210 

11 45 

12 135 

13 330 

14 180 

15 45 

16 135 

17  

18 180 

19 240 

20 315 

21 270 

22  

23 300 

24  

25 120 

26 225 

27  

28 30 
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Appendix B: Additional models reported in the Meta-

Analysis  

 

Models predicting Structure by round for all 24 groups (similar to the 

model of linguistic structure used in Study 1 and detailed in Table 5): 

 

First 8 rounds 

 Estimate Std. Error t-value p-value 

(Intercept) 0.438 0.0178 24.555 < 0.001 *** 

Round Number (linear) 4.6564 0.3011 15.462 < 0.001 *** 

Round Number (quadratic) -0.7435 0.2056 -3.615 0.0013 ** 

 

 

Last 8 rounds 

 Estimate Std. Error t-value p-value 

(Intercept) 0.6194 0.0263 23.544 < 0.001 *** 

Round Number (linear) 0.7719 0.2078 3.713 0.0015 ** 

Round Number (quadratic) -0.0308 0.1589 -0.194 0.847 

 

 

All 16 rounds 

 Estimate Std. Error t-value p-value 

(Intercept) 0.512 0.0191 26.719 < 0.001 *** 

Round Number (linear) 5.6481 0.4141 13.636 < 0.001 *** 

Round Number (quadratic) -2.4717 0.2217 -11.147 < 0.001 *** 
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Reduced separate models predicting linguistic structure by only one of the 

communicative pressures: 

 

Model for the effect of the number of different partners 

 Estimate Std. Error t-value p-value 

(Intercept) 0.5358 0.0184 29.01 < 0.001 *** 

Round Number (linear) 3.1189 0.4961 6.286 < 0.001 *** 

Round Number (quadratic) -0.8992 0.3302 -2.722 0.0078 ** 

Number of Partners 0.0409 0.0058 7.052 < 0.001 *** 

 

 

Model for the effect of the number of different scenes: 

 Estimate Std. Error t-value p-value 

(Intercept) 0.5107 0.0192 26.522 < 0.001 *** 

Round Number (linear) 4.0289 0.6829 5.899 < 0.001 *** 

Round Number (quadratic) -1.383 0.4261 -3.245 0.0013 ** 

Number of Scenes 0.0076 0.0025 2.998 0.003 ** 
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3   Larger communities create more 

systematic languages 

 

 

 

 

Abstract8 

Understanding world-wide patterns of language diversity has long been a 

goal for evolutionary scientists, linguists and philosophers. Research over 

the past decade suggested that linguistic diversity may result from 

differences in the social environments in which languages evolve. 

Specifically, recent work found that languages spoken in larger 

communities typically have more systematic grammatical structures. 

However, in the real world, community size is confounded with other 

social factors such as network structure and the number of second 

languages learners in the community, and it is often assumed that 

linguistic simplification is driven by these factors instead. Here we show 

that in contrast to previous assumptions, community size has a unique and 

important influence on linguistic structure. We experimentally examine 

the live formation of new languages created in the lab by small and larger 

groups, and find that larger groups of interacting participants develop 

more systematic languages over time, and do so faster and more 

consistently than small groups. Small groups also vary more in their 

linguistic behaviors, suggesting that small communities are more 

vulnerable to drift. These results show that community size predicts 

patterns of language diversity, and suggest that an increase in community 

size might have contributed to language evolution. 

 

 

 

                                                             
8 This chapter is based on Raviv, L., Meyer, A. S., & Lev-Ari, S. (2019b). Larger 

communities create more systematic languages. Proceedings of the Royal Society B: 

Biological Sciences, 286(1907): 20191262. doi:10.1098/rspb.2019.1262. 
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Introduction 

Almost 7,000 languages are spoken around the world (Dryer & 

Haspelmath, 2017; Lewis, Simons & Fennig, 2017), and the remarkable 

range of linguistic diversity has been studied extensively (Evans & 

Levinson, 2009; Maffi, 2005). Current research focuses on understanding 

the sources for this diversity, and attempts to understand whether 

differences between languages can be predicted by differences in their 

environments (Bentz & Winter, 2013; Everett, 2013; Everett, Blasi & 

Roberts, 2015; 2016; Lupyan & Dale, 2010; 2016; Nettle, 2012). If 

languages evolved as a means for social coordination (Beckner et al., 

2009; Fusaroli & Tylén, 2012), they are bound to be shaped by their social 

environment and the properties of the cultures in which they evolved. 

Indeed, cross-linguistic and historical studies have suggested that 

different linguistic structures emerge in different societies depending on 

their size, network structure, and the identity of their members (Lupyan & 

Dale, 2010; Meir, Israel, Sandler, Padden & Aronoff, 2012; Milroy & 

Milroy, 1985; Nettle, 1999; Trudgill, 2002; Wray & Grace, 2007). 

One social property, community size, might play a particularly 

important role in explaining grammatical differences between languages. 

First, an increase in human group size was argued to be one of the drivers 

for the evolution of natural language (Dunbar, 1993). Second, cross-

linguistic work that examined thousands of languages found that 

languages spoken in larger communities tend to be less complex (Lupyan 

& Dale, 2010). Specifically, these languages have fewer and less elaborate 

morphological structures, fewer irregulars, and overall simpler grammars 

(Lupyan & Dale, 2010). In addition to shaping grammar, community size 

could affect trends of convergence and stability during language change 

(Meir et al., 2012; Milroy & Milroy, 1985; Nettle, 1999; Trudgill, 2002; 

Wray & Grace, 2007). 

While there is correlational evidence for the relation between 

community size and grammatical complexity, cross-linguistic studies 

cannot establish a causal link between them. Furthermore, the relationship 

between bigger communities and linguistic simplification can be 

attributed to other social factors that are confounded with community size 

in the real world. In particular, bigger communities tend to be more 

sparsely connected, more geographically spread out, have more contact 

with outsiders, and have a higher proportion of adult second language 

learners (Meir et al., 2012; Trudgill, 2002; Wray & Grace, 2007). Each of 

these factors may contribute to the pattern of reduced complexity, and thus 
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provide an alternative explanation for the correlation between community 

size and linguistic structure (Bentz & Winter, 2013; Dale & Lupyan, 2012; 

Lou‐Magnuson & Onnis, 2018; Lupyan & Dale, 2010; 2016; Nettle, 

2012). In fact, many researchers assume that this correlation is accounted 

for by the proportion of second language learners in the community (Bentz 

& Winter, 2013; Dale & Lupyan, 2012; Lupyan & Dale, 2010; 2016) or 

by differences in network connectivity (Milroy & Milroy, 1985; Trudgill, 

2002; Wray & Grace, 2007; Lou‐Magnuson & Onnis, 2018; See 

discussion).  

Here we argue that community size has a unique and casual role in 

explaining linguistic diversity, and show that it influences the formation 

of different linguistic structures in the evolution of new languages. 

Interacting with more people reduces shared history and introduces more 

input variability (i.e., more variants), which individuals need to overcome 

before the community can reach mutual understanding. Therefore, 

interacting with more people can favor systematization by introducing a 

stronger pressure for generalizations and transparency. That is, larger 

communities may be more likely to favor linguistic variants that are 

simple, predictable, and structured, which can in turn ease the challenge 

of convergence and communicative success. Supporting this idea, 

language learning studies show that an increase in input variability (i.e., 

exposure to multiple speakers) boosts categorization, generalization, and 

pattern detection in infants and adults (Bradlow & Bent, 2008; Gómez, 

2002; Lev-Ari, 2016; 2018; Lively, Logan & Pisoni, 1993; Perry, 

Samuelson, Malloy & Schiffer, 2010; Rost & McMurray, 2009; 2010).  

While existing studies cannot establish a causal link between 

community structure and linguistic structure or isolate the role of 

community size, teasing apart these different social factors has important 

implications for our understanding of linguistic diversity and its origins 

(Scott-Phillips & Kirby, 2010). Some computational models attempted to 

isolate the effect of community size on emerging languages using 

populations of interacting agents, but their results show a mixed pattern: 

while some models suggest that population size plays little to no role in 

explaining cross-linguistic patterns (Gong, Baronchelli, Puglisi & Loreto, 

2012; Lou‐Magnuson & Onnis, 2018; Wichmann & Holman, 2009), 

others report strong associations between population size and linguistic 

features (Reali, Chater & Christiansen, 2018; Spike, 2017; Vogt, 2009). 

To date, no experimental work has examined the effect of community 

size on the emergence of language structure with human participants, 
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although it was suggested several times (Galantucci & Garrod, 2011; 

Gong, Shuai & Zhang, 2014; Roberts & Winters, 2012). We fill this gap 

by conducting a behavioral study that examines the live formation of new 

communicative systems created in the lab by small or larger groups. A 

couple of previous studies investigated the role of input variability, one of 

our hypothesized mechanisms, using an individual learning task, yet 

found no effect of learning from different models (Atkinson, Kirby & 

Smith, 2015; Atkinson, Smith & Kirby, 2018). Another related study 

compared the complexity of English descriptions produced for novel icons 

by two or three people, but reported no differences between the final 

descriptions of dyads and triads (Atkinson, Mills & Smith, 2018). These 

studies, however, did not test the emergence of systematic linguistic 

structure. Here we examine how group size influences the emergence of 

compositionality in a new language, and assess the role of input variability 

in driving this effect. In addition to examining changes in linguistic 

structure over time, we track other important aspects of the emerging 

systems (e.g., communicative success and the degree to which languages 

are shared across participants), shedding light on how community size 

affects the nature of emerging languages.  

 

The Current Study 

We used a group communication paradigm inspired by (Fay, Garrod, 

Roberts & Swoboda, 2010; Kirby, Cornish & Smith, 2008; Kirby, 

Tamariz, Cornish & Smith, 2015; Roberts, 2010; Roberts & Galantucci, 

2012; Raviv, Meyer & Lev-Ari, 2019a) to examine the performance of 

small and larger micro-societies (See Figure 1; Appendix A). Participants 

interacted in alternating pairs with the goal of communicating successfully 

using only an artificial language they invented during the experiment. In 

each communication round, paired partners took turns in describing novel 

scenes of moving shapes, such that one participant produced a label to 

describe a target scene, and their partner guessed which scene they meant 

from a larger set of scenes. Participants in small and larger groups had the 

same amount of interaction overall, but members of larger groups had less 

shared history with each other by the end of the experiment. All other 

group properties (e.g., network structure) were kept constant across 

conditions. 

We examined the emerging languages over the course of the 

experiment using several measurements (see Measures): 
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(1) Communicative Success; (2) Convergence, reflecting the degree of 

alignment in the group (3) Stability, reflecting the degree of change over 

time; and (4) Linguistic Structure, reflecting the degree of systematic 

mappings in the language. With these measures, we can characterize the 

emerging communication systems and understand how different linguistic 

properties change over time depending on community size. 

Our main prediction was that larger groups would create more 

structured languages, given that they are under a stronger pressure for 

generalization due to increased input variability and reduced shared 

history. We also predicted that larger groups would show slower rates of 

stabilization and convergence compared to smaller groups. Furthermore, 

we ran analyses to test our proposed mechanism, namely, that larger 

groups create more structured languages because of greater input 

variability and reduced shared history.  

 

 

 

Figure 1. Group communication paradigm. We tested fully-connected groups of either four (A) or 

eight (B) participants. Panels (C) and (D) show the producer’s and guesser’s screens, respectively. 
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Methods 

Participants  

Data from 144 adults (mean age=24.9y, SD=8.9y; 103 women) was 

collected over the period of one year in several batches, comprising 12 

small groups of four members and 12 larger groups of eight members. 

Participants were paid 40€ or more depending on the time they spent in 

the lab (between 270 to 315 minutes, including a 30-minutes break). Six 

additional small groups took part in a shorter version of the experiment 

(Raviv, Meyer & Lev-Ari, 2019a), which included only eight rounds. 

These additional groups showed similar patterns of results when 

compared to the larger groups. Their results are reported in Appendix B. 

All participants were native Dutch speakers. Ethical approval was granted 

by the Faculty of Social Sciences of the Radboud University Nijmegen. 

 

Materials 

We created visual scenes that varied along three semantic dimensions: 

shape, angle of motion, and fill pattern (see also Kirby, Cornish & Smith, 

2008; Kirby, Tamariz, Cornish & Smith, 2015; Raviv, Meyer & Lev-Ari, 

2019a). Each scene included one of four novel shapes, moving repeatedly 

in a straight line from the center of the frame in an angle chosen from a 

range of possible angles. The four shapes were unfamiliar and ambiguous 

in order to discourage labeling with existing words. Angle of motion was 

a continuous feature, which participants could have parsed and 

categorized in various ways. Additionally, the shape in each scene had a 

unique blue-hued fill pattern, giving scenes an idiosyncratic feature. 

Therefore, the meaning space promoted categorization and structure along 

the dimensions of shape and motion, but also allowed participants to adopt 

a holistic, unstructured strategy where scenes are individualized according 

to their fill pattern. There were three versions of the stimuli, which 

differed in the distribution of shapes and their associated angles (see 

Appendix A in Chapter 2). Each version contained 23 scenes and was 

presented to two groups in each condition. The experiment was 

programmed using Presentation.  

 

Procedure 

Participants were asked to create a fantasy language and use it in order to 

communicate about different novel scenes. Participants were not allowed 
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to communicate in any other way besides typing, and their letter inventory 

was restricted: it included a hyphen, five vowel characters (a,e,i,o,u) and 

ten consonants (w,t,p,s,f,g,h,k,n,m), which participants could combine 

freely.  

The experiment had 16 rounds, comprising three phases: group naming 

(round 0), communication (rounds 1-7; rounds 9-15), and test (round 8; 

round 16). 

In the naming phase (round 0), participants generated novel nonsense 

words to describe eight initial scenes, so that each group had a few shared 

descriptions to start with. Eight scenes were randomly drawn from the set 

of 23 scenes (see Materials) under the constraint that each shape and 

quadrant were represented at least once. During this phase, participants 

sat together and took turns in describing the scenes, which appeared on a 

computer screen one by one in a random order. Participants in larger 

groups named one scene each, and participants in small groups naming 

two scenes each. Importantly, no use of Dutch or any other language was 

allowed. An experimenter was present in the room throughout the 

experiment to ensure participants did not include known words. Once a 

participant had typed a description for a scene, it was presented to all 

group members for several seconds. This procedure was repeated until all 

scenes had been named and presented once. In order to establish shared 

knowledge, these scene-description pairings were presented to the group 

twice more in a random order.  

Following the naming phase, participants played a communication 

game (the communication phase): the goal was to earn as many points as 

possible as a group, with a point awarded for every successful interaction. 

The experimenter stressed that this was not a memory game, and that 

participants were free to use the labels produced during the group naming 

phase, or create new ones. Paired participants sat on opposite sides of a 

table facing each other and personal laptop screens (see Appendix A). 

During this phase, group members exchanged partners at the start of every 

round, such that by end of the experiment, each pair in the small group 

has interacted at least four times and each pair in the large group has 

interacted exactly twice.  

In each communication round, paired participants interacted 23 times, 

alternating between the roles of producer and guesser. In each interaction, 

the producer saw the target scene on their screen (see Fig. 1C) and typed 

a description using their keyboard. The guesser saw a grid of eight scenes 

on their screen (the target and seven distractors), and had to press the 
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number associated with the scene they thought their partner referred to. 

Participants then received feedback on their performance.  

The number of target scenes increased gradually over the first six 

rounds, such that participants referred to more scenes in later rounds. 

While round 1 included only the eight initial scenes selected for the group 

naming phase, three new scenes were added in each following round until 

there were 23 different scenes in round 6. No more scenes were introduced 

afterwards, allowing participants to interact about all scenes for the 

following rounds. This method was implemented in order to introduce a 

pressure for developing structured and predictable languages (47), and 

resembles the real world with its unconstrained meaning space.  

After the seventh communication round, participants completed an 

individual test phase (round 8), in which they typed their descriptions for 

all scenes one by one in a random order. After the test, participants had 

seven additional communication rounds (rounds 9-15) and the additional 

test round (round 16). These two individual test rounds allowed us to get 

a full representation of participants’ entire lexicon at the middle and end 

of the experiment. Finally, participants filled out a questionnaire about 

their performance and were debriefed by the experimenter.  

Due to a technical error, one large group played only six additional 

communication rounds instead of seven. Additionally, data from one 

participant in a large group was lost. The existing data from these groups 

was included in the analyses.  

 

Measures 

Communicative Success 

Measured as binary response accuracy in a given interaction during the 

communication phase, reflecting comprehension. 

 

Convergence  

Measured as the similarities between all the labels produced by 

participants in the same group for the same scene in a given round: for 

each scene in round n, convergence was calculated by averaging over the 

normalized Levenshtein distances between all labels produced for that 

scene in that round. The normalized Levenshtein distance between two 

strings is the minimal number of insertions, substitutions, and deletions of 
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a single character that is required for turning one string into the other, 

divided by the number of characters in the longer string. This distance was 

subtracted from 1 to represent string similarity, reflecting the degree of 

shared lexicon and alignment in the group. 

 

Stability 

Measured as the similarities between the labels created by participants for 

the same scene on two consecutive rounds: for each scene in round n, 

stability was calculated by averaging over the normalized Levenshtein 

distances between all labels produced for that scene in round n and round 

n+1. This distance was subtracted from 1 to represent string similarity, 

reflecting the degree of consistency in the groups’ languages. 

 

Linguistic Structure 

Measured as the correlations between string distances and semantic 

distances in each participant’s language in a given round, reflecting the 

degree to which similar meanings are expressed using similar strings 

(Kirby, Cornish & Smith, 2008; Kirby, Tamariz, Cornish & Smith, 2015; 

Raviv, Meyer & Lev-Ari, 2019a). First, scenes had a semantic difference 

score of 1 if they differed in shape, and 0 otherwise. Second, we calculated 

the absolute difference between scenes’ angles, and divided it by the 

maximal distance between angles (180 degrees) to yield a continuous 

normalized score between 0 and 1. Then, the difference scores for shape 

and angle were added, yielding a range of semantic distances between 

0.18 and 2. Finally, labels’ string distances were calculated using the 

normalized Levenshtein distances between all possible pairs of labels 

produced by participant p for all scenes in round n. For each participant, 

the two sets of pair-wise distances (i.e., string distances and meaning 

distances) were correlated using the Pearson product-moment correlation. 

While most iterated learning studies use the z-scores provided by the 

Mantel test for the correlation described above 43,44), z-scores were 

inappropriate for our design since they increase with the number of 

observations, and our meaning space expanded over rounds. Therefore, 

we used the raw correlations between meanings and strings as a more 

accurate measure of systematic structure (Raviv, Meyer & Lev-Ari, 

2019a; Spike, 2016).    
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Input Variability 

Measured as the minimal sum of differences between all the labels 

produced for the same scene in a given round. For each scene in round n, 

we made a list of all label variants for that scene. For each label variant, 

we summed over the normalized Levenshtein distances between that 

variant and all other variants in the list. We then selected the variant that 

was associated with the lowest sum of differences (i.e., the ‘typical’ label), 

and used that sum as the input variability score for that scene, capturing 

the number of different variants and their relative difference from each 

other. Finally, we averaged over the input variability scores of different 

scenes to yield the mean variability in that round.  

 

Shared History 

Measured as the number of times each pair in the group interacted so far, 

reflecting the fact that members of small groups interacted more often 

with each other. In small groups, pairs interacted once by round 3, twice 

by round 6, three times by round 10, four times by round 14, and started 

to interact for the fifth time in round 15. In larger groups, pairs only 

interacted once by round 7, and twice by round 15. 

 

Analyses 

We used mixed-effects regression models to test the effect of community 

size on all measuresusing the lme4 (Bates, Maechler Bolker & Walker, 

2016) and pbkrtest (Halekoh & Højsgaard, 2014) packages in R (R Core 

Team, 2016). All models had the maximal random effects structure 

justified by the data that would converge. The reported p-values were 

generated using the Kenward-Roger Approximation, which gives more 

conservative p-values for models based on small numbers of observations. 

The full models are included in Appendix C. All the data and the scripts 

for generating all models can be openly found at https://osf.io/y7d6m/. 

Changes in communicative success, stability, convergence and 

linguistic structure were examined using three types of models: (I) Models 

that analyze changes in the dependent variable over time; (II) Models that 

compare the final levels of the dependent variable at the end of the 

experiment; (III) Models that examine differences in the levels of variance 

in the dependent variable over time.  

https://osf.io/y7d6m/
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Models of type (I) predicted changes in the dependent variable as a 

function of time and community size. Models for communicative success 

included data from communication rounds only (excluding the two test 

rounds). In models for communicative success, convergence, and 

stability, the fixed effects were CONDITION (dummy-coded with small 

group as the reference level), ROUND NUMBER (centered), ITEM CURRENT 

AGE (centered), and the interaction terms CONDITION X ITEM CURRENT AGE 

and CONDITION X ROUND NUMBER. ITEM CURRENT AGE codes the number 

of rounds each scene was presented until that point in time, and measures 

the effect of familiarity with a specific scene on performance. ROUND 

NUMBER measures the effect of time passed in the experiment and overall 

language proficiency. The random effects structure of models for 

communicative success, convergence, and stability included by-scenes 

and by-groups random intercepts, as well as by-groups random slopes for 

the effect of ROUND NUMBER. Models for stability and communicative 

success also included by-scenes random slopes for the effect of ROUND 

NUMBER. As structure score was calculated for each producer over all 

scenes in a given round, the model for linguistic structure did not include 

ITEM CURRENT age as a fixed effect, and included fixed effects for ROUND 

NUMBER (quadratic, centered), CONDITION (dummy-coded with small 

group as the reference level), and the interaction term CONDITION X 

ROUND NUMBER. Following Beckner, Pierrehumbert & Hay (2017), who 

found that linguistic structure tends to increase nonlinearly, we included 

both the linear and the quadratic terms for the effect of ROUND NUMBER 

(using the poly() function in R to avoid collinearity). The model for 

linguistic structure included random intercepts and random slopes for the 

effect of ROUND NUMBER with respect to different producers who were 

nested in different groups. 

Models of type (II) compared the mean values of the final languages 

created by small and larger groups in rounds 15-16. The fixed effect in 

these models was a two-level categorical variable for CONDITION (i.e., 

small groups vs. larger groups), dummy-coded with small groups as the 

reference level. In models for communicative success, stability and 

structure, the random effects structure included random intercepts for 

different groups and different scenes. In models for linguistic structure, 

the random effect structure included random intercepts for different 

producers nested in different groups.  

Models of type (III) predicted the degree of variance in the dependent 

variable across groups and time. For linguistic structure, variance was 

calculated as the square standard deviation in participants’ average 
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structure scores across all groups in a given round. For communicative 

success, convergence and stability, variance was calculated as the square 

standard deviation in the dependent variable on each scene across all 

groups in a given round. These models included by-scenes random 

intercepts and slopes for the effect of ROUND NUMBER. All models 

included fixed effects for ROUND NUMBER (centered), CONDITION 

(dummy-coded with small group as the reference level), and the 

interaction term CONDITION X ROUND NUMBER.  

We also examined changes in input variability as a function of time 

and community size. This model included fixed effects for ROUND 

NUMBER (centered), CONDITION (dummy-coded with small group as the 

reference level), and the interaction between them. There were by-group 

random intercepts and by-group random slopes for the effect of ROUND 

NUMBER. Finally, we examined changes in linguistic structure scores over 

consecutive rounds as a function of (a) input variability, (b) shared history, 

or (c) both. In all three models, the dependent variable was the difference 

in structure score between round n and n+1, and there were random 

intercepts for different producers nested in different groups. In model (a), 

the fixed effect was MEAN INPUT VARIABILITY at round n (centered). In 

model (b), the fixed effect was SHARED HISTORY at round n (centered). 

Model (c) was a combination of models (a) and (b). 

 

Results 

We report the results for each of the four linguistic measures separately, 

using three types of analyses (see Methods). Figure 2 summarizes the 

average differences in the performance of small and larger groups over 

the course of all 16 rounds. Note that all analyses were carried over all 

data points and not over averages. All analyses are reported in full in 

Appendix C using numbered models, which we refer to here. 

 

1. Communicative Success 

Communicative Success increased over time (Model 1: β=0.08, SE=0.02, 

t=4, p<0.0001; Fig. 2A), with participants becoming more accurate as 

rounds progressed. This increase was not significantly modulated by 

group size (Model 1: β=0.04, SE=0.03, t=1.76, p=0.078), with small and 

larger groups reaching similar accuracy scores in the final communication 

round (Model 2: β=0.14, SE=0.08, t=1.8, p=0.083). Small and larger 
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groups differed in variance: while all groups became increasingly more 

varied over time (Model 3: β=0.002, SE=0.0004, t=5.18, p<0.0001), 

larger groups showed a slower increase in variance (Model 3: β=-0.002, 

SE=0.0005, t=-4.2, p<0.0001) and lower variance overall (Model 3: β=-

0.007, SE=0.002, t=-3.48, p<0.001). These results indicate that while 

small groups varied in their achieved accuracy scores, and even more so 

as the experiment progressed, larger groups tended to behave more 

similarly to one another throughout the experiment.  

 

 

 

Figure 2. Changes in (A) Communicative Success, (B) Convergence, (C) Stability, and (D) 

Linguistic Structure over time as a function of community size. Thin lines represent average values 

for each group in a given round. Data from small and larger groups is plotted in blue and red, 

respectively. Thick lines represent the models’ estimates, and their shadings represent the models’ 

standard errors. 
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2. Convergence 

Convergence increased significantly across rounds (Model 4: β=0.007, 

SE=0.003, t=2.31, p=0.029; Fig. 2B), with participants aligning and using 

more similar labels over time. Convergence was also better on more 

familiar scenes (Model 4: β=0.004, SE=0.001, t=2.62, p=0.014). Group 

size had no effect on convergence (Model 4: β=-0.06, SE=0.04, t=-1.37, 

p=0.18), so that small and larger groups showed similar levels of 

convergence by the end of the experiment (Model 5: β=-0.03, SE=0.05, 

t=-0.63, p=0.54). Interestingly, larger groups were not less converged than 

small groups, despite the fact that members of larger groups had double 

the amount of people to converge with and only half the amount of shared 

history with each of them. Variance increased over rounds (Model 6: 

β=0.001, SE=0.003 t=4.32, p<0.0001), but there was significantly less 

variance in the convergence levels of larger groups than across small 

groups throughout the experiment (Model 6: β=-0.04, SE=0.002 t=-23.68, 

p<0.0001). That is, larger groups behaved similarly to each other, showing 

a slow yet steady increase in convergence over rounds, while small groups 

varied more in their behavior: some small groups reached high levels of 

convergence, but others maintained a high level of divergence throughout 

the experiment, with different participants using their own unique labels.  

 

3. Stability 

Stability significantly increased over time, with participants using labels 

more consistently as rounds progressed (Model 7: β=0.009, SE=0.003, 

t=3.26, p=0.003; Fig. 2C). Labels for more familiar scenes were also more 

stable (Model 7: β=0.004, SE=0.001, t=3.68, p=0.001). Group size 

affected stability (Model 7: β=-0.08, SE=0.04, t=-2.08, p=0.047), with 

larger groups’ languages being less stable (i.e., showing more changes). 

However, by the end of the experiment, the languages of small and larger 

groups did not differ in their stability (Model 8: β=-0.06 SE=0.05, t=-1.21, 

p=0.24). As in the case of convergence, larger groups showed 

significantly less variance in their levels of stability compared to small 

groups throughout the experiment (Model 9: β=-0.018, SE=0.001, t=-

16.99, p<0.0001), reflecting the fact that smaller groups differed more 

from each other in their stabilization trends.  
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4. Linguistic Structure 

Linguistic Structure significantly increased over rounds (Model 10: 

β=4.55, SE=0.48, t=9.46, p<0.0001; Fig 2D), with participants’ languages 

becoming more systematic over time. This increase was non-linear and 

slowed down in later rounds (Model 10: β=-3, SE=0.38, t=-7.98, 

p<0.0001). As predicted, the increase in structure was significantly 

modulated by group size (Model 10: β=1.92, SE=0.63, t=3.06, p=0.004), 

so that participants in larger groups developed structured languages faster 

compared to participants in small groups. Indeed, the final languages 

developed in larger groups were significantly more structured than the 

final languages developed in small groups (Model 11: β=0.11, SE=0.04, 

t=2.93, p=0.006). Variance did not significantly decrease over time 

(Model 12: β=-0.0009, SE=0.0005, t=-1.73, p=0.094), yet larger groups 

varied significantly less overall in how structured their languages were 

(Model 12: β=-0.015, SE=0.004, t=-4.28, p=0.0002). That is, while small 

groups differed in their achieved levels of structure throughout the 

experiment, different larger groups showed similar trends and reached 

similar structure scores. 

Although all groups started out with different random holistic labels, 

compositional languages emerged in many groups during the experiment. 

Many groups developed languages with systematic and predictable 

grammars (see Figure 3 for one example, and Appendix D for more 

examples), in which scenes were described using complex labels: one part 

indicating the shape, and another part indicating motion9. Interestingly, 

groups differed not only in their lexicons, but also in the grammatical 

structures they used to categorize scenes according to motion. While many 

groups categorized angles based on a two axes system (with part-labels 

combined to indicate up/down and right/left), other groups parsed angles 

in a clock-like system, using unique part-labels to describe different 

directions. Importantly, while no two languages were identical, the level 

of systematicity in the achieved structure depended on group size. 

 

 

                                                             
9 Complex descriptions in the artificial languages could be interpreted as single words 

with different affixes, or alternatively as different words combined to a sentence (e.g., 

with a noun describing shape and a verb describing motion). Therefore, in the current 

paradigm, there is no meaningful distinction between syntactic and morphological 

compositionality. 
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Figure 3. An example of the final language produced by a participant in a large group, along with 

a “dictionary” for interpreting it on the right. Box colors represent the four shapes, and the grey 
axes indicate the direction in which the shape moved. Font colors represent different meaningful 
part-labels, as segmented by the authors for illustration purposes only. For example, the label in 
the black circle (“wowo-ik”) described a scene in which shape 4 moved in a 30⁰ angle. It is 
comprised of several parts: “wowo” (indicating the shape) and “ik” (indicating the direction, 
comprised of two meaningful parts: “i” for “up” and “k” for “right”). 

 

We also tested our hypothesis that group size effects are driven by 

differences in input variability and shared history. First, we quantified the 

degree of input variability in each group at a given time point by 

measuring the differences in the variants produced for different scenes in 

different rounds. Then we examined changes in input variability over time 

across conditions. We found that input variability significantly decreased 

over rounds (Model 13: β=-0.1, SE=0.01, t=-8, p<0.0001), with a stronger 

decrease in the larger groups (Model 13: β=-0.08, SE=0.2, t=-4.42, 

p=0.0001). Importantly, this analysis also confirmed that larger groups 

were indeed associated with greater input variability overall (Model 13: 

β=1.45, SE=0.09, t=15.99, p<0.0001) – a critical assumption in the 

literature (Atkinson, Kirby & Smith, 2015; Meir et al., 2012; Nettle, 2012; 

Wray & Grace, 2007) and a premise for our hypothesis. We also 

quantified the degree of shared history between participants. Then, we 
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examined the role of input variability and shared history in promoting 

changes in linguistic structure by using these measures to predict 

differences in structure scores over consecutive rounds. We found that 

more input variability at round n induced a greater increase in structure at 

the following round (Model 14: β=0.015, SE=0.003, t=4.8, p<0.0001). 

Similarly, less shared history at round n induced a greater increase in 

structure at the following round (Model 15: β=-0.017, SE=0.004, t=-4.18, 

p=0.0004). When both predictors were combined in a single model, only 

input variability was significantly associated with structure differences 

(Model 16: β=0.011, SE=0.004, t=2.76, p=0.012), while the effect of 

shared history did not reach significance (Model 16: β=-0.008, SE=0.005, 

t=-1.42, p=0.17) – suggesting that input variability was the main driver 

for the increase in structure scores. 

 

Discussion 

We used a group communication paradigm to test the effect of community 

size on linguistic structure. We argued that larger groups were under 

stronger pressure to develop shared languages to overcome their greater 

communicative challenge, and therefore created more systematic 

languages. We found that while all larger groups consistently showed 

similar trends of increasing structure over time, some small groups never 

developed systematic grammars and relied on holistic, unstructured labels 

to describe the scenes. Importantly, linguistic structure increased faster in 

the larger groups, so that by the end of the experiment, their final 

languages were significantly more systematic than those of small groups. 

Our results further showed that the increase in structure was driven by the 

greater input variability in the larger groups. Remarkably, the languages 

developed in larger groups were eventually as globally shared across 

members, even though members of larger groups had fewer opportunities 

to interact with each other, and had more people they needed to converge 

with compared to members of small groups. Finally, the languages of 

small groups changed less over time, though larger groups reached an 

equal level of stability by the end of the experiment. Together, these 

results suggest that group size can affect the live formation of new 

languages.  

The groups in our experiment were smaller than real-world 

communities. The results, however, should scale to real-world 

populations since the meaning space and speakers’ life span scale up 
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proportionally. Concordantly, our results are consistent with findings 

from real developing sign languages, which show that given the same 

amount of time, a larger community of signers developed a more uniform 

and more systematic language compared to a small community of signers 

(Meir et al., 2012). It also resonates with psycholinguistic findings that 

show how input variability can affect generalization (Gómez, 2002): 

participants typically don’t generalize over variants when they are able to 

memorize all of them individually, but do generalize when there are too 

many variants to remember. Similarly, greater input variability in larger 

groups promoted generalizations of the linguistic stimuli in our 

experiment, consistent with language change theories that argue for more 

systematicity in big communities of speakers for the same reasons (Milroy 

& Milroy, 1985; Nettle. 2012; Trudgill, 2002; Wray & Grace, 2007).  

The proposed mechanisms assumes a close relationship between our 

linguistic measures, and is based on the hypothesis that linguistic structure 

can facilitate convergence and comprehension. We assumed that larger 

groups compensated for their greater communicative challenge by 

developing more systematic languages, which enabled them to reach 

similar levels of convergence and accuracy by the end of the experiment. 

Therefore, one may wonder whether more structure indeed facilitated 

convergence and communicative success in our experiment. To this end, 

we examined the relation between our measures of communicative 

success, convergence and linguistic structure after controlling for the 

effect of round (see Appendix C). One model predicted convergence as a 

function of time and linguistic structure. The model included ROUND 

NUMBER (centered), STRUCTURE SCORE (centered), and the interaction 

between them as fixed effects. Another model predicted communicative 

success as a function of time, convergence, and linguistic structure scores, 

with fixed effects for ROUND NUMBER (centered), STRUCTURE SCORE 

(centered), MEAN CONVERGENCE (centered), and the interaction terms 

STRUCTURE SCORE X ROUND NUMBER and MEAN CONVERGENCE X ROUND 

NUMBER. Both models included by-group random intercepts and by-group 

random slopes for all fixed effects. Indeed, we found that more linguistic 

structure predicted better convergence across different rounds (Model 17: 

β=0.018, SE=0.008, t=2.32, p=0.027). Additionally, communicative 

success was predicted by structure (Model 18: β=0.436, SE=0.06, t=7.48, 

p<0.0001) and convergence (Model 18: β=0.189, SE=0.06, t=2.95, 

p=0.008), so that better group alignment and more systematic structure 

predicted higher accuracy scores across rounds. Moreover, the 

relationship between structure and accuracy became stronger over rounds 
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(Model 18: β=0.051, SE=0.008, t=6.38, p<0.0001). These additional 

analyses provide important empirical evidence in support of the 

underlying mechanisms we proposed, and shed light on the nature of the 

group size effects reported in this paper. 

Another important aspect of our results concerns the effect of group 

size on variance in behaviour. We found significantly more variance in 

the behaviors of small groups across all measures: some small groups 

reached high levels of communicative success, convergence, stability, and 

linguistic structure, while others did not show much improvement in these 

measures over time. By contrast, larger groups all showed similar levels 

of communicative success, stability, convergence, and linguistic structure 

by the end of the experiment. These results support the idea that small 

groups are more vulnerable to drift (Nettle, 1999; Spike, 2017): random 

changes are more likely to occur in smaller populations, while larger 

populations are more resilient to such random events and often show more 

consistent behaviors. This result may be underpinned by basic probability 

statistics: small samples are typically less reliable and vary more from 

each other, while larger samples show more normally distributed patterns 

and are more representative of general trends in the population (“the law 

of large numbers”; Blume & Royall, 2003).  

Our findings support the proposal that community size can drive the 

cross-linguistic and historical findings that larger societies have more 

simplified grammars (Lupyan & Dale, 2010; Meir et al., 2012; Milroy & 

Milroy, 1985; Nettle, 2012; Trudgill, 2002; Wray & Grace, 2007), and 

suggest that differences in community size can help explain and predict 

patterns and trajectories in language formation and change. Our results 

show that the mere presence of more people to interact with introduces a 

stronger pressure for systemization and for creating more linguistic 

structure, suggesting that an increase in community size can cause 

languages to lose complex holistic constructions in favor of more 

transparent and simplified grammars. As such, our results are in line with 

the idea that increasing community size could have been one of the drivers 

for the evolution of natural language (Dunbar, 1993). 

Our findings also stress the role of the social environment in shaping 

the grammatical structure of languages, and highlight the importance of 

examining other relevant social properties alongside community size. 

Particularly, network structure and connectivity are typically confounded 

with community size, and have been argued to play an important role in 

explaining cross-cultural differences in linguistic complexity. 
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Specifically, theories of language change suggest that differences in 

network density may be the true underling mechanism behind language 

simplification (Milroy & Milroy, 1985; Trudgill, 2002; Wray & Grace, 

2007). This idea is supported by computational work showing that 

networks’ structural properties, such as their degree of clustering and 

hierarchy, can influence linguistic complexity and modulate the effect of 

population size (Lou‐Magnuson & Onnis, 2018; but see Spike, 2017). 

Chapter 4 examines the individual role of network structure on the 

formation of languages.   
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Appendix A: Settings 

The experimental settings between paired participants during the 

communication round: 

 

The experimental settings across a group during the communication 

round:
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Appendix B: Comparisons with the Short Version 

 

In addition to the 24 groups reported in the paper, we also collected data 

from six small groups of four participants who played a shorter version of 

the experiment, which included only eight rounds instead of 16. These 

groups were tested in the first batch of data collection. The report of the 

individual performance of these six groups can also be found in Chapter 

2 (Raviv, Meyer & Lev-Ari, 2019a). 

In this appendix, we report the results of the comparison between these 

small “short-version” groups and the twelve larger groups reported in the 

paper. We compared the performance of these groups twice: first during 

the first eight rounds, when groups have the same amount of exposure but 

differ in their shared history; and then again at the end of the experiment 

(i.e., the seventh and eighth round for the small groups vs. the 15th and 

16th round for the larger groups). At that point, the amount of shared 

history is equated - members of both types of groups have interacted with 

each other twice by that time point – but the amount of exposure differs. 

 

Participants 

A total of 24 adults participated in the short version (mean age=23.2y, 

SD=4.53; 18 women). All participants were native Dutch speakers and 

were recruited using the participant database of the Max Planck Institute 

for Psycholinguistics. Participants in the short version were paid 20€ or 

more depending on the time they spent in the lab (between 120 to 150 

minutes). 

 

Stimuli and Procedure 

The stimuli and procedure of the short version were identical to those 

reported in Chapter 3, except for the fact that the experiment ended after 

the first eight rounds (i.e., participants completed the test round at round 

8, filled the debriefing form and then left, without having lunch and 

without reconvening to continue the second half). The full description of 

the procedure can be found in Chapter 2.  
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Analyses 

We used mixed-effects regression models to test the effect of community 

size on all measures, using two types of models: (1) Models that analyze 

changes over the course of the first eight rounds; (2) Models that compare 

the final languages created by small and larger groups before and after the 

additional rounds, that is, at rounds 7 and 8, and at rounds 15 and 16. All 

models were generated using the lme4 and pbkrtest packages in R (see 

references in the main chapter). All the data and the scripts for generating 

the models can be found online at https://osf.io/y7d6m/.  

Models of type (1) were used to predict changes in the dependent 

variable as a function of time and community size, and included all data 

from the six small groups who played the short version and data the first 

eight rounds of the 12 larger groups who played the full version and were 

collected in the same batch. Models for communicative success included 

data from communication rounds only (excluding the eighth test round). 

In models for communicative success, convergence, and stability, the 

fixed effects were CONDITION (dummy-coded with small group as the 

reference level), ROUND NUMBER (centered), ITEM CURRENT AGE 

(centered), and the interaction terms CONDITION X ITEM CURRENT AGE and 

CONDITION X ROUND NUMBER. The random effects structure of models for 

communicative success, convergence, and stability always included by-

scenes and by-groups random intercepts, as well as by-scenes and by-

groups random slopes with respect to the effect of ROUND NUMBER. 

Because the structure score was calculated for each producer over all 

scenes in a given round, the model for linguistic structure did not include 

ITEM CURRENT AGE as a fixed effect. The model for linguistic structure 

therefore included fixed effects for ROUND NUMBER (linear and quadratic 

terms, centered), CONDITION (dummy-coded with small group as the 

reference level), and the interaction term CONDITION X ROUND NUMBER 

(linear and quadratic terms). The model for linguistic structure included 

random intercepts and random slopes for the effect of ROUND NUMBER 

(linear and quadratic terms) with respect to different producers who were 

nested in different groups. 

Models of type (2) were used to compare the final languages created 

by small and larger groups in rounds 7-8 and in rounds 15-16, whenever 

we found evidence for group size influences in type (1) models. Since 

group size did not influence communicative success, we did not run 

models of type (2) for this measure. The fixed effect was a three-level 

categorical variable for CONDITION (i.e., small groups at rounds 7-8, larger 

https://osf.io/y7d6m/
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groups at rounds 7-8, larger groups at rounds 15-16). This variable was 

dummy-coded with small groups at rounds 7-8 as the reference level. In 

models for convergence and stability, the random effects structure 

included random intercepts for different groups and different scenes. In 

models for linguistic structure, the random effect structure included 

random intercepts for different producers nested in different groups.  

 

Results 

Communicative Success 

Communicative Success increased during the first eight rounds (Model 1: 

β=0.20, SE=0.05, t=4.5, p<0.0001). Participants became more accurate as 

rounds progressed, and this increase was not affected by community size 

(Model 1: β=-0.27, SE=0.2, t=-1.3, p=0.19). While small groups were 

more accurate than larger groups at the seventh round (Model 2: β=-0.11, 

SE=0.03, t=-3.86, p=0.0009), larger groups reached more accuracy when 

given additional rounds (Model 2: β=0.11, SE=0.03, t=3.87, p=0.009). 

 

(1) Type (I) Model: Accuracy during the first 8 rounds 

Accuracy   ~ centered.Round * Condition + centered.ItemCurrentAge * 

Condition + (1 + centered.Round | ItemID) + (1 + centered.Round | Group) 

 

 

(2) Type (II) Model: Final Accuracy comparison at round 7 and round 15 

MeanAccuracy ~ Condition + (1 | Group) + (1| ItemID) 
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Convergence 

Convergence increased significantly during the first eight rounds (Model 

3: β=0.03, SE=0.01, t=3.2, p=0.004), with participants in the same 

community aligning over time and using more similar labels. Larger 

groups were significantly less converged than small groups during the first 

eight rounds (Model 3: β=-0.1, SE=0.03, t=-2.79, p=0.01). A comparison 

of convergence levels before and after the additional rounds confirmed 

that larger groups were significantly less converged by the end of the 

eighth round (Model 4: β=-0.08, SE=0.02, t=-4.11, p=0.0005). However, 

this disadvantage disappeared once larger groups completed all 16 rounds 

and had the same shared history (Model 4: β=0.02, SE=0.02, t=1.2, 

p=0.245). This result suggests that larger groups needed more time in 

order to develop globally shared languages, but eventually reach similar 

levels of convergence as small groups.  

 

(3) Type (I) Model: Convergence during the first 8 rounds 

Convergence   ~ centered.Round * Condition + centered.ItemCurrentAge 

* Condition + (1 + centered.Round | ItemID) + (1 + centered.Round | 

Group) 

 

 

(4) Type (II) Model: Final Convergence comparison at rounds 7-8 and 

rounds 15-16 

MeanConvergence ~ Condition + (1 | Group) + (1| ItemID) 
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Stability 

Stability significantly increased during the first eight rounds, with 

participants using labels more consistently over time (Model 5: β=0.03, 

SE=0.01, t=3.76, p=0.0011). Larger groups were significantly less stable 

than small groups during the first eight rounds (Model 5: β=-0.09, 

SE=0.03, t=-2.98, p=0.0069), and a comparison of the stability levels 

before and after the additional rounds confirmed that by the end of the 

eighth round, larger groups showed less stability compared to small 

groups (Model 6: β=-0.08, SE=0.02, t=-5.3, p<0.0001). Yet again, this 

pattern disappeared once larger groups were given the additional rounds 

(Model 6: β=0.025, SE=0.02, t=1.55, p=0.134). That is, while larger 

groups needed more time to develop consistent languages, they eventually 

reached the same level of stability as small groups.  

 

(5) Type (I) Model: Stability during the first 8 rounds 

Stability   ~ centered.Round * Condition + centered.ItemCurrentAge * 

Condition + (1 + centered.Round | ItemID) + (1 + centered.Round | Group) 

 

 

 

(6) Type (II) Model: Final Stability comparison at rounds 7-8 and rounds 

15-16 

MeanStability ~ Condition + (1 | Group) + (1| ItemID) 
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Linguistic Structure 

Linguistic Structure significantly increased over the first eight rounds in 

a linear way (Model 7: β=2.58, SE=0.52, t=4.98, p=0.0001), with 

participants’ languages becoming more systematic over time. This 

increase in structure was modulated by group size (Model 7: β=0.02, 

SE=0.04, t=2.95, p=0.0077), with participants in larger groups developing 

structured languages faster compared to participants in small groups. 

Although the languages of small and larger groups were equally structured 

after eight rounds (Model 8: β=0.0005, SE=0.01, t=0.36, p=0.97), 

members of larger groups developed languages with significantly more 

linguistic structure after given additional rounds (Model 8: β=0.066, 

SE=0.01, t=5.3, p<0.0001).  

 

 

(7) Type (I) Model: Linguistic Structure over time 

Linguistic Structure ~ poly(centered.Round,2) * Condition + (1 + 

poly(centeredRound ,2) | Group/Producer) 

 

 

(8) Type (II) Model: Final Linguistic Structure comparison 

MeanStructure ~ Condition + (1 | Group/Producer) 
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Appendix C: Models 

 

Communicative Success 

 

(1) Type (I) Model: Accuracy over time 

Accuracy ~ centered.Round * Condition + centered.ItemCurrentAge * 

Condition + (1 | ItemID) + (1 +centered.Round | Group) 

 

 

 

(2) Type (II) Model: Final Accuracy comparison 

MeanAccuracy ~ Condition + (1 | Group) 

 

 

 

(3) Type (III) Model: Accuracy variance 

SD_Accuracy ~ centered.Round * Condition + (1 + centered.Round | 

ItemID) 
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Convergence 

 

(4) Type (I) Model: Convergence over time 

Convergence ~ centered.Round * Condition + centered.ItemCurrentAge 

* Condition + (1 + centered.Round | ItemID) + (1 + centered.Round | 

Group) 

 

 

 

(5) Type (II) Model: Final Convergence Comparison 

MeanConvergence ~ Condition + (1 | Group) 

 

 

 

(6) Type (III) Model: Convergence variance 

SD_Convergence ~ centered.Round * Condition + (1 + centered.Round | 

ItemID) 
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Stability 

 

(7) Type (I) Model: Stability over time 

Stability   ~ centered.Round * Condition + centered,ItemCurrentAge * 

Condition + (1 | ItemID) + (1 +centered,Round  | Group) 

 

 

 

(8) Type (II) Model: Final Stability comparison 

MeanStability ~ Condition + (1 | Group) 

 

 

(9) Type (III) Model: Stability variance 

SD_Stability ~ centered.Round * Condition+ (1 + centered.Round | 

ItemID) 
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Linguistic Structure 

 

(10) Type (I) Model: Linguistic Structure over time 

Linguistic Structure ~ poly(centered.Round,2) * Condition + (1 + 

poly(centeredRound ,2)  | Group/Producer) 

 

 

 

(11) Type (II) Model: Final Linguistic Structure comparison 

MeanStructure ~ Condition + (1 | Group/Producer) 

 

 

 

(12) Type (III) Model: Linguistic Structure variance 

SD_Structure ~ centered.Round * Condition 
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Input Variability 

 

(13) Input Variability over time 

MeanInputVariability ~ centered.Round * Condition + (1 + 

centered.Round | Group) 

 

Changes in Linguistic Structure by Input Variability and Shared History 

 

(14) Differences in linguistic structure by input variability  

StructureDiff ~ centered.MeanInputVariability + (1 | Group/Producer) 

 

 

(15) Differences in linguistic structure by shared history 

StructureDiff ~ centered.History + (1 | Group/Producer) 

 

 

(16) Differences in structure by input variability and shared history 

StructureDiff ~ centered.MeanInputVariability + centered.History + (1 | 

Group/Producer) 
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Relationship between measures  

 

(17) Convergence by linguistic structure and round 

MeanConvergence ~ centered.Structure * centered.Round + (1 + 

centered.Structure * centered.Round | Group) 

 

 

 

(18) Communicative Success by convergence, linguistic structure and 

round 

MeanaAccuracy ~ centered.Structure * centered.Round + 

centered.Structure * centered.Convergence + (1 + centered.Structure *  

centered.Round | Group) 
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Appendix D: Examples of Structured Languages 

 

Below we include four additional examples of structured languages 

produced by participants in small and larger groups at the final test round 

(round 16).  

Each language is accompanied by a “dictionary” for interpreting the 

language on the right. Different box colors represent the four different 

shapes which appeared in the scenes, and the grey axes indicate the 

direction in which the shape was moving on the screen. Different font 

colors represent different meaningful part-labels, as segmented by the 

authors. 

The dictionary and colors are solely for the purpose of illustration and 

were not used for any of the statistical analyses. 
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4   The role of social network structure in 

the emergence of linguistic structure 

 

 

 

 

Abstract 

Social network structure has been argued to shape the structure of 

languages, as well as affect the spread of innovations and the formation 

of conventions in the community. Specifically, theoretical and 

computational models of language change predict that sparsely connected 

communities develop more systematic languages, while tightly knit 

communities can maintain high levels of linguistic complexity and 

variability. However, the role of social network structure in the cultural 

evolution of languages has never been tested experimentally. Here, we 

present results from a behavioral group communication study, in which 

we examined the formation of new languages created in the lab by micro-

societies that varied in their network structure. We contrasted three types 

of social networks: fully connected, small-world, and scale-free. We 

examined the artificial languages created by these different networks with 

respect to their linguistic structure, communicative success, stability, and 

convergence. Results did not reveal any effect of network structure for 

any measure, with all languages becoming similarly more systematic, 

more accurate, more stable, and more shared over time. At the same time, 

small-world networks showed the greatest variation in their convergence, 

stabilization and emerging structure patterns, indicating that network 

structure can influence the community’s susceptibility to random 

linguistic changes (i.e., drift).  
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Introduction 

Why are languages so different from each other? One possible explanation 

is that selective pressures associated with social dynamics and language 

use can influence the emergence and distribution of different linguistic 

properties – making language typology a mirror of the social environment 

(Lupyan & Dale, 2016). According to this hypothesis, often referred to as 

the Linguistic Niche Hypothesis, the structure of languages is shaped by 

the structure of the community in which they evolved. Research in the 

past decades supports this theory by showing that different types of 

languages tend to develop in different types societies (Bentz & Winter, 

2013; Lupyan & Dale, 2010; Meir, Israel, Sandler, Padden, & Aronoff, 

2012; Nettle, 1999, 2012; Raviv, Meyer, & Lev-Ari, 2019b; Reali, Chater, 

& Christiansen, 2018). 

 

Esoteric vs. Exoteric Languages  

Models of language change typically draw a distinction between two types 

of social environments – esoteric communities and exoteric communities 

– and argue that there are substantial differences in the grammatical 

structure and overall uniformity of the languages used in such 

environments (Milroy & Milroy, 1985; Roberts & Winters, 2012; 

Trudgill, 1992, 2002, 2009; Wray & Grace, 2007). Specifically, esoteric 

communities are generally small and tightly-knit societies with little 

contact with outsiders, and therefore few if any non-native speakers. In 

contrast, exoteric communities tend to be much bigger and sparser 

societies, in which there is a higher degree of language contact and more 

interaction with strangers, and consequently also a higher proportion of 

non-native speakers. 

Importantly, computational models, typological studies, and empirical 

work on the formation of new sign languages all suggest that esoteric and 

exoteric settings promote the emergence of different linguistic structures. 

For example, languages spoken in esoteric environments are claimed to 

be more morphologically complex, and have higher chances of 

developing rich and non-transparent systems of case marking and 

grammatical categories (Lupyan & Dale, 2010). Exoteric languages, on 

the other hand, tend to have fewer and less elaborate morphological 

paradigms and are more likely to express various grammatical relations 

(e.g., negation, future tense) by using lexical forms (individual words) 

rather than inflections (affixes). That is, there seems to be a greater 
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pressure for creating simpler and more systematic languages in exoteric 

compared to esoteric settings (Nettle, 2012; Trudgill, 2009; Wray & 

Grace, 2007). This is presumably because (a) members of exoteric 

communities are more likely to interact with strangers, resulting in 

communicative pressure in favor of generalization and transparency; and 

(b) there is a relatively high proportion of adult second-language learners 

in exoteric communities, who often struggle with learning complex and 

opaque morphologies. 

Exoteric and esoteric languages are also claimed to show different rates 

of convergence. Members of esoteric communities are highly familiar 

with each other and share much common ground, which often entails more 

alignment and a stronger conservation of existing linguistic norms 

(Milroy & Milroy, 1985; Trudgill, 2002). Yet this high degree of 

familiarity between members of esoteric communities can preserve 

variation and reduce the pressure to establish new norms in the early 

stages of language development, as was found in the case of emerging 

sign languages (Meir et al., 2012). Specifically, new sign languages that 

developed in esoteric contexts tend to exhibit more variability across 

speakers, more irregularities, and overall greater context-dependence in 

comparison to sign languages developed in an exoteric context. In other 

words, because members of exoteric communities are far less connected 

to one another and typically share less common grounds with each other, 

such settings can increase the need for conventions and conformity in the 

early stages of language emergence, but hinder its preservation later on. 

 

Teasing apart conflating social factors 

The distinction between exoteric and esoteric communities relies on 

several parameters, namely, community size (small vs. big), network 

structure (highly connected vs. sparsely connected), and the proportion of 

adult non-native speakers in the community (low vs. high). These social 

parameters are naturally confounded in real-world environments (e.g., 

smaller groups also tend to be highly connected), making it hard to 

evaluate the unique contribution of each of these factors to the observed 

pattern of results (i.e., that languages used in exoteric contexts have 

simpler and more systematic morphologies; Lupyan & Dale, 2010). That 

is, we currently know very little about how each of these properties affects 

the structure of languages independently, and whether all features are 

equally influential in shaping linguistic patterns. Disentangling these 

social features from one another is important for understanding how 
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exactly languages adapt to fit their social environment, and for assessing 

the individual role of each factor.  

Several computational models have attempted to isolate specific 

parameters associated with the difference between esoteric and exoteric 

communities, and to manipulate it separately from the others in order to 

examine its effects on various linguistic outcomes (Dale & Lupyan, 2012; 

Fagyal, Swarup, Escobar, Gasser, & Lakkaraju, 2010; Gong, Baronchelli, 

Puglisi, & Loreto, 2012; Lou‐Magnuson & Onnis, 2018; Spike, 2017; 

Vogt, 2007, 2009; Wichmann, Stauffer, Schulze, & Holman, 2008). Such 

models generally suggest that different properties of esoteric and exoteric 

societies are associated with different pressures, yet often report 

conflicting results due to differences in model setup and parameter 

selection. For example, similar computational simulations examining the 

effect of community size can yield opposite results if agents’ learning 

strategies are defined differently (Wichmann et al., 2008): when agents 

are assumed to copy globally (i.e., from all other agents in their network), 

larger groups seem to show slower rates of language change, yet when 

agents are assumed to copy more locally (i.e., from their closest 

neighbors), community size has no effect. Therefore, while computational 

models are valuable for teasing apart different social feature, they should 

be tested against experimental data.  

Recently, a behavioral study focused on the role of community size, 

one of the features differentiating between esoteric and exoteric 

communities, and tested its individual effect on language emergence by 

contrasting languages created in the lab by big and small communities, 

while keeping all other social properties equal (Raviv et al., 2019b). 

Results showed that groups of eight interacting participants created more 

systematic languages, and did so faster and more consistently than groups 

of four interacting participants. The languages developed in the larger 

groups were more structured (i.e., more compositional) compared to those 

developed in smaller groups – a finding that was explained by the fact that 

larger groups faced a greater communicative challenge (due to more input 

variability). These results are in line with the cross-linguistic observations 

and the theoretical models reported above, and suggest that at least some 

of the typological and theoretical differences between exoteric and 

esoteric languages can indeed be attributed to differences in community 

size. As such, the study provided the first experimental evidence that 

community size has a unique and causal role in shaping linguistic patterns. 
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The postulated role of network structure 

What about the other social features that differentiate between esoteric 

and exoteric communities? Does network structure also have a unique 

effect, above and beyond community size? An important feature of 

esoteric societies is their dense nature, in which members are typically 

connected via strong ties (i.e., family, close friends), and most if not all 

members of the community are familiar with one another. In contrast, 

exoteric societies are much sparser, and typically include many weak ties 

(i.e., acquaintances) and many members that never interact (i.e., 

strangers). This difference in network connectivity means that members 

of exoteric societies generally have fewer opportunities to develop 

common ground and globally align with each other (given that many of 

them will rarely or never meet), potentially resulting in more variability 

in the entire network. 

Indeed, recent work on the cultural evolution of technology found that 

an increase in sparse connections from a state of high density (perhaps due 

to more geographical spread) leads to more innovations and more 

diversity in the community (Derex & Boyd, 2016). In this study, well-

connected populations were less likely to produce complex technological 

solutions because of the ability to learn from all members and quickly 

converge on a local optimum, reducing exploration and cultural diversity 

in the population. In contrast, individuals in partially connected groups 

were more likely to progress along different paths of technological 

accumulation, leading to larger and more diverse technological repertoires 

and eventually to more complex solutions. These findings complement a 

long line of work on the prevalence and spread of innovations in social 

networks, which suggest that sparser ties generally promote more 

innovations and more variability. Specifically, work on social network 

structure shows that weak ties in sparser networks provide individuals 

with access to information, beliefs and behaviors beyond their own social 

circle, making the presence and prevalence of weak ties important for 

cultural innovation, technological accumulation, and the transmission and 

spread of ideas, behaviors and norms (Bahlmann, 2014; Granovetter, 

1983; Liu, Madhavan, & Sudharshan, 2005). 

Additionally, weak ties between members of sparser communities can 

affect the process of conventionalization, as they may entail less language 

stability, more variability, and more potential for changes. In contrast, 

strong ties between members of dense communities can inhibit language 

change and increase linguistic conformity: tight-knit connections often 
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function as a conservative force, preserving and amplifying existing 

norms and resisting external pressures to change (Granovetter, 1983; 

Milroy & Milroy, 1985; Trudgill, 2002, 2009). That is, denser 

communities may exhibit stricter maintenance of group conventions and 

therefore more preservation of linguistic norms, even when these norms 

are relatively complex and irregular (Trudgill, 2002, 2009). However, 

even though dense networks are postulated to show more stability, once a 

change does occur it is more likely to quickly spread to the entire 

community. This is because individuals are more likely to copy the 

behavior of strong than weak ties (Centola, 2010) and the propagation of 

variants is typically faster in dense networks than in sparser networks 

(Centola, 2010; Milroy & Milroy, 1985; Trudgill, 2009). Importantly, 

sparser networks’ difficulty in convergence can trigger a stronger need for 

generalizations and regularizations, which may eventually lead to the 

creation of more systematic languages (Raviv et al., 2019b; Wray & 

Grace, 2007). 

Although network structure is postulated to have an important effect in 

shaping linguistic patterns, to date there is no experimental evidence 

demonstrating its causal role in language complexity. As such, the 

theoretical claims described above remain hypothetical or anecdotal, and 

it is still unclear whether and how languages actually change in different 

types of network structures. The goal of the current study is to fill in this 

gap in the literature, and experimentally test the effect of social network 

structure on the emergence of new languages using a similar paradigm to 

that used in Raviv et al. (2019a) for demonstrating community size effects. 

 

Computational evidence for network structure effects in language change 

While experimental data is currently lacking, several computational 

models have examined the effect of social network structure using agent-

based simulations. These models typically examine populations of 

communicating agents in three different types of networks: (1) dense, 

fully connected networks, in which all agent are connected to each other; 

(2) small-world networks, which are sparser in comparison to fully 

connected networks (i.e., there are fewer connections between agents), but 

in which most "strangers" are indirectly linked by a short chain of shared 

connections (Watts & Strogatz, 1998); and (3) scale-free networks, which 

are also characterized by sparsity and short paths but their distribution of 

connections follows a power law (i.e., most agents have few connections, 

yet some agents, the “hubs”, have many; (Barabási & Albert, 1999). 
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A typical interaction in such models consists of two agents, who are 

randomly selected depending on the networks’ available connections and 

their likelihood. Then, one agent (the producer) produces a linguistic 

variant (e.g., a vowel, word, or phrase) based on their inventory at the time 

of the interaction, and the other agent (the receiver) updates their own 

inventory based on that production and whether it is novel or familiar. 

This simple type of communication and learning (i.e., updating agent’s 

representations) is then repeated for many iterations, allowing researchers 

to observe how variants spread and change over time in a given network. 

Importantly, the vast majority of these models do not examine the 

complexity or the systematicity of communication systems themselves, 

but rather focus only on the formation of linguistic conventions. This is 

done either by examining the time it takes for a population of agents to 

converge on a single linguistic variant or a shared lexicon, or by 

examining the degree of global alignment in the population after a fixed 

amount of time. 

In most cases, computational models support the claim that differences 

in the structural properties of networks can lead to differences in 

convergence rates and in the spread of variants in the population. 

Specifically, multiple models report that denser networks show more 

successful diffusion of innovations compared to sparser networks, and 

that extra-dense networks (e.g., fully connected) typically converge most 

rapidly (Fagyal et al., 2010; Gong et al., 2012; Ke, Gong, & Wang, 2008). 

In addition, the existence of “hubs” (i.e., highly connected agents) in 

scale-free networks was shown to improve convergence and uniformity 

by advancing the spread of innovations to all agents in the community 

(Fagyal et al., 2010; Zubek et al., 2017). Nevertheless, one model 

suggested that, as long as networks have small-world properties (i.e., as 

long as "strangers" are indirectly linked by a short chain of shared 

connections), the network’s specific configuration plays a minor role in 

the formation of conventions (Spike, 2017). 

Interestingly, two models did examine the structure of the languages 

themselves, and they both report that network structure affected linguistic 

structure in some way. One model looked at the origin and the evolution 

of linguistic categorization of color terms, and found that scale-free 

networks were the fastest to develop color categories, and that those 

categories were more structured and more efficient compared to those 

developed in other types of networks (Gong et al., 2012). The second 

model introduced comprehensive, real-world mechanisms of social 

learning and language change, and looked at the creation and maintenance 
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of complex morphology (Lou‐Magnuson & Onnis, 2018). The results of 

this model showed that more transitive networks (i.e., with a higher degree 

of “intimate” connections) were more likely to develop languages with 

complex morphological structures. Moreover, fully connected networks 

showed the highest levels of complexity, regardless of community size. 

Together, computational models generally support the hypothesis that 

network structure can affect linguistic outcomes. They show that sparser 

networks tend to exhibit more structured languages but overall less 

convergence compared to dense networks, and suggest that the existence 

of “hubs” can further promote systemization and alignment. However, 

such computational models need to be further tested against empirical data 

obtained from human participants, seeing as they often lack ecological 

validity in terms of agents’ cognitive capacities (e.g., agents have an 

unlimited memory capacity) or their behavior (e.g., agents update their 

inventories after every interaction by overriding all previous variants). As 

such, the causal role of network structure warrants further experimental 

validation. 

 

The Current Study 

Here, we experimentally tested the individual effect of network structure 

using a group communication paradigm (Raviv, Meyer, Lev-Ari, 2019a; 

2019b). We examine the formation of new languages that develop in 

different micro-societies that varied in their network structure. 

Community size was kept constant across conditions, such that all 

networks were comprised of eight participants, yet differed in their degree 

of connectivity (i.e., how many people each participant interacts with) and 

homogeneity (i.e., whether all participants are equally connected). 

Specifically, we contrasted three different types of networks, which are 

typically used in computational models (Figure 1; see Network Properties 

for more details): 

(1) Fully connected network (Figure 1A): This network is maximally 

dense, such that all possible connections are realized (i.e., all participants 

in the group get to interact with each other). It is also homogenous, as 

every participant has the same number of connections (i.e., seven people). 

This type of network resembles early human societies, hunter-gatherer 

communities and some villages, yet it is overall rare nowadays (Coward, 

2010; Johnson & Earle, 2000). 
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(2) Small-world network (Figure 1B): This network is also relatively 

homogenous such that everyone has approximately the same number of 

connections (i.e., either three or four other participants), yet it is much 

sparser than the fully connected network and realizes only half of the 

possible connections. Importantly, this network has the small-world 

property where “strangers” are indirectly linked by a short chain of 

individuals (Watts & Strogatz, 1998). For example, participants G and H 

never interact, but they are connected via participants F, D and B, so 

innovations can still spread across the group and conventions can be 

formed. 

(3) Scale-free network (Figure 1C): This network is equally sparse as 

the small-world network, and has the same number of possible 

connections overall. However, it is not homogenous: not everyone has the 

same number of connections. While some agents are highly connected, 

others are more isolated. The distribution of connections in this network 

roughly follows a power-law distribution (Barabási & Albert, 1999), with 

few participants having many connections, and a tail of participants with 

very few connections. For example, participant A is the “hub” and 

interacts with almost everyone in the group, while participants E and D 

are more isolated.  

                  

 

Figure 1. Network structure conditions. We tested groups of eight participants who were 
connected to each other in three different setups: a fully connected network (A), a small-world 
network (B), and a scale-free network (C). 

 

Across conditions, participants’ goal was to communicate successfully 

with each other using only an artificial language they created during the 

experiment. Participants in the same group interacted in alternating pairs 

according to the structural properties on their allocated network condition 

B C A 



114 

 

(see Network Properties). In each communication round, paired partners 

took turns in describing novel scenes of moving shapes, such that one 

participant produced a label to describe a target scene, and their partner 

guessed which scene they meant from a larger set of scenes (see 

Procedure; Figure 2).  

Over the course of the experiment, we analyzed the emerging 

languages using several measurements (see Measures): (1) 

Communicative Success, reflecting guessing accuracy; (2) Convergence, 

reflecting the degree of global alignment in the network (3) Stability, 

reflecting the degree of change over time; and (4) Linguistic Structure, 

reflecting the degree of systematic label-to-meaning mappings in 

participants’ languages.  

These measures are all related to real-world properties of natural 

languages: our measure of convergence reflects language uniformity (i.e., 

the number of dialects in the community and how much people’s lexicons 

differ from one another); our measure of communicative success is related 

to mutual understanding; our measure of stability can be taken to reflect 

languages’ rate of change (i.e., how fast innovations spread in the 

network); and our measure of linguistic structure can capture various 

grammatical properties, such as the systematicity of inflectional 

paradigms and the number of irregulars in a given language. Looking at 

these four measures enabled us to characterize the emerging languages 

and to consider how various linguistic properties change over time 

depending on network structure.  

Our predictions are summarized in Table 1. Our main prediction was 

that sparser networks would develop more compositional languages, as a 

result of higher levels of input variability and diversity in such networks, 

which increase the pressure for generalization and systematization (Lou‐

Magnuson & Onnis, 2018; Raviv et al., 2019b; Wray & Grace, 2007). We 

also predicted that scale-free networks would show higher 

compositionality levels compared to small-world networks, since the 

existence of “hubs” in scale-free networks can further increase the 

chances of a compositional innovation spreading to the entire population 

(Fagyal et al., 2010; Gong et al., 2012; Zubek et al., 2017). That is, we 

predicted that scale-free networks would show the highest degree of 

linguistic structure (thanks to the “hub”), followed by small-world 

networks, and then by fully connected networks. We also expected the 

difference in linguistic structure to be closely linked to the degree of input 



115 

variability in dense vs. sparse networks: scale-free and small-world 

networks should show higher levels of input variability compared to fully 

connected networks, though the hub in scale-free networks might reduce 

variability compared to small world networks by increasing convergence.  

 

 

Table 1: Predictions for Each Measure in the Current Experiment 

 

 

      Network Type 

 

Measure 

 

Fully 

connected 

(FC) 

 

Small-

world 

(SW) 

 

Scale-free  

(SF) 
Predication 

Input Variability More input variability in sparse networks FC < SF < SW 

Linguistic 

structure 

Sparse networks =  

more variability 

 More pressure for 

generalization and 

systematicity  

“Hubs” can 

further 

promote the 

spread of 

systematic 

languages 

FC < SW < SF 

Convergence 

Sparse networks = more variability,  

more strangers  less convergence 

BUT 

Sparse networks =? more systematic 

languages  Similar levels of convergence 

FC=SW=SF 

Stability 

Dense 

networks = 

less diversity 

 More/faster 

stability 

Sparse networks = 

more variability, 

more innovations 

 Less/slower stability 

FC > SW=SF 

Communicative 

success 
No difference between conditions FC=SW=SF 

Note.  The predictions in the table are for the final languages. As described in more detail in the 
text, there could be differences across conditions in the rate of achieving these final outcomes. 
For example, we predicted that languages in all conditions would eventually show convergence, 

but we predicted it to occur faster in fully connected (FC) networks. 
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Based on the results of Raviv et al. (2019a), we hypothesized that the 

emergence of more structured languages in sparser networks would 

promote convergence in such networks (i.e., it should be easier to 

converge on more systematic variants). That is, while computational 

models suggest that sparser networks show less convergence in 

comparison to fully connected networks (given that some participants 

never interact with each other), we hypothesized that the creation of more 

structured languages in such networks would facilitate global alignment 

and lead to similar levels of convergence across networks. Moreover, 

scale-free networks may exhibit even better global alignment thanks to 

the existence of a “hub”. In other words, if our prediction about linguistic 

structure is correct and sparser networks create more systematic 

languages, then convergence levels should be the same across dense and 

sparse networks. Otherwise, there should be relatively less convergence 

in sparser networks.  

 As for stability, we predicted that sparser networks would  be less 

stable than the dense networks, given that there is a higher chances of 

innovations occurring in sparser networks and more variability overall 

(Derex & Boyd, 2016), and that changes take longer to stabilize in sparser 

networks (Ke et al., 2008). As such, we expected to see a difference in the 

rates of stabilization across conditions, with fully connected networks 

showing faster stabilization (i.e., less changes over rounds) compared to 

small-world and scale-free networks.  Nevertheless, we expected similar 

levels of communicative success across all conditions, with all interacting 

members being equally good at understanding each other. 

 

 

Methods 

Participants  

We collected data from 168 adults (mean age=24.6 years, SD=8.1 years; 

132 women), comprising 21 groups of eight members (seven groups in 

each of the three conditions). Participants were paid 40€ or more 

depending on the time they spent in the lab (between 270 to 315 minutes, 

including a 30-minutes break). All participants were native Dutch 

speakers. Ethical approval was granted by the Faculty of Social Sciences 

of the Radboud University Nijmegen. 
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Materials 

The materials used in this experiment were identical to those used in 

Chapters 2 and 3 (Raviv et al., 2019a; 2019b). For the full list of stimuli, 

see Appendix A in Chapter 2. Below we summarize the most relevant 

details: 

We created 23 visual scenes that varied along three semantic 

dimensions: shape, angle of motion, and fill pattern. Each scene included 

one of four novel unfamiliar shapes, which moved repeatedly in a straight 

line from the center of the frame in a given direction (i.e., in an angle 

chosen from a range of possible angles). The shapes were created to be 

novel and ambiguous in order to prevent easy labeling with existing 

words. While the dimension of shape included four distinct categories, 

angle of motion was a continuous feature that could have been parsed and 

categorized by participants in various ways. Additionally, the shape in 

each scene had a unique blue-hued fill pattern, giving scenes an 

idiosyncratic feature. Therefore, the meaning space promoted 

categorization and structure along the dimensions of shape and motion, 

but also allowed participants to adopt a holistic, unstructured strategy 

where scenes are individualized according to their fill pattern.  

 

Procedure  

The procedure employed in this experiment was identical to that of 

Chapter 3 (Raviv et al., 2019b), except for the fact that all groups were 

comprised of eight participants, and were split up into pairs at the 

beginning of each communication round depending on their allocated 

network structure (see Network Properties; Appendix A). For a 

comprehensive description of the procedure, see Chapters 2 and 3. Below 

we recap the most relevant details: 

Participants were told they were about to create a new fantasy language 

(“Fantasietaal” in Dutch) in the lab and use it in order to communicate 

with each other about different novel scenes. Participants were not 

allowed to talk, gesture, point, or communicate in any other explicit way 

besides the fantasy language and their assigned laptop. Participants’ letter 

inventory was restricted and included a hyphen, five vowel characters 

(a,e,i,o,u) and ten consonants characters (w,t,p,s,f,g,h,k,n,m) which 

participants could combine freely.  
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The experiment had 16 rounds, and included three phases: a group 

naming phase (round 0), a communication phase (rounds 1-7; rounds 9-

15), and a test phase (round 8; round 16). 

In the initial naming phase (round 0), participants came up with novel 

nonsense words to describe eight initial scenes, so that the group had a 

few shared descriptions to start with. For each of the eight initial scenes, 

one of the participants was asked to use their creativity and describe it 

using one or more nonsense words. Participants took turns in describing 

the scenes, so the first scene was described by participant A, the second 

scene was described by participant B, and so on. Importantly, no use of 

Dutch or any other language was allowed, and participants were instructed 

to come up with novel nonsense labels. In order to establish mutual 

knowledge, we presented the scene-description pairings to all participants 

three times in a random order.  

Following the naming phase, participants played a communication 

game with each other (the communication phase; Figure 2): the goal was 

to be communicative and earn as many points as possible as a group, with 

a point awarded for every successful interaction. The experimenter 

stressed that this was not a memory game, and that participants were free 

to use the labels produced during the group naming phase, or choose to 

create new ones. In each communication round, paired participants 

interacted with each other 23 times, with participants alternating between 

the roles of producer and guesser. In a given interaction, the producer saw 

the target scene on their screen (Fig. 2A) and produced description for it. 

Then, they rotated their screen and showed the description (without the 

target scene) to their partner, the guesser. The guesser was presented with 

a grid of eight scenes on their screen (the target and seven distractors; Fig. 

2B), and had to select the scene they thought their partner referred to. Both 

participants then received feedback on whether their interaction was 

successful or not, including the target scene and the selected scene. The 

number of different target scenes increased gradually over the first six 

rounds (from eight initial scenes to a total of 23 scenes, with three new 

scenes introduced at each round), such that participants needed to refer to 

more and more new scenes as rounds progressed (Raviv et al., 2019a).  

At the end of the seventh communication round, participants completed 

an individual test phase (round 8), in which they were presented with all 

scenes one by one in a random order, and needed to type their descriptions 

for them using the fantasy language. After the test, participants received a 

30-minutes break and then reconvened to complete seven additional 
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communication rounds (rounds 9-15) and an additional test round (round 

16). At the end of the experiment, all participants filled out a questionnaire 

about their performance and were debriefed by the experimenter.  

 

 

 

Figure 2. Example of the computer interfaces in a single interaction during the communication 
phase. The producer saw the target scene on their screen (A), while the guesser was presented with 
a grid of eight different scenes on their screen (the target and seven distractors; B). The producer 
typed a description for the target scene using the artificial language, and the guesser pressed the 

number associated with the scene they thought their partner was referring to. Paired participants 
alternated between the roles of producer and guesser. Note that scenes were dynamic events which 
included a moving shape. The arrows represent the direction of motion. 

 

 

Network Properties 

We created three different network structures: a fully connected network, 

a small-world network, and a scale-free network. Each network was 

comprised of eight individuals (also referred to as nodes or agents), but 

differed in how these individuals were connected to one another. Figure 1 

shows the exact configuration of each network. Appendix A includes a 

detailed description of the order of interactions amongst pairs in each 

network condition. These networks can be described using formal 

measures that are typically used in graph theory. Below we characterize 

the three different networks used in this study in detail, and compare them 

based on the following three measures (see Tables 2 and 3). 

 

 

(A

) 
(B

) 
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Network density 

This measure reflects the proportion of possible ties which are actualized 

among the members of a given network. It is measured as the ratio 

between the number of actual connections in the network and the number 

of all possible connections (Granovetter, 1976). A possible connection is 

one that could potentially exist between every two nodes. In a network 

with n individuals, the number of possible connections is n*(n-1)/2. By 

contrast, an actual connection is one that really exists in the given 

network. In a fully connected network where all possible connections are 

realized, density equals 1 (i.e., 100% connectivity). In a totally isolated 

network, in which there are no connections between nodes, density equals 

0 (i.e., 0% connectivity). All other networks have density values between 

0 and 1 (e.g., 0.5, or 50% connectivity, in our experiment).  

 

Global clustering coefficient 

This measure, also referred to as transitivity, reflects the degree to which 

nodes in the network tend to cluster together. In social networks, this 

measure indicates whether an individual’s connections also tend to be 

connected to each other. In other words, it is the probability that two of 

one's friends are friends themselves. The global clustering coefficient 

equals 1 in a fully connected network where everyone knows everyone 

else, but has typical values in the range of 0.1 to 0.5 in many real-world 

networks (Girvan & Newman, 2002). For a given network, this measure 

is calculated in the following way: for a given node i, the local clustering 

coefficient is the ratio between the number of realized connections in the 

neighborhood of node i and the number of all possible connections in that 

neighborhood if it was fully connected. Then, the average of all nodes’ 

local clustering coefficients yields the global clustering coefficient of the 

entire network (Watts & Strogatz, 1998). 

 

Betweenness centrality 

This measure reflects a given node’s centrality, i.e., how necessary a 

specific node is for the communication between all the other nodes in the 

network. In social networks, this measure identifies the most important or 

influential individuals in the network. That is, having a high betweenness 

centrality value suggests that the node is necessary for mediating 

connections between otherwise unconnected nodes. It is calculated in the 
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following way: for a given node i, betweenness centrality is the number 

of times node i acts as a bridge along the shortest path between two other 

nodes (i.e., the number of shortest paths that pass through node i).  

 

Table 2: Comparison of Networks’ Density and Global Clustering 

Coefficients 

 

 

Table 3: Comparison of Nodes’ Betweenness Centrality Across 

Network 

 

 

Condition 1: Fully connected network 

In this condition, depicted in Figure 1A, all individuals in the network get 

to interact with one another. As such, all possible connections in the 

network are realized, and the network is maximally dense and maximally 

clustered (i.e., density and the clustering coefficient both equal 1). Since 

all individuals are directly connected to all others, the number of 

connections per node is identical (i.e., seven), and the betweenness 

centrality of each node equals 0 – no individual is necessary for the others 

to interact. In our experimental paradigm, it takes seven communication 

rounds for all pairs in the network to interact (see also Appendix A). 

 

  Fully connected    Small-world    Scale-free  

Number of realized connections 28/28 14/28 14/28

Network density 100% 50% 50%

Global clustering coefficient 1 0.1667 0.4167

Node

Number of

connections

Number of

connections

Number of

connections

A 7 3 6

B 7 4 4

C 7 3 3

D 7 4 3

E 7 4 3

F 7 3 3

G 7 3 3

H 7 4 30.119047619

0.03968254

0.023809524

0.023809524

0.015873016

0.063492063

Scale-free

Betweenness

0.325396825

0.111111111

0.063492063

Fully connected Small-world

Betweenness

0.047619048

0.119047619

0.047619048

0

0

0

0

0.119047619

0.119047619

0.047619048

0.047619048

0

Betweenness

0

0

0
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Condition 2: Small-world network 

In this condition, depicted in Figure 1B, only half of the possible 

connections are realized. As such, this network is much sparser than the 

fully connected one, and its density is only 0.5 or 50%. In addition, every 

node in the network has a relatively similar number of connections, with 

each individuals connected to either three or four other individuals. An 

important feature of small-world networks, which is crucially present in 

our chosen network, is that the neighbors of any given node are also likely 

to be neighbors of each other (Watts & Strogatz, 1998). Therefore, 

unconnected nodes (“strangers”) are still linked by a short chain of shared 

acquaintances. Indeed, every pair of individuals in our selected small-

world network is linked by just one other individual, and typically there 

is more than one possible mediating individual (resulting in fairly similar 

and relatively low betweenness centrality values for all nodes, i.e., 0.047 

and 0.119). For example, while participants G and H are not connected 

directly, they are nonetheless indirectly connected via participants F, D 

and B. In our experimental paradigm, it takes four communication rounds 

for all pairs in the network to interact (see also Appendix A). 

 

Condition 3: Scale-free network 

In this condition, depicted in Figure 1C, only half of the possible 

connections are realized, such that the network’s density is identical to 

that of the small-world network in condition 2 (i.e., 50% connectivity). 

Scale-free networks are characterized by the same properties as small-

world networks, with an additional important property: the distribution of 

node degree (i.e., the number of connections the node has to other nodes) 

follows a power-law (Barabási & Albert, 1999). That is, there are many 

low-degree nodes (individuals with fewer connections), and a few high-

degree nodes (individuals with many connections). The less-connected 

individuals are often indirectly connected via the highly-connected 

agents, who are often referred to as “hubs”. In our selected network, most 

participants (i.e., six out of eight) have only three connections, one 

participant has four connections, and one participant (“A”, the hub) is 

connected to almost everyone else in the group. Accordingly, this 

participant has a very high betweenness centrality score compared to all 

other participants (i.e., 0.32 vs. 0.11, 0.06, 0.03, 0.02 and 0.01), indicating 

that they are central for the network’s connectivity, and are necessary for 

connecting the other participants. In our experimental paradigm, it takes 
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six communication rounds for all pairs in the network to interact (see also 

Appendix A). 

 

Measures 

Communicative Success 

Measured as binary response accuracy in a given interaction during the 

communication phase, reflecting comprehension. 

 

Convergence  

Measured as the similarities between all the labels produced by 

participants in the same group for the same scene in a given round: for 

each scene in round n, convergence was calculated by averaging over the 

normalized Levenshtein distances between all labels produced for that 

scene in that round. The normalized Levenshtein distance between two 

strings is the minimal number of insertions, substitutions, and deletions of 

a single character that is required for turning one string into the other, 

divided by the number of characters in the longer string. This distance was 

subtracted from 1 to represent string similarity, reflecting the degree of 

shared lexicon and alignment in the group. 

 

Stability 

Measured as the similarities between the labels created by participants for 

the same scenes on two consecutive rounds: for each scene in round n, 

stability was calculated by averaging over the normalized Levenshtein 

distances between all labels produced for that scene in round n and round 

n+1. This distance was subtracted from 1 to represent string similarity, 

reflecting the degree of consistency in the groups’ languages. 

 

Linguistic Structure 

Measured as the correlations between string distances and semantic 

distances in each participant’s language in a given round, reflecting the 

degree to which similar meanings are expressed using similar strings 

(Kirby, Cornish, & Smith, 2008; Kirby, Tamariz, Cornish, & Smith, 

2015). First, scenes had a semantic difference score of 1 if they differed 

in shape, and 0 otherwise. Second, we calculated the absolute difference 
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between scenes’ angles, and divided it by the maximal distance between 

angles (180 degrees) to yield a continuous normalized score between 0 

and 1. Then, the difference scores for shape and angle were added, 

yielding a range of semantic distances between 0.18 and 2. Finally, the 

labels’ string distances were calculated using the normalized Levenshtein 

distances between all possible pairs of labels produced by participant p 

for all scenes in round n. For each participant, the two sets of pair-wise 

distances (i.e., string distances and meaning distances) were correlated 

using the Pearson product-moment correlation, yielding a measure of 

systematic structure (Raviv et al., 2019a, 2019b).    

 

Input Variability 

Measured as the minimal sum of differences between all the labels 

produced for the same scene in a given round (Raviv et al., 2019b). For 

each scene in round n, we made a list of all label variants for that scene. 

For each label variant, we summed over the normalized Levenshtein 

distances between that variant and all other variants in the list. We then 

selected the variant that was associated with the lowest sum of differences 

(i.e., the ‘typical’ label) and used that sum as the input variability score 

for that scene, capturing the number of different variants and their relative 

difference from each other. Finally, we averaged over the input variability 

scores of different scenes to yield the mean variability in that round.  

 

Analyses 

We used mixed-effects regression models to test the effect of network 

condition on all measures using the lme4 package (Bates, Maechler 

Bolker & Walker, 2016) in R (R Core Team, 2016).  The reported p-values 

were generated using the Kenward-Roger Approximation via the pbkrtest 

package (Halekoh & Højsgaard, 2014), which gives conservative p-values 

for models based on small numbers of observations. All models had the 

maximal random effects structure justified by the data that would 

converge, and are included in full in Appendix B. The data and the scripts 

for generating the models can be found at https://osf.io/utjsb/. 

We examined communicative success, stability, convergence and 

linguistic structure using three types of models: (I) Models that predict 

changes in the dependent variable with respect to time and network 

condition; (II) Models that compare the different networks’ final levels of 

https://osf.io/utjsb/?view_only=9e2fb99c1eda422dbd8b4c548e8b2e58
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the dependent variable at the end of the experiment; (III) Models that 

predict the variance of the dependent variable with respect to time and 

network condition. In all models, NETWORK CONDITION was a three-level 

categorical factor that was simple-coded (i.e., similar to dummy-coding 

except that the intercepts correspond to the grand mean) with fully 

connected groups as the reference level. That is, we separately contrasted 

the small-world networks and the scale-free networks with the fully 

connected networks.  

Models of type (I) predicted changes in the dependent variable over 

time as a function of network structure. Models for communicative 

success included data from communication rounds only (excluding the 

two test rounds). In models for communicative success, convergence, and 

stability, the fixed effects were NETWORK CONDITION, ROUND NUMBER 

(centered), ITEM CURRENT AGE (centered), and the interaction terms 

NETWORK CONDITION X ITEM CURRENT AGE and NETWORK CONDITION X 

ROUND NUMBER. ITEM CURRENT AGE codes the number of rounds each 

scene was presented until that point in time, and measures the effect of 

familiarity with a specific scene on performance. ROUND NUMBER 

measures the effect of time passed in the experiment and overall language 

proficiency. The random effects structure of models for communicative 

success, convergence, and stability included by-scenes and by-groups 

random intercepts and random slopes for the effect of ROUND NUMBER. As 

linguistic structure score was calculated for each producer over all scenes 

in a given round, the model for linguistic structure included fixed effects 

for NETWORK CONDITION, ROUND NUMBER (quadratic10, centered), and the 

interaction term NETWORK CONDITION X ROUND NUMBER, as well as 

random intercepts and random slopes for the effect of ROUND NUMBER 

with respect to different producers nested in different groups. 

Models of type (II) compared the mean values of the final languages in 

the last two relevant rounds of the experiment with respect to NETWORK 

CONDITION. The models for communicative success, stability and 

convergence included random intercepts for different groups, and the 

model for linguistic structure included random intercepts for different 

producers nested in different groups.  

Models of type (III) predicted changes over time in the variance of each 

measure (i.e., the degree to which different groups differ from each other) 

                                                             
10 We included both the linear and the quadratic terms using the poly() function in R to 

avoid collinearity. 
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as a function of NETWORK STRUCTURE. For linguistic structure, variance 

was calculated as the square standard deviation in participants’ average 

structure scores across all groups in a given round. For communicative 

success, convergence and stability, variance was calculated as the square 

standard deviation in the dependent variable on each scene across all 

groups in a given round. All models included fixed effects for NETWORK 

CONDITION, ROUND NUMBER (centered), and the interaction between them. 

Models for communicative success, convergence and stability also 

included by-scenes random intercepts and random slopes for the effect of 

ROUND NUMBER. 

Following (Raviv et al., 2019b), we also examined changes in input 

variability as a function of time and network structure. This model 

included fixed effects for NETWORK CONDITION, ROUND NUMBER 

(quadratic, centered), and the interaction between them, and by-group 

random intercepts and random slopes with respect to ROUND NUMBER. 

Finally, we examined changes in linguistic structure over consecutive 

rounds as a function of input variability. The dependent variable was the 

difference in structure scores between rounds n and n+1, the fixed effect 

was MEAN INPUT VARIABILITY at round n (centered), and there were 

random intercepts for different producers nested in different groups.  

 

Results 

Below we report the results for each of the four linguistic measures 

separately. All analyses are reported in full in Appendix B using 

numbered models, which we refer to here. Figure 3 summarizes the 

average performance of different network conditions over the course of 

the experiment, and Table 4 summarizes the main findings with respect to 

our predictions. 

 

1. Communicative Success 

Communicative Success increased over time (Model 1: β=0.1, SE=0.01, 

t=9.74, p<0.0001; Fig. 3A), indicating that participants became better at 

understanding each other as rounds progressed. All networks shows 

similar levels of accuracy overall (Model 1: Scale-free vs. fully connected: 

β=0.08, SE=0.27, t=0.3, p=0.76; Small-world vs. fully connected: β=-

0.007, SE=0.27, t=-0.03, p=0.98), and the increase in accuracy over time 

was not significantly modulated by network structure (Model 1: Scale-
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free vs. fully connected: β=0.01, SE=0.27, t=0.55, p=0.58; Small-world 

vs. fully connected: β=-0.01, SE=0.27, t=-0.49, p=0.62). Indeed, all 

networks reached similar levels of accuracy in the final communication 

rounds (Model 2: Scale-free vs. fully connected: β=0.26, SE=0.55, t=0.47, 

p=0.64; Small-world vs. fully connected: β=0.03, SE=0.55, t=0.05, 

p=0.96). No other effect was significant. 

 

 

 

Figure 3. Changes in (A) Communicative Success, (B) Convergence, (C) Stability, and (D) 
Linguistic Structure over time as a function of network structure. Thin lines represent average 
values for each group in a given round. Thick lines represent the models’ estimates, and their 
shadings represent the models’ standard errors. 
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As for variance in communicative success, there was no significant 

difference across network structure conditions (Model 3: Scale-free vs. 

fully connected: β=0.001, SE=0.002, t=0.45, p=0.66; Small-world vs. 

fully connected: β=0.003, SE=0.002, t=1.06, p=0.3). Variance in accuracy 

generally increased over rounds (Model 3: β=0.001, SE=0.0004, t=2.97, 

p=0.006), but not in scale-free networks (Model 3: β=-0.001, SE=0.0006, 

t=-2.4, p=0.02). Together, these results indicate that while different 

groups differed from each other in their accuracy more and more as the 

experiment progressed (and especially those in the fully connected 

condition), the difference across groups in the scale-free condition did not 

change throughout the experiment.  

 

2. Convergence 

Convergence increased significantly over rounds (Model 4: β=0.008, 

SE=0.001, t=5.42, p<0.0001; Fig. 3B), with participants aligning, that is, 

using more similar labels over time. All networks shows similar levels of 

convergence overall (Model 4: Scale-free vs. fully connected: β=-0.018, 

SE=0.05, t=-0.4, p=0.7; Small-world vs. fully connected: β=-0.006, 

SE=0.05, t=-0.14, p=0.89), and the increase in convergence over time was 

not significantly modulated by NETWORK STRUCTURE (Model 4: Scale-

free vs. fully connected: β=-0.002, SE=0.003, t=-0.61, p=0.55; Small-

world vs. fully connected: β=-0.002, SE=0.003, t=-0.55, p=0.58). Indeed, 

all networks reached similar levels of convergence by the end of the 

experiment (Model 5: Scale-free vs. fully connected: β=-0.06, SE=0.06, 

t=-1.02, p=0.32; Small-world vs. fully connected: β=-0.05, SE=0.06, t=-

0.92, p=0.37). Although there was no significant main effect of ITEM 

CURRENT AGE (Model 4: β=0.001, SE=0.0008, t=1.43, p=0.17), the 

interaction between NETWORK STRUCTURE and ITEM CURRENT AGE was 

significant, indicating that only fully connected networks showed greater 

convergence with item age compared to both sparse networks (Model 4: 

Scale-free vs. fully connected: β=-0.004, SE=0.002, t=-2.2, p=0.04; 

Small-world vs. fully connected: β=-0.005, SE=0.002, t=-2.83, p=0.01).   

Network conditions significantly differed in their degree of variance 

overall, with scale-free networks showing the lowest variance, and small-

world networks showing the highest variance (Model 6: Scale-free vs. 

fully connected: β=-0.007, SE=0.001, t=-5.91, p<0.0001; Small-world vs. 

fully connected: β=0.006, SE=0.001, t=5.07, p<0.0001). Variance in 

convergence increased over rounds (Model 6: β=0.0008, SE=0.0002, 

t=4.84, p<0.0001), but a significant interaction between ROUND NUMBER 
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and NETWORK CONDITION indicated that this was not the case for scale-

free networks (Model 6: β=-0.001, SE=0.0003, t=-4.28, p=0.0001). 

Together, these results suggest that scale-free networks were most 

consistent in their convergence behavior, while small-world networks 

were least consistent and varied from each other in their convergence 

patterns. That is, while some small-world and fully-connected networks 

reached high levels of convergence, others maintained a high level of 

divergence throughout the experiment, with participants using their own 

unique labels. In contrast, scale-free networks behaved fairly similar to 

each other, and reached relatively similar convergence levels throughout 

the experiment. 

 

3. Stability 

Stability increased significantly over rounds (Model 7: β=0.009, 

SE=0.001, t=6.71, p<0.0001; Fig. 3C), with participants using labels more 

consistently as rounds progressed. All networks shows similar levels of 

convergence overall (Model 7: Scale-free vs. fully connected: β=-0.008, 

SE=0.04, t=-0.19, p=0.85; Small-world vs. fully connected: β=-0.002, 

SE=0.04, t=-0.06, p=0.96), and network structure did not modulate the 

increase in stability over rounds (Model 7: Scale-free vs. fully connected: 

β=-0.002, SE=0.003, t=-0.67, p=0.51; Small-world vs. fully connected: 

β=-0.001, SE=0.003, t=-0.36, p=0.73). Indeed, all networks reached 

similar levels of stability by the end of the experiment (Model 8: Scale-

free vs. fully connected: β=-0.05, SE=0.06, t=-0.82, p=0.42; Small-world 

vs. fully connected: β=-0.05, SE=0.06, t=-0.85, p=0.4). Although there 

was no significant main effect of ITEM CURRENT AGE (Model 7: β=0.002, 

SE=0.0008, t=2.07, p=0.0516), the interaction between NETWORK 

STRUCTURE and ITEM CURRENT AGE was significant, indicating that only 

fully connected networks showed more stability with item age (Model 7: 

Small-world vs. fully connected: β=-0.005, SE=0.002, t=-3.06, p=0.006).  

Additionally, and as in the case of convergence, network conditions 

significantly differed in their degree of variance overall, with scale-free 

networks showing the lowest variance, and small-world networks 

showing the highest variance (Model 9: Scale-free vs. fully connected: 

β=-0.006, SE=0.001, t=-6.35, p<0.0001; Small-world vs. fully connected: 

β=0.005, SE=0.001, t=5.65, p<0.0001). Even though there was no 

significant increase in variance in stability over rounds (Model 9: 

β=0.003, SE=0.0002, t=1.64, p=0.11), a significant interaction between 

ROUND NUMBER and NETWORK CONDITION indicated that variance 



130 

 

increased less over time in scale-free networks (Model 9: β=-0.0006, 

SE=0.0002, t=-2.77, p=0.009) In other words, while scale-free networks 

were most consistent in their behavior, and even more so as the 

experiment progressed, small-world networks varied most from each 

other in their stabilization patterns. 

 

4. Linguistic Structure 

Linguistic Structure significantly increased over rounds (Model 10: 

β=6.39, SE=0.36, t=17.51, p<0.0001; Fig 3D), with participants’ 

languages becoming more systematic over time. The increase in structure 

over time was non-linear and leveled off in later rounds (Model 10: β=-

2.92, SE=0.25, t=-11.76, p<0.0001). All networks shows similar levels of 

linguistic structure overall (Model 10: Scale-free vs. fully connected: β=-

0.03, SE=0.04, t=-0.82, p=0.42; Small-world vs. fully connected: β=-0.02, 

SE=0.04, t=-0.48, p=0.64), and the increase in structure over time was not 

significantly modulated by network structure (Model 10: Scale-free vs. 

fully connected: β=-1.23, SE=0.89, t=-1.38, p=0.18; Small-world vs. fully 

connected: β=-0.93, SE=0.89, t=-1.04, p=0.31). Indeed, all networks 

reached similar levels of structure by the end of the experiment (Model 

11: Scale-free vs. fully connected: β=-0.08, SE=0.04, t=-2.05, p=0.055; 

Small-world vs. fully connected: β=-0.05, SE=0.04, t=-1.27, p=0.22). 

These findings suggest that networks developed languages with 

systematic and compositional grammars, and did so to similar extents. To 

formally test this, we compared the level of structure in the final round of 

the experiment to chance using the Mantel test with respect to 1000 

random permutations (for a similar procedure, see Kirby et al., 2008). 

Results indicated that the level of structure in all network conditions was 

significantly above chance (Fully connected networks: Mean structure 

score = 0.72, Mean z-score = 11.45, p<0.0001; Small-world networks: 

Mean structure score = 0.7, Mean z-score = 11.43, p<0.0001; Scale-free 

networks: Mean structure score = 0.67, Mean z-score = 10.98, p<0.0001). 

In these systematic languages, participants used complex labels for 

describing the scenes, with one part typically indicating the shape, and 

another part typically indicating motion (see Appendix C for multiple 

examples of final languages created by different groups).  

Variance in structure significantly decreased over time (Model 12: β=-

0.002, SE=0.003, t=-6.13, p<0.0001). Additionally, small-world networks 

were significantly more varied overall in terms of how structured their 

languages were (Model 12: Small-world vs. fully connected: β=0.02, 
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SE=0.003, t=5.29, p<0.0001). Given their greater variance to begin with, 

small-world networks also showed a faster decrease in variance over 

rounds (Model 12: Small-world vs. fully connected: β=-0.002, 

SE=0.0007, t=-2.86, p=0.006). These results suggest that even though 

small-world networks initially varied most in their level of structure, by 

the end of the experiment all networks showed similar and relatively little 

variability in their level of structure.  

Following Raviv et al. (2019b), we also quantified the degree of input 

variability in each network at a given time point by measuring the 

differences in the variants produced for different scenes in different 

rounds. First, we tested whether input variability predicted changes in 

linguistic structure over consecutive rounds. Our results were in line with 

the findings of Raviv et al. (2019b), and confirmed that more input 

variability at round n induced a greater increase in structure at the 

following round (Model 13: β=0.02, SE=0.003, t=6.2, p<0.0001). We also 

found that input variability significantly decreased with time (Model 14: 

β=-23.69, SE=1.05, t=-22.58, p<0.0001), but the rate of the decrease 

slowed down in later rounds (Model 14: β=28.71, SE=0.99, t=28.95, 

p<0.0001). There was also a significant interaction between the linear 

term of ROUND NUMBER and NETWORK CONDITION (Model 14: Scale-free 

vs. fully connected: β=5.85, SE=2.57, t=2.27, p=0.028; Small-world vs. 

fully connected: β=7.54, SE=2.57, t=2.93, p=0.005), showing that input 

variability decreased more slowly in small-world and scale-free networks 

than in fully connected networks. Importantly, there was no significant 

main effect of NETWORK CONDITION (Model 14: Scale-free vs. fully 

connected: β=0.07 SE=0.18, t=0.37, p=0.71; Small-world vs. fully 

connected: β=0.05, SE=0.18, t=0.26, p=0.8). This result suggests that, in 

contrast to our original prediction (i.e., that sparse networks would show 

more variability), there was no effect of network structure on input 

variability, such that all networks had similar levels of input variability 

overall. Given the assumed causal relationship between the amount of 

input variability and the creation of more linguistic structure, the lack of 

difference in the degree of input variability across the different network 

conditions may explain why there was no effect of network structure on 

linguistic structure, as we further discuss below. 

 

 

 



132 

 

Discussion 

The current study experimentally tested the effect of social network 

structure on the formation of new languages using a group communication 

paradigm. We compared the behaviors of groups that varied in their 

network architecture, contrasting three types of networks: (1) Fully 

connected networks, in which all members interact with each other; (2) 

Small-world networks, which are much sparser and have many members 

that never interact, although these “strangers” are nevertheless linked 

indirectly via a short chain of shared connections; And (3) Scale-free 

networks, which are as sparse as small-world networks, but whose 

members' distribution of connectivity roughly follows a power law such 

that one of the participants is highly connected to almost everyone in the 

network (a “hub”) and others are much less connected. 

Based on theoretical and computational models we generated several 

predictions (Table 1). First, we predicted that there would be more input 

variability in sparser networks, given that in such networks, some of the 

community members never directly interact (i.e., there are more 

strangers). We hypothesized that this greater input variability and 

difficulty in convergence would induce a stronger pressure for 

generalization and systemization, which would result in the sparser 

networks creating more systematic languages compared to fully 

connected networks. We further predicted that the emergence of more 

structured languages in sparser networks would facilitate convergence, 

allowing members of sparser networks to align on a shared language more 

easily and therefore resulting in similar convergence to that of fully-

connected networks. Moreover, we predicted that scale-free networks 

would develop even more structured languages thanks to the existence of 

the hub, who can potentially promote the spread of conventions and 

systematic innovations. Furthermore, we predicted that sparser networks 

would stabilize to a lesser extent or slower compared to fully connected 

networks, given that changes take longer to stabilize in sparser networks. 

Finally, we predicted that all networks would reach similar levels of 

communicative success, such that across conditions, members that 

interacted with each other would understand each other equally well. 

Table 4 summarizes our experimental results and compares them to our 

predictions. We found that over time, all groups developed languages that 

were highly systematic, communicatively efficient, stable, and shared 

across members. However, there were no significant differences between 

the three network conditions on any measure: All networks showed the 
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same behavioral patterns, had similar degrees of input variability, and 

reached similar levels of linguistic structure, stability, convergence and 

communicative success. While the results for communicative success and 

convergence are in line with our predictions (i.e., that all networks would 

show similar levels of communicative accuracy and global alignment), the 

remaining predictions were not met. Below we discuss potential reasons 

for this. 

 

 

Table 4: Experimental Results vs. Predictions for Each Measure  

 

    Network Type 

 

Measure 

 

Fully 

connected 

(FC) 

 

Small-

world 

(SW) 

 

Scale-free  

(SF) 
Prediction 

Experimental 

Results 

Input 

Variability 

More input variability in sparse 
networks 

FC < SF < SW FC=SW=SF 

Linguistic 

structure 

Sparse networks =  

more variability 

 More pressure for 
generalization and 
systematicity  

Hubs can 

further 
promote 
the spread 
of 
systematic 
languages 

FC < SW < SF FC=SW=SF 

Convergence 

Sparse networks = more variability, 

more strangers  less convergence 

BUT 

Sparse networks =? more systematic 
languages  Similar levels of 
convergence 

FC=SW=SF FC=SW=SF 

Stability 

Dense 
networks = 
less 

diversity 

 
More/faster 
stability 

Sparse networks = 

more variability, 
more innovations  

Less/slower stability 

FC > SW = SF FC=SW=SF 

Communicative 

success 
No difference between conditions FC=SW=SF FC=SW=SF 
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One consistent pattern that emerged from all our analyses, however, was 

that small-world networks showed the most variance in their observed 

behaviors, with different small-world networks behaving very differently 

from one another (not to be confused with the similar levels of input 

variability within each network). Fully connected networks and scale-free 

networks were generally similar to other fully connected networks and 

other scale-free networks respectively in terms of their convergence, 

stability and linguistic structure levels. However, small-world networks 

showed a great deal of variance, with different groups in the same 

condition showing very different levels of these three measures (also 

visually evident in Figure 3, which shows a high degree of dispersity for 

small-world networks). These results suggest that small-world networks 

may be more sensitive to random events (i.e., drift). Specifically, frequent 

interactions amongst small sub-groups can preserve random behaviors 

more easily, resulting in small-world networks being more likely to fixate 

on local (and possibly costly) strategies instead of converging on more 

optimal solutions (Bahlmann, 2014; Kurvers, Krause, Croft, Wilson, & 

Wolf, 2014). Our finding that small world networks show more variance 

in their linguistic behaviors also raises several predictions worth 

investigating. First, it suggests that changes in community structure across 

history that required greater geographical spread and reduced contact may 

have led to greater diversification in linguistic structure. Second, it might 

suggest that community structure can predict how likely communities are 

to exhibit common linguistic features compared to more rare ones (e.g., 

common vs. uncommon word order). Future research should investigate 

how community structure can influence the likelihood of a given language 

to follow or violate common trajectories of language change. 

As mentioned earlier, the results of the study differed from those we 

had originally predicted. We predicted that different networks would 

show similar levels of convergence, but the rationale behind this 

prediction was not met. We hypothesized that the similar levels of 

convergence across networks would be the result of sparser networks 

initially showing greater input variability (hindering convergence in 

comparison to the fully connected networks), but that this greater 

variability would eventually lead sparser networks to create more 

systematic languages, which would in turn help them overcome this 

disadvantage. That is, our prediction was based on the idea that different 

networks would reach a sort of equilibrium between their difficulty to 

converge and their need to converge. Crucially, this was not the case: all 

networks showed similar levels of input variability and systematic 
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structure. This discrepancy fits our findings of equal convergence across 

conditions: different networks showed the same convergence patterns 

because their degree of input variability was the same. 

While our results are surprising given the literature reviewed in the 

Introduction, they are in line with the computational model described in 

Spike (2017), who concluded that network structure plays a relatively 

small role in the development and maintenance of linguistic complexity 

and linguistic norms. This model simulated the process of 

conventionalization in populations of agents that varied in their 

community size, network structure, and learning biases (Spike, 2017). 

While the learning capacity of agents and the size of the population 

influenced the final outcomes of the model, results from multiple 

simulations showed that network structure had no apparent long-term 

effects on language change. Spike (2017) concluded that as long as 

populations exhibit a small-world property, i.e., that the average path-

length between any two people is small (which is the case in all our three 

network conditions), the diffusion of variants across the network is 

sufficiently large to ensure similar linguistic trends. As in our 

experimental manipulation, real-world social networks are small-world in 

nature (Watts & Strogatz, 1998). That is, it is possible that network 

structure has little to no effect on the formation linguistic trends, at least 

in relatively natural networks.  

However, we believe this interpretation is unlikely given the theoretical 

and computational models that argue in favor of network structure effects 

(Fagyal et al., 2010; Gong et al., 2012; Ke et al., 2008; Lou‐Magnuson & 

Onnis, 2018). We believe it is more likely that the current study did not 

sufficiently capture the potential role of network structure. One possibility 

is that network structure interacts with group size in complex ways (as 

suggested by Lou-Magnuson & Onnis, 2018), and/or that network 

structure effects only manifest themselves once a certain group size 

threshold has been crossed. That is, it is possible that our eight-person 

networks were simply too small, and that running this experiment with 

bigger networks (e.g., of 200 people) would yield different results. 

Disentangling the relation between group size and network structure 

experimentally would require further investigation, potentially using 

online adaptations of this paradigm, which would allow testing much 

larger groups of interacting participants.  

Another possibility is that, regardless of group size, our network 

structure manipulation was not strong enough to create meaningful 
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differences between network types, or was not representative of real-

world differences between dense and sparse networks. For example, the 

sparse networks might not have been sparse enough, or the difference 

between the small-world and scale-free networks might have been too 

subtle. Notably, the nature of our experimental procedure restricted the 

specific architecture of sparser networks to a great extent. At any given 

communication round, each network had to be divided into pairs who play 

the game simultaneously, with no participant left out. Given this 

constraint, our choice of possible connections between group members 

was highly limited: many possible network configurations did not adhere 

to this constraint and were therefore inappropriate for our design. For the 

sake of illustration, imagine designing a four-person network that is 

sparsely connected, such that only four out of the six possible connections 

are realized. While there are 15 hypothetical network configuration that 

qualify this definition, only three of them satisfy the condition of being 

able to be divided into two unique pairs at a given time point and can 

therefore be used in our experimental paradigm. In the remaining 12 

theoretical networks configurations, one participant would need to be 

included in two pairs at the same time, or would have no available 

communication partner. While it is relatively simple to find out which of 

the 15 hypothetical four-person networks could be suitable for our design, 

the problem was exponentially worse with the larger networks used in the 

current study: for sparser networks with eight individuals and 14 realized 

connections, there are over 40 million possibilities for network 

configurations, and only few on them are suitable for our design. As such, 

we cannot rule out the possibility that the networks that were selected for 

this experiment were not representative of real-world sparser networks, 

and/or had biased characteristics that made them too similar to one 

another. In other words, it is reasonable to assume that network structure 

had no effect in the current design because our selected networks did not 

differ sufficiently from each other. This possibility is supported by the 

lack of observed differences in input variability across conditions, which 

stands in sharp contrast with the general consensus that sparser networks 

should be more diversified (Bahlmann, 2014; Derex & Boyd, 2016; Liu 

et al., 2005).  

The similar levels of input variability across network conditions may, 

in fact, explain the remaining results obtained in this study. Evidently, the 

prediction that sparse networks would show more input variability was a 

key component underlying the predictions for stability and linguistic 

structure. Since it turned out to be false, it is perhaps not surprising that 
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the predictions that were based on it also turned out to be false. In the case 

of stability, we hypothesized that more input variability in sparser 

networks would lead to slower or less stabilization in such networks. 

Given that there were no differences in input variability between the dense 

networks and sparse networks, it is not surprising that they also showed 

similar degrees of stability over time. In the case of linguistic structure, 

our prediction for structural differences between network conditions 

relied on the causal relation between input variability and systematic 

structure. This relation, i.e., that more input variability promotes more 

linguistic structure, was demonstrated in Raviv et al. (2019b) and further 

confirmed in the current study. We found that, across conditions and 

across experimental rounds, more input variability at time point n induced 

more structure at time point n+1. Therefore, if sparse networks indeed 

show greater input variability, they should consequently show more 

linguistic structure. However, if all networks show similar levels of input 

variability, they should also show similar levels of linguistic structure – 

which is what we found in the current study. Together, these results 

support the idea that network structure had no effect in our study because 

our selected networks did not differ substantially from each other. It is 

possible that a stronger manipulation of networks’ sparsity would have 

yielded different results. Therefore, more research is required in order to 

confirm or to refute the influence of network structure on linguistic 

patterns.  

We also predicted that scale-free networks would develop even more 

structured languages due to the existence of a highly-connected 

participant (a “hub”), who should potentially promote the spread of 

systematic variants to the entire community once they emerge (Fagyal et 

al., 2010; Zubek et al., 2017). This prediction was not met, and scale-free 

networks showed similar levels of linguistic structure to the other two 

network types. In retrospect, this discrepancy is very likely to be the result 

of the specific properties of our design: given that all networks in our 

experiment received the same amount of time for interaction (14 

communication rounds in total, see Procedure) and given that each 

communication round included simultaneous communication between 

pairs, having more connections inevitably resulted in having less time to 

interact with each connection. Given these features, a highly connected 

participant would require more rounds to interact with all their possible 

connections, while a less-connected participant would in the meantime 

repeatedly interact with the same few connections. While such sub-groups 

can be seen as a relevant feature of sparser networks, this configuration 
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also resulted in the highly connected participants interacting less with 

each of their connections. That is, while the highly connected agent was 

indeed well-connected in the sense that they communicated with almost 

every person in the group, they were actually less connected to each 

person in terms of their frequency of interactions: the hub interacted 

approximately twice with each of their connections by the end of the 

experiment, while the less-connected participants interacted amongst 

themselves for approximately six times in the meanwhile. From the 

perspective of the less-connected participants, who repeatedly conversed 

with the same people and only rarely interacted with the hub, the hub 

could have effectively be seen as “an outsider”, i.e., a person they rarely 

interacted with, and consequently a person who mattered less. That is, our 

design may have maintained the structural property of the hub but stripped 

it of their commonly associated social meaning, namely, having greater 

rather than lesser social importance. If true, it would again suggest that a 

different design or a different network selection would have revealed 

different results. 

One possible way of dealing with the methodological issues described 

above is to move away from our current design and introduce more 

flexible communication conditions, while maintaining equal experience 

across all individuals in the group. For example, it is possible to include 

individual rounds or semi-communicative rounds, in which a participant 

is not assigned a partner, but nevertheless engages in some form of 

communicative behavior, for example with a computer-simulated agent. 

Alternatively, it is possible to introduce multi-player rounds, in which 

three participants are assigned to communicate together so that one 

participant produces a word and the other two participants guess the 

corresponding scene separately. Such modifications would dramatically 

improve the flexibility of our paradigm and expand the pool of suitable 

networks, while also introducing more varied conversational settings. 

Nevertheless, they introduce new challenges: the degree of input 

variability (and consequently, the difficulty of convergence) may be 

reduced if participants can interact with several group members at the 

same time, and it is not clear how to simulate a computerized participant 

in a way that mimics human participants’ behavior and produces the same 

communicative challenges faced by people interacting with a real 

participants.  

Finally, it is worth mentioning that our network structures were fixed, 

and did not change over time. Therefore, our sparse networks differed 

from real-world sparse networks in the sense that pairs of participants who 
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were not directly connected to each other would in fact never interact, and 

may soon figure this out.  Some researchers have argued that an important 

feature of real-world sparse communities is the increased possibility of 

interacting with strangers, and treat interaction with strangers as a crucial 

mechanism driving morphological simplification (Wray & Grace, 2007). 

The idea behind this argument is that increasing the chances of interacting 

with unfamiliar people (with whom you have no shared history) 

introduces a stronger pressure for creating languages with simpler, 

transparent and regular structure (Granito, Tehrani, Kendal, & Scott-

Phillips, 2019). In other words, the potential of encountering a new 

member of one’s community may be relevant for explaining cross-

linguistic differences. One way of testing this hypothesis is by introducing 

a more dynamic, open-ended network design to future studies, for 

example by assigning an unexpected connection every few rounds (so that 

individuals who are not directly connected may nevertheless encounter 

each other randomly from time to time).  

 

Conclusions 

The current study attempted to experimentally test the influence of social 

network structure on emerging languages using a group communication 

paradigm. We found no effect of network structure on any measure, with 

fully connected, small-world, and scale-free networks all showing similar 

patterns of communicative success, convergence, stability, and linguistic 

structure. We argue that these findings could be traced back to the lack of 

differences in input variability between network conditions in our current 

design, and that further research is needed in order to confirm or refute 

the postulated role of network structure on language evolution and 

language change. Nevertheless, our results show that network structure 

can significantly affect communities’ susceptibility to drift, with small-

world networks being more likely to vary from each other and fixate on 

local strategies.  
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Appendix A: Network Details 

 

Below we specify the exact configuration of each network condition in 

the experiment. 

For each type of network, we include an adjacency matrix (also 

referred to as connection matrix) representing the network’s structure 

using rows and columns for each node. Nodes (i.e., participants) range 

from A to H. Cell (i,j) in the adjacency matrix will have a value of 1 with 

dark shading if nodes i and j are connected, or a value of 0 with light 

shading otherwise. In undirected networks such as those used in this study, 

where communication goes in both ways, the adjacency matrix is 

symmetrical such that cell (i,j) and cell (j,i) have the same value. 

For each type of network, we also include the order of communication 

between pairs over the course of 16 rounds.  

 

 

Condition 1: Fully connected network 

 

Table 1: Adjacency Matrix for the Fully Connected Network 

 

 

 

 

 

 

Fully connected A B C D E F G H

A 1 1 1 1 1 1 1

B 1 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1

E 1 1 1

F 1 1

G 1

H



141 

Table 2: Order of Pair-wise Interactions for the Fully Connected Network 

Round      Pair  

1   A-B    C-D    E-F   G-H 

2   H-A    B-G    F-C    D-E 

3   A-D    E-B    C-H    G-F 

4   C-A    E-G    B-D    F-H 

5   D-H    G-C    B-F    A-E 

6   G-D    F-A    C-B    H-E 

7   D-F    E-C    F-B    A-G 

8                TEST 

9   A-B    C-D    E-F   G-H 

10   H-A    B-G    F-C    D-E 

11   A-D    E-B    C-H    G-F 

12   C-A    E-G    B-D    F-H 

13    D-H    G-C    B-F    A-E  

14   G-D    F-A    C-B    H-E 

15   D-F    E-C    F-B    A-G 

16                TEST 

 

 

Condition 2: Small-world network 

Table 3: Adjacency Matrix for the Small-world Network 

 

Small-world A B C D E F G H

A 1 1 0 0 0 0 1

B 0 0 1 0 1 1

C 1 1 0 0 0

D 1 0 1 1

E 1 0 0

F 1 1

G 0

H
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Table 4: Order of Pair-wise Interactions for the Small-world Network 

Round      Pair                

1   A-C    B-H    G-F    E-D 

2   A-B    C-E    H-F    D-G 

3   B-E   H-D   C-A    F-G 

4   A-H    D-C    G-B    E-F 

5   A-C    B-H    G-F    E-D 

6   A-B    C-E    H-F    D-G 

7   B-E   H-D   C-A    F-G 

8               TEST 

9   A-H    D-C    G-B    E-F 

10   A-C    B-H    G-F    E-D 

11   A-B    C-E    H-F    D-G 

12   B-E   H-D   C-A    F-G 

13    A-H    D-C    G-B    E-F 

14   A-C    B-H    G-F    E-D 

15   A-B    C-E    H-F    D-G 

16      TEST 

 

 

Condition 3: Scale-free network 

Table 5: Adjacency Matrix for the Scale-free Network 

 

Scale-free A B C D E F G H

A 1 0 1 1 1 1 1

B 1 0 1 0 1 0

C 1 0 0 0 1

D 0 0 1 0

E 1 0 0

F 0 1

G 0

H
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Table 6: Order of Pair-wise Interactions for the Scale-free Network 

Round      Pair  

1   A-B    E-F    H-C    D-G 

2   G-A    C-D    F-H    B-E 

3   A-D    G-B    H-C    E-F 

4   A-E    F-H    C-B    D-G 

5   H-A  E-F    B-G    C-D 

6   F-A    B-E    H-C    G-D 

7   A-B    E-F    H-C    D-G 

8      TEST 

9   G-A    C-D    F-H    B-E 

10   A-D    G-B    H-C    E-F 

11   A-E    F-H    C-B    D-G 

12   H-A   E-F    B-G    C-D 

13    F-A    B-E    H-C    G-D 

14   A-B    E-F    H-C    D-G 

15     G-A    C-D    F-H    B-E 

16      TEST 
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Appendix B: Models 

All models use simple coding. Therefore the intercept and all effects are 

reported for the grand mean. 

 

Communicative Success 

 

(1) Type (I) Model: Accuracy over time 

Accuracy ~ centered.Round * Condition + centered.ItemCurrentAge * 

Condition + (1 + centered.Round | ItemID) + (1 +centered.Round | Group) 

 

(2) Type (II) Model: Final Accuracy comparison 

MeanAccuracy ~ Condition + (1 | Group) 

 

 

(3) Type (III) Model: Accuracy variance 

SD_Accuracy ~ centered.Round * Condition + (1 + centered.Round | 

ItemID) 
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Convergence 

 

(4) Type (I) Model: Convergence over time 

Convergence ~  centered.Round * Condition + centered.ItemCurrentAge 

* Condition + (1 + centered.Round  | ItemID) + (1 + centered.Round  | 

Group) 

 

 

(5) Type (II) Model: Final Convergence Comparison 

MeanConvergence ~ Condition + (1 | Group) 

 

 

(6) Type (III) Model: Convergence variance 

SD_Convergence ~ centered.Round * Condition + (1 + centered.Round | 

ItemID) 
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Stability 

 

(7) Type (I) Model: Stability over time 

Stability   ~ centered.Round * Condition + centered,ItemCurrentAge * 

Condition + (1 | ItemID) + (1 +centered,Round  | Group) 

 

 

(8) Type (II) Model: Final Stability comparison 

MeanStability ~ Condition + (1 | Group) 

 

 

 

(9) Type (III) Model: Stability variance 

SD_Stability ~ centered.Round * Condition+ (1 + centered.Round | 

ItemID) 
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Linguistic Structure 

 

(10) Type (I) Model: Linguistic Structure over time 

Linguistic Structure ~ poly(centered.Round,2) * Condition + (1 + 

poly(centeredRound ,2)  | Group/Producer) 

  

 

 

 

(11) Type (II) Model: Final Linguistic Structure comparison 

MeanStructure ~ Condition + (1 | Group/Producer) 

 

 

 

(12) Type (III) Model: Linguistic Structure variance 

SD_Structure ~ centered.Round * Condition 
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Input Variability 

 

(13) Changes in linguistic structure by input variability  

StructureDiff ~ centered.MeanInputVariability + (1 | Group/Producer) 

 

 

 

 

(14) Input Variability over time 

MeanInputVariability ~ poly(centeredRound ,2) * Condition + (1 + 

poly(centeredRound ,2)| Group) 
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Appendix C: Examples of Structured Languages 

Below we include 15 examples of structured languages produced by 

participants in the final test round (round 16), with five examples from 

each network condition.  

Each language is accompanied by a “dictionary” for interpreting the 

language on the right. 

Different box colors represent the four different shapes which appeared 

in the scenes, and the grey axes indicate the direction in which the shape 

was moving on the screen. Different font colors represent different 

meaningful part-labels, as segmented by the authors. 

The dictionary and colors are solely for the purpose of illustration and 

were not used for any of the statistical analyses. 
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5   What makes a language easy to learn?     

A preregistered study on how 

systematic structure and community size 

affect language learnability 
 

Abstract 

Cross-linguistic differences in morphological complexity and social structure 

could have important consequences for language learning. Specifically, it is 

assumed that languages with more regular, compositional, and transparent 

grammars are easier to learn by both children and adults. It has also been 

shown that such grammars tend to evolve in bigger communities. Together, 

this suggests that some languages are acquired faster than others, and that this 

advantage can be traced back to community size and to the degree of 

systematicity in the language. However, the causal relationship between 

systematic linguistic structure and language learnability has not been 

formally tested, despite its importance for theories on language evolution, 

second language learning, and the origin of linguistic diversity. In this pre-

registered study, we experimentally tested the effects of community size and 

systematic structure on language learning. We compare the acquisition of 

different yet comparable artificial languages that were created by either big 

or small groups in a previous communication experiment, and varied on their 

degree of systematic linguistic structure and their group size origin. We ask 

(a) whether more structured languages are easier to learn; and (b) whether 

languages created by bigger groups are easier to learn. Our results confirm 

that structured languages are advantageous for learning by adults, with highly 

systematic languages being learned faster and more accurately. We also 

found that the relationship between language learnability and linguistic 

structure is typically non-linear, so that high systematicity was indeed 

advantageous for learning, but learners did not seem to benefit from partly or 

semi-structured languages, i.e., languages that have some systematic rules 

but multiple irregulars and inconsistencies. Community size did not affect 

learnability: languages that evolved in big and small groups were equally 

learnable. Crucially, our results show that an important advantage of 

systematic structure is its productivity: with increasing structure, participants 

were better at generalizing the language they learned to new, unfamiliar 

meanings, and different participants were more likely to produce similar 

labels. That is, systematic structure may allow speakers to converge 

effortlessly, so that strangers can immediately understand each other. 
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Introduction 

Languages differ greatly in how they map different meanings into 

morpho-syntactic structures (Dryer & Haspelmath, 2013; Evans & 

Levinson, 2009). Some languages appear to be relatively simple in terms 

of their morphology, while other languages are viewed as highly complex. 

For example, English makes minimal use of verb inflection to express 

grammatical relations: most English verbs have only one basic inflection 

paradigm to express time, such as adding [-ed] to express past tense, and 

this inflection is consistent across grammatical persons (i.e., she and they 

receive the same inflected form). Even verbs that are considered irregular 

in English (e.g., sing, ring, buy, seek) often follow a systematic 

inflectional rule (i.e., sang, rang, bought, sought). In contrast, Georgian 

has an elaborate set of verb inflection paradigms based on time, 

grammatical person, grammatical case, mood and more (Hewitt, 1995; 

Imedadze & Tuite, 1992). Verbs in Georgian can take an astonishing 

number of different forms (estimated at around 200), and many verbs are 

truly irregular and follow unique rules, requiring speakers to learn the 

inflections of these verbs independently. Beyond such anecdotal 

examples, cross-linguistic studies have confirmed that languages differ in 

their degree of morphological complexity (Ackerman & Malouf, 2013; 

Bentz & Berdicevskis, 2016; Hengeveld & Leufkens, 2018; Lewis & 

Frank, 2016; Lupyan & Dale, 2010; McCauley & Christiansen, 2019). 

This cross-linguistic difference in morphological complexity may have 

important consequences for learning: some languages may be easier to 

learn than others. This idea goes against a wide-spread axiom in the field 

of linguistics, which is that all languages are equally difficult to learn and 

take the same effort to acquire (Sweet, 1899). Recent work has challenged 

this axiom, and provided initial support for the premise that languages 

differ in their degree of learnability. In particular, corpus studies report 

that the trajectory of children’s first language acquisition (L1) can vary 

across languages (Armon-Lotem et al., 2016; Bleses, Basbøll, & Vach, 

2011; Bleses et al., 2008; Dressler, 2003; Xanthos et al., 2011), and work 

on second language learning (L2) has shown that adults are better at 

learning some languages than others (Kempe & Brooks, 2008; Kempe & 

MacWhinney, 1998). These differences in learning outcomes and 

proficiency are often assumed to relate to several factors, amongst which 

is differences in languages’ morphological complexity, i.e., the degree to 

which inflectional morphemes are informative, productive, and clearly 

marked. Specifically, languages with more regular, compositional, and 
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transparent structures are generally considered to be easier to learn by both 

children and adults when compared to languages with opaque and 

irregular structures (DeKeyser, 2005; Dressler, 2003, 2010; Hengeveld & 

Leufkens, 2018; Slobin, 1985). 

While there is no widely accepted way to measure morphological 

complexity, various metrics have been used – from counting the number 

of inflected word forms per lemma (Xanthos et al., 2011), to conditional 

entropy (Ackerman & Malouf, 2013; Winters, Kirby, & Smith, 2015), 

type/token ratio (McCauley & Christiansen, 2019), and the degree of 

regularity in the mapping between forms and meaning (Cornish, Tamariz, 

& Kirby, 2009; Tamariz, Brown, & Murray, 2010; Tamariz & Smith, 

2008). Although the quantitative definition of morphological complexity 

varies across researchers, its descriptive notion is relatively stable. 

Generally speaking, a language is considered to be simpler if it is 

compositional, regular, and transparent, i.e., if there are systematic one-

to-one relations between units of meanings and units of form (DeKeyser, 

2005; Hay & Baayen, 2005; Hengeveld & Leufkens, 2018). For example, 

the word [walked] consists of two parts: the verbal stem [walk] and the 

past tense morpheme [ed], which are combined in a transparent way to 

express the act of walking in the past. In comparison, the irregular past 

form [bought] cannot be as easily divided into separate bits, making it 

more holistic and opaque. Similarly, a language is considered to be more 

complex if the meanings of words are not directly predictable from their 

constituents. Such opacity can stem from multiple sources, such as having 

redundant or optional marking, syncretism, and/or a high prevalence of 

inconsistencies and irregularities. In this sense, more complexity is seen 

as the result of having less transparency. Complexity can also stem from 

having multiple inflectional paradigms and many obligatory grammatical 

rules. As such, the relation between complexity and transparency is not 

always straight-forward (Kempe & Brooks, 2018; Kempe & 

MacWhinney, 1998). For example, languages such as Russian have 

complex and elaborate inflectional paradigms with multiple grammatical 

cases, which are nevertheless transparent and informative; in contrast, 

languages such as German have considerably simpler paradigms with 

fewer grammatical cases, but high levels of syncretism that render the 

system fairly opaque and uninformative. While it is important to consider 

this potential discrepancy, the main theoretical notion of linguistic 

complexity incorporates the idea that more regularity, more transparency, 

and more compositionality are simpler and therefore beneficial for 

learning. 
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Intuitively, it seems reasonable that languages with more regular and 

compositional morphology will be easier to learn, given that they allow 

learners to derive a set of productive rules rather than memorizing 

individual forms (Kirby, 2002; Zuidema, 2003). This intuition is 

supported by information theory, as data with systematically recurring 

elements can be compressed into fewer bits. However, the causal 

relationship between linguistic structure and language learnability is 

currently untested. Very few studies have attempted to examine this link 

by investigating learning difficulty as a function of linguistic complexity. 

Only a handful of correlational and experimental studies have examined 

learning outcomes and learning trajectories in natural languages that differ 

in their morphological complexity. These studies exhibit a mixed patterns 

of results: some studies report slower acquisition and worse overall 

proficiency in languages that are more morphologically opaque  (Kempe 

& Brooks, 2008; Kempe & MacWhinney, 1998; Slobin, 1985), while 

others suggest similar learning rates across languages (Armon-Lotem et 

al., 2016; Braginsky, Yurovsky, Marchman, & Frank, 2019), or the 

opposite pattern altogether, i.e., that morphologically complex languages 

are acquired faster (Dressler, 2003; Xanthos et al., 2011). These 

conflicting findings can be related to different complexity metrics used 

across studies, different variables of interest (e.g., acquisition of 

vocabulary, passive constructions, verb inflections, case marking, etc.), 

and/or the presence of multiple confounding factors in natural languages 

such as phonological complexity, inconsistent word order, and more. 

Crucially, no study to date has systematically compared the acquisition 

of a broad yet controlled range of morphological structures using an 

experimental paradigm. As such, it is not clear whether languages with 

more regular and transparent structures are indeed easier to learn. While 

direct empirical evidence for this argument is lacking, two studies provide 

it with some initial support. Brooks et al. (1993) and Monaghan, 

Christiansen, and Fitneva (2011) both conducted artificial language 

learning experiments to test the acquisition of artificial languages that 

differed in their degree of sound-systematicity, i.e., the mapping between 

forms and categories (Brooks, Braine, Catalano, Brody, & Sudhalter, 

1993; Monaghan, Christiansen, & Fitneva, 2011). In the studies, 

participants were trained on a miniature vocabulary containing two word 

classes, corresponding to grammatical gender (Brooks et al., 1993) or to 

actions/objects (Monaghan et al., 2011). In the arbitrary condition, there 

were no similarities between the words’ phonological forms and their 

grammatical class, such that different sounds were distributed randomly 
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between the two classes. This condition was contrasted with a fully 

systematic condition, in which words from the same grammatical category 

contained distinct sounds (e.g., words for objects contained fricatives 

while words for actions contained plosives)Monaghan et al., 2011), and 

with a partially systematic condition  in which members of each noun 

class shared a subset of phonological features (Brooks et al., 1993; 

Monaghan et al., 2011). Results showed that participants were better at 

learning the distinction between the two categories when there was full or 

partial systematicity in the mapping between forms and meanings, i.e., 

when there was a phonological cue indicating the nouns’ grammatical 

category. These findings provide initial support for the idea that learning 

outcomes can be affected by the degree of systematic structure, at least in 

terms of grammatical categories being systematically mapped to specific 

sounds. But since these studies did not directly test the effect of 

morphological complexity or compositionality, they are not sufficient for 

concluding that compositional, transparent, and regular languages are 

indeed easier to learn.  

Nonetheless, the causal relationship between systematic linguistic 

structure and language learnability serves a crucial component in two 

strands of influential literature: (a) language evolution simulations on the 

emergence of linguistic structure, and (b) the social origin of linguistic 

diversity. The assumption that transparent and regular grammars are more 

easily learned is essential for the theoretical reasoning in both fields. 

Therefore, it is important to validate the postulated effect of linguistic 

structure on language learning. The current study aimed to fill in this gap 

and experimentally test the learnability of artificial languages that vary in 

their degree of systematic structure (i.e., in how transparent, 

compositional, and predictable the mapping between meanings and labels 

is).  

In the first line of research, language evolution models explicitly argue 

that compositional structure emerges as a consequence of learnability 

pressures combined with expressivity pressures, and that compositional 

structure facilitates accurate transmission of languages over multiple 

generations of learners, who would struggle to learn a holistic and 

unstructured lexicon (e.g., Cornish et al., 2009; Kirby et al., 2015, 2008; 

Smith, 2011). Using iterated learning and diffusion chain paradigms, 

multiple studies have reported that, over time, artificial languages become 

more compositional (as reflected by greater form-meaning mapping) and 

more faithfully reproduced (as reflected by fewer transmission errors). 

The observed increase in language learnability over time is argued to be 
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the direct result of the increase in linguistic structure, given that 

systematic languages are supposed to be easier to learn (i.e., there are 

fewer unique forms to remember, and thus it is easier to predict the forms 

of unseen meanings given a limited subset of examples). The emergence 

of compositional languages is therefore attributed to learning pressures: 

because of cognitive limitations on learners’ memory, more compressed 

and predictable signals are favored, and these in turn ease the learning 

process and allow for more accurate reproduction (Cornish, 2010). 

Moreover, compositional languages are argued to be advantageous for 

generalizations, and allow learners to overcome the “poverty of stimulus” 

(Kirby, 2002; Kirby, Smith, & Brighton, 2004; Zuidema, 2003): because 

learners must acquire their linguistic competence from finite and partial 

input, languages with more regular and transparent structures are favored 

since they allow learners to easily refer to new, unfamiliar meanings using 

the same system. In other words, iterated learning studies assume a close 

and causal relationship between linguistic structure and learnability, and 

the hypothesized mechanism behind the emergence of structure strongly 

relies on the intuition that more systematic languages are easier to learn 

and are more generalizable. 

Notably, iterated languages learning studies typically report a 

simultaneous increase over time in both systematic structure and 

learnability, which is taken as evidence that more structured languages are 

easier to learn (Kirby, Cornish, & Smith, 2008; Kirby, Tamariz, Cornish, 

& Smith, 2015; Saldana, Fagot, Kirby, Smith, & Claidière, 2019). Yet 

crucially, these studies typically do not examine this relation directly (e.g., 

using statistical analyses to demonstrate a significant correlation between 

structure and learning), and do not test the causal relation between 

linguistic structure and learnability beyond the mediating variable of 

generation number. As such, iterated language learning paradigms have 

not directly confirmed the causal role of linguistic structure on learning. 

Nevertheless, there is some evidence in support of the correlation between 

accuracy and systematicity in such paradigms. For example, Tamariz and 

Smith (2008) found that participants who learned languages with more 

regular form-to-meaning mappings also produced languages with more 

regular form-to-meaning mappings, but participants’ accuracy in learning 

the input language was not reported. Another study reported a significant 

correlation between learning accuracy and producing systematic structure, 

albeit in the opposite direction of causality: Raviv and Arnon (2018) 

reported that transmission error was a significant negative predictor of 

linguistic structure across all generations of learners, so that participants 
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who showed better learning of the input language also introduced more 

linguistic structure when reproducing the language. Interestingly, the 

results of one iterated learning study suggest that linguistic structure and 

learnability are not always related: Berdicevskis (2012) found that even 

though artificial languages became more compositional over generations 

of learners, they did not become more learnable: there was no significant 

increase in reproduction fidelity over time despite the increase in 

systematic structure, and there was no correlation between how 

compositional languages were and how accurately they were learned. That 

is, the increase in linguistic structure did not facilitate learning. Together, 

these findings strengthen the need for conducting a careful examination 

of the causal relation between language learnability and systematicity.  

As for the second line of research, on the social origin of linguistic 

diversity, cross-linguistic work has found that languages spoken by big 

communities are typically less morphologically complex than languages 

spoken by small communities – a finding that has been attributed to 

learnability pressures caused by the presence of a higher proportion of 

second-language learners in larger communities (Bentz, Verkerk, Kiela, 

Hill, & Buttery, 2015; Bentz & Winter, 2013; Lupyan & Dale, 2010). 

Specifically, the inverse correlation between morphological complexity 

and population size (which is taken a proxy for the proportion of non-

native speakers) is argued to be driven by the difficulty of adult L2 

learners in acquiring morphologically complex and opaque languages 

(Bentz & Berdicevskis, 2016; Dale & Lupyan, 2012; Lupyan & Dale, 

2010, 2016; McWhorter, 2007; Trudgill, 1992, 2002, 2009). In other 

words, the reduced morphological complexity observed in languages of 

larger communities is argued to be the direct result of the postulated 

relationship between linguistic structure and learnability, which is 

presumably amplified in adults.  

According to this theory, languages adapt to fit their social niches: if 

adult non-native speakers constitute a substantial part of the community 

(as is typically the case in larger societies), then adults’ difficulty in 

learning complex morphological structures may push languages towards 

simplification and regularization. This line of reasoning includes three 

explicit assumptions: (1) that morphologically simpler languages are 

advantageous for learning; (2) that adults struggle more with learning 

complex morphological structures; and (3) that imperfect learning by non-

native speakers can lead to morphological simplification over time due to 

cross-generational transmission and/or accommodation by native 

speakers. The third assumption has been confirmed experimentally in 
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three studies, which report that given insufficient exposure, adults tend to 

simplify a morphologically complex artificial language (Atkinson, Smith, 

& Kirby, 2018; Bentz & Berdicevskis, 2016), and that native speakers 

tend to adapt more to the syntactic choices of non-native confederates, 

even when they produce ungrammatical sentences (Loy & Smith, 2019). 

The second assumption receives support from the literature on second 

language learning, which suggests that adults generally struggle with 

learning and using morphology in a second language compared to 

children: adults L2 speakers typically show optional or variable use of 

verbal and nominal inflections related to case marking, tense, agreement, 

aspect, and gender marking (DeKeyser, 2005; Haznedar, 2006; Parodi, 

Schwartz, & Clahsen, 2004), and learn faster when languages exhibit 

more reliable morphological cues (Kempe & MacWhinney, 1998). 

Importantly, the first assumption, which is essential for the theory’s main 

argument, has yet to be tested. 

An interesting alternative explanation for the documented correlation 

between morphological complexity and community size is that, instead of 

being mediated by the proportion of adult non-native speakers and their 

difficulty in language learning, it is directly derived from differences in 

community size itself (Nettle, 2012; Raviv, Meyer, & Lev-Ari, 2019b; 

Wray & Grace, 2007). According to this hypothesis, the total number of 

speakers in the community can affect language structure in relevant ways, 

and there is no need to assume the prevalence of second language learning 

as a mediating factor: big communities might develop simpler and more 

transparent languages simply because they are big. In a big community 

with many individuals there is more input variability, and people have less 

common ground with one another (some people are strangers who rarely 

or never interact). Given that each person in the community may have 

unique and possibly unfamiliar morpho-lexical variations, interacting 

with more people without establishing common ground can be 

increasingly taxing for individuals' memory, making it harder to maintain 

a holistic, irregular or unstructured lexicon as community size grows. 

Therefore, big communities are under a stronger pressure to develop 

systematic and transparent languages that can in turn facilitate 

convergence and mutual understanding. As such, members of larger 

communities may favor simpler and more compositional linguistic 

variants that are easier to remember. In contrast, small communities have 

fewer individuals (and therefore, less variability overall), and its members 

typically have more shared history with each other and more common 

knowledge as a result of frequent interactions. As such, members of small 
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communities should be able to rely on common ground and language-

external knowledge when communicating, and consequently, may 

develop and more easily maintain languages with more complex, arbitrary 

and/or idiosyncratic variants.  

The hypothesis that community size can shape the structure of 

languages was recently confirmed using a group communication 

experiment, in which groups of four or eight interacting participants 

needed to create a new artificial language to communicate with each other 

about different novel scenes (Raviv et al., 2019b). Results showed that 

larger groups developed more systematic and compositionally structured 

languages over time, and did so faster and more consistently than small 

groups. Furthermore, the increase in linguistic structure was driven by the 

greater input variability in the larger groups, and facilitated better 

convergence and accuracy. In other words, the emergence of more 

systematic and compositional languages in larger groups was indeed 

advantageous for communication, and allowed larger groups to converge 

and understand each other equally well as small groups despite being 

faced with a greater communicative challenge (i.e., interacting with more 

people while having less shared history with each person). Together, the 

findings of Raviv et al. (2019b) show that community size has a unique 

and causal role in shaping linguistic structure beyond learning constraints, 

and that having languages with systematic structure can facilitate 

convergence between more individuals. Importantly, this line of reasoning 

still implies that there is a processing advantage for compositional and 

predictable variants: systematic languages should be more efficient for 

learning and use because they ease individuals’ memory load and allow 

them to communicate more successfully and more productively. 

Notably, an important question inevitably arises: are the languages of 

big communities easier to learn? That is, did larger groups create 

languages that would be better acquired by new members of the 

community? This question draws a direct link between the two literatures 

discussed above, i.e., iterated language learning and the social origin of 

linguistic diversity: if larger communities have more systematic 

languages, and if more systematic languages facilitate learning by the next 

generation of learners, the languages of larger groups should be better 

acquired by naïve individuals. In other words, languages used in big 

communities may be more learnable because typically they are also more 

systematically structured. If true, then languages created in larger 

communities may be easier to learn for adult second language learners not 

because of the presence of such L2 learners to begin with, but simply 
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because of the size of the community. This idea shifts the explanatory load 

offered in previous work (e.g., Lupyan & Dale, 2010) from constraints of 

language learning to constraints on efficient communication between 

strangers (e.g., Wray & Grace, 2007). 

There may be additional advantages to signals developed in bigger 

groups, above and beyond their degree of systematicity. Considering the 

fact that languages developed in larger communities have passed the 

processing filter of more people and were used by more different 

individuals, it is possible that they are better adapted to humans’ general 

preferences. Specifically, computational models of iterated learning have 

shown that languages adapt to fit individuals’ cognitive biases over time, 

and that weak individual tendencies can become greatly amplified as 

languages are transmitted by more and more individuals (Kirby, Dowman, 

& Griffiths, 2007; Kirby et al., 2004; Reali & Griffiths, 2009; Smith, 

2011). As such, it is possible that signals that evolved in larger 

communities are somehow better fitted to our cognitive and learning 

biases, and are therefore more efficient for processing, learning and use. 

If so, we may expect that languages of larger communities would be easier 

to learn for reasons other than their structure, i.e., even when they have 

similar degrees of systematic structure as languages of small 

communities.  

While there is no direct evidence that languages of larger communities 

are easier to learn, one study has attempted to test the effect of group size 

on the complexity and transparency of linguistic conventions that were 

created by two vs. three individuals (Atkinson, Mills, & Smith, 2018). In 

that study, dyads or triads used English to describe novel icons to each 

other, and their final descriptions were transmitted to naïve learners who 

had to match them to their referents. Atkinson et al. (2018) found that 

matching accuracy did not differ significantly across conditions (i.e., the 

descriptions created by two vs. three people were guessed equally well), 

providing no evidence that larger communities create more transparent 

form-to-meaning mappings. However, we cannot draw strong conclusions 

from this null result. It is possible that the group size manipulation used 

in that study was not sufficiently strong (i.e., contrasting productions by 

two vs. three people may not be enough to detect community size 

differences), and/or that examining descriptions in a pre-established 

language such as English does not give rise to transparency differences. 

Therefore, it is possible that novel communication systems developed in 

big groups are easier to learn after all. Importantly, studies on visual 

signals (drawings) suggests that this is indeed the case in the non-
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linguistic domain. When groups of eight people and groups of two people 

played multiple rounds of Pictionary with each other, the final drawings 

of the big groups were superior to those of the small groups in terms of 

their learnability and processing by new individuals, despite being 

comparable in terms of their visual complexity (Fay, Garrod, & Roberts, 

2008; Fay & Ellison, 2013). Naïve learners were more accurate in 

guessing the meanings of drawings that evolved in larger groups, and were 

able to learn them faster, recognize them faster, recall them faster, and 

reproduce them with better fidelity compared to drawings that evolved in 

small groups. This advantage was attributed to large groups’ drawings 

being more iconic, i.e., having more transparent form-to-meaning 

mappings. Fay et al. (2008) conclude that the better “fitness” or quality of 

signs developed by big communities was derived from the increased 

diversity of potential signs: larger groups have a greater pool of variants 

to draw on, allowing for the selection of simpler and optimized signs. If 

such reasoning extends to language, then the greater input variability 

reported in the big groups in Raviv et al. (2019b) may actually benefit 

learners in the long run.  

In sum, it is of high interest to test the causal relationship between 

language complexity and learnability, as well the role of community size 

in shaping such patterns. Confirming that more systematic languages are 

easier to learn is crucial for theories on language evolution and linguistic 

diversity, which assume this link as an essential underlying mechanism. 

Moreover, discovering an overall learning advantage for languages 

created by larger communities would suggest that social structure shapes 

cross-linguistic patterns. Together, such findings would have important 

implications for language learning and language typology by suggesting 

that some languages are acquired more slowly or more quickly compared 

to others because of their grammatical structure and/or the size of the 

community in which they are spoken.  

 

The Current Study 

The goal of the current study was to experimentally test the causal effect 

of group size and linguistic structure on language learnability. To this end, 

we used an artificial language learning paradigm in which individuals 

needed to learn a new miniature language with labels for describing 

different types of novel scenes (see Procedure). After training, participants 

were tested on their knowledge of the input language in two ways: (a) a 
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memory test, testing participants’ reproduction accuracy on the scene-

label pairings; and (b) a generalization test, testing participants’ ability to 

label new, unseen scenes. 

Importantly, participants were trained on different input languages, all 

of which had been created in a previous experiment by real groups of 

either four or eight interacting participants playing a communication game 

(Raviv et al., 2019b). We contrasted learning across several conditions by 

selecting 10 different input languages, which varied in their degree of 

systematic structure and in their origin group size, while being relatively 

similar in their average word length and internal confusability (see 

Materials). For example, one participant could learn a high-structured 

language created by a big group, and another participant could learn a 

medium-structured language created by a small group.                       

In order to promote open-science and increase the transparency and 

credibility of our research, the entire study (e.g., design, procedure, 

predictions, analyses plans, etc.) was pre-registered on OSF and is 

available online: https://osf.io/9vw86/. Additionally, all the data collected 

in this experiment and the scripts for generating all analyses can be openly 

found at https://osf.io/d5ty7/. 

For our confirmatory analyses, the main prediction was that linguistic 

structure would significantly affect language learnability, so that more 

compositional languages that display systematic form-to-meaning 

mappings would be easier to learn (i.e., more accurately learned). 

Therefore, we expected that participants who learned more structured 

languages would show higher reproduction accuracy. We also 

hypothesized that group size would have an additional effect on language 

learnability, beyond the effect of linguistic structure: languages created by 

bigger groups are postulated to be easier to learn compared to languages 

created by small groups, above and beyond their degree of systematic 

structure. Therefore, we expected that across all structure levels, 

participants who learned languages that were created by big groups would 

show higher reproduction accuracy. We also planned to carry out 

exploratory analyses to examine the speed of learning across conditions, 

and to test the effect of linguistic structure and community size on 

participants’ ability to generalize the language to a new set of meanings. 

 

 

 

https://osf.io/9vw86/?view_only=38d53670fc2c4c69884faae62e013e69
https://osf.io/d5ty7/
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Methods 

Participants  

We analyzed data from 100 adults (79 women) between the ages of 18 

and 35 (mean age=22.9y). This sample size was determined in advance 

using a power analysis based on pilot data and power simulations for a 

range of possible effect sizes (see Appendix A). We tested two additional 

participants who did not complete the experiment, and so their data was 

not included in the analyses. Each participant was paid 10€. All 

participants were native Dutch speakers, aged between 18 and 35 years 

old, and had no reported visual or reading difficulties. Ethical approval 

was granted by the Faculty of Social Sciences of Radboud University 

Nijmegen. 

 

Materials 

We selected ten languages from a bigger database of artificial languages, 

which were created in a previous experiment (Raviv et al., 2019b). The 

database contained 144 languages that were created by individual 

participants in either small or larger groups after completing a group 

communication game. Each language consisted of 23 scene-label pairings. 

i.e., 23 written labels that corresponded to 23 dynamic visual scenes. The 

scenes varied along three semantic dimensions: shape, angle of motion, 

and fill pattern. Each scene consisted of one out of four possible shapes, 

moving repeatedly in a straight line from the center of the screen in a given 

direction. Additionally, each scene had a unique blue-hued fill pattern. 

There were three versions of the stimuli, which differed in the distribution 

of shapes and their associated angles. 

Each language in the database had a structure score, which reflected 

the degree of systematic mapping between labels and meanings in the 

language (Kirby, Cornish, & Smith, 2008; Kirby, Tamariz, Cornish, & 

Smith, 2015; Raviv, Meyer, & Lev-Ari, 2019a). The structure score for 

each language was calculated as the correlation between the pair-wise 

semantic distances between scenes’ features and the pair-wise string 

distances between their labels. First, we calculated the semantic 

differences between different scenes, resulting in a similarity matrix for 

all pairs of scenes in the language. This was done using Hamming 

distances, in the following way: First, two scenes had a semantic 

difference of 1 if they differed in shape, and a semantic difference of 0 if 

they included the same shape. Second, the difference between two scenes’ 
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angles was calculated and divided by the maximal distance between 

angles (180 degrees) to yield a continuous normalized score between 0 

and 1. Then, the difference scores for shape and angle were added, 

yielding a possible semantic distance between 0.18 and 2 for each pair of 

scenes in the language. Next, we calculated the string differences between 

all pairs of labels in the languages using normalized Levenshtein 

distances, which is the minimum number of character changes (insertions, 

deletions or substitutions) needed in order to transform one label into the 

other, divided by the length of the longest label. This resulted in a 

similarity matrix for all pairs of labels in the language. Finally, the two 

sets of pair-wise distances (i.e., string distances and meaning distances) 

were correlated using the Pearson product-moment correlation, yielding a 

measure of systematic structure. 

This continuous measure was divided into five equally sized bins of 

possible structure scores11: low structure (0.0-0.2), low-medium structure 

(0.2-0.4), medium structure (0.4-0.6), medium-high structure (0.6-0.8), 

and high structure (0.8-1.0). Figure 1 gives a general description of the 

structural properties of languages in each structural bin, along with an 

illustration. Low structure scores reflect the absence of systematic 

mapping between labels in the language and their corresponding scenes, 

resulting in a holistic lexicon where labels seem to be randomly assigned 

to the scenes regardless of their sematic features (see Figure 1 for an 

illustration). In low structured languages, each scene has an opaque label 

that cannot be decomposed into small components based on scenes’ shape 

or direction of motion. In contrast, high structure scores reflect the 

existence of systematic mappings between meanings and labels, resulting 

in compositional languages in which similar semantic features are 

expressed using similar part-words (see Figure 1 for an illustration). 

Specifically, a highly systematic language would include a consistent 

part-word for describing each of the four shapes (e.g., “tup” for Shape 1 

and “fest” for Shape 2), and a consistent part-word for describing the 

direction of motion (e.g., “o” for up, “i” for right, and “oi” for up-right). 

In addition to the structure score, we characterized each language using 

two other measures: average word length, i.e., the average number of 

                                                             
11 Although correlations can potentially range from -1 to 1, there were no languages with 

a correlation below 0 (i.e., a languages with “anti-systematic” or “counter-systematic” 

mapping between labels and scenes). The structure scores of the languages in the data 

set ranged from 0.07 (i.e., an unstructured, holistic language) to 0.9 (i.e., a fully 

systematic, compositional language).  
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characters in the language’s labels; and confusability, i.e., the average 

normalized Levenshtein distance between all possible pairs of labels in a 

language, capturing the phonological similarity across all labels in a given 

language.  
 

 

 

 

Figure 1. An illustration of the structure levels of input languages learned by participants in the 
experiment. The axis represents languages’ structure scores, ranging from 0 to 1. For descriptive 
purposes, this continuous measure can be divided into five equally sized bins: low structure (0.0-
0.2), low-medium structure (0.2-0.4), medium structure (0.4-0.6), medium-high structure (0.6-0.8), 
and high structure (0.8-1.0). Each bin can be characterized by a different degree of systematicity, 
which is described verbally below it. We included illustrations of three miniature lexicons: a 

language with low structure in light green, a language with medium structure in green, and a 
language with high structure in dark green. For example, in the low structured language, there is 
no similarity between the labels for scenes with similar shapes (e.g., moof, wuit) or for scenes with 
similar directions (e.g., wuit, pofs). In the high structured language, part-labels are consistently 
associated with a given shape (e.g., fest, tup) or with a given direction (e.g., ui, oi). The direction 
morphemes are also compositional, and are comprised of two meaningful parts: for example, the 
morpheme for the direction up-right (oi) is a combination of the morpheme for up (o) and the 
morpheme for right (i). The grey dots on the axis point to the structure scores of ten specific 
languages originally created in a group communication game (Raviv et al., 2019b), which were 

selected as the input languages for this experiment. From each of structure bin, we selected one 
language that was created by a small group and one language that was created by a big group. 
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We then selected ten languages from the database to be used as input 

languages for the current study (Figure 1; see Appendix B for the full list 

of stimuli). Specifically, we picked two languages from each of the five 

structure score bins described above: one language that was created by a 

small group, and one language that was created by a big group. This 

resulted in a 2 X 5 factorial design, with the two factors being group size 

(with two levels: big vs. small) and structure score (with five levels of 

structure degrees). Note that although we used these descriptive bins to 

select our input languages, structure score was treated as a continuous 

variable in our analyses (ranging from 0.07 in the low structure bin, to 

0.84 in the high structure bin). Ten participants were assigned to learn 

each of the ten input languages using a pre-made randomization list.  

Since we wanted to ensure that differences in language learnability can 

indeed be attributed to their structural properties and/or group size origin, 

we picked languages that were comparable in several ways. First, all 

languages fell within a reasonably similar range of average word length 

and confusability scores. Under the assumption that longer and more 

confusable words are harder to learn (Laufer, 2009; Willis & Ohashi, 

2012), we chose languages from the lower half of the distributions of these 

two measures, i.e., languages with relatively short words (i.e., between 4 

and 7 characters) and relatively low confusability (i.e., between 0.14 and 

0.37). Second, languages in the same structure bin were comparable in 

terms of their descriptive grammatical properties and had similar types of 

consisted mappings (as judged by the authors; see Fig. 1 and Appendix 

B). Third, languages within the same structure bin had similar numbers of 

irregulars, as counted by the authors. Fourth, across the different structure 

bins, differences in structure scores were balanced with group size, so that 

it was not the case that one group size condition was consistently 

higher/lower in structure compared to the other. The structure scores of 

the selected languages can be seen in Figure 1. For the full set of input 

languages and their detailed descriptions, see Appendix B. 

Finally, we created 13 new scenes for each stimuli version. These 

additional scenes were not included in the learning phase and the memory 

test, and were presented to participants for the first time during the 

generalization test. The new scenes varied along the same semantic 

dimensions as the 23 original scenes in the input languages, and were 

comprised of one of the four possible shapes moving in one of the possible 

directions. Each new scene included a new combination of shape and 

angle of motion (with each of the four shapes appearing in at least two 

new scenes), and a completely different blue-hued fill pattern. That is, the 
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new scenes matched the general meaning space of the language, but 

included new combinations of shape, direction, and fill pattern which 

were unfamiliar to the participants and not present beforehand.  

 

Procedure  

Participants were told they were about to learn a new fantasy language 

(“Fantasietaal” in Dutch) to describe different scenes of moving shapes, 

and that their goal was to learn the language as best as they could in order 

to succeed in a subsequent test. The experiment consisted of two phases: 

(1) a learning phase, which was comprised of three leaning blocks with a 

similar procedure; (2) a test phase, which was comprised of two parts, i.e., 

memory test and generalization test. For example screenshots of each 

phase of the experiment, along with detailed descriptions of the 

accompanying instructions and procedure, see https://osf.io/mkv5r/. 

The learning phase consisted of three blocks. The first learning block 

included half of the language (12 scene-label pairings), the second block 

included the other half of the language (11 scene-label pairings), and the 

third block included the entire language (23 scene-label pairings). Each 

input language was randomly divided into two halves in advance, so that 

the set of target scenes in each block was identical for all participants in a 

given condition. The order of appearance of target scenes within a given 

block and during the test phase was randomized separately per participant 

at the beginning of the experiment.  

Each learning block comprised of three tasks: passive exposure, 

guessing, and production. During passive exposure, participants were 

exposed to scene-label pairings one by one in a random order, with each 

target label appearing on the screen together with its corresponding scene 

for the duration of 10 seconds. In this task, participants only had to look 

at their screen and try to remember the scene-label pairings. In the 

guessing task, participants were presented with target labels one by one in 

a random order, and needed to select the scene to which that label referred 

to from a set of possible scenes. In the first two blocks, this set included 

four scenes (i.e., the target scene and three distractors), while in the third 

block this set included eight scenes (i.e., the target scene and seven 

distractors). The distractors were randomly selected for each participant 

and for each trial from the set of possible scenes in that block. Participants 

received feedback after each guess indicating whether they were right or 

wrong, along with the target label, the correct scene, and the scene they 
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selected in case it was different. In the production task, participants were 

presented with target scenes without labels one by one in a random order, 

and needed to type the correct label for it using their keyboard. 

Participants’ letter inventory was restricted, and matched the letter 

inventory of the original input languages from Raviv et al. (2019b): it 

included a hyphen, five vowel characters (a,e,i,o,u), and ten consonants 

characters (w,t,p,s,f,g,h,k,n,m), which participants could combine freely. 

Participants received feedback after each production, along with the target 

scene, the correct label, and the label they typed in case it was different. 

In the first two learning blocks, which included only half the language, 

each of the three tasks (i.e., passive exposure, guessing, production) was 

repeated twice with all the available target scenes-label pairings for that 

block, so that each scene-label pairing appeared twice in each task and six 

times in total. In the third learning block, which included the entire 

language, each task was repeated once, so that all scene-label pairings 

appeared once in each task and three times in total. This resulted in a total 

of nine exposures per scene-label pairing during the learning phase: three 

times during the passive exposure task, three times during the guessing 

task, and three times during the production task. 

Following learning, participants completed a test phase. The first part 

of the test phase was a memory test, in which participants demonstrated 

how well they had learned the input language. During the memory test, 

participants were presented with each of the 23 target scenes without 

labels one by one in a random order, and typed in a label for them. The 

second part of the test was a generalization test, in which participants were 

asked to use the language they had just learned to label new scenes that 

they had not seen before. Participants were presented with 13 unfamiliar 

scenes (see Materials) without labels one by one in a random order, and 

typed in a label for each of them based on their acquired knowledge of the 

Fantasy language. Participants were asked to label the new scenes as if 

they were communicating to another person, who had learned the same 

language as they did but knew no other language (i.e., no use of Dutch, 

English, or any other language was allowed). No feedback was provided 

during the memory and generalization tests, and participants’ letter 

inventory was restricted in the same manner as in the production phase.  

After the test phase, participants filled out a questionnaire about their 

performance in the experiment, including questions such as “How hard 

was it to learn the fantasy language?”, and “Did you notice anything about 
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the structure of the fantasy language during the experiment?”. Finally, all 

participants were debriefed by the experimenter.   

 

 

Measures 

Binary Accuracy 

This measure reflects whether participants were correct or incorrect on a 

given trial during the learning phase or the memory test, and is calculated 

as binary response accuracy. If participants produced/guessed the target 

label correctly, accuracy equaled 1; otherwise, it equals 012. 

 

Production Similarity 

This continuous measure reflects how closely participants reproduced 

their input language by measuring the similarity between a target label 

(i.e., an original label as it appeared in the input language) and the 

corresponding label produced by a participant in production trials (during 

the learning phase and during the memory test). For each production trial, 

we calculated the normalized Levenshtein distance between the label 

produced by the participant and the original input label. The normalized 

Levenshtein distance is the minimum number of character changes 

(insertions, deletions or substitutions) needed in order to transform one 

label into the other, divided by the length of the longest label. This 

distance was subtracted from 1 to represent string similarity, i.e., how 

much the labels participants produced resembled the labels they had 

learned. High production similarity indicates good reproduction fidelity, 

with participants producing labels that are similar to those they learned 

(i.e., a score of 1 indicates that the produced label matched the target label 

exactly). Low production similarity indicates poor reproduction fidelity, 

with participants producing labels that are very different from those they 

learned.  

 

 

                                                             
12 In cases where the target label described more than one scene (i.e., homonym), 

participants’ accuracy in guessing trials (during the learning phase) would equal 1 if they 

had guessed any one of the possible scenes associated with that target label. 
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Guessing Similarity 

This continuous measure reflects how well participants learned the label-

scene mapping in the input language by measuring the similarity between 

the target scene (i.e., the correct scene given a specific label) and the scene 

selected by the participant during guessing trials. We used Hamming 

distances to quantify the semantic differences between the selected scene 

and the target scene based on the differences in scenes’ shapes and 

directions of motion. This measure was calculated in a similar way to the 

semantic distances used for calculating the structure score (see Materials). 

First, two scenes had a semantic difference of 1 if they differed in shape, 

and 0 otherwise. Second, the difference between the two scenes’ angles 

was calculated and divided by the maximal distance between angles (180 

degrees) to yield a continuous normalized score between 0 and 1. Then, 

the difference scores for shape and angle were added, yielding a range of 

semantic distances between 0 and 2. This distance was then subtracted 

from 2 to represent guessing similarity, i.e., how much the scene 

participants guessed resembled the correct scene. High guessing similarity 

indicate that, given a target label, participants guessed a scene which was 

similar to the target scene in terms of its features (i.e., a similarity score 

of 2 indicates that the selected scene matched the target scene exactly). 

Low guessing similarity indicates that, given a target label, the 

participant’s guess was very different from the target scene (i.e., a 

similarity score of 0 indicates that the participant selected a maximally 

different scene with a different shape going to the opposite direction).  

 

Generalization Score 

This continuous measure reflects the degree of similarity between the 

labels participants produced for each new scene during the generalization 

test, and the labels they produced for familiar scenes during the memory 

test. A high generalization score reflects the fact that, given an unfamiliar 

scene, participants produced a label which was as similar as possible to 

the labels they produced for familiar scenes with similar features (e.g., the 

same shape and/or the same direction). That is, their labels during the 

memory and the generalization test followed the same principles. A low 

generalization score reflects the fact that, given an unfamiliar scene, 

participants produced a label which was different from the labels they 

produced for familiar scenes with similar features. That is, the labels they 

produced for unfamiliar scenes did not resemble those they produced in 

the memory test. For each participant, the generalization score is the 
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normalized correlation between (a) the pair-wise semantic distances 

between each new scene and all familiar scenes, and (b) the pair-wise 

string distances between each new label produced in the generalization 

test and all labels produced for familiar scenes during the memory test. 

This correlation was normalized to account for the fact that high-structure 

languages offer more possibilities to generalize to begin with. The 

generalization score is calculated in the following way: For each new 

scene in the generalization test, we first calculated the semantic 

differences between that new scene and all familiar scenes using 

Hamming distances, in the same way as described above for structure 

score and for guessing similarity. Second, we calculated the string 

differences between the new label produced for this scene and the labels 

produced for familiar scenes during the memory test using normalized 

Levenshtein distances, in the same way as described above for structure 

score and for production similarity. We repeated this calculation for all 

new scenes and their corresponding labels. Then, these two sets of pair-

wise distances (i.e., string distances and meaning distances between new 

and familiar scenes/labels) were correlated using the Pearson product-

moment correlation. Finally, this correlation was scaled using a procedure 

inspired by the min-max normalization procedure (also called unity-based 

normalization and feature-scaling), yielding the final generalization score 

per participant. This normalization procedure was implemented in order 

to ensure that all conditions show similar ranges of generalization scores, 

and that we do not bias against low structured languages, which by default 

would show lower generalization scores given that participants’ 

productions for familiar items are likely to be less structured in such 

languages. Specifically, we linearly transformed the correlation scores to 

fit in the range [0,1], and scaled across different conditions so that the final 

generalization score was proportionate to the range of achieved values in 

that condition: low generalization scores relative to the range of possible 

scores are mapped to values closer to 0, and high generalization scores 

relative to the range of achieved scores are mapped to values closer to 1. 

This was done using the formula x’ = (x-min(x))/(max(x)-min(x)), where 

min(x) in the lowest value for x achieved by a participant across all 

conditions (-0.069), and max(x) is the highest value for x achieved by a 

participant in a specific condition (i.e., max(x) varied for different input 

languages, with each input language having a different maximal value). 

For example, the highest value achieved by a participant in a low-structure 

language was 0.5, while the highest value achieved by a participant in a 

high-structure language was 0.88.  
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Generalization Convergence 

This continuous measure reflects the degree of similarity between the 

labels produced during the generalization test by different participants 

who learned the same input language. For each of the new scenes in the 

ten input languages, we calculated the normalized Levenshtein distances 

between all pairs of labels produced by different participants for the same 

new scenes. The average distance between all pairs of labels was 

subtracted from 1 to represent string similarity, i.e., how much the labels 

of different participants resembled each other. A high convergence score 

indicates that participants who learned the same language also produced 

similar labels for the unfamiliar scenes during the generalization test. A 

low convergence score indicates that participants who learned the same 

language produced different labels for unfamiliar scenes during the 

generalization test. 

 

Analyses and Results 

We analyzed the data using mixed effects regression models generated by 

the lme4 package in R (Bates, Maechler, Bolker, & Walker, 2016; R Core 

Team, 2016). All reported p-values were generated using the pbkrtest 

package (Halekoh & Højsgaard, 2014), which uses the Kenward-Roger 

Approximation to calculate conservative p-values for models based a 

relatively small number of observations. All analyses are reported in 

Appendix C using numbered models, which we refer to here. The data and 

the R code to generate all analyses can be openly accessed at 

https://osf.io/d5ty7/.  

 

Confirmatory analysis: Final Binary Accuracy (Figure 2a) 

As declared in the preregistration (under “Analysis Plan”), our main 

model had final binary accuracy (i.e., whether participants were right or 

wrong in the memory test) as the dependent variable, and included fixed 

effects for GROUP SIZE ORIGIN (dummy-coded, with small groups as 

reference level) and STRUCTURE SCORE (continuous, centered), as well as 

random intercepts for participants and scenes. Since we suspected that the 

effect of structure score would be non-linear (Beckner, Pierrehumbert, & 

Hay, 2017; Raviv et al., 2019b), we used Likelihood ratio tests to compare 

models with 1- and 2-degree polynomials (generated using the poly() 

function in R to avoid collinearity). These model comparisons revealed 

https://osf.io/d5ty7/?view_only=9f528c294e1545a4988ae3a2d67e1374
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that the best fitting model (Model 1) included both a linear and a quadratic 

term for the effect of STRUCTURE SCORE (see Appendix C).  

Results from this model showed that STRUCTURE SCORE was a positive 

significant predictor of participants’ binary accuracy during the memory 

test (Model 1: β=31.47, SE=6.93, z=4.54, p=0.00001), and that this effect 

was non-linear (Model 1: β=31, SE=6.87, z=4.51, p=0.00001). 

Specifically, the effect of STRUCTURE SCORE on accuracy followed a U-

shape: participants’ binary accuracy was poorer when trained on medium 

structure languages than when trained on low structured languages, but 

the highest when trained on high structured languages (Fig, 2A).  

 

 

Figure 2. (A) Binary Accuracy and (B) Production Similarity at the final memory test, as a function 
of learned languages’ structure score and group size origin. Each point represents the average 
accuracy of a single participant. The thick line represent the model’s estimate, and its shadings 
represent the model’s standard error. 
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The U-shape pattern is evident in the global minimum of the polynomial 

function predicted by the model, which can be directly calculated when 

running the same model without the orthogonal polynomials and 

comparing its derivative to 0. After re-centering, we found that the 

minimum value for binary accuracy was obtained when structure equals 

0.36, which is within the medium structure bin. In other words, 

participants’ performance was worst when learning semi-structured 

languages, and the increase in structure only benefited accuracy as 

languages became highly systematic. The effect of GROUP SIZE ORIGIN was 

not significant, with languages originating from big and small groups 

eliciting similar levels of accuracy (Model 1: β=0.48, SE=0.29, z=1.67, 

p=0.096). 

 

Exploratory analysis: Final Production Similarity (Figure 2b) 

Originally, we believed that binary accuracy was a good measure to 

examine learning, considering an “all or nothing” approach. However, 

during data collection we observed that this measure was too crude, and 

did not reliably reflect how well participants learned the languages. 

Specifically, many participants were able to reproduce the language with 

relatively high fidelity but not perfectly, which the binary accuracy 

measure did not capture. For example, if a participant correctly typed five 

letters out of a six-letter label, the binary accuracy measure would treat 

this one-letter error as if the entire label was incorrect. This led to an 

overestimation of errors, with some participants receiving low scores 

despite making very minor mistakes (e.g., one letter difference between 

the label they learned and the label they reproduced). As such, we decided 

to use a more subtle proxy of participants’ learning accuracy, namely, 

production similarity (see Measures). This continuous measure reflects 

the degree of reproduction accuracy more reliably by quantifying the 

similarity between participants’ input and output languages, and is 

broadly used in iterated language learning paradigms (Kirby et al., 2008, 

2015). 

We therefore ran an identical model to that described in the 

confirmatory analysis section, but used production similarity during test 

as the dependent variable instead of binary accuracy during test. 

Importantly, the predictions for this measure were identical to those of 

binary accuracy: more structured languages should be reproduced more 

accurately, i.e., show more production similarity. Accordingly, the model 

for production similarity had the same effect structure as the binary 
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accuracy model reported above, and included fixed effects for GROUP SIZE 

ORIGIN (dummy-coded, with small groups as reference level) and 

STRUCTURE SCORE (continuous, centered), and random intercepts for 

participants and scenes. As in the confirmatory analysis, Likelihood ratio 

tests favored the 2-degree polynomial model (Model 2) with both a linear 

and a quadratic term for the effect of STRUCTURE SCORE (see Appendix 

C). 

Results from this model showed that STRUCTURE SCORE was a positive 

significant predictor of production similarity during the memory test 

(Model 2: β=4.41, SE=0.68, t=6.49, p<0.0001). This effect was also non-

linear (Model 2: β=1.6, SE=0.68, t=2.34, p=0.02), yet in an exponential 

way: participants produced labels that were increasingly more similar to 

those they learned as structure increased, so that the advantage of structure 

was stronger in highly structured languages (Fig. 2B). That is, the increase 

in structure benefited accuracy most as languages became more 

systematic. As for binary accuracy, we calculated the global minimum of 

the polynomial function predicted by the model for production similarity, 

and found that the minimum value for reproduction fidelity was obtained 

when structure equaled 0.18, which is within the low structure bin. That 

is, participants’ performance was worst when learning unstructured 

languages. The effect of GROUP SIZE ORIGIN was not significant, with 

languages originating from big and small groups eliciting similar levels of 

production accuracy (Model 2: β=0.007, SE=0.03, t=0.26, p=0.8).  

 

Exploratory analyses: Learning Trajectory (Figure 3) 

As declared in the preregistration (under “Analysis Plan”), we also 

planned to perform an exploratory analysis to examine participants’ 

learning trajectory during the three blocks of the learning phase. 

Specifically, we were interested in seeing whether improvement in 

performance during the first three blocks was modulated by structure 

score and/or group size (e.g., are highly structured languages learned 

faster?). To this end, we generated three models in which the dependent 

variable was either binary accuracy, production similarity or guessing 

similarity (see Measures). All three models had the same effects structure, 

and included fixed effects for BLOCK NUMBER (continuous, centered), 

GROUP SIZE ORIGIN (dummy-coded, with small groups as reference level), 

STRUCTURE SCORE (continuous, centered), and the interaction terms 

BLOCK NUMBER X  GROUP SIZE ORIGIN and BLOCK NUMBER X STRUCTURE 

SCORE. All models included by-participant and by-scene random 
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intercepts, as well as random by-participant slopes with respect to the 

effect of BLOCK NUMBER. We used Likelihood ratio tests to compare 1- 

and 2-degree polynomial models with respect to the effect of STRUCTURE 

SCORE (see Appendix C), and found that models with a quadratic term 

were favored in the case of binary accuracy (Model 3) and guessing 

similarity (Model 5), but not for production similarity (Model 4).  

All three models yielded similar results (Fig. 3), and showed that 

performance significantly improved over learning blocks, with 

participants showing higher binary accuracy (Model 3: β=0.29, SE=0.05, 

z=5.99, p<0.0001), higher production similarity (Model 4: β=0.04, 

SE=0.007, t=5.57, p<0.0001) and higher guessing similarity (Model 5: 

β=0.04, SE=0.01, t=3.74, p=0.0003) over time. There was also a 

significant effect of STRUCTURE SCORE for all measures, indicating that, 

across blocks, performance was overall better on more structured 

languages (Model 3: β=66.49, SE=10.67, z=6.23, p<0.0001; Model 4: 

β=0.34, SE=0.05, t=7.35, p<0.0001; Model 5: β=14.65, SE=2.13, t=6.88, 

p<0.0001). This effect was non-linear for binary accuracy and guessing 

similarity, suggesting that the advantage of structure for these two 

measures was increasingly higher as structure increased (Model 3: 

β=51.83, SE=10.74, z=4.83, p<0.0001; Model 5: β=8.07, SE=2.14, 

t=3.76, p=0.0003). Additionally, there was a significant interaction 

between STRUCTURE SCORE and BLOCK NUMBER for binary accuracy 

(Model 3: β=25.88, SE=4.32, z=6, p<0.0001; β=14.46, SE=4.76, z=3.04, 

p=0.0024) and production similarity (Model 4: β=0.05, SE=0.02, t=2.83, 

p=0.00564), indicating that the improvement in participants’ performance 

over time in these two measures was even faster in more structured 

language, i.e., the learning slope was steeper for highly structured 

languages. This interaction was not significant for guessing similarity 

(Model 5: β=1.75, SE=1.19, t=1.48, p=0.14), suggesting that the slope of 

improvement in participants’ guessing performance over time was similar 

across all structural levels. 

Finally, GROUP SIZE ORIGIN did not significantly affect performance on 

any of our three measures (Model 3: β=0.23, SE=0.19, z=1.19, p=0.23; 

Model 4: β=0.001, SE=0.03, t=0.04, p=0.97; Model 5: β=0.01, SE=0.03, 

t=0.41, p=0.69) or participants’ learning trajectories (Model 3: β=0.04, 

SE=0.07, z=0.54, p=0.59; Model 4: β=-0.01, SE=0.01, t=-1.37, p=0.17; 

Model 5: β=-0.01, SE=0.02, t=-0.86, p=0.39).  
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Figure 3. Changes in Mean (A) Binary Accuracy, (B) Production Similarity, and (C) Guessing 
Similarity over time as a function of learned languages’ structure score. The colored lines and their 
shadings represent the models’ estimates and standard errors, averaged over the five descriptive 
structure levels (i.e., collapsed over big and small groups’ languages).  

 

 

Exploratory analyses: Generalization Behavior (Figure 4) 

As declared in the preregistration (under “Analysis Plan”), we also 

planned to examine participants’ behavior during the generalization 

phase. In particular, we wanted to see whether participants would 

generalize the linguistic patterns of their input language to new, unseen 

scenes. If participants learned a systematic language and learned its 

underlying structure, generalizations could potentially take place in the 

form of reusing the learned structural patterns (i.e., part-words) when 
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producing new labels (e.g., combining existing morphemes for shape and 

motion to describe a new scene with a new combination of shape and 

motion). If participants learned an unstructured language, generalizations 

could potentially take place in the form of reusing existing full words to 

describe scenes with similar elements (i.e., creating homonyms), or 

combining exiting words. In both cases, if the participants’ generalized 

their input language and maintained its patterns, then their productions for 

each new scene during the generalization test should be similar to their 

productions of the input language during the memory test, resulting in a 

high generalization score (see Measures). If participants did not generalize 

and instead produced random, unrelated labels, then their generalization 

score should be lower. This score was also adjusted to take into account 

the fact that low-structured languages allow for less generalizations to 

begin with. 

To test participants’ generalization behavior, we used a general linear 

regression model with normalized generalization score as the dependent 

variable, and fixed effects for GROUP SIZE ORIGIN (dummy-coded, with 

small groups as reference level) and STRUCTURE SCORE (continuous, 

centered). We used Likelihood ratio tests to compare 1- and 2-degree 

polynomial models with respect to the effect of STRUCTURE SCORE, and 

found that the model with only a linear term (Model 6) was favored 

(Appendix C).  

Results from this model showed that STRUCTURE SCORE was a 

significant predictor of generalization score: participants who had 

acquired more structured languages also generalized more (Model 6: 

β=0.51, SE=0.07, t=7.22, p<0.00001; Fig. 4). There was no significant 

effect of GROUP SIZE ORIGIN (Model 6: β=0.01, SE=0.04, t=0.31, p=0.76), 

suggesting that generalization behavior was similar for languages 

originating from big and small groups. 
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Figure 4. Generalization as function of learned languages’ structure score and group size origin. 
Each point represents the normalized generalization score of a single participant. The thick line 
represent the model’s estimate, and its shadings represent the model’s standard error. 

 

Exploratory analyses: Generalization Convergence (Figure 5) 

Finally, we looked for similarities in participants’ generalizations: do 

participants in the same condition make similar generalizations, i.e., 

produce similar labels for unseen scenes? We assumed that when 

languages are highly systematic and rule-governed, they allow for 

transparent and productive labeling – resulting in different participants 

producing the same labels, i.e., generalizing in the same way. By contrast, 

when languages are unstructured or inconsistent in their mapping of labels 

to meanings, it may be less clear what or how to generalize (e.g., which 

features of the scenes are relevant?) and therefore less clear how to label 

new scenes. This may result in participants producing new labels more 

randomly, or attempting to make generalizations based on the 
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idiosyncratic features of scenes (i.e., fill-pattern). In other words, we 

assumed that highly structured languages would facilitate convergence 

amongst participants, potentially enabling them to understand each other 

even without previously interacting. 

Results from this model showed that STRUCTURE SCORE was a 

significant predictor of generalization score, so that participants who 

learned more structured languages also produced labels that were more 

similar to one another (Model 7: β=0.74, SE=0.03, t=21.63, p<0.00001; 

Fig. 5). There was no significant effect of GROUP SIZE ORIGIN (Model 7: 

β=-0.03, SE=0.02, t=-1.71, p=0.09), suggesting that languages originating 

from big and small groups did not differ in their convergence. 

 

 

Figure 5. Generalization convergence across participants as function of learned languages’ 
structure score and group size origin. Each point represents the average convergence of ten 
participants on each of the ten input languages. The thick line represent the model’s estimate, and 
its shadings represent the model’s standard error. 
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Discussion 

In this pre-registered study, we tested the effects of systematic structure 

and community size on language learnability using an artificial language 

learning paradigm. We compared participants’ acquisition of a broad yet 

controlled set of input languages for describing novel dynamic events (see 

Fig. 1). These input languages varied in their degree of linguistic structure 

(ranging from low to high systematicity) and in their group size origin 

(created by either big or small groups in a previous communication 

experiment, Raviv et al., 2019b). Language learnability was assessed by 

examining participants’ final reproduction accuracy, their learning 

trajectories over time, and their ability to generalize the language they 

learned to a new set of unseen events.  

Our main prediction was that participants would show better learning 

of languages with more systematic structures. This prediction was 

motivated by previous literature reviewed in the Introduction (e.g., second 

language learning, iterated learning), which argued for a causal link 

between the grammatical structure of languages and their relative ease of 

learning. Specifically, more regular and transparent languages with more 

systematic form-to-meaning mappings are considered to be easier to learn. 

As such, we hypothesized that linguistic structure would positively affect 

learnability, so that languages with more systematic grammars would be 

better learned. We expected that this learning advantage would be 

reflected first and foremost in higher reproduction accuracy during the 

memory test, and potentially also in a faster improvement in performance 

over time during the learning phase. Additionally, we reasoned that 

systematic and rule-governed languages would facilitate clear and 

productive labeling (Ackerman & Malouf, 2013; Kirby, 2002). As such, 

we predicted that more structured languages would be more easily 

generalizable to new meanings. To this end, we tested participants’ ability 

to generalize the language they learned in order to produce new labels for 

unseen events. Finally, we hypothesized that community size may have 

an additional effect of learning. Specifically, we considered the possibility 

that, even when equating for the degree of structure, languages that 

evolved in bigger groups may be better fitted to learners’ individual 

biases, and would potentially be easier to learn across all structural levels. 

This hypothesis was motivated by studies showing that bigger groups 

generated visual signs (i.e., drawings) that, despite being equally efficient, 

were processed and learned faster by new individuals, and were overall 



188 

 

better suited for production and comprehension (Fay et al., 2008; Fay & 

Ellison, 2013).  

Results from the confirmatory analysis showed that the relationship 

between language learnability and linguistic structure followed a U-shape 

(Fig. 2A): although participants’ mean accuracy was, as predicted, highest 

when learning highly structured languages, it was poorest when learning 

medium structured languages, and not when learning low structured 

languages (as one would expect if the relationship between structure and 

learning was simply linear). That is, learners struggled most with learning 

languages that were partly or semi-structured, i.e., languages that 

contained some patterns but also multiple irregulars and inconsistencies. 

This pattern, however, was not fully replicated in a similar exploratory 

model, where we examined participants’ learning by using a more subtle 

measure of reproduction fidelity (i.e., production similarity) that reflected 

the degree of similarity between the labels participants learned and the 

labels they eventually reproduced. Results from this model also supported 

a non-linear relationship between structure and learnability, albeit an 

exponential relation and not U-shaped: participants produced more similar 

labels to those they learned as linguistic structure increased, and especially 

so for highly compositional languages (Fig. 2B). In other words, the 

benefit of linguistic structure for learning was proportionate to the level 

of structure in the language, and increased as structure increased. Similar 

findings were obtained from a set of exploratory analyses that investigated 

participants’ learning trajectories over time: participants’ performance 

was better on more structured languages across all learning blocks, and 

gradually improved over time. Moreover, the reproduction accuracy of 

participants who learned highly structured languages improved more 

quickly.  

Together, our results confirm that a higher degree of linguistic structure 

is advantageous for language learning, and that languages with highly 

structured grammars are learned faster and more accurately. These 

findings are in line with our main prediction, and corroborate the 

postulated link between the degree of systematicity in the language and 

its relative learnability. This link is important for theories of language 

evolution and language diversity, which rely on it as an explanatory 

mechanism. Although the non-linear nature of the relationship between 

language structure and language learnability warrants further explanation, 

our results do support a causal relationship between them: highly regular 

and systematic morphologies indeed seem easier to learn. This conclusion 

has broader implications for theories on second language learning and 
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language acquisition, and strengthen the premise that not all grammatical 

systems are equally easy to acquire. As such, our study supports the claim 

that cross-linguistic differences in structural complexity and 

morphological opacity may potentially result in different learning 

trajectories and in different proficiency levels for adult L2 learners 

learning different languages.  

Our results also show that systematic structure is advantageous for 

making generalizations: in an exploratory analysis, we found that 

participants generalized significantly more as linguistic structure in their 

input language increased. Specifically, participants who learned more 

systematic languages created new labels that matched the patterns of their 

input language more closely. This finding shows that, in addition to being 

beneficial for learning, an important advantage of linguistic structure is its 

productivity. That is, learners can exploit transparent, systematic and 

regular patterns found in their language to make informed guesses about 

unknown forms of words based on exposure to known forms, allowing 

them to effectively produce new labels for unfamiliar meanings.  Indeed, 

the advantage of highly structured languages for generalization was also 

evident when looking at participants’ self-reported behavior in the final 

questionnaire: all participants learning languages with systematic 

structure indicated that they “knew” how to label the new scenes in the 

generalization test, and some of them did not even notice that these scenes 

were not seen before. However, given that these results were based on a 

preliminary, exploratory measure, they should be taken with caution and 

require further experimental validation. 

Notably, formally quantifying participants’ generalization behavior 

was not a trivial task. In particular, it was not clear what counts as a 

generalization in low structured languages, which had no obvious 

structure. For example, if there is no systematic label for scenes with the 

same shape (e.g., different scenes with Shape 1 can be called mipo, lex, or 

fuit), then a label for a new scene with Shape 1 can be potentially 

generalizable and referred to using three different homonyms. But are all 

these homonyms equally good generalizations, or is the best 

generalization achieved when the chosen homonym is also the label for 

the closest scene in terms of direction? Since there was no prior measure 

of generalizations we could rely on, it was not clear what the right way to 

measure it would be. In a first attempt to explore the complex realm of 

generalizations in artificial languages, we chose to use a metric that 

quantifies generalization behavior as the similarity between participants’ 

new labels and their own productions during the final memory test, and 
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normalized based on the best and worst observed generalization behavior 

in a given input language condition. This normalization procedure was 

implement in order to account for the fact that different input languages 

allowed for different degrees of generalizations: a language with little to 

no structure naturally permits fewer generalizations (as there are no clear 

rules) compared to a highly structured language. We chose to compare 

participants’ productions in the generalization test to their own 

productions in the memory test (and not to the original input language) 

since we wanted to avoid a confound between learning accuracy and 

generalization behavior, i.e., not to bias against people who learned the 

input poorly: if a participant learned the input language only partially but 

nevertheless generalized based on what they did learn, comparing their 

productions to the input language would have yielded a low score despite 

their ability to generalize. Therefore, participants’ generalization behavior 

was based on their own final productions of the input language. 

While we believe this measure reflects participants’ generalization 

behavior, it is important to acknowledge that it suffers from several issues 

that may render it biased or problematic. For example, it is not clear what 

the overall distribution of possible generalization scores is, and whether 

is it similar across different input language conditions. Moreover, the 

scores were normalized with respect to minimal and maximal values 

achieved by participants in our experiment, rather than by the absolute 

minimal and maximal generalization values, since it was not clear what 

these values would be or how to calculate them. Nevertheless, we believe 

the achieved maximal and minimal values obtained by participants were 

close to these theoretical absolute values: the best performing participant 

in the high-structure condition generalized the compositional system 

perfectly, and the worst performing participant in the low-structure 

condition seemed to have produced completely random labels. However, 

it is possible that the maximal generalization value achieved by one 

participant in a given condition was actually not within the range of 

generalization scores available to other participants in that condition, that 

is, that the maximal possible value for participant X was not the maximal 

possible value for participant Y. This is quite likely given that 

participants’ generalization scores were based on their own productions 

in the final test, which differed across participants. One way to address 

these problems in future work would be to develop a new, unbiased 

measure of generalization behavior, for example, one that is based on 

simulations of random labels or on ratings by naïve participants.  
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In addition to being beneficial for individuals’ generalization behavior, 

high structure languages were advantageous for communication between 

individuals. When we examined the new labels produced for unseen 

events by different participants who learned the same language, we found 

that participants who learned more structured languages produced labels 

that were significantly more similar. That is, systematic structure led 

different participants to produce similar labels for new meanings without 

previously interacting with each other. This finding suggests that 

systematicity allows strangers to converge effortlessly: strangers who 

never interacted before could potentially communicate successfully about 

new events – and immediately be understood. This finding supports the 

postulated mechanism behind larger communities’ tendency to develop 

more systematic languages (Raviv et al., 2019b). Small communities 

typically have tightly connected networks of individuals who are highly 

familiar with each other, and can rely on common ground and shared 

history when communicating about novel events. In contrast, bigger 

communities have more strangers (i.e., individuals who don’t 

communicate regularly or never interact), who cannot rely on shared 

history to support mutual understanding. Nevertheless, they need to be 

able to understand each other when interacting for the first time. As such, 

it was argued that members of bigger communities are under a stronger 

pressure to develop transparent, predictable, and systematic structures that 

aid convergence and allow strangers to successfully communicate (Wray 

& Grace, 2007). Our findings suggest that the benefits of systematic 

linguistic structure go beyond learnability and may aid communication 

and productivity in general language use.  

As for the possible contribution of group size beyond linguistic 

structure, we found no evidence that languages that developed in bigger 

groups differed from languages that developed in small groups. Across all 

measures and all analyses, we found no significant effect of group size on 

learnability or generalization behavior. Although we cannot draw strong 

conclusions from this null result, it suggests that once the level of 

linguistic structure is controlled for, there may be no additional benefits 

to learning languages created by big groups. In other words, the most 

relevant difference between big and small communities could, in fact, be 

their tendency to develop different degrees of systematicity (Raviv et al., 

2019b). 

However, the lack of significant group size effects in our study might 

not necessarily reflect the state of affairs in natural languages: it is 

possible that community size does affect language learnability, but that 
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we did not capture this difference. One possibility is that big groups’ 

languages only show a learning advantage once all members of the group 

have fully converged on one single language, but that individuals’ 

variations do not possess the same advantage. Specifically, the selected 

input languages used in this experiment originated from individual 

members within groups tested by Raviv et al., (2019b). While the 

languages of members of the same group were similar to each other, they 

were not identical. It is possible that if groups were fully converged on 

one single language, or if we had selected only labels that were shared 

across all group members, these languages might have encompass some 

other features that would have make them easier to learn. 

Another reason why we cannot draw strong conclusions from these null 

results is that we intentionally chose input languages that were similar in 

terms of their structural properties. Specifically, we made sure that in the 

same structure bin, languages from big and small groups would be 

comparable in terms of their descriptive grammatical properties, such as 

having a similar type of form-to-meaning mapping and a similar number 

of irregulars. It is possible that by doing so, we selected languages that 

were more similar in terms of their structure than the average big/small 

group languages, and were therefore not representative of their group size 

origin. This is rather likely when considering the skewed distribution of 

big vs. small group languages across structure bins in the full set of 144 

final languages. For example, there were very few small-group languages 

in the highest structural bin (3 out of 23 languages), meaning that (a) our 

choice of a small-group language in that bin was highly limited, and (b) 

the selected big-group language from that bin had to match the properties 

of this “rare” small-group language, and may therefore not be the most 

“representative” big-group language. Similarly, there were relatively few 

big-group languages in the mid-low structure bin (2 out of 9 languages). 

It is possible that a random selection of input languages from the full set 

of final languages (or, alternatively, using the full set of final languages) 

would have yielded a different result. 

Moreover, when selecting the input languages, we controlled for other 

linguistic features that may make languages more or less learnable, above 

and beyond their structural properties. Specifically, we chose languages 

that were similar in terms of their average word length (i.e., the average 

number of characters in the language’s labels) and in their confusability 

scores (i.e., the average similarity between all labels in a given language). 

Given that longer and more confusable words are assumed to be harder to 

learn (Laufer, 2009; Papagno & Vallar, 1992; Willis & Ohashi, 2012), we 
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chose our input languages from the lower half of the distributions of these 

two measures, i.e., languages with relatively short words (i.e., between 4 

and 7 characters) and with relatively low confusability (i.e., between 0.14 

and 0.37). In addition to restricting our possible pool of languages to select 

from, these selection criteria may have incidentally washed away relevant 

differences between the two group size conditions, which could have 

subsequently affected the languages’ processing difficulty and overall 

learnability. In other words, it is possible that word length and 

confusability are some of the features that differentiate the languages 

created by big and small groups, and that by controlling for them we 

eliminated relevant variation. If this is indeed the case, then we may find 

group size effects when these two measures are varied systematically 

according to their distributions across small and larger groups, and/or 

when they serve as predictors of accuracy rather than controls. 

To look into this possibility, we examined the distributions of average 

word length (Figure 6) and average confusability (Figure 7) in the full set 

of 144 final languages document by Raviv et al., (2019b). We found that 

languages created by small groups generally had shorter and less 

confusable words compared to languages created by bigger groups, except 

for when they were highly structured: although the observation for this 

bin relies on just a handful of small-group languages, it suggests that 

highly structured languages created by small groups actually tended to 

have longer and more confusable words. This pattern may suggest that (a) 

small groups’ languages are easier to learn overall (counter to our 

predictions) given their shorter and less confusable words, but that (b) 

highly structured languages of big groups are more learnable. 
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Figure 6. Density of average word length values in the full set of 144 final languages created by 

big and small groups in Chapter 3, faceted by structure bin (1=low structure, 5=high structure). 
Since there were exactly two languages in the lowest structure bin (one big group language and 
one small group language), the density for each group size condition in this bin is exactly 1, with 
no spread. 

 

 

 

 

 

 

 

 

 

 

  

 

 
Figure 7. Density of average confusability scores in the full set of 144 final languages created by 
big and small groups in Chapter 3, faceted by structure bin (1=low structure, 5=high structure). 
Since there were exactly two languages in the lowest structure bin (one big group language and 
one small group language), the density for each group size condition in this bin is exactly 1, with 
no spread.   

 

 



195 

Interestingly, it is also possible that the effects of word length and 

confusability on language learnability are modulated by the degree of 

linguistic structure in the language. Specifically, the effect of word length 

(i.e., that longer words are harder to learn) may be reduced or even 

eliminated in highly structured languages. If compositional structure 

reduces the memory load by making languages more compressible (i.e., 

given that each word is created by combining repeating morphemes), it 

may matter less how long the words are in total, or how long the 

morphemes are. That is, structured languages with short and long words 

may be just as easy to learn. Similarly, the effect of confusability (i.e., that 

phonologically similar words are harder to learn) may be modulated by 

structure. On one hand, compositional languages are potentially more 

confusable than holistic languages given the repetitions of morphemes, 

but this increase in confusability may nevertheless be advantageous for 

learning given the increase in systematic structure. On the other hand, the 

difficulty in learning a confusable language may actually be amplified in 

highly structured languages: If a compositional language has highly 

similar words, the morphemes corresponding to different meanings are 

relatively similar in form (e.g., the prefix for Shape 1 is very similar to the 

prefix of Shape 2). If this is the case, such similarity could cause severe 

problems for learning the mappings between words and meanings in the 

language. 

Importantly, the relationship between linguistic structure and language 

learnability was not a straight-forward, linear relationship. Although we 

did predict that this relationship may be non-linear (e.g., that it would be 

stronger or weaker as structure increases), we were not expecting a U-

shape pattern where completely unstructured languages are easier to learn 

than medium structured languages. Rather, we hypothesized that holistic 

languages with no systematic structure whatsoever would be harder to 

learn than languages that exhibit some systematic structure, i.e., that any 

increase in structure would be advantageous for learning.  

Counterintuitively, participants’ final binary accuracy suggested that the 

hardest languages to learn were those that exhibit some structure, as 

opposed to none. Even when looking only at participants’ final production 

fidelity, it was not the case that completely holistic and unstructured 

systems were harder to learn. Rather, low-structured languages and 

medium-structured languages showed similar production fidelity. One 

way to account for these unexpected findings is that the nonlinear pattern 

does not actually hold in natural languages, and does not faithfully 

represent speakers’ true learning biases. Notably, real-world natural 
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languages are never truly holistic or structure-free: there are no known 

languages which are fully suppletive or consist only of unpredictable 

inflections (Ackerman & Malouf, 2013). Instead, languages are inherently 

quasi-regular, and typically consist of some regular and transparent 

patterns alongside pockets of opacity and exceptions to the rule (Kempe 

& Brooks, 2008). Since the low-structure languages in our experiment do 

not really resemble natural languages, it is possible that the non-linear 

relationship we observed between language learnability and linguistic 

structure was merely a quirk caused by our artificial choice of stimuli. If 

natural languages realistically range only from medium-structure to high-

structure, then the actual relationship between systematicity and learning 

in the real-world may indeed be linear. 

While it is possible that a non-linear relationship between language 

learnability and grammatical structure is less relevant for natural language 

environments, the nonlinear result (i.e., that partly structured languages 

are not easier to learn than unstructured languages) is still puzzling. In 

particular, our original expectation was based on findings from the two 

artificial language learning studies that examined the benefit of systematic 

sound-mapping for learning (Brooks et al., 1993; Monaghan et al., 2011). 

In those studies, languages with partially consistent mapping between 

phonological features and noun classes were learned better than 

completely arbitrary languages. Importantly, the stimuli used in those 

studies can also be seen as unrepresentative of natural languages, given 

that all natural languages have some degree of iconicity and are never 

completely arbitrary (Perlman, Little, Thompson, & Thompson, 2018). 

Yet despite the equally artificial nature of their stimuli, those studies 

suggested that partial systematicity did aid learning. As such, the 

unnaturalness of fully unstructured languages does not exempt us from 

explaining this unpredicted pattern and the discrepancy from previous 

studies. 

A reasonable explanation for the nonlinear relationship we found 

between learnability and systematicity is that, although partial structure 

can provide some regularity in the form of statistical cues for meaning, it 

might also result in more uncertainty and a high cognitive load for 

learners. Specifically, the inconsistent patterns in medium structured 

languages may be similarly or even more confusing to learn than a set of 

unrelated words given (a) participants’ learning strategies, and (b) cue 

validity. First, let us consider that learners are trying (explicitly or 

implicitly) to build hypotheses about potential linguistic rules 

(MacWhinney, 1978). This idea is supported by studies showing that 
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speakers automatically attempt to decompose pseudo-words and non-

words into smaller components in a lexical similarity task (Post, Marslen-

Wilson, Randall, & Tyler, 2008): any stimulus that can be potentially 

interpreted as ending in an inflection, whether real or not, is responded to 

more slowly than an unambiguous stimulus. Moreover, adults tend to 

assume that unpredictable variation is, in fact, meaningful, and tend to 

treat random patterns as if they rely on factors not yet discovered (Perfors, 

2016). Such findings suggest that speakers try to figure out the underlying 

structure of word forms, and that morphotactic ambiguity can therefore 

elicit processing costs and learning difficulties when these hypotheses are 

not met. Furthermore, it implies that participants’ learning strategy may 

differ across conditions. Learners of highly systematic languages might 

start out with an item-based learning strategy and initially memorize 

individual words, but, over time, could detect consistent patterns in the 

language that regularly associate part-words with semantic features, and 

consequently switch to forming rules and abstractions (Kempe & Brooks, 

2008). In contrast, learners of completely unstructured languages may 

soon realize that word forms appear to be random, and that there are no 

meaningful or useful patterns in the language. By hypothesis, they then 

may simply “give up” looking for rules, and focus on memorizing the 

holistic lexicon in an item-based manner (i.e., rote learning). But since 

medium structured languages contain some partial patterns (e.g., shapes 

have consistent markings, but angles don’t) and/or some inconsistent 

patterns (e.g., some morphemes appear with a given angle only 

sometimes), learners may be motivated to keep looking for systematic 

cues and abstractions, even when these do not exist. The fact that their 

input actually does not contain clear and systematic governing rules may 

lead to confusion and even frustration, and could require increasing effort. 

Even if one abandons a rule-based learning model in favor of associative 

learning, i.e., learning as gradual strengthening of the association between 

co-occurring elements of the language, the absence of valid and reliable 

cues would still hinder learning (Kempe & MacWhinney, 1998).  

In any case, the finding that the relation between linguistic structure 

and learnability is not linear (i.e., so that holistic languages are not 

necessarily more difficult to learn) poses a potential problem for iterated 

language learning models, which rely on a  learning advantage of some 

structure compared to none (Kirby et al., 2008, 2015; Smith, 2011). 

Specifically, studies on the cultural evolution of compositionality via 

iterated learning have shown that compositional linguistic structure 

gradually emerges over time from a state of a holistic lexicon. Crucially, 
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this slow accumulation in structure is typically attributed to learnability 

pressures, i.e., to the difficulty in memorizing a completely unstructured 

lexicon. Accordingly, such models assume that the learning advantage 

provided by linguistic structure is already present in the early stages of 

language evolution, and facilitates the emergence of linguistic structure to 

begin with. One way to reconcile these claims with our findings is to argue 

that creating linguistic structure has additional benefits to language users, 

above and beyond the benefits to learning. Indeed, our study suggests that 

this is the case: highly systematic languages are favored not only because 

they are more learnable, but also because they are predictable and allow 

for clear generalizations and quick convergence. This idea resonates with 

early iterated learning models (Kirby, 2002; Smith, Brighton, & Kirby, 

2003), which stress the benefit of linguistic structure for generalizations: 

although agents are usually not exposed to the entire repertoire of the 

language, they must be able to produce labels to new events despite their 

partial exposure.  

Finally, the relation between morphological structure and learning 

difficulty may differ in strength across different populations of learners. 

In particular, the current study was based on adult participants, who may 

differ from children in their learning biases (Dale & Lupyan, 2012; 

Hudson Kam & Newport, 2005; Lupyan & Dale, 2015; Nettle, 2012). The 

possible differences between children and adults’ language learning 

preferences are especially relevant given the postulated role of adult 

second-language learners in simplifying morphologically complex 

languages (Dale & Lupyan, 2012; Lupyan & Dale, 2015). As discussed in 

the Introduction, the tendency of big communities to have simpler 

languages is often attributed to the higher proportion of adult second-

language learners in bigger communities. This argument is based on the 

assumption that adults indeed differ from children in their learning biases, 

which may lead to different learnability pressures across age groups. For 

example, it has been suggested that children, but not adults, benefit from 

the existence of redundant cues, even though such redundancy is typically 

considered to increase linguistic complexity. If this suggestion is true, 

more complex languages may indeed be harder to learn for adult learners, 

but may be equally learnable (or even more learnable) for children. In 

other words, it is possible that the advantage of systematic structure 

demonstrated in this study does not hold for child learners.  

However, the idea that children’s learning biases are radically different 

from those of adults, so much so that they would not benefit from 

systematic linguistic structure, seems unlikely for several reasons. First, 
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the postulated advantage of learning a more systematic language is based 

on general memory constraints and cognitive principles of 

compressibility, which should be present in learners across all ages. If 

anything, the benefit of systematic structure may even be greater in 

children given their lower working memory capacity (Gathercole, 

Pickering, Ambridge, & Wearing, 2004). That is, children should benefit 

from systematicity just as much as adults, if not more. Supporting this 

idea, children’s acquisition of more morphologically complex languages 

is typically argued to be slower than languages with simpler 

morphologies, suggesting that children’s language learning is indeed 

affected by the morpho-syntactic properties of their language (Hengeveld 

& Leufkens, 2018; Slobin, 1985). Second, although adults are typically 

viewed as being inferior in learning a second language compared to 

children (DeKeyser, 2005), the differences between children and adults 

with respect to language learning outcomes do not necessarily reflect 

fundamental differences in their learning biases. Rather, adults’ learning 

difficulty is often attributed to language-external factors such as their 

meta-linguistic awareness and prior knowledge, their learning strategies 

(implicit vs. explicit), the type or quantity of input they are exposed to, 

their motivation and social immersion, etc. (Birdsong, 2006; DeKeyser, 

2013). Supporting this point, children and adults were shown to be equally 

affected by the degree of systematic mapping between phonological forms 

and grammatical categories in an artificial language learning task, with 

both age groups significantly benefitting from having systematic cues to 

indicate noun classes (Brooks et al., 1993). Additionally, the only study 

that compared children and adults’ performance on iterated language 

learning reported similar learning patterns across age groups, despite 

children’s overall inferior performance (Raviv & Arnon, 2018). Although 

there is anecdotal evidence that children can benefit from rich inflectional 

environments (Xanthos et al., 2011) and from redundant cues (Tal & 

Arnon, 2019), as long as there is no direct empirical evidence to support 

the claim that only children benefit in this way, there is no reason to 

assume that the learning advantage of more systematic languages does not 

hold across the lifespan.  

 

Conclusions 

The current study tested the acquisition of different artificial languages 

that varied in their degree of systematic structure and in their community 

size origin. We found that more linguistic structure generally benefited 
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language learning, with highly structured languages were learned fastest 

and most accurately. Interestingly, the relationship between language 

learnability and linguistic structure was not straight forward: high 

systematicity was indeed advantageous for learning, but learners did not 

seem to benefit from partly or semi-structured languages (i.e., languages 

that contained some patterns but also multiple irregulars and 

inconsistencies). We also found Community size did not affect 

learnability: languages that evolved in big and small groups were equally 

learnable. Crucially, our results suggest that systematic structure is not 

only beneficial for learning, but also for generalizations and convergence. 

Participants who learned more structured languages were better at 

generalizing the language they learned to new, unfamiliar meanings. 

Moreover, different participants tended to create similar new labels as 

structure increased. That is, systematicity facilitated convergence and 

mutual understanding between strangers. 
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Appendix A: Power Analysis 

The sample size for our study was determined by conducting a power 

analysis for both a linear and a polynomial effect of Structure Score on 

binary accuracy (1 for accurate, 0 for inaccurate). We based our power 

simulations for this analysis on scaled down effect sizes that were 

estimated on data collected in a pilot study. Additionally, we computed 

power for two hypothesized effects of Group Size on binary accuracy. 

Here we explain the rationale and procedure of the power analysis, as 

well as the resulting plots that we used to determine our study’s sample 

size. The simulations and analyses was performed in R (v. 3.5.0; R Core 

Team, 2016) using the simr package (v. 1.0.5; Green & McLeod, 2016). 

The full script for running the simulations and power analyses is available 

at https://osf.io/abvcg/, and includes detailed comments describing the 

procedure. The full output of our simulation run is available at 

https://osf.io/htvqy/. 

 

Effect of structure 

Our hypothesized effects of structure on binary accuracy were based on 

results from a pilot study, in which we tested three out of our ten input 

languages (S1, S3 and S5), with two participants per language. We 

expected that the effect of Structure on binary accuracy would either be a 

linear or a 2-degree polynomial effect, so two separate generalized linear 

mixed effect models were fitted to the pilot data accordingly. 

Figure 1 visualizes the data obtained in the pilot experiment and the 

estimates of the two models for the fixed effects of Structure. We used 

these models to simulate the data for the rest of the analyses after scaling 

down the effect sizes by factors of 0.1, 0.15 and 0.2. Table 1 lists the 

effects as estimated by the pilot model, as well as the scaled down effect 

sizes for each scaling factor.  

 

https://osf.io/abvcg/
https://osf.io/htvqy/
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Figure 1. Linear and 2-degree polynomial effects of Structure on binary accuracy, as predicted by 
the linear mixed-effect models fitted on the pilot data. Mean accuracy scores per participant are 
visualized as black dots. 

 

Table 1: Model estimates for the fixed effect of Structure on binary 

accuracy as fitted on the pilot data, as well as the scaled down effects used 

for our power simulations, by the three different scaling factors (0.1, 0.15 

and 0.2). 

 Pilot model 

estimate 

0.1-scaled 

effect 

0.15-scaled 

effect 

0.2-scaled 

effect 

Linear model 13.4 1.34 2.01 2.68 

Polynomial model,  

linear term 
14.6 1.46 2.19 2.92 

Polynomial model, 

quadratic term 
18.5 1.85 2.78 3.70 

 

 

Effect of group size 

We expected the potential effect of group size to be positive, i.e., that 

participants learning languages created by bigger groups would obtain 

higher accuracies on the memory test. To simulate an effect of Group Size, 

we scaled the predicted mean accuracy of the big group languages by a 

factor of either 1.05 or 1.10, simulating an effect of either 5% or 10% 

increased accuracy respectively. We chose these effect sizes as we 

estimated them to be the smallest possible effects on accuracy that would 

still be reasonably measurable with our planned experimental setup. 
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Simulation procedure 

Power for the effect of group size was calculated for sample sizes ranging 

from 2 participants to 15 participants per each input language condition 

(i.e. from 20 to 150 participants in total), and included all combinations 

of the scaled effects of structure and group size. For each of these 84 

possible settings, the simulation was run 1000 times to calculate the rates 

of correctly detecting each specified effect using linear mixed effect 

models that were equivalent to the confirmatory analysis for binary 

accuracy used for our experimental data. 

In the case of structure, power was estimated for both detecting an 

effect and preferring it over the other effect type in model comparison 

(e.g. correctly detecting a polynomial effect on data simulated from a 

polynomial model, and preferring the 2-degree polynomial effect over the 

linear effect). To estimate power for the effect of group size, we calculated 

the average rate of correctly detecting an effect of group size across all 

effect types and sizes of structure. 

 

Power simulation results 

Our obtained estimates of statistical power varied per simulation setting 

(i.e., sample size, effect size, and effect type). Below we visualize the 

power curves for the two different effect types of Structure, as well as the 

effect of Group Size, for different effect sizes and sample sizes. The script 

for reproducing these graphs is available at https://osf.io/ywat5/, and the 

full results of these simulations are available at https://osf.io/htvqy/. 

Overall, the results show that power varied according to effect size, but 

rapidly increased when the effect size was higher than our smallest 

simulated effect size (scaling of 0.1). 

Figure 2 visualizes the statistical power for finding a significant effect 

of Structure on binary accuracy and for preferring the model with the 

linear fixed effect over the model with the polynomial fixed effect (in both 

cases with α = 0.05) given that the data was generated by a linear model. 

Figure 3 visualizes the statistical power for finding a significant effect of 

Structure on binary accuracy and for preferring the model with the 

polynomial fixed effect over the model with the linear fixed effect (in both 

cases with α = 0.05) given that the data was generated by a polynomial 

model. Figure 4 visualizes the statistical power for finding a significant 

effect of Group Size on binary accuracy (α = 0.05) given that the data was 

https://osf.io/ywat5/
https://osf.io/htvqy/
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generated with an either 5% or 10% increase in accuracy for bigger 

groups. 

Based on these results, we decided on a sample size of 10 participants 

per input language condition, corresponding to 100 participants in total. 

This sample size provided us with reasonable statistical power (>60%) 

even for very small effect sizes. Importantly, the effect sizes of Structure 

on binary accuracy estimated by the models fitted on our actual 

experimental data were higher than our largest simulated effects (scaling 

of 0.2). As such, we are confident that the statistical power for our 

confirmatory analysis was over 80%. 

 

 

 

 

Figure 2. Power curves as estimated based on our simulations for a linear effect of Structure on 
binary accuracy. Shadings indicate the 95% binomial confidence intervals. Depending on effect 
size the power for our chosen sample size of 100 participants is approximately between 60% and 
90%. 

 

 

0.00

0.25

0.50

0.75

1.00

50 100 150

Number of participants

P
o

w
e

r

Effect scaling

0.1

0.15

0.2



205 

 

Figure 3. Power curves as estimated based on our simulations for a second-degree polynomial 
effect of Structure on binary accuracy. Shadings indicate the 95% binomial confidence intervals. 
Depending on effect size the power for our chosen sample size of 100 participants is approximately 
between 70% and 80%. 

 

 

 

Figure 4. Power curves as estimated based on our simulations for 5% vs. 10% effect of 
Group Size. Shadings indicate the 95% binomial confidence intervals. Depending on effect size 
the power for our chosen sample size of 100 participants is over 60%. 
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Appendix B: Input Languages 

 

This appendix was adapted from a similar pre-registered file 

(https://osf.io/ya2ps/) and includes a detailed description of each of the 10 

input languages used in the experiment. 

Each language is characterized by a short description, as well as its 

structure score, confusability score, and average word length.  

 

Each language is accompanied by a “dictionary” for interpreting the 

language on the right. Different box colors represent the four different 

shapes which appeared in the scenes, and the grey axes indicate the 

direction in which the shape was moving on the screen. Different font 

colors represent different meaningful part-labels, as segmented by the 

authors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://osf.io/ya2ps/
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Low structure bin (1) 
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Low-Mid structure bin (2) 
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Medium structure bin (3) 
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Mid-High structure bin (4) 
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High structure bin (5) 
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Appendix C: Models 

 

Final Memory Test 

 

(1) Binary Accuracy (confirmatory) 

Accuracy ~ poly(centered.Structure,2) + Condition + (1 | Item) + (1 | 

Participant) 

 

(Model with 2-degree polynomial favored: ∆AIC = 16.4, p<0.0001) 

 

 

(2) Production Similarity (exploratory) 

ProdSimilatity ~ poly(centered.Structure,2) + Condition + (1 | Item) + (1 

| Participant) 

 

(Model with 2-degree polynomial favored: ∆AIC = 3.52, p=0.01877) 
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Learning Trajectory 

 

(3) Binary Accuracy Over Time (exploratory)  

Accuracy ~ centered.Block * Condition + centered.Block * 

poly(centered.Structure,2)  +  (1 | Item) + (1 + centered.Block | 

Participant) 

 

(Model with 2-degree polynomial favored: ∆AIC = 13, p=0.0002) 

 

 

 

(4) Production Similarity Over Time (exploratory)  

ProdSimilatity ~ centered.Block * Condition + entered.Block * 

centered.Structure + (1 | Item) + (1 + centered.Block | Participant) 

 

(Model with 2-degree polynomial not favored: ∆AIC = 1.3, p=0.26) 
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(5) Guessing Similarity Over Time (exploratory)  

GuessSimilatity ~ centered.Block * Condition + centered.Block * 

centered.Structure + (1 | Item) + (1 + centered.Block | Participant) 

 

(Model with 2-degree polynomial favored: ∆AIC = 9.9, p=0.0009) 

 

 

Generalization Behavior 

 

(6) Generalization Score (exploratory)  

Normalized.Generalization ~ Condition + centered.Structure 

 

(Model with 2-degree polynomial not favored: ∆RSS = 0.0351. p=0.34) 

 

 

(7) Generalization Convergence (exploratory)  

Mean.Convergence ~ Condition + centered.Structure + (1 | Item) 

(Model with 2-degree polynomial not favored: ∆AIC = 0.61. p=0.23) 
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6   Summary and General Discussion 

 

Why are there so many different languages in the world? How much do 

languages differ from each other in terms of their linguistic structure and 

their learnability? And how do such differences come about? 

This doctoral thesis attempted to shed light on the social origin of 

language diversity by experimentally examining the live-formation and 

acquisition of new languages that were created under different social 

conditions. Specifically, it looked at how real-world communicative 

pressures can give rise to systematic, compositional languages, and tested 

how this process is shaped by the fact that languages evolve in different 

communities, with different population sizes and different types of social 

networks. It also examined whether languages that evolved under 

different social conditions differ from each other in how easily they are 

learned and used.   

This chapter summarizes the main findings of the preceding 

experimental chapters, and reflects on their main themes and broader 

implications. It also discusses methodological issues and suggests 

possible directions for future research.  

 

1   Summary of main findings 

Chapter 2 tested the prediction that systematic compositional structure 

can emerge during communication as a result of communicative needs. 

Previous work suggested that communication alone is insufficient for 

compositionality to emerge (Kirby et al., 2015), and that languages only 

develop systematic structures when they are also subjected to a learning 

pressure (i.e., when they are transmitted across multiple generations of 

learners). However, we hypothesized that natural properties of language 

use can give rise to similar pressures and to the creation of structured 

languages even without generational transmission. Specifically, we 

predicted that two aspects of real-world communication, namely, 

interaction with multiple people and interaction about an expanding 

meaning space, would lead to the emergence of compositional languages 

in closed groups. To test this prediction, we introduced a novel group 

communication paradigm in which different micro-societies comprised of 

four participants interacted using an artificial language they created on-

the-go. Participants interacted with all other members of their group in 
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alternating pairs, and needed to refer to and discriminate between more 

and more novel meanings (i.e., dynamic scenes) over time. We tested 

whether groups developed compositional languages with consistent form-

to-meaning mappings, and examined the relative individual contribution 

of each of the two communicative pressures in the design (i.e., interaction 

with multiple people and an expanding meaning space) using a meta-

analysis. We also characterized the emerging languages in terms of 

convergence, stability, and communicative success. 

The results of this chapter showed that the languages that evolved in 

micro-societies became significantly more structured over the course of 

multiple interactions, and developed compositionality despite the absence 

of generation turnover. In particular, the groups in this experiment 

developed languages in which different affixes were systematically 

combined to express different meanings (e.g., scenes’ shape or direction 

of motion). Additionally, the emerging languages became more shared 

across different members of the group, more stable, and more 

communicatively successful over time. These findings show that 

systematic languages can evolve under communicative pressures, and that 

new learners are not necessary for the formation of grammatical structure 

within a community. Results also showed that having multiple people to 

interact with was the main driver for the emergence of compositionality 

in this paradigm. This result implied that differences in the number of 

interaction partners (i.e., group size) can affect the formation of linguistic 

structure and the degree of systematicity in the evolving languages. 

Specifically, it suggested that larger communities may be under a stronger 

pressure for systemization and generalization, and may therefore develop 

more compositional languages. 

Chapter 3 directly tested the role of community size in the formation 

of languages by contrasting the performance of small and big groups using 

the same group communication paradigm described in Chapter 2. 

Specifically, it compared the languages that emerged in micro-societies 

comprised of either four or eight members in order to evaluate the 

prediction that bigger groups would create more structured languages. 

This prediction was motivated by cross-linguistic correlational studies and 

by theories of language change, which suggested that languages spoken 

in big communities tend to have more systematic and transparent 

grammars (Lupyan & Dale, 2010; Trudgill, 2002, 2009; Wray & Grace, 

2007). While these findings are often attributed to factors that are 

naturally confounded with a large community size (i.e., a high proportion 

of non-native learners and/or more interaction with strangers), we 
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hypothesized that the sheer number of people in the community could 

already affect the formation of languages in meaningful ways, and help 

explain the observed patterns of linguistic diversity. This chapter also 

tested two potential factors that may underlie group size effects, namely 

differences in input variability and differences in shared history. 

The results of this study showed that larger groups indeed developed 

more systematic languages over time, and did so faster and more 

consistently than small groups. The results further suggested that this 

increase in linguistic structure was driven by the greater input variability 

in larger groups. Specifically, more input variability introduces a greater 

communicative challenge, which members of larger groups needed to 

overcome in order to communicate successfully. Consequently, larger 

groups were under a stronger pressure to generalize their languages and 

favor systematic variants, which could in turn ease mutual understanding 

and facilitate convergence and effectively reduce input variability. 

Moreover, results showed that small groups varied more in their linguistic 

behaviors, while larger groups behaved relatively similarly to each other. 

We therefore suggested that smaller communities were more susceptible 

to random events (i.e., drift), and may therefore exhibit less consistent and 

rarer behaviors (Spike, 2017). Together, the results of this chapter showed 

that community size had a unique and causal influence on the formation 

of new languages, and provided the first experimental evidence that larger 

communities create more systematic languages. They also supported the 

claim that a growth in early humans’ population size may have been one 

of the main drivers for the evolution of compositional and systematic 

grammars from a state of an unstructured protolanguage (Dunbar, 2017). 

Chapter 4 investigated the role of social network structure in the 

process of language emergence, using the same paradigm as in Chapters 

2 and 3. Here, we compared equally sized groups of eight members in 

three different network conditions: fully connected, small-world, and 

scale-free. These network configurations differed in their degree of 

connectivity (i.e., how many people each participant interacted with) and 

in their homogeneity (i.e., whether all participants were equally 

connected). Our main prediction was that sparsely connected networks 

(small-world and scale-free networks in this experiment) would develop 

more systematic languages compared to a dense fully connected network. 

This prediction was motivated by work on social network structure and 

theories on language typology, which suggest that weak ties in sparser 

networks promote diversity and consequently the creation of complex 

innovations (Derex & Boyd, 2016; Granovetter, 1983; Lou‐Magnuson & 
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Onnis, 2018; Trudgill, 2002, 2009). We hypothesized that sparser 

networks would create more structured languages as a result of greater 

input variability, which should increase the pressure for generalization 

and systematization. We also predicted that the presence of a highly 

connected agent (i.e., “hub”) in scale-free networks would further advance 

convergence and the spread of compositional languages (Fagyal et al., 

2010; Zubek et al., 2017).  

In contrast to our predictions, results showed no significant effect of 

network structure for any measure. Groups in all network conditions 

developed languages that were highly compositional and systematic, and 

did so to similar extents. Similarly, there were no significant differences 

in the levels of communicative success, stability, and convergence 

achieved by different groups. We argued that these null findings could be 

traced back to the absence of significant differences in input variability 

across network conditions, which were a prerequisite for our predictions. 

More research is therefore needed in order to test the role of network 

structure in explaining patterns of language diversity. At the same time, a 

consistent and significant finding across all linguistic measures was that 

small-world networks showed the greatest variation in their behaviors: 

while different fully connected and scale-free groups behaved relatively 

similarly to other groups in the same condition (i.e., reaching similar 

levels of structure, convergence, stability, and accuracy), small-world 

groups differed from each other more in their behaviors (i.e., reaching 

varying levels of structure, convergence, stability, and accuracy). This 

pattern suggested that the frequent interactions amongst small sub-groups 

in small-world networks could preserve random behaviors more easily 

and could result in small-world groups being more likely to fixate on local 

(and possibly costly) strategies instead of converging on more optimal 

solutions. These findings indicated that network structure can 

nevertheless affect the community’s vulnerability to drift, and resonated 

with the findings of Chapter 3 that showed a similar vulnerability to drift 

in small groups. 

Chapter 5 addressed a crucial assumption underlying the work 

presented in the previous chapters of this dissertation – the idea that more 

systematic and compositional languages are easier to learn. The postulated 

link between language learnability and language structure is also a crucial 

component in related theories of language evolution, language diversity, 

and language acquisition (Cornish, 2010; Cornish et al., 2009; Dale & 

Lupyan, 2012; Kirby, 2002; Kirby et al., 2008; Zuidema, 2003), but so far 

had not been confirmed experimentally. Additionally, it has been shown 
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that big groups tend to develop signal systems that are superior in terms 

of their learning and processing, above and beyond their complexity (Fay 

et al., 2008; Fay & Ellison, 2013), which suggests that language 

learnability may also be affected by community size. That is, languages 

that evolved in bigger groups may be easier to learn for reasons unrelated 

to their degree of linguistic structure, for example by being better adapted 

to individuals’ cognitive biases and/or general linguistic preferences. This 

chapter directly probed the postulated causal links between language 

learnability, linguistic structure and community size by experimentally 

testing whether languages that evolved in different-sized groups and had 

different degrees of systematic linguistic structure differed in how easily 

they were learned by new individuals. Specifically, we compared the 

acquisition of a range of artificial languages that were created by 

participants in Chapter 3 and had different levels of systematicity in their 

form-to-meaning mappings. We also tested how well learners could 

generalize the languages they learned to describe new, unfamiliar 

meanings, and whether different participants generalized the languages in 

similar ways.  

Results showed that more linguistic structure was advantageous for 

language learning, such that languages with highly systematic grammars 

were learned faster and more accurately. However, the relationship 

between language learnability and linguistic structure was non-linear: 

while highly structured languages were easier to learn, learners did not 

seem to benefit from partly or semi-structured languages. Results also 

showed that community size did not affect learnability, such that 

languages that evolved in big and small groups were equally learnable. 

Finally, participants who learned highly structured languages were better 

at generalizing them to new, unfamiliar meanings, with different 

participants being more likely to produce similar labels. Together, these 

results showed that linguistic structure is advantageous not only for 

language learning, but also for language use: systematic languages allow 

for productive labeling, which in turn promotes quick and effortless 

convergence between strangers (Wray & Grace, 2007). This result is 

directly related to the mechanism suggested to underlie the results of the 

previous chapters ( i.e., that compositional structure helps to relieve 

participants’ memory load and can facilitate convergence), and showed 

that the creation of more systematic languages can indeed help 

communities overcome communicative challenges such as interacting 

with multiple people.  
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2   Discussion  

The goal of this doctoral thesis was to explore how communicative 

pressures and different aspects of societies shape the formation and 

distribution of linguistic properties in an artificial language game. 

Specifically, I tried to experimentally tease apart different social features 

that are confounded in the real-world, and to examine whether different 

degrees of linguistic structure emerge in different types of communities. 

This was done using a novel group communication paradigm in which 

different micro-societies created new languages over time (Chapters 2-4), 

as well as an individual learning experiment in which these emerging 

languages were assessed in terms of their learnability and productivity 

(Chapter 5).  

Taken together, the results presented in this doctoral thesis show that: 

(1) Individuals’ communicative needs (e.g., the need to successfully 

interact with multiple people) can lead to the creation of linguistic 

structure. 

(2) The process of language evolution and change is affected by 

community size, but perhaps not by network structure, at least not 

in the current design. 

(3) The emergence of linguistic structure in a community can in turn 

serve its members’ communicative needs by benefiting language 

use, and can also serve its future members in by benefiting 

language learning. 

The implications for our understanding of how language diversity and 

complexity are influenced by the social environment are discussed in 

detail below. 

 

2.1   Languages are shaped by their social environment 

The findings presented in this dissertation show that pressures associated 

with language usage and with social dynamics influence the formation of 

languages, and affect the emergence and distribution of different 

grammatical structures. Specifically, some grammatical constructions 

may be favored over their competitors in a given community’s language 

because they are better fitted to some of that community’s needs and 

pressures. As such, language typology can be effectively seen as a 

potential mirror for communities’ socio-demographic properties (Gibson 
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et al., 2019; Lupyan & Dale, 2016; Nettle, 2012). In other words, looking 

at the structural features of languages can shed light on the structural 

features of communities. While there is no doubt that many patterns of 

language diversity arise by chance without an obvious causal explanation 

(i.e., drift,), in this work I focused on pinpointing patterns that could be 

driven and predicted by social properties. This idea implies that at least 

some cross-linguistic differences could reflect relevant cross-cultural 

differences, and could potentially explain why certain properties of 

language evolved in certain communities but not in others. 

This idea does not entail a deterministic or comprehensive explanation 

of languages’ origin: human languages clearly evolve (and continue to 

evolve) in complex landscapes, and are subjected to multiple pressures, 

external influences, historical events and random changes, which all shape 

languages in tandem. As such, identifying social factors that can affect 

languages only provides partial and probabilistic explanation for why 

languages look the way they do. Nonetheless, the findings presented in 

this thesis do suggest that at least some of the differences between 

languages’ grammatical structures may be traced back to the social 

environment in which they evolved, and specifically, to the size of the 

community. Moreover, community size is not only a relevant factor in 

explaining typological patterns of language diversity, but it can also be 

relevant for understanding the process of language evolution in our 

species. In particular, the findings of Chapter 3 lend support to the idea 

that a growth in the average size of social groups was one of the drivers 

for the evolution of modern human languages (Dunbar, 2017). 

The results of Chapters 3 and 4 also show that social factors such as 

community size and network structure can affect languages’ vulnerability 

to stochastic changes, analogous to the concept of genetic drift. 

Specifically, the results of these chapters suggest that small communities 

and small-world networks are more severely affected by random events. 

Similar claims have been previously made in the literature, specifically 

with respect to community size. For example, Henrich (2004) 

demonstrated that small populations are more likely to lose cultural 

practices (e.g., technology) by chance. More related to the issue of 

language complexity, Nettle (1999; 2012) argued that small communities 

are more likely to drift and fixate on communicatively suboptimal 

grammatical strategies, and Trudgill (2005) suggested that small 

communities are more likely to develop disfavored sizes of phonological 

inventories (i.e., too big or too small). Importantly, the finding that small-

world networks are also more susceptible to drift is in line with these 
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claims. This is because a small-world network structure is likely to be the 

structure of real-world small communities. Typical small communities in 

natural settings are comprised of thousands of individuals (which is still 

very small compared to the millions of individuals in larger communities). 

Given their size, such small communities are unlikely to be fully 

connected. Instead, they are likely to exhibit small-world characteristics, 

where strangers are indirectly linked by short chains of shared 

acquaintances, and where one’s friends are also likely to be friends with 

each other. This is in contrast with real-world larger communities, which 

have been claimed to be scale-free (e.g., comprised of multiple sub-

communities with small-world properties that are linked by few highly 

connected agents). Taken together, these empirical results imply that 

natural languages spoken in real-world small communities may be more 

likely to display rarer linguistic properties, such as uncommon word 

orders (e.g., OSV), rare sounds (e.g., Bilabial trills), or unique morpho-

syntactic alignments (e.g., tripartite alignment).  

Crucially, even though the results obtained in this dissertation were 

based on very small groups in comparison to real-world communities, I 

believe the conclusions scale up to larger scenarios if one takes into 

account that all relevant aspects of the experiment scale up accordingly. 

Specifically, the experiments presented in Chapters 2-4 involved a 

“miniature world”: people needed to refer to a small set of meanings that 

vary only along two semantic dimensions; they were part of a small micro-

society with relatively few participants; they interacted with each other 

for only a several hours; and they never met their partners more than a 

handful of times. In the real world, everything is scaled-up: people interact 

about immensely more things that vary along many different semantic 

dimensions; they are a part of a society that is, even when considered to 

be small, comprised of at least a few hundreds of individuals (and in big 

societies, even millions); but they also have years and years to interact 

with each other, and interact with their peers regularly. In other words, 

there is proportional scaling of the relevant aspects of the group 

communication paradigm to real-world scenarios, such as the amount of 

experience with the language, the population size, and the familiarity with 

other members of the community. As such, I believe that the conclusions 

drawn from the findings presented above would generalize to much larger 

communities in natural settings.  

Similarly, even though the results obtained in this dissertation were 

based on written language (selected for pragmatic reasons), I believe the 

conclusions hold for the auditory and manual modality. That is, 
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conducting these experiments with vocalizations and/or gestures instead 

of written labels should yield similar results. This assumption is based on 

the fact that iterated learning studies generally yield similar results across 

modalities: signal systems tend to become more compositional and less 

iconic over time in the written, spoken and signed modality (Jones et al., 

2014; Motamedi et al., 2019; Perlman et al., 2015). While it is possible 

that holistic signals may be sustained for longer in the gestural modality 

given its greater affordance for iconicity, there is evidence that 

compositionality arises nonetheless due to the general existence of 

compressibility and expressivity pressures (Bohn et al., 2019; Motamedi 

et al., 2019; Senghas et al., 2004). Importantly, such pressures are shaped 

by the social environment regardless of modality, and are therefore 

expected to act on languages in general. Compelling evidence for this is 

also found in the work on emerging sign languages, which inspired my 

PhD project to begin with, and showed that larger and sparser 

communities of signers tended to create languages with less variability 

and fewer irregulars compared to those languages created by small and 

tightly knit communities (Meir et al., 2012).  

 

2.2   The relation between language complexity and learnability 

The findings of this dissertation also suggest that not all languages are 

equally complex and equally learnable, at least not in terms of their 

morphologies. Specifically, different-sized communities were found to 

develop languages with different degrees of systematic form-to-meaning 

mapping (Chapter 3), and more regular and systematic languages were 

found to be acquired faster by adult learners (Chapter 5). Assuming that 

these results reflect real-world tendencies, they suggest that there are 

meaningful differences in languages’ learnability and complexity, such 

that some languages can be seen as simpler than others, and can 

consequently be learned faster and more easily. Importantly, this by no 

means suggests that some languages are better than others (Gil, 2001). All 

languages are equally good at expressing messages, as reflected by similar 

communicative success rates across different conditions in Chapters 3-4.  

Alternatively, it is possible that all languages are equally complex 

when taking into account all levels of linguistic analysis, not just 

morphology. That is, languages may “balance-out” different degrees of 

complexity across multiple domains such as phonology, word order, and 

pragmatics (Crystal, 1987; Joseph & Newmeyer, 2012). For example, a 

common cross-linguistic observation is that languages with extensive case 
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marking systems tend to have flexible or free word order, showing an 

efficient trade-off between complex morphology and simple syntax 

(Gibson et al., 2019; McFadden, 2003). Similarly, languages may have 

highly elaborate inflectional paradigms, but fairly simple sound systems, 

or the other way around. Although different languages show different 

levels of complexity in some domains, their global complexity may be 

relatively similar. Since there is no agreed metric for formally quantifying 

language complexity (especially not combined across different levels of 

linguistic analysis), this idea remains untested. Notably, looking at 

language learnability as a proxy for language complexity may be a 

promising venue for assessing linguistic complexity: learning outcomes 

and language acquisition trajectories can potentially serve as a window 

into the language’s degree of complexity. Relatively slow acquisition 

rates of linguistic feature X in language Y may indicate high complexity 

of language Y with respect to feature X. 

However, it is important to keep in mind that prior knowledge may 

affect what is perceived by language learners as complex: it is easier for 

adult second-language learners to learn a new language if it has similar 

grammatical structures to their native language (Baptista et al., 2016; 

Barking, 2016). Nevertheless, examining children’s language acquisition 

trajectories across different languages and across different domains (e.g., 

vocabulary, phonology, word order, verb inflections, etc.) may yield 

interesting results. So far, cross-linguistic studies that compared child 

language acquisition rates have mostly focused on only one feature (e.g., 

the passive construction, word learning), rendering the question of global 

complexity unanswered. Yet some work has attempted to relate children’s 

learning difficulty in one linguistic domain to language complexity in 

another domain. For example, Bleses, Basbøll and Vach (2011) showed 

the children’s acquisition of inflectional past-tense morphology is 

considerably slower in Danish compared to similar Nordic languages, and 

that this inferior learning may be due to the phonetic structure of Danish, 

which makes it difficult to segment words and identify their endings due 

to heavy reductions. In contrast, Icelandic has a much richer morphology 

compared to Danish, yet it is more easily acquired by children given that 

Icelandic phonology makes different suffixes relatively easy to perceive 

(e.g., using sonority to saliently mark word boundaries). By highlighting 

the link between language learnability and morphological complexity, our 

results encourage a more global approach to testing and quantifying cross-

linguistic differences, in which multiple linguistic features are compared 

across multiple languages. 
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2.3   Input variability as an underlying force 

A crucial part of the predictions of this dissertation relied on the postulated 

relation between input variability and regularization, which was suggested 

as a possible force behind cross-linguistic differences in language 

complexity (Nettle, 2012). Specifically, it was suggested that larger and 

sparser communities tend to have simpler and more regular morphologies 

because members of such communities are exposed to more variation, 

which acts against complex and irregular morphological structures in 

terms of acquisition, emergence, preservation, and use. Following this line 

of reasoning, I hypothesized that larger and sparser groups would develop 

more systematic languages as a means of overcoming the increase in input 

variability and the communicative challenge it entails. In other words, I 

predicted that compositional variants would be more likely to emerge and 

more likely to be adopted and spread in larger groups, whereas complex, 

non-transparent, and/or irregular variants would have more chances to 

survive in small groups.  

This hypothesis was drawn from several different literatures, and relied 

on two crucial assumptions: (1) that members of bigger and sparser 

communities are exposed to more variation in their linguistic input 

compared to members of small and dense communities; and (2) that 

exposure to more input variability promotes regularizations. Below I 

provide detailed evidence for each of these two assumptions. I then lay 

out my original hypotheses in light of these assumptions and describe how 

the experimental results obtained in Chapters 2-4 relate to them. Finally, 

I discuss the role of heterogeneity as a possible source of input variability, 

and highlight its implications with respect to assumption (1). 

 

2.3.1   Assumption 1: Larger and sparser communities exhibit more input 

variability 

Broadly speaking, the term input variability refers to the extent to which 

available data points differ from each other. This broad definition 

indicates that input variability in language can arise at multiple different 

levels of linguistic analysis, from morpho-lexical variability (i.e., different 

words/morphemes for describing the same meaning) to syntactic 

variability (i.e., different word orders) to phonetic-acoustic variability 

(i.e., different pronunciations of sounds). The first assumption behind the 

idea that cross-linguistic differences are related to differences in social 

structure is that larger and sparser communities are more likely to exhibit 
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more variability across all these linguistic levels (e.g., more dialectal 

variation, more acoustic variation, more lexical variation). In the case of 

phonetic variation, this assumption is intuitively reasonable: given that 

different individuals always differ in their pronunciations from one 

another, and given that the same target phonemes are typically uttered 

slightly differently every time even when produced by the same 

individual, it is highly likely that larger communities with more 

individuals would also feature more phonetic variability. In the case of 

morpho-lexical and syntactic variability, the prediction is similar (albeit 

less straight forward), and is motivated by several arguments, which I 

discuss below. 

First, the available linguistic input in small and dense communities is 

predicted to be more restricted and homogeneous (i.e., less variable) given 

that individuals in such communities are expected to have more 

constrained social networks. This is because the pool of potential 

individuals they can interact with is typically smaller to begin with, and 

because different members of the community are typically highly familiar 

with one another (i.e., interact often) and/or are closely related (i.e., even 

if they don’t directly interact, they have multiple shared connections). 

Specifically, it has been empirically shown that individuals in small 

communities exhibit greater network closure (i.e., interconnectedness), 

even when holding the number of direct connections constant: since the 

pool of potential connections is limited in smaller communities, the 

connections of every two individuals are likely to overlap (Allcott et al., 

2007). In such cases, there is a higher chance that individuals will receive 

similar information from different connections since different connections 

are also connected to each other (Liu et al., 2005). As such, members of 

smaller and denser communities are likely to be exposed to less variable 

input compared to members of larger and sparser communities, whose 

connections are less likely to be related.  

Moreover, it has been suggested that more innovations are likely to 

take place in larger communities, so that members of such communities 

are likely to have access to more diverse input (Fay et al., 2019; Henrich, 

2004). The idea is that in big populations, there are more individual 

models from whom knowledge can be copied and additively combined, 

leading to more potential solutions (and by chance, to more successful 

and/or better adapted solutions). As a result, larger communities are 

argued to display more variable and complex repertories (e.g., for 

technological tools). 
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Finally, there are more chances for preserving diversity in larger and 

sparser communities (Bahlmann, 2014; Derex & Boyd, 2016; Liu et al., 

2005). Computational models have shown that the rate of 

conventionalization is proportional to population size, so that information 

takes longer to spread when there are more agents in the community 

(Baronchelli et al., 2006; Gong et al., 2014). Given that global alignment 

is considerably faster and easier to achieve in a small community with 

fewer individuals, variations can be more quickly and more efficiently 

eliminated (i.e., replaced with similar variants that are shared across all 

community members). As a result, small communities are likely to show 

less variability overall. Even when the number of agents in the community 

is kept constant (and therefore, the number of potential variations is kept 

constant), the spread of information to the entire community is typically 

reduced in sparser networks compared to dense networks, given that some 

members of sparse networks rarely or never interact (Fagyal et al., 2010; 

Gong et al., 2012; Martín et al., 2019; Zubek et al., 2017). Taken together, 

larger and sparser communities are expected to show less convergence in 

the same amount of time, and consequently, enable variations to be 

maintained for longer.  

 

2.3.2   Assumption 2: More input variability promotes regularization 

The second assumption behind the idea that cross-linguistic differences 

are related to differences in social structure is that communication in high 

variability conditions (i.e., when members of the community are exposed 

to many different variants) can lead to systematization, which can in turn 

reduce variability. That is, I hypothesized that greater input variability 

would be the driving force behind the emergence of systematic linguistic 

structure and the creation of more compositional languages in larger and 

sparser groups. Supporting this idea, multiple studies suggest that more 

input variability plays an important role in learning, generalization, 

categorization, and pattern detection in both infants and adults (e.g., 

Bradlow & Bent, 2008; Estes & Burke, 1953; Gómez, 2002; Lev-Ari, 

2016, 2018; Lively, Logan, & Pisoni, 1993; Munsinger & Kessen, 1966; 

Perry, Samuelson, Malloy, & Schiffer, 2010; Rost & McMurray, 2009; 

Seidl, Onishi, & Cristia, 2014; for a nuanced review, see Van Heugten, 

Bergmann, & Cristia, 2015). Interestingly, different types of input 

variability have different effects on language learning and categorization, 

depending on the linguistic target behavior (e.g., speech perception, word 

learning, morphology acquisition), the task (e.g., production, 
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categorization, recall), and learners’ prior knowledge (e.g., familiar vs. 

new categories, L1 vs. L2).  

Below I draw on past literature to disentangle the complex relationship 

between variation, memory, and regularization across different linguistic 

domains. The main conclusion is that exposure to more input variability 

is initially taxing for individuals’ memory, yet over time can boost long-

term performance by favoring the formation of robust and abstract 

representations. Simply put, it seems that the increased processing costs 

associated with greater variability eventually benefit learning and 

categorization by promoting generalizations. 

 

2.3.2.1   Lessons from phonetic variability studies 

Language learning studies have shown that exposure to multiple speakers 

(and consequently, to more phonetic variability) enhances the learning of 

phonological features: it leads to better speech perception in noise (Lev-

Ari, 2018), better discrimination between minimal pairs (Rost & 

McMurray, 2009, 2010), better learning of phonotactic rules (Seidl et al., 

2014), better adaption to foreign accented speech (Bradlow & Bent, 

2008), better perceptual categorization of regional dialects (Clopper & 

Pisoni, 2004), and better identification of non-native phonetic contrasts, 

including better ability to generalize these contrasts to unfamiliar speakers 

(Lively et al., 1993). Importantly, exposure to different tokens coming 

from the same speaker also leads to better adaptation to non-native speech 

(Sumner, 2011) and to better discrimination between minimal pairs (Galle 

et al., 2015). Together, these results highlight the benefits of learning from 

acoustically variable input (i.e., different pronunciations): what seems to 

improve learning in the studies reported above is the fact that learners 

were exposed to high variability in the phonetic realizations of sounds, 

rather than to multiple speakers per se (but see Lively et al., 1993, for 

evidence that generalizing to new speakers does require across-speaker 

variation). Other studies have shown that phonetic variability can 

facilitate higher-order aspects of language learning, leading to better L2 

vocabulary learning in adults (Barcroft & Sommers, 2005; Sinkeviciute et 

al., 2019; Sommers & Barcroft, 2007), better novel word production in 

children (Richtsmeier et al., 2009),  and better word segmentation in 

infants (Estes & Lew-Williams, 2015). 

In contrast, some studies report that speaker input variability does not 

affect infants’ acquisition of native vowel categories (Bergmann & 
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Cristia, 2018) or children’s and adults’ ability to discriminate between 

non-native vowel contrasts (Giannakopoulou et al., 2017), and that it can 

even hinder sound categorization (Bergmann et al., 2016) and phonetic 

classification (Green et al., 1997). Phonetic variability has also been 

shown to negatively affect adults’ speech processing and perception of 

their native language in tasks such as word recognition, word recall, and 

word naming (Martin et al., 1989; Mullennix et al., 1989; Sommers & 

Barcroft, 2006). Such findings are taken to show that talker‐specific 

acoustic variation can also mask linguistically relevant information, and 

make learning and processing overall more difficult and taxing for 

memory (Rost & McMurray, 2010; Van Heugten et al., 2015). 

How come phonetic variability benefits some aspects of speech 

perception and learning, but hinders others? One way of reconciling these 

findings was offered by Lev-Ari (2018), who suggested that the effect of 

input variability depends on (a) whether the variation occurs in relevant 

or irrelevant features of the target behavior, and (b) whether the target 

behavior is familiar or new (Lev-Ari, 2018). Using computational 

simulations, Lev-Ari (2018) showed that input variability along relevant 

phonetic features of vowel categories improved performance for 

established phonological categories, but not when learners were still in the 

process of learning new categories. These results suggest that input 

variability benefits adaptations and category robustness for known 

behaviors, but that its positive effect may be absent (or even reversed) at 

the earliest stages of learning. When learners are in early stages of 

acquiring a target behavior, high input variability along relevant 

dimensions can actually make learning more difficult, as it makes it harder 

for learners to figure out how many categories there are and how these 

categories differ from one another. 

This account can help explain why certain aspects of speech perception 

benefit from phonetic variability while others do not, and helps reconcile 

conflicting results obtained from different age groups and from first vs. 

second language learning. Specifically, it suggests that varying critical 

aspects of the input may hinder learning at first, but have benefits later on. 

For example, infants were shown to successfully differentiate between 

similar sounding words that differed in the voicing of one phoneme (i.e., 

minimal pairs such as buk and puk) only when exposed to variability in 

irrelevant aspects of the words’ pronunciation, such a prosody and vowel 

quality, which actually do not help differentiate between these words 

(Rost & McMurray, 2010). When there was variation along aspects of 

pronunciations that were directly relevant for differentiating between 
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voiced and unvoiced consonants (e.g., voice onset time), infants failed to 

discriminate between the words. These results showed that when infants 

are still in the process of establishing categorical distinctions based on 

voice onset time, variation along this relevant feature hinders the learning 

of these relevant categories. In contrast, variability of irrelevant phonetic 

features, which has typically been thought of as noise, can boost learning 

by indicating which aspects of the input are, in fact, critical to the target 

behavior, and which are not. That is, high variation in feature X signals to 

learners that feature X is not directly relevant (and can therefore 

potentially be ignored). At the same time, high variation in feature X can 

highlight the existence of other features that, in contrast to feature X, 

exhibit little to no variance (signaling to learners that these features may 

be crucial). As such, exposure to variation along irrelevant dimensions 

can help infants’ formation of robust and generalized representations that 

include only phonetically relevant cues while excluding irrelevant ones. 

On the other hand, other studies have shown that in later stages of life, in 

which learners already have well-established phonemic categories, 

variability along relevant phonetic aspects can also facilitate learning: 

Sumner (2011) reported that adults listening to non-native accented 

speech showed better adaptation when the words varied along the relevant 

dimension (i.e., voice onset time). That is, the same type of variability that 

hindered infants’ learning in Rost & McMurray’s study was nevertheless 

beneficial for proficient language users, who only needed to tune their 

existing knowledge in order to successfully comprehend an unfamiliar 

non-native speaker. The account proposed by Lev-Ari (2018) offers a 

unified explanation for these results by suggesting that the advantage of 

variation along relevant vs. irrelevant dimensions is modulated by the 

stage of learners’ language acquisition.  

 

2.3.2.2   Can phonetic variability explain cross-linguistic differences? 

Atkinson and colleagues asked whether phonetic variability can explain 

why larger communities tend to have simple morphological structure 

(Atkinson et al., 2015). In an artificial language learning task, Atkinson et 

al. (2015) tested whether learning a morphologically complex artificial 

language was harder for participants when exposed to greater phonetic 

variability, i.e., when learning from three speakers as opposed to only one. 

In that study, adult participants needed to learn a miniature language with 

three case markers that changed their form depending on vowel harmony, 

following exposure to the exact same sentences produced by single or 
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multiple speakers. Their working hypothesis was that speaker input 

variability would hinder learning, and would therefore lead to more 

learners producing more simplified versions on their input. Results 

showed no significant effect of phonetic input variability on participants’ 

production accuracy – speakers learned the language equally well when 

exposed to one or many speakers. While it is not possible to draw strong 

conclusions from such null results, this study suggests that talker-specific 

acoustic variability may not affect morphology acquisition. Atkinson et 

al. (2015) therefore concluded that phonetic input variability is unlikely 

to be an explanatory mechanism for how group size determines 

languages’ morphological complexity.  

Importantly, the findings and conclusions of Atkinson et al. (2015) are 

in line with the account presented above, given that the study manipulated 

input variability along irrelevant features of the target behavior to be 

learned (i.e., different pronunciations of the same morphological 

inflections). As such, the fact that phonetic variability did not affect 

learning is unsurprising. Furthermore, Atkinson et al. (2015) reported that 

exposure to multiple speakers did not benefit adults’ speech segmentation 

in a classic statistical learning task. Given that infants do show positive 

effects of phonetic variation in a similar paradigm (Estes & Lew-

Williams, 2015), these results are again in line with the idea that input 

variability can have different effects in different stages of language 

learning (Lev-Ari, 2018).  

Based on the literature on phonetic variation, greater input variability 

is only expected to hinder the learning of new categories (and 

consequently, lead to more simplifications, see Assumption (2)) when 

variation is along relevant features (i.e., morpho-lexical variation rather 

than phonetic variation). Accordingly, in the current dissertation I argued 

that the relevant force for understanding group size effects on linguistic 

structure relies on input variability that is directly relevant to the target 

behavior i.e., to morpho-lexical variability. In fact, the group 

communication paradigm employed in this dissertation did not include 

phonetic speaker variability at all, given that participants interacted by 

typing labels using uniform keyboards. Instead, participants in the group 

communication paradigm were exposed to variability in the actual form 

of the labels. Importantly, I hypothesized that this type of variability 

would be more taxing for participants’ memory, and would create an 

increased pressure for the creation and adoption of more systematic and 

generalizable variants. 
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2.3.2.3   Morpho-lexical variability and the generalization of grammatical 

patterns 

Several studies have shown that morpho-lexical variability (i.e., variation 

in the actual word form, such as different labels and/or different 

morphemes) can affect the learning of grammatical patterns and lead to 

better generalizations. For example, in an artificial language learning task, 

Gómez (2002) showed that nonadjacent dependencies in three-element 

strings (e.g., pel kicey jic, where pel and jic are depended) were learned 

better by both infants and adults when they were exposed to more varied 

exemplars, i.e., when the middle element of the string (e.g., kicey) was 

drawn from a larger pool of different words. Crucially, when the middle 

element did not vary, participants were unable to learn the grammatical 

dependencies in the artificial language. Gómez (2002) reasoned that the 

positive effect of morpho-lexical variability on grammar learning and 

generalization was the result of memory constraints: in the presence of 

high variability along relevant features of the language13, memorizing 

each three-element string and storing it separately was hard, and this 

difficulty encouraged learners to generalize over items and detect the 

underlying pattern. In other words, the results of this study suggest that 

generalization over variants occurs only when there are too many variants 

to remember, but not when learners are able to memorize them all 

individually. 

The account described above suggests that although high variation is 

harder to process, it can have positive effects on learning in the long run. 

This idea is in line with exemplar-based frameworks and associative 

learning theories, where all information from encountered examples 

(including both relevant and irrelevant aspects) is stored in memory in 

early stages of learning, and is later used to form robust representations 

that allow for abstractions and generalizations (Apfelbaum & McMurray, 

2011; Barcroft & Sommers, 2005; Kleinschmidt & Jaeger, 2015; Posner 

& Keele, 1968). This idea also resonates with the concept of desirable 

difficulties (Bjork & Bjork, 2011; Bjork, 1994), which suggests that 

varying the input and the learning conditions may impair immediate 

performance, but subsequently triggers better encoding and retrieval 

                                                             
13 Although variation in the middle word of the string could be mistaken for an irrelevant 

aspect of the artificial language, it is in fact crucial for understanding the underlying rule, 

i.e., that the dependency in the string is non adjacent rather than adjacent.  
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processes that support retention and generalization. In other words, while 

high variation is more costly for processing and more taxing for memory, 

it also enhance long-term performance. In support of these theories, 

studies have shown that exposure to multiple exemplars (i.e., to more 

variable input) helps the formation of categories and is crucial for 

generalizing these categories to novel input. For example, infants who 

were taught labels for different object categories were able to generalize 

those labels to novel objects only when exposed to variable exemplars of 

each category (Perry et al., 2010). Similarly, infants who were taught 

arbitrary animal-sound pairings were shown to acquire these pairing and 

generalize them to novel items only when they were familiarized with 

multiple exemplars of each category (Vukatana et al., 2015).  

Complementary findings on the relation between variability and 

generalizations have been found in the literature on regularizing 

unpredictable variation, which showed that people tend to introduce more 

regularities to the language when faced with morpho-lexical variation that 

is taxing for memory (Fehér et al., 2016; Ferdinand et al., 2019; Hudson 

Kam & Newport, 2009; Samara et al., 2017). In particular, multiple 

studies have shown that when children and adults are exposed to an 

artificial language containing an inconsistent, difficult-to-learn 

grammatical pattern (e.g., variable plural marking of nouns, variable 

labels for the same stimuli, variable use of different determiners for 

marking gender, etc.), they tend to regularize their input in various ways, 

for example, by systematically producing only one variation, by making 

the variation lexically conditioned (and therefore predictable), or by 

eliminating the inconsistent variation altogether (Fehér et al., 2014; 

Hudson Kam & Newport, 2005, 2009; Samara et al., 2017; Wonnacott & 

Newport, 2005). Together, these studies suggest that high morpho-lexical 

variation in the input hinders the acquisition of morpho-lexical target 

behaviors, but promotes more regularizations in learners’ output. 

Moreover, increasing the memory load in such paradigms leads to more 

regularizations: learners regularize more when they are given less 

exposure (Samara et al., 2017), and when they are required to learn more 

items (Ferdinand et al., 2019). Similarly, learners tend to regularize less 

when retrieval is facilitated and memory load is reduced (Hudson Kam & 

Chang, 2009). In line with the argument presented in the previous 

paragraph, this line of work demonstrates that exposure to morpho-lexical 

input variability increases processing costs, but consequently results in the 

creation of more systematic linguistic patterns.  
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2.3.3   Summary of my hypotheses and relevant results 

Based on the evidence presented above, I predicted that exposure to more 

morpho-lexical input variability would promote the emergence of 

structured languages. Considering that participants in a given group 

needed to create their own languages in order to communicate with each 

other and had no established or shared language to rely on, they were 

likely to be faced with multiple variations of words/morphemes created 

by different participants in the group for the same stimuli. For example, 

participants were likely to encounter different labels and morphemes for 

describing the same meanings (e.g., pok vs. muif), and/or different 

variations of existing words (e.g., spelling differences such as muif vs. 

mif). Since their goal was to interact with each other using these 

labels/morphemes, I hypothesized that such variability would impose a 

communicative challenge that group members would need to overcome in 

order to successfully communicate with each other. In other words, since 

high morpho-lexical variability should be taxing for participants’ 

memory, it should favor the creation and adoption of more systematic and 

generalizable variants, which are assumed to be easier to remember (an 

assumption directly confirmed in Chapter 5). In turn, I hypothesized that 

the creation of systematic variants would relieve participants’ memory 

load, facilitate successful interaction and aid the process of convergence, 

effectively reducing input variability. 

The results of Chapter 2 supported this prediction, and showed that 

structured, compositional languages can emerge within a single 

generation when there is a pressure for developing systematicity, i.e., 

when people needed to refer to an expanding meaning space in which 

there are more and more meanings to communicate about, and when the 

interaction included multiple people in a group setting (in contrast to 

interaction with just one other person in a dyadic scenario, as in Kirby et 

al. 2015). Together, the results of Chapter 2 showed that more variable 

communicative contexts can indeed boost the emergence of systematic 

and productive languages. 

 Next, I hypothesized that small and tightly knit groups would 

exhibit less morpho-lexical input variability compared to larger and 

sparser groups, at least in early stages of language formation. 

Consequently, I hypothesized that small and tightly knit groups would be 

under weaker pressure to develop systematic languages. Specifically, I 

reasoned that in the early stages of language formation, community 

members may employ two potential strategies in order to successfully 
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interact with each other: memorize each other’s unique morpho-lexical 

variants, or try to align on a shared language. Importantly, the efficacy of 

these strategies and the ease with which they can be employed should 

differ depending on group size and network structure. Members of small 

and dense groups may be better able to remember each other’s unique 

variants thanks to generally lower variability (i.e., having fewer and more 

similar variants to remember overall). As such, they may be better able to 

cope with the existing variability, leading to a reduced pressure to develop 

a shared language. In other words, convergence on similar labels is 

potentially less needed in a small community. In contrast, such a strategy 

would be much harder for members of larger and sparser groups, where 

there should be many more different variants to keep track of. Since 

members of larger and sparser groups should be faced with a greater 

memory load and a greater communicative challenge, they should 

therefore be more likely to develop and favor more transparent and 

simplified variants that can facilitate memory and aid convergence. This 

idea was motivated by evidence from emerging sign languages, which 

show that there is less convergence and more lexical variability in a small 

community of signers, while a larger community of signers was more 

uniform (Meir et al., 2012). This observed pattern has been attributed to a 

weaker pressure to conventionalize in the smaller community, given that 

members of that community are highly familiar with each other and can 

therefore maintain a surprisingly large amount of lexical variability. In 

contrast, members of the larger community were not able to cope with the 

high degree of variability, and were more prone to develop shared 

linguistic regularities. In sum, I hypothesized that the increased morpho-

lexical variability postulated to occur in larger and sparser communities 

would result in a stronger pressure for conventionalization and 

systemization in such communities, eventually leading to the creation of 

more structured languages. 

The results of Chapter 3 confirmed this hypothesis in several ways. 

First, a direct examination of the levels of morpho-lexical input variability 

across conditions and time confirmed assumption (1) with respect to 

population size, and showed that members of larger groups were indeed 

faced with more variability. Second, higher levels of morpho-lexical 

variability were shown to induce a greater increase in structure over time, 

confirming the rationale behind assumption (2). Importantly, although 

linguistic structure increased in both conditions, this increase was faster 

in larger groups. As such, languages created by members of larger groups 

were indeed more systematic by the end of the experiment. This result 
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confirmed the main hypothesis, i.e., that larger communities would 

develop more regular languages, and supported the claim that this 

difference could be traced back to differences in input variability. Third, 

the results of Chapter 3 showed that input variability decreased over time, 

and that this decrease was faster in larger groups. This was presumably 

because members of larger groups developed more structured languages 

over the course of communication, which enabled them to align on a 

shared lexicon (reducing variability) more easily. Specifically, our results 

showed that, on average, larger groups reached similar levels of 

convergence as small groups, despite convergence being much harder to 

achieve in larger groups. That is, developing more structured languages 

indeed allowed larger groups to overcome their greater communicative 

challenge and greater input variability. This advantage was further 

supported using an analysis showing that more linguistic structure indeed 

predicted better convergence. Finally, small groups in Chapter 3 varied 

more in behavior – while some small groups showed high levels of 

convergence and high levels of structure (in line with the findings from 

Chapter 2, i.e., that groups of four participants can develop 

compositionality), other groups did not – some small groups showed much 

less alignment and did not develop linguistic structure. This result is in 

line with the prediction that members of small groups may be able to 

memorize each other’s unique variants, and as such are under a weaker 

pressure to establish a shared lexicon and to favor more systematic 

variants. Such results are also in line with observations from emerging 

sign languages, which suggest that smaller, tightly-knit communities are 

less converged (Meir et al., 2012). Taken together, the results of Chapter 

3 suggest that an increase in morpho-lexical input variability is one of the 

driving forces behind group size effects, and can therefore serve as a 

possible explanation for cross-linguistic differences in language 

complexity. 

Notably, I had very similar predictions for the effect of network 

structure: I hypothesized that sparser networks would develop more 

structured languages, and that this difference would be the result of more 

input variability in such networks. However, neither prediction was borne 

out: the results of Chapter 4 showed that dense and sparser networks 

reached similar levels of input variability throughout the experiment, as 

well as similar levels of linguistic structure and convergence. I reasoned 

that these results can be explained in light of the relationship between 

input variability and systematicity, that is, that the lack of differences 

between networks’ levels of linguistic structure in Chapter 4 can be traced 
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back to the lack of differences in morpho-lexical variability across 

network conditions. 

One possible explanation for the lack of input variability differences 

across network conditions in Chapter 4 is that in the current design, 

members of the sparser small-world and scale-free networks interacted 

with fewer individuals compared to members of the fully-connected 

network, i.e., their personal social network size was smaller. Although the 

size of the community was the same across conditions (N=8), members of 

fully connected networks interacted with all seven other members of their 

group, while members of sparser networks interacted with only two to 

four other people. Importantly, the existence of sub-groups (i.e., few 

members who frequently interacted with each other) in sparser networks 

may have facilitated convergence within these smaller sub-groups, 

leading to less global (i.e., communal) variability in sparser networks than 

originally expected. That is, the existence of small and dense social 

networks within the sparser networks could have eliminated the difference 

between network conditions. In other words,  although the global level of 

input variability was supposed to be higher in the sparser conditions, it is 

possible that the local (i.e., individual) level of input variability 

experienced by single members in sparser networks in early rounds was, 

in fact, reduced – leading to more convergence and less variability in the 

entire network. Even though the measure of input variability used in 

Chapters 3 and 4 was a global measure (i.e., quantifying how much 

variation is present in the entire network), it is theoretically possible to 

measure the changes in the local levels of input variability experienced by 

individuals across different networks over time by quantifying the degree 

of variability present only in their personal social network (i.e., only in the 

limited circle of people they were directly connected to). If this hypothesis 

holds, local variability would differ from global variability in early 

communication rounds. It is possible to measure convergence within 

different sub-groups of connected participants. If convergence in local 

sub-groups was indeed faster/better, this would explain why sparser 

networks did not show more input variability, and could potentially 

account for the null results obtained in Chapter 4. Although it was not 

possible for me to test these hypotheses before submitting this 

dissertation, I hope to carry out these additional analyses in the future. 
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2.3.4   Heterogeneity: The source of input variability 

Importantly, the speculations discussed above raise an additional issue: 

what are the sources of input variability? In the current dissertation, more 

input variability was the result of experiencing more morpho-lexical 

variants due to being in larger or sparser communities, and due to having 

less chances to converge with all members of the community (i.e., 

sustaining more diversity for longer). The idea that more input variability 

can be equated with an increase in population size (or in the number of 

individuals people can learn from and/or interact with) is evident in many 

psycholinguistic and cultural evolution studies (e.g., Caldwell & Millen, 

2010; Kempe & Mesoudi, 2014; Fay, Kleine, Walker & Caldwell, 2019). 

In many studies, group size differences are simulated by manipulating the 

number of models people are exposed to, which is treated as a proxy for 

the amount of variability in the input. While this is a reasonable 

assumption (as I explain above, and as the results from Chapter 3 

confirm), it is not always the case that more people per se entail more 

variable input. Although larger communities indeed entail a larger pool of 

phonetic variability due to the mere existence of more individuals (and the 

fact that variation in pronunciation is always present, even within a single 

individual), they do not necessarily entail more morpho-lexical 

variability. A big community could be comprised of hundreds of 

thousands of people speaking the exact same dialect (i.e., lots of phonetic 

variability, but no morpho-lexical variability), whereas a much smaller 

community could be comprised of a few dozens of individuals each 

speaking a completely different dialect.  

Crucially, the main definition of input variability relies on 

heterogeneity (Nettle, 2012). That is, the degree of variability in the 

community cannot simply be equated with population size: while large 

communities indeed tend to be more heterogeneous, this is not always 

true. In other words, one can argue that the group size effects found in 

Chapter 3 were not driven directly by the number of individuals in the 

group, but rather by the fact that there is typically more heterogeneity in 

larger groups. Indeed, computational simulations have shown that the 

effects of input variability on speech perception and lexical production are 

affected by the degree of heterogeneity in the population rather than 

simply by population size (Lev-Ari, 2018; Lev-Ari & Shao, 2017). This 

implies that increasing the degree of heterogeneity in a given group while 

keeping population size constant would still yield similar results to 

Chapter 3, namely, that more heterogeneous groups would also create 

more systematic languages. As such, the number of individuals in the 
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community is only one possible source for differences in morpho-lexical 

input variability, and it is important to distinguish between this frequent 

implementation of variability and other possible causes for variability. 

Heterogeneity can stem from many social and psychical factors beyond 

population size, such as the individuals’ age, gender, native language, 

cultural background, etc. Each of these factors can potentially influence 

speakers’ lexical choices, and therefore affect their variants and how 

different they are from those of other speakers. For example, age 

heterogeneity in the community can affect its members’ linguistic 

behaviors: Lev-Ari & Shao (2017) found that interacting with people from 

a wider age range improves individuals’ lexical prediction, lexical access, 

and lexical use. Similarly, it is possible that variability in cultural 

backgrounds can affect morphological simplifications, such that more 

cultural diversity would create a stronger pressure for developing 

systematic and regular grammars. This idea is in line with claims that the 

languages with the simplest morphology in the world are creole 

languages, which are formed as the result of extensive language contact 

between individuals speaking different native languages (McWhorter, 

2001; Parkvall, 2008). I discuss these possibilities (and others) in detail in 

the next section. 

 

 

3   Methodological challenges and future directions 

In the process of piloting the group communication paradigm and 

collecting data for the experimental chapters presented in this dissertation, 

I have tested over 380 participants: over 100 individuals and over 45 

different groups of various sizes. This was a rewarding effort given the 

data I gathered and the conclusions that were eventually drawn from it, 

yet it was also highly demanding and challenging to implement. In the 

upcoming section, I lay out some of the general methodological 

challenges I faced throughout my PhD. I also present in detail an 

experiment aimed at testing the role of non-native speakers in the 

community, which was originally planned as a part of this dissertation, 

but could not have been completed within the time limits of my PhD due 

to theoretical issues. Finally, given that the paradigm introduced in this 

dissertation opens the door to many more exciting studies, I make several 

suggestions for future work.  
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3.1   General methodological challenges 

When embarking on this project in early 2016, my goal was to directly 

test the evolution of languages in a community-like setting. Specifically, 

I wanted to bring groups of multiple participants to the lab and mimic 

communication in social (yet controlled) environments. The idea was to 

go beyond previous language evolution experiments, which typically 

included only chains of single individuals (e.g., Carr, Smith, Cornish, & 

Kirby, 2016; Kirby et al., 2008; Verhoef, 2012), or pairs of interacting 

participants (e.g., Eryilmaz & Little, 2016; Galantucci, 2005; Kirby et al., 

2015; Roberts & Galantucci, 2012; Winters, Kirby, & Smith, 2015). Even 

in experiments that looked at dyadic communication, participants were 

often seated in separated rooms or in completely different sites, and 

communicated via a computer interface – never experiencing the presence 

of another person. At that point in time, very few language evolution 

studies included face-to-face interaction (e.g., Christensen, Fusaroli, & 

Tylén, 2016; Perlman, Dale, & Lupyan, 2015; Tan & Fay, 2011), and very 

few studies included interaction between more than two people (Atkinson, 

2016; Caldwell & Smith, 2012; Fay et al., 2010; Galantucci et al., 2012). 

To extend on previous work, the paradigm needed to include both face-

to-face interaction and multiple participants. Testing multiple participants 

was desired since it would allow us to directly probe communicative 

pressures involved in social interaction and communal settings, and to 

manipulate specific features such as group size and network connectivity. 

Face-to-face interaction was desired since it was a naturalistic feature that 

allowed paired participants to make use of non-verbal signs such as facial 

expressions to determine how certain/confident their partner was when 

typing a label or making a guess, and allowed all participants to truly feel 

as if they are a part of a group.  

The first challenge I encountered was in the choice of stimuli. 

Specifically, I wanted to create a semi-structured meaning space which 

lent itself to compositionality, but did not impose it. That is, the meaning 

space itself needed to be structured to some extent to begin with in order 

to promote and motivate the creation of structured symbols. Having a 

semi-structured meaning space was therefore an important feature of the 

design of this study, as of other iterated learning studies: it is meant to 

simulate a fundamental property of our environment, in which elements 

in the real world repeat in many different combinations and in various 

contexts (e.g., I eat, I eat cake, the cake is big, the tower is big, I eat the 

big cake on the tower, etc). This fact about the world is what gives rise to 

languages’ productivity to begin with, and allows for the reuse of 
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linguistic elements over multiple different interactions. As individuals are 

exposed to more and more input, they are able to detect such repeating 

elements, which in turn could promote the development of more 

productive and predictable labeling over time. In other words, the 

emergence of compositional structure in natural and artificial languages 

is motivated by the fact that the environment itself is partly compositional. 

Without this feature, each event would require unique labeling. Even in 

this extreme scenario, humans’ tendency to form categories in the absence 

of a-priori structure suggests that linguistic structure could emerge 

nonetheless, perhaps as a means to relieve the memory load required in 

memorizing a holistic language. Indeed, languages frequently categorize 

continuous and unstructured meaning spaces into categories (e.g., the 

color space). In order to promote compositionality while not imposing a 

specific categorization, I chose to create a meaning space with three 

dimensions: one categorical (shape), one continuous (motion), and one 

abstract and unstructured (fill pattern). This meaning space was selected 

after a pilot version that included items that varied in size instead of 

motion. The choice of size as a semantic feature what not ideal given that 

people are much more likely to categorize novel items based on their 

shape, and much less likely to do so based on size. I therefore chose to 

replace size with motion, which is a more salient feature and much more 

likely to be encoded linguistically.  

Importantly, the selected meaning space was only partly structured: the 

dimension of motion was continuous rather than categorical, and all 

scenes had a unique idiosyncratic feature that allowed for the 

individualization of scenes based on their texture. Because motion was a 

continuous and unstructured feature, participants were not obligated to 

categorize it in any particular way, and indeed, different groups 

categorized the motion space differently. Moreover, participants could 

differ in the way they categorized what was “new” and what was 

“recombination” with respect to motion. For example, if a participant 

already had a label for the directions ↖ and ↗, and now saw a known shape 

moving ↑ for the first time, they could either decide that it is a combination 

of ↖ and ↗ (because it was in the middle), or think of it as a completely 

new direction and assign it a different label. As such, compositionality 

could arise in different ways across different groups. In addition, each 

scene had a unique fill pattern. Participants could have chosen to focused 

on fill pattern and use unique, holistic labels to describe each scene (which 

in the beginning of the experiment, many of them did), and could have 

theoretically also categorized these patterns into specific groups (e.g., 
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darker vs. lighter), despite the fact that the pattern had no objective 

categorization to begin with. As such, while the meaning space lent itself 

to predictable, compositional structure, this structure was not 

deterministic.  In order to ensure that my findings hold for different 

meaning spaces and are not restricted to one set of categories, I created 

three versions of the stimuli that were balanced across experimental 

conditions (e.g., big group vs. small groups). These three versions differed 

in their distribution of shapes and angles, and required making different 

differentiations. As a result, groups differed in how fine-grained their 

categories were, and often developed categories only for semantic features 

that were directly contrasted. This point strengthens the idea that the 

communicative context in which languages emerge shape their final 

structure. However, while the specific structure of the meaning space 

could have influenced participants’ categorizations, the effect of group 

size was significant across all versions. That is, big groups created more 

structured languages above and beyond the specific version of the stimuli, 

suggesting that the results of Chapters 2-4 are generalizable despite 

exposure to slightly different meaning spaces.  

The second challenge I encountered was deciding on the best starting 

conditions for the paradigm (i.e., Round 0). I wanted participants to have 

some common ground to start with, such that they would have a few 

shared labels for the first eight scenes. However, I was not sure what 

would be the right way to create this common ground. Specifically, should 

participants first be trained on a random seed language, or should they 

start by creating their own labels? When I began my PhD project, all 

iterated language learning studies showing the emergence of 

compositional structure with human participants used random and holistic 

labels as the seed language (i.e., participants were first trained on a given 

set of computer-generated labels, with no structure). In contrast, similar 

studies looking at gestures and drawings have allowed participants to 

create their own initial labels at the start of the experiment. I was not sure 

which of these starting conditions is preferable, and decided to run a pilot 

study to examine these two starting conditions. On the one hand, starting 

the communication game by first training all participants on a carefully 

controlled input language would provide a comparable starting point for 

all groups, and would ensure that all groups started out without linguistic 

structure. In addition, it would prevent a scenario in which participants 

would be unable to inhibit their use of Dutch language, or unwilling to 

actively produce labels. On the other hand, I had reasons to believe that 

allowing participants to create their own initial labels would be 
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advantageous for the current communication paradigm. First, the goal of 

the paradigm was for participants to innovate and change the language as 

the experiment progressed, and I suspected that learning a seed language 

would bias them to memorize and use specific pre-given labels, assuming 

those were “correct”. Second, I believed that computer-generated seed 

languages were not a natural starting point, given that real proto-languages 

were created by people. As such, I predicted that allowing participants to 

come up with their own initial labels would be a much more realistic 

scenario, and would potentially result in labels that sound more natural 

(e.g., in terms of their shared cognitive biases, Dutch phonotactics, etc.). 

Third, I worried that providing an input language would impose an 

additional learning challenge at the start of the experiment, and predicted 

that participants would remember self-generated labels better than 

computer-generated labels due to a better representation of their own 

made-up labels in memory. Indeed, the pilot study confirmed that 

participants in the computer-generated language condition had more 

difficulties in remembering the initial labels compared to those in the self-

generated language condition. Moreover, communicative success was 

already higher in the self-generating condition in the first round, and 

participants reported enjoying the game rather than struggling. 

Importantly, none of the self-generated initial languages was structured, 

providing a similar starting point for all groups. As such, I preferred to 

implement Round 0 in this format, and allow participants to create their 

own languages at the beginning. As such, Round 0 was considered the 

first round for all analyses but communicative success, as there was no 

communication in that round, only generating labels followed by passive 

exposure to these labels. 

Finally, brining multiple participants to the lab simultaneously proved 

to be challenging. It required much coordination (and luck), and often 

resulted in last-minute cancellations and rescheduling of groups. It was 

quite problematic to find four or eight different participants who were all 

available at exactly the same time and for a relatively long duration (i.e., 

at least 4.5 hours for the experiments in Chapters 3 and 4), and it was often 

the case that allocated time slots were only partly full. Moreover, since 

the experiment depended on all individuals being present on time, even 

when enough people signed up it in advance, it was never clear whether 

they would actually show up and if the experiment would take place. 

Although I sent multiple confirmation and reminder emails, and although 

I tried to have at least one backup participant at every time slot, I still 

encountered multiple situations where groups had to be cancelled in the 
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last minute, often when several of the participants were already present 

and waiting for the experiment to start. Besides causing inconvenience 

(and at times, frustration) to participants and myself, data collection also 

took much longer than expected. It was also quite costly in terms of 

participant payment, room setup, and equipment. Moreover, the 

experimental setup required the presence of an experimenter (myself) in 

the room at all times, who needed to closely monitor participants’ 

behavior in order to ensure that they are not talking, pointing, or gesturing, 

and that their languages do not include Dutch or English words. This was 

also physically and mentally demanding, especially when testing multiple 

groups on consecutive days. Nevertheless, I believe this was all worth the 

trouble given the quality of the collected data and the increased ecological 

validity of the paradigm compared to previous studies.  

One possible way of overcoming some of the general challenges raised 

above is to turn to online experimental settings. The main advantages of 

shifting to an online paradigm lay in the ability to recruit many more 

participants from various locations, and test them simultaneously without 

the need to bring them physically to the lab. The availability of individuals 

may be higher when tested from home, the chances of no-shows may be 

reduced, and the testing costs may be relieved (e.g., participants would be 

using their own computers instead of laptops provided by the institute). 

Moreover, it would allow data collection from much larger groups (e.g., 

20 or 50 participants). In fact, the technical group at the Max Planck 

Institute had developed an online pilot version of the experiment used in 

Chapters 3 and 4, which could be activated on remote computers by 

entering a link. However, I ended up not using this online setup due to 

several crucial disadvantages. First, I couldn’t be sure that participants 

would indeed be focused on the experiment, and actually follow the 

instructions. For example, participants tested remotely may be engaged in 

other activities during the experiment, and may write down the words they 

encountered while communicating with different people, eliminating the 

crucial memory constraint relevant for creating a systematicity pressure. 

Second, participants may be more likely to stop the experiment in the 

middle as they get distracted or engaged with other things (e.g., go make 

a cup of coffee and never come back). Finally, and most importantly, the 

experiment would lose its naturalistic feature of face-to-face interaction, 

which was considered to be one of the strengths of the current paradigm. 

Such disadvantages may be inevitable if researchers are interested in 

testing larger groups. Nevertheless, some issues could be potentially 

addressed by using designated crowdsourcing websites such as mTurk or 
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CrowdFlower, which allow filtering of participants based on criteria like 

drop-out rates. 

 

3.2 Planned experiment: The role of non-native speakers 

The classic contrast between esoteric and exoteric communities relies on 

three main features: community size, network structure, and the degree of 

language contact. The latter feature, also thought of as the proportion of 

non-native speakers or of adult second-language (L2) learners in the 

community, is considered to be a crucial parameter shaping cross-

linguistic structural differences, and is argued to be the main driver of 

morphological simplification (Bentz et al., 2015; Bentz & Winter, 2013; 

Dale & Lupyan, 2012; Lupyan & Dale, 2010; Nettle, 2012; Trudgill, 

1992, 2002, 2008, 2009). In fact, the inverse correlation found in 

typological comparisons between linguistic complexity and group size is 

often attributed to a larger proportion of non-native speakers in larger 

communities, with group size treated as a mere proxy for the proportion 

of adult L2 learners. The argument goes as follows: given adults’ greater 

difficulty in learning a second language (and especially a 

morphologically-complex language), the learnability pressure on exoteric 

languages increases since there is a high proportion of them in the 

community. This can lead exoteric languages to lose complex and/or 

irregular morphological systems over time, and result in more simplified 

and systematic languages. This process it attributed to the fact that native 

speakers’ tend to accommodate to non-native speech even when it 

includes mistakes (Atkinson et al., 2018; Loy & Smith, 2019), and to the 

idea that children of non-native speakers (and children in their close 

surrounding) will encounter the non-native variants and therefore acquire 

a simplified variation of the language (Lupyan & Dale, 2015; Nettle, 

2012). In contrast, the main language learners in esoteric communities are 

children, who are presumably not biased against complexity, and may 

even benefit from having more redundant linguistic cues in the process of 

language acquisition (Dale & Lupyan, 2012). Consequently, esoteric 

languages have higher chances of sustaining elaborate inflectional 

systems over time, and may be more likely to develop rich and non-

transparent structures.  

My original PhD research proposal included an experiment that 

directly tests this assumption, and aimed at isolating the role of non-native 

speakers and the mechanisms that lead to linguistic systematization over 

time. The experiment was carefully planned and piloted with several 



246 

 

participants, yet was not feasible to complete. In the following paragraphs, 

I explain the rationale and design of this experiment in detail, present my 

predictions for it, and discuss the methodological issues that prevented the 

execution of this experiment, which are closely related to the findings of 

Chapter 5.  

The goal of the experiment was to examine the influence of L1 vs. L2 

learners on the systematization of linguistic structure using a replacement 

paradigm (Caldwell & Smith, 2012). Specifically, I wanted to test whether 

introducing new learners to the community causes linguistic 

simplification in an established (yet partly-irregular) language, and test 

whether this process is affected by the identity and prior knowledge of 

these learners (L2 vs. naïve participants). In brief, the goal of the 

experiment was to compare the languages of different four-person groups 

after replacing two existing members with two newcomers in two 

different conditions (see Figure 1). Condition 1 (esoteric community) 

planned to introduce two naïve learners with no prior knowledge of the 

language and/or the meaning space used in the experiment. Condition 2 

(exoteric community) planned to introduce two experienced learners who 

were already familiar with the meaning space used in the experiment, yet 

trained on another language with a different grammar and a different 

lexicon.  

At the beginning of the experiment, a group of four participants would 

be trained on an input language, which they should learn perfectly (Figure 

1A). The plan was to have two possible input languages that would be 

inspired by languages created by real participants in Chapters 3 and 4, and 

that will be matched on their initial structure score and their expected final 

structure score after all possible simplifications. Both languages would be 

semi-structured and contain some irregularities (making them less 

predictable and allowing for systemization to occur), but would differ in 

their labels, irregularities and the relevant semantic dimensions for 

categorization. For example, the grammar of one language would be based 

on shape and all possible ranges of motion (up-down, left-right, and their 

combination), while the other grammar will be based on shape, texture 

(i.e., stripes, bubbles or empty), and a simple up-down motion. 
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Figure 1. The design of the planned experiment. In the beginning, groups of four participants 
are trained on an input language and use it to interact with each other for several rounds (A). Then, 

two members are removed from the group and replaced with two newcomers (B), who need to 
learn the input language by observing the remaining two participants interact with each other for 
several rounds. We manipulate whether the newcomers are naïve learners with no prior linguist 
model (C), or experienced learners who have already acquired a different input language (D). After 
learning from observation, the newcomers are integrated in the group (E) and need to communicate 
with all other members for several rounds. Finally, we compare the final languages used across 
both conditions (F). 

 

 

 

E 

C 

D 

F 

A 

B 



248 

 

Participants would be trained on the languages in several blocks, using an 

identical procedure to the one used in the learning experiment presented 

in Chapter 5. All learning blocks would include passive exposure to the 

label-meaning mappings, followed by a guessing phase and a production 

phase with feedback. After learning the language to a near-ceiling level 

(~90% accuracy), participants would use the input language to 

communicate with the other members of their community for three 

communication rounds, which would be identical to the communication 

rounds used in Chapters 3 and 4. Once all possible pairs in the group have 

interacted, participants would have completed an individual test phase 

where they would reproduce all labels in their input language – confirming 

that no significant changes have happened to the language during 

communication, and that participants were indeed using the languages 

they learned.  

After the learning and communication phase, two participants would 

have been removed from the group and replaced with two new members 

(Fig 1B). The new members will either be naïve participants playing the 

game for the first time (Fig 1C), or experienced members who have just 

completed the learning and communication phase with another group 

using the second input language (Fig 1D). The newcomers will need to 

learn the target language of the new group by observing the remaining two 

members interact with each other for three rounds. No talking, signing or 

explicit teaching would be allowed in this observation phase. After 

learning from observation, the newcomers will enter the group as full-

fledged members and will communicate with its other two members for 

six additional rounds (Fig 1E), in which all group members (new and old) 

will interact with each other exactly twice. Finally, all participants would 

complete an individual test phase to see what variation of the language 

they are using, and those languages would be compared across conditions 

(Fig 1F). 

I planned to manipulate learners' prior linguistic knowledge as a proxy 

for L1 vs. L2 learning: “native” child learners were simulated by naïve 

participants, who are exposed to the community, language, meaning space 

and experimental design for the first time, while “non-native” adult 

learners were simulated by experienced participants, who had already 

acquired a different language and used it to successfully communicate in 

another group. This manipulation was motivated by several studies that 

have attributed age-related differences in language learning to differences 

in prior knowledge of one's first language (Baptista et al., 2016; Brooks 

& Kempe, 2019; Hernandez et al., 2005). Generally speaking, adults 
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learning a new language suffer from high levels of competition between 

the newly learned L2 and their prior knowledge of their L1, which they 

have already consolidated (unlike children, who still show flexible 

mappings). For example, adult learners seem to rely heavily on positive 

transfer or overlap between the L2 and their L1: they tend to show better 

learning of features that are similar between their native language and the 

second language, and have more trouble in learning lexical and 

phonological distinctions in the second language when they mismatch 

with their native language (Baptista et al., 2016; Hernandez et al., 2005; 

Potter et al., 2016; Schepens et al., 2020). I reasoned that if some 

differences between children and adults’ language learning can be 

explained by their different levels of prior linguistic knowledge, this 

manipulation should invoke the desired effects. 

Accordingly, experienced participants who have already played the 

game with a different group and have fully established word-to-meaning 

mappings would have a harder time learning a new language to describe 

the same meanings (in comparison to naïve participants). In other words, 

experienced participants who have already acquired a language in a 

different group would potentially struggle more with learning yet another 

language, especially if the new language would include a partially 

different logic (e.g., categorization based on different axis or on texture). 

Experienced learners may also be biased in favor of their existing 

linguistic system and its relevant categories. For example, a participant 

who learned a language with morphemes for shape and motion might have 

learned to ignore scenes’ texture, and would struggle to learn a language 

which treats texture as a relevant grammatical feature. Naïve learners, on 

the other hand, have no prior model of the artificial language, no 

established labels for the scenes, and no preferences as to the relevant 

semantic categories of the languages. As such, they are presumably less 

biased when learning the new language. In other words, naïve learners, 

like children, would need to acquire the language (as well as their 

knowledge about the “world” of the experiment and the relevant 

categories of scene) from scratch, and may therefore be more accepting of 

complex and elaborate systems.  

Of course, prior knowledge is only one possible explanation of age-

related differences in language learning, and there are many other 

developmental differences that influence L1 vs. L2 learning outcomes. 

Specifically, children and adults may be exposed to different types of 

input, with adult second-language learners generally argued to learn from 

inferior input in quantity and quality (Atkinson et al., 2018; Bentz & 
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Berdicevskis, 2016). Additionally, children’s inferior working memory 

(Gathercole et al., 2004) can lead them to overgeneralize more compared 

to adults (Hudson Kam & Newport, 2009; Wonnacott et al., 2013). Such 

developmental differences would obviously not be captured in the planned 

design, yet I believed that this manipulation will be enough to simulate 

the presence of non-native speakers in the community. 

If these assumptions hold, then introducing experienced learners into 

the community would result in more simplifications in the form of more 

regularizations of inconsistencies and increased linguistic structure, while 

introducing naïve learners would result in preservation of the existing 

linguistic structure. Importantly, by the end of the experiment, there would 

be significant differences in linguistic structure of the input language 

across conditions. If prior linguistic knowledge is indeed making it harder 

for experienced participants to learn a new language, they should favor 

more simplified and transparent structures compared to naïve participants, 

given that such structures are easier to learn (see Chapter 5). As such, the 

final languages in this condition should be more systematic and 

compositional (e.g., irregulars should be regularized). This change could 

be the result of the non-natives introducing more simplifications, and/or 

the result of the original members of the group (i.e., the native speakers) 

accommodating to them and adopting their simplifications (Atkinson et 

al., 2018; Bentz & Berdicevskis, 2016; Loy & Smith, 2019).  

However, it was also possible that having no prior knowledge or having 

newcomers of any type would shape languages into being more learnable 

in general. In this case, both conditions would have shown the same 

pattern of results, namely, simplifications due to learning. Interestingly, 

there was also a chance that languages with naïve learners would actually 

develop more linguistic structure and regularities compared to languages 

with experienced learners, given that experienced learners may be used to 

the idea that their target languages are imperfect and contain irregularities. 

This possibility was supported by the literature of emerging sign 

languages, home-signing and Creoles, which has suggested that learners 

with no prior linguistic model can lead to more regularization (Bickerton, 

1984; Goldin-Meadow & Mylander, 1990; Senghas et al., 2004).  

Since no specific hypotheses have been formulated in the literature 

about the effect of L2 learning on the degree of convergence, stability and 

communicative success in the community, I had no clear predictions 

regarding possible differences in these three parameters across conditions. 

Nevertheless, it was possible that there would be differences in the 
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degrees of communicative success and convergence due to existing 

members’ tendency to accommodate more or less to certain newcomers. 

Although all groups would have been given the exact same instructions 

(to “communicate as successfully as possible with the newcomers”), it 

was possible that existing members would be more tolerant of mistakes 

made by naïve participants rather than “immigrants”, or would show more 

tolerance towards non-natives in general (Lev-Ari, 2015a). Moreover, it 

was possible that the presence of two L2 speakers who speak the same 

language would preserve divergence in the group, since those speakers 

could revert to using their original input language whenever paired with 

each other. It was also possible that learning difficulties in early rounds 

would affect accuracy. For example, experienced participants may find it 

harder to learn the language and to abandon their old labels, possibly 

leading to less communicative success. Alternatively, experienced 

participants may find it easier to learn some aspects of the language given 

their prior knowledge and familiarity with the meaning space, possibly 

leading to more communicative success (especially if the L1 speakers will 

accommodate to them and simplify the language even more). This planned 

experiment could have resulted in many interesting findings, and could 

have shed light on the mechanisms involved in language simplifications 

in the presence of non-native speakers (e.g., are long-lasting 

simplifications the result of accommodation by native speakers, and/or by 

second-language learners difficulties in learning?). 

However, I was unable to carry out this experiment as planned due to 

two main issues: it was not possible to get the first “native” learners to 

learn the language to a near-ceiling level in the allocated time, and 

consequently, it was not possible to get the first “native” members of the 

community to communicate with each other without changing that 

language, well before the introduction of the newcomers. In most pilots, 

at least one member of the group failed to learn the language to a sufficient 

level, and started introducing changes and regularities already in the first 

communication rounds. This was problematic, since a prerequisite of the 

manipulation was that the input language was well learned by everyone in 

the group. If some of the first participants did not learn the L1 language 

well, then any adaptations and simplifications could be the result of these 

participants’ difficulties and learning biases. That is, when one of the L1 

learners struggled with the language to begin with, it was highly likely 

that they would introduce L2-like mistakes and simplifications already in 

the first communication rounds, leading to changes (and perhaps ceiling 
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effects) before the manipulation even took place, making it extremely hard 

to compare the languages of different groups across different conditions.  

Since the input language had to be partly structured and to contain 

irregularities and inconsistent patterns in order to allow for regularizations 

to take place, participants’ difficulty with learning them was, in fact, 

unsurprising. The findings of Chapter 5 predict and explain this pattern, 

given that learners were shown to struggle with learning semi-structured 

languages in a similar learning paradigm. Specifically, learners in Chapter 

5 who were trained on medium and mid-high structured languages (which 

were relatively similar in their linguistic structure scores to the input 

languages selected for this experiment, i.e., structure scores of 0.5-0.6) did 

not reach ceiling levels of accuracy in a similar time frame. It is of course 

possible that the first participants would have all learned the language well 

enough given more training time, yet the replacement procedure was 

already too long, and it was problematic to introduce more learning rounds 

(especially since some participants already learned the language well).  

Although I was not able to solve these problems in the time constraints 

of my PhD project, a possible and highly implementable solution is to 

have the first participants trained on the language online prior to coming 

to the lab. Participants could get a link to an online learning experiment 

days in advance, and could only be allowed to participate in the actual 

experiment if they had passed a certain threshold of learning. I hope that 

I will be able to carry out this version of the experiment in the future.  

 

3.3   Future work 

Drawing on the paradigm introduced above, an interesting follow-up 

experiment would be to examine the scenario of creole formation in the 

lab. Specifically, an additional condition could be included, in which all 

four group members are first trained on four different input languages, and 

then come together to form one group so that they need to develop a new 

system to understand each other – a Lingua Franca. One possible 

prediction is that languages developed under such high-contact and high-

heterogeneity conditions would be highly systematic and regular, and 

encompass the “best” of each language. Such an experiment could also 

manipulate the number of individuals with the same input language, 

examining whether the structure of the emerging creole is based on the 

dominant language in the community, often referred to as the Lexifier in 

creole literature (Blasi et al., 2017).  
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Other possible venues for future research are related to social diversity 

and to different sources of input heterogeneity. For example, does gender 

diversity in the community affect language evolution? Do communities 

that are more balanced in the number of men and women show more stable 

development? Are there specific tendencies that can be identified with 

male vs. female speakers? In most cases, languages evolve in 

communities that are balanced in terms of gender. However, it has been 

claimed that women and men have different preferences when it comes to 

linguistic variants (Al-Ali & Arafa, 2010; Barbu et al., 2014; Haas, 1979; 

Rosenhouse, 1998), even to the degree of having different dialects (i.e., 

“genderlects”) within a community (Yokoyama, 1999). Based on 

language change theories, women have a more prominent role in the 

creation and spread of new linguistic innovations (Labov, 2007; Milroy & 

Milroy, 1993), but balanced communities may be more favorable for 

maintaining equilibrium. This potential effect of gender on language 

diversity and change has not been experimentally investigated, and could 

have important implications for promoting gender equality and respect to 

individual differences. This idea can be tested experimentally, by 

examining whether languages evolve differently in gender-homogenous 

communities (i.e., most members of the community are either male or 

female) compared to gender-balanced communities (i.e., half the 

population is male and the other half is female).  

Similarly, it is possible to examine how age diversity impacts 

language evolution and change. Does the proportion of older vs. younger 

people affects the formation of new languages, and the rate of language 

change? Do age-homogenous communities comprised of mostly younger 

speakers (similar to the community in which Nicaraguan sign language 

has emerged) show more rapid adaptations? There is a basic intuition that 

older people are more conformist and more resistance to change, while 

younger people tend to quickly adapt new variants and cause rapid 

language change. This phenomenon has been documented in a few case-

studies across languages, showing that children and adolescences are 

responsible for the creation of new linguistic innovations (Kerswill & 

Williams, 2000). Interestingly, theories of language change suggest that 

while younger people may innovate more, adults are responsible for the 

spread and fixation of these innovations: adults are seen as the main 

relevant adapters and trend-setters of language change, thanks to their 

social influence in society compared to children and teens (Labov, 2007; 

Roberts & Winters, 2012). However, these ideas were never tested 

systematically. The group communication paradigm introduced in this 
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dissertation can be adopted to examine how languages change as a 

function of the proportion of younger vs. older people in the community. 

For example, it is possible to manipulate age diversity as a function of 

real-age (i.e., testing groups with older and younger participants) and/or 

as function of prior experience with the language (i.e., testing groups in 

which some participants are highly experienced with the language while 

others are not). This will allow us to tease apart the role of age vs. prior 

experience in the creation and spread of new linguistic variants, and see if 

flexibility and stubbornness are underlined by prior knowledge or by 

cognitive maturation. Together, this future work could greatly promote 

our understanding of the role of age differences in the community, and 

can help explain trends of language change, adaptation and innovation. 

Finally, it would be interesting to test the role of social prestige and 

how it can affect local and global alignment in a community. The literature 

of accommodation has long argued that people are more or less likely to 

align with others according to different social parameters, and that people 

preferentially copy from individuals of higher social, political, or 

economic status (Chartrand & van Baaren, 2009; Giles, Coupland, & 

Coupland, 1991; Lev-Ari, 2015b). Such ideas could be tested by 

introducing social prestige to the existing group communication 

paradigm, for example by announcing one participant as the leader, the 

“king”, the “best”, etc. The prestige participant could in fact have no 

additional advantages besides this biased impression, or alternatively, 

could have some concrete benefits. For example, the leader could be 

trained to objectively be the best user of the language, or to be the most 

worthy partner (e.g., successful interaction with them could be rewarded 

with twice as many points). 

From a theoretical perspective, natural selection favors agents that are 

able to identify and copy models that show better-than-average 

information (Henrich & Gil-White, 2001). Therefore, higher alignment 

and more local convergence (within pairs) may be expected with high-

status people, who are considered to be preferred models (either because 

they show high-performance or because they have greater respect in the 

community). In other words, participants may align more with such 

favored individuals. This can either increase the overall convergence in 

the group (as the majority of participants will align with the same favored 

model), or may actually hinder global convergence if, at the same time, 

participants adopt more egocentric and uncooperative behaviors and align 

less with the other "disfavored" agents (Galantucci et al., 2012). 
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With respect to Chapter 4, introducing a social prestige bias to the 

design could have additional effects of stabilization and 

conventionalization trends. Computational models that looked at agent 

prestige (by manipulating the weights given to different agents) showed 

that the presences of highly connected agents, i.e., “hubs”, significantly 

increases the spread of innovations and degree of convergence in the 

language (Baxter, 2016; Fagyal et al., 2010; Zubek et al., 2017). 

Specifically, Baxter (2016) argued that differences in the degree of social 

influence can dramatically affect the mean time to reach consensus, and 

claimed that when social interactions are symmetric (so that all agents are 

weighed equally), the details of the network structure have no effect on 

the mean time to reach fixation or on the probability that a particular 

variant fixes. In contrast, the mean time to fixation can be dramatically 

affected by the presence of large disparities in the influence of different 

speakers. Fagyal et al. (2010) further claimed that having a prestige bias 

in the network is crucial for convergence:  in a symmetrical network 

(where everybody's equal) or in a random network (where agents' 

influence is distributed randomly) there is much less consistency in the 

selection of the preferred model, resulting in more changes and less 

chances to establish a norm. The authors also argue that a leader's prestige 

is important for stability over time, as hubs are the propagators and 

enforcers of norms (though not the innovators). Given these models, it is 

possible that convergence would be faster (and perhaps greater) when 

some participants are more valued than others. As for stability, groups 

with a social prestige bias should fixate faster on a language, resulting in 

less changes in later rounds.  

Interestingly, this manipulation may or may not affect linguistic 

structure as well. There is little reason to assume that social biases mediate 

the emergence of compositionality, as no study has directly examined the 

effects of prestige on grammatical structure. Nevertheless, it is possible to 

make several predictions based on intuitive arguments. First, it is possible 

that the effects of social biases are restricted to convergence and 

propagation trends. However, even if this is the case, having highly 

influential agents in the group could still indirectly affect structure by 

increase the chances that a given compositional innovation will spread to 

the entire community (i.e., increasing the overall chances for 

compositionality to be picked up). Alternatively, it could be that prestige 

will have a negative effect on structure, as participants may be more likely 

to simply adopt whatever language the popular agent would be using, 

rather than developing a predictable language with systematic structure to 
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facilitate convergence in the entire community. Whatever the case, 

examining such effects would have important implications for our theories 

on community structure, language structure, and linguistic diversity.  

 

4   Conclusion 

Reflecting back on this thesis, the take-home message can be simply 

summarized as “languages adapt to fit their social environments”. The 

original goal of my PhD project was to tease apart and evaluate different 

social factors that may affect language evolution and diversity, which I 

have done using a novel group communication paradigm. Across five 

chapters, I have shown that the structure of languages can be shaped by 

communicative pressures, and especially by the size of the community in 

which they evolved. I have also demonstrated that languages with 

different degrees of systematic structure vary in their ease of learnability 

and suggested that this variation is relevant for language use and 

communication between strangers. I believe that the work presented in 

this thesis is merely a first step in understanding the social origins of cross-

linguistic differences, and opens the door to a promising line of exciting 

research.  
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English Summary 
 

 

Why are there so many different languages in the world? How much do 

languages differ from each other in terms of their linguistic structure and 

their learnability? And how do such differences come about? 

One possibility is that differences between languages (i.e., linguistic 

diversity) stem from differences in the social environments in which 

languages evolve. In this doctoral thesis, I tried to shed light on the social 

origin of language diversity. I did this by experimentally examining the 

formation and acquisition of new languages created in real-time under 

different social conditions. I developed a group communication 

experiment, where groups of participants needed to create a new artificial 

language to communicate with each other about various scenes with 

moving objects. I tested how the process of language evolution was 

shaped by the fact that the languages developed in different communities, 

with different population sizes and different types of social network 

structure. I also tested whether languages that evolved under these 

different conditions differed from each other in how easily they were 

learned and used by new people, who had not been involved in their 

development. 

In the first chapter, I showed that groups playing this game developed 

languages with systematic grammars. In the second and third chapters, I 

varied the size of the groups (big vs. small) and how well-connected 

people in the groups were to each other (dense vs. sparse). I asked how 

these changes affected the emerging languages. The results showed that 

big groups developed more systematic and structured languages, and did 

so faster and more consistently than small groups. In contrast, there was 

no evidence that the network structure in the groups played a similar role: 

Densely connected and sparsely connected groups all reached similar 

levels of systematic structure. In the last chapter, I tested whether the 

languages previously created in the group communication experiment 

differed from each other in how easily they were learned and used by new 

individuals. The results showed that more systematic languages were 

learned better and faster compared to languages with many irregularities. 

Moreover, participants who learned more systematic languages were 

better able to label scenes they had not seen before, and could better 

communicate about the scenes with strangers they had not met before. In 

sum, the studies in this thesis show how community structure affects the 

development and nature of language structure in the lab. 
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 סיכום בעברית

באמת שונות אחת  יש כל כך הרבה שפות שונות בעולם? עד כמה שפות מדוע

 מהשניה מבחינת המבנה הדקדוקי שלהן? ואיך הבדלים אלו נוצרו מלכתחילה?

אחת התשובות האפשריות והמעניינות ביותר לשאלה זו היא שהבדלים בין שפות 

 .כל שפה התפתחהשבה  החברתיתבסביבה הבדלים נובעים מ)או גיוון לשוני( 

בעבודת הדוקטורט שלי ניסיתי לשפוך אור על המקור החברתי של גיוון לשוני, 

של שפות  וההשתנות ההיווצרותתהליך את בתנאי מעבדה ולבחון באמצעות ניסויים 

פיתחתי ניסוי תקשורת קבוצתי  .מגוונים חברתייםחדשות בזמן אמת תחת תנאים 

של משתתפים ליצור ביחד שפה מלאכותית חדשה על מנת קהילות קטנות על שבו 

שבהן צורה לא מוכרת נעה במרחב  תרחישים,  לתקשר זה עם זה על מגוון של

לכיוונים שונים. בחנתי כיצד התהליך של היווצרות שפה )או אבולוציה של שפה( 

של  אחרמעוצב ומשתנה על ידי העובדה ששפות נוצרות בקהילות שונות, עם מספר 

שפות  כיצדשל רשתות חברתיות. בנוסף, בחנתי  אחר לחלוטיןברים ומבנה דו

ע"י למדות קלטות ונבקלות שבהן הן נגם נבדלות זו מזו  שוניםשנוצרו תחת תנאים 

שפות  ישנןהאם . שאלתי דוברים חדשים שלא היו חלק מתהליך היצירה של השפה

מבחינת קצב ורמת הדיוק של רכישת השפה, והאם ישנן  שקל יותר ללמוד מאחרות

 .שפות שהינן יותר נוחות ואפקטיביות לשימוש

שקהילות קטנות ששיחקו את משחק  יבפרק הראשון של הדוקטורט, הראית

. בפרק השני והשלישי שיטתיהתקשורת הקבוצתי פיתחו שפה עם מבנה דקדוקי 

ע"י שינוי של גודל הקבוצה )גדולה שפה מושפע היווצרותה של בחנתי כיצד תהליך 

אם אנשים יותר או פחות מקושרים זה לזה(. המול קטנה( ורמת הקישוריות בקבוצה )

בעלות מבנה התפתחו בקבוצות הגדולות היו אשר תוצאות המחקר הראו ששפות 

שהתפתחו בקבוצות הקטנות, ושהמבנה הדקדוקי אלו יותר ביחס ל דקדוקי שיטתי

עדויות  ניכרוצר מהר יותר ובאופן עקבי יותר. לעומת זאת, לא בקבוצות גדולות נו

לכך שמבנה הרשת החברתית של הקהילה משפיע על היווצרות הדקדוק באותה 

הדרך: שפות שנוצרו ע"י קהילות צפופות ומקושרות היטב היו בעלות אותה דרגת 

זה  תיקשרודלילות יותר שבהן לא כולם כמו שפות שנוצרו ע"י קהילות  שיטתיות

עם זה. בפרק האחרון בחנתי האם השפות שהתפתחו בניסוי ע"י קהילות בגדלים 

שונים נבדלות זו מזו בקלות שבהן הן נלמדות ע"י דוברים חדשים. תוצאות המחקר 

יותר נלמדו במהירות ובקלות רבה יותר ביחס  בעלות מבנה שיטתיהראו ששפות 

 שיטתיות יותרשתתפים שלמדו שפות הרבה יוצאי דופן. בנוסף, מ שהכילולשפות 

תרחישים חדשים הצליחו להשתמש בשפה באופן יותר יעיל על מנת לסווג ולכנות 

ברורה  מעולם לא פגשו בצורה, ויכלו להבין משתתפים אחרים שמעולם לא ראוש

ברתי של הקהילה יכול לסיכום, המחקרים בדוקטורט זה מראים כי המבנה החיותר. 

 של שפות חדשות.  הדקדוקייווצרות ועל טבע המבנה אופן ההלהשפיע על 
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Nederlandse Samenvatting 
Waarom zijn er zoveel verschillende talen op de wereld? Hoeveel 

verschillen talen van elkaar in hun structuur en leergemak? En hoe 

ontstaan deze verschillen? 

Een mogelijke verklaring is dat verschillen in talen (linguïstische 

diversiteit) ontspringen uit de verschillen in sociale omgeving waarin 

talen ontwikkelen. Met dit proefschrift probeerde ik licht te werpen op de 

sociale oorsprong van verschillen tussen talen. Ik onderzocht hoe mensen, 

onder verschillende sociale omstandigheden, nieuwe talen ontwikkelden 

en leerden. Ik ontwierp een real-time groepscommunicatie-spel als 

experiment, waarin groepen deelnemers samen een nieuwe, kunstmatige 

taal ontwikkelden. Deze taal moesten ze gebruiken om te communiceren 

over beelden van bewegende objecten. Ik onderzocht hoe de evolutie van 

de taal gevormd werd door de grootte van de groepen en de structuren van 

sociale netwerken binnen de groepen. Ook bekeek ik of talen die op deze 

manier ontstonden verschillen in hoe makkelijk ze door nieuwe mensen, 

die niet betrokken waren bij het ontstaan van deze talen, geleerd en 

gebruikt worden.   

In het eerste hoofdstuk toonde ik aan dat groepen die dit spel speelden 

talen ontwikkelden met systematische grammatica. In het tweede en derde 

hoofdstuk varieerde ik de groepsgrootte (groot vs. klein) en de mate 

waarin mensen verbonden waren met anderen (grote groepsdichtheid vs. 

kleine groepsdichtheid). Ik onderzocht hoe verschillen in deze factoren de 

opkomende talen beïnvloedden. De uitkomsten toonden aan dat grote 

groepen meer systematiek en structuur in hun talen aanbrachten. Ook 

gebeurde dit sneller en consistenter dan in kleinere groepen. Ik vond 

echter geen bewijs dat de netwerkstructuur binnen groepen een 

vergelijkbare rol speelde. Groepen die nauw verbonden waren bereikten 

vergelijkbare niveaus van systematiek en structuur in talen als groepen die 

weinig verbonden waren. In het laatste hoofdstuk testte ik of de talen die 

ontwikkeld werden in het groepscommunicatie-spel verschilden in 

leergemak en bruikbaarheid door nieuwe individuen. De resultaten 

toonden aan dat systematischere talen beter en sneller aangeleerd werden 

dan talen met veel onregelmatigheden. Daarnaast pasten de deelnemers 

die systematischere talen leerden deze beter toe bij het omschrijven van 

beelden die ze nog niet eerder gezien hadden. Ook communiceerden ze 

makkelijker met onbekenden over deze beelden. Kortom, de onderzoeken 

in dit proefschrift tonen hoe groepsstructuur de ontwikkeling en 

eigenschappen van taalstructuur beïnvloedt binnen een gecontroleerde 

setting. 
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