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Abstract

We develop general tools to characterise and efficiently compute relevant observables of multimode
N-photon states generated in nonlinear decays in one-dimensional waveguides. We then consider
optical interferometry in a Mach—Zender interferometer where a d-mode photonic state enters in each
arm of the interferometer. We derive a simple expression for the quantum Fisher information in terms
of the average photon number in each mode, and show that it can be saturated by number-resolved
photon measurements that do not distinguish between the different d modes.

1. Introduction

Photonic states with a large and fixed number N of photons play a crucial role in quantum technologies but are
extremely challenging to prepare experimentally. The paradigmatic example are single-mode Fock states,

IN) o (a")N|0), where all the photons share the same spatio-temporal mode (a'), and which are the basis of
many quantum metrology protocols [ 1-4]. Nowadays, the most widely used method to generate them is based
on combining with post-selection heralded single photons emitted in spontaneous parametric down-
conversion processes [5-9]. This method, however, suffers from an exponential decrease of efficiency with N,
hindering its application for large photon numbers. Single-mode Fock states can also be emitted naturally from
entangled atomic states in ensembles with many more atoms than N [10]. However, exciting such atomic states
is highly non-trivial because of the linear energy spectrum of such systems [11-14].

A way of circumventing these limitations is the use nonlinear systems for the generation of such photonic
states. These type of systems appear in many different contexts, such as in cavities with Kerr-type nonlinearities
[15], in multi-level quantum dots due to biexciton binding-energies [16, 17], or even in atomic ensembles simply
because an atom can not be doubly excited or by exploiting Rydberg blockade [18, 19]. These mechanisms
ultimately translate into either non-harmonic energy splittings (Kerr cavity QED) or non-harmonic decay rates
(saturation), which can be harnessed for multiphoton emission. An illustration of that is the proposal put forward
by usin [20] to generate multiphoton states with quantum emitters coupled to photonic waveguides [21-30].
There, N excited emitters interact with the waveguide in the so-called mirror configuration [28, 29], such that its
dynamics is described by the well-known Dicke model [31]. In that situation, the emitters experience a nonlinear
decay process, known as superradiant decay, which enhances the probability of emitting the photons into the
waveguide as compared to other decay channels. Beyond the collective enhancement, the non-linearity has another
effect: the photons released into the waveguide have an inherent multimode structure [13]:

dk; ... dk
¢(N) f f (21 )NNI;] {k}a]j] ...a]le()), (1)

where a ,i is the creation operator of a waveguide photon of momentum k;. The coefficient Ax) = A k,,.. -k,
characterizes the multimodal structure of the wavepacket, and will be non-factorizable (A, = JNTA ko Ag,)
for photons emitted from any type of nonlinear system (e.g. non-harmonic energies or nonlinear decay rates). This
non-trivial multimode nature of the emitted wavepackets forces one to revisit the results derived for single-mode
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Fock states as they are not necessarily valid anymore. For example, the multimodal structure poses limits on the
scalability as Fock state sources from spontaneous parametric down conversion processes [32—34], is required to
accurately predict the scattering of quantum pulses [35, 36], or, as we showed in our recent manuscript [20],
renormalizes the results of single-mode quantum metrology protocols.

Motivated by these observations, the goal of this article is to develop general tools to deal with multimode
states generated in nonlinear decays, both from the point of view of its characterisation as well as applications in
quantum metrology. We start by considering a general N-dimensional emitter decaying in a nonlinear fashion
with a waveguide. The wavefunction of the emitted photonic state (given by Ay, in (1)) can be obtained through
the techniques of [37], and it involves N terms due to bosonic symmetrisation. Given this highly non-trivial
state, the main contributions of this article are:

1. To develop a framework to compute relevant observables of multimode states generated in nonlinear decays
in an efficient manner, with the complexity scaling polynomially with N.

2. To apply these general tools to the characterisation of Dicke superradiant photonic states where we find that
most photons are contained in a few modes: a single mode contains 91% of the photons, and two (three)
modes already contain 98.4% (99.6%) of them.

Having identified general properties of multimode states, and in particular superradiant Dicke states, we then
study their potential for quantum metrology [ 1—4]. Building on our previous work [20], our goal is to extend
well known results in quantum optical interferometry [38, 39] to the presence of a non-trivial multimode
structure within the input photonic states, as in equation (1). For that, we consider phase estimation in a Mach—
Zender (MZ) interferometer, where the input state of each arm of the interferometer is a generic d-mode state
with a fixed total photon number. Then, our main contributions are:

1. We show that the quantum Fisher information [40] (QFI) Q takes the particularly simple form
d
Q =2> nj(mj+ 1) + mj(n; + 1). (2)
j=1

where n;, m; are the average photon number in the ith mode of the two incoming wavepackets.

2.We show that the QFI (2) can be saturated by number-resolved (NR) measurements which cannot
distinguish between the different d modes.

3. Finally, we also discuss the effect of photon loss in the interferometer and in the measurement devices given

the proposal of [20] for quantum-enhanced metrology with twin Dicke superradiant states.

The paper is structured as follows: we start presenting the general multimode structure of the photons
emitted from nonlinear systems into waveguides in section 3, whereas the tools to characterise such photonic
states are developed in section 3. These tools are applied to superradiant photonic states in section 4. In section 5
we consider quantum metrology with multimode states, and finally we summarise our findings in section 6.

2. Nonlinear systems decaying in 1D waveguides

In the interest of generality, we consider the emission process coming from a N-level system (0), |1), ..., [N))
with energies w;. Its free Hamiltonian is then given by (taking 72 = 1):

N
Hs = Z w]‘Uj,]’ (3)
j=1

with oy = |i) (k|. The system is coupled to a 1D waveguide, described by a one-dimensional and chiral photon
bath with a linear dispersion (both the chirality and linearity assumptions can be relaxed obtaining similar
results) w, = cq. Taking ¢ = 1, its Hamiltonian read:

Hp = qu qa;'aq. 4

Finally, the system-bath interaction Hamiltonian is assumed to be given by:

N
dg , .
HSB = E "Yj f_zj- (a;aj,l,j + aqO']"]',l), (5)
j=1
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Figure 1. A the nonlinear system (in blue) with Nlevels with energy w,,, couples to a 1D waveguide. The coupling with the waveguide
induce single-photon transitions n — n — 1 (inred arrows) ata rate ,.. Around the nonlinear system, we depict the two example of
nonlinear system that we consider along the manuscript, that are, equally spaced atomic ensembles and anharmonic cavities.

where +y; denotes the decay rate of the transition from the jth to the (j — 1)thlevel. The global Hamiltonian
describing the emission process is then given by the sum of the three terms: H = Hs + Hp + Hsg. The whole
physical set-up is illustrated in figure 1.

We consider that initially the waveguide Bis in the ground state, whereas the system S initially contains N
excitations. When the excitations decay into the waveguide, the photonic state is described by the wavefunction
(naturally extending the considerations of [13]):

™)) = f f Af iy H dt; a/ (6)

with

Ay 1y = T(<800|Otl OtN|<PN>)> )

where 7 stands for time-ordering, and O satisfies (¢;_||O; = Jie [ w16y ]r (. Furthermore, the

bosonic creation and annihilation operators as, a; satlsfy the standard commutation relation

[a, a1 = 6(s — 1). ®)

The use of this general light-matter Hamiltonian H allows to capture the physics of very different models,
such as:

« Saturated atomic ensembles in the atomic mirror configuration. As explained in [13, 20], within the Markov
approximation the coupling of the ensemble with the waveguide can be described by a single collective dipole
operator. This can be effectively described as N-level system with equally spaced energy levels, w,, = nwy, but
nonlinear decay rates: 7, = L[j¢gn(N — #n + 1).In the text, we shall call these emitted states superradiant states,
or superradiant photonic states.

+ Anharmonic cavities. In the case of a nonlinear resonator, with a Kerr nonlinearity of the form
Hp = w,a’a + Ud'a(a’a — 1), but coupled to the waveguide in a linear fashion such that its reduced
dynamics is given by the standard Lindblad form T34(2apa’ — a’ap — pa'a) /2, the energy levels are now
nonlinear: w, = nw, + n(n — 1) U, while the decay rates are harmonic ~, = nlijq.

Along this manuscript, we will focus on the characterisation of the first ones, as they will be the most relevant
for quantum metrology. However, all the formalism developed is valid for any combination of {w,, ,}.

3. Towards effective characterisations of multimode states

We start this section by developing techniques that enable us to compute relevant observables of ™))
efficiently for large N. This is motivated by noting that the analytical form (6) contains N!terms due to the time
ordering in (7), making such an expression challenging to handle beyond low N.

We first consider a single emitted photon (withy = v; — Ypandw = w; — wy):

160 f B a10) = b] o), ©)
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where we have defined B = Nal e~t(w+3) and b:,) w = j; >~ dtB{"*)a; . Using (8), the commutation relation

by b ] = 27 (10)
Uy 20— w)

follows. Given such single-mode operators b, ,’s, we have developed techniques to compute efficiently
observables of the form

(6™ by, v by, b3 5 o b1 5 16W). (11)

The computational techniques for dealing with (11) are rather involved and are developed in detail in the
appendix A. Here, we instead explain the main ideas and implications:

1. The computation of (11) is developed by expressing it as a recurrence relation, which is then transformed
into a matrix multiplication.

2. The solution is exact as the integrals in (6) are carried out analytically. Yet, in practice it is convenient to
perform the matrix multiplication numerically in order to access large N.

3. The size of the involved matrices is at most (4'(N — n + 1))?, although usually this can be reduced if there
are some symmetries in the calculation (i.e. if some of the x;’s and y;’s in (1 1) are the same). In practice, this
means that for n = 1 (corresponding to average photon number), one can easily reach up to N = 1000,
whereas for n = 2 (corresponding to the variance) one can reach N a 100. This should be contrasted to the
naive calculation of (11) from (6) which involves (N!)? integrals.

4. Since the b;f’w’s form an (overcomplete) basis of the Fock space spanned by a,' V#, one can in principle
compute arbitrary observables through this approach.

4. Characterisation of superradiant photonic states

We now apply the machinery developed in the previous section to the characterisation of superradiant photonic
states emitted when N excited atoms are placed next to the waveguide in the atomic mirror configuration, as
previously proposed by us in [20]. This corresponds to taking [¢™)) in (11) with 5, = Tign(N — n + 1)
and w, = nw.

Before proceeding to its characterisation, let us mention that there are two main features that make this
proposal particularly appealing [20]:

+ Inthe absence of photon loss (i.e. when the atom-waveguide set-up is perfectly isolated) and assuming perfect
control on the system’s Hamiltonian, the protocol is deterministic and scalable. That is, simply by placing more
atoms next to the waveguide, one can generate a larger N-photon state.

+ Inthe presence of photon loss in free space, the probability of success scales as =1 — In(N)(I'*/I4), where
T4 is the decay rate into the waveguide and I'* into free space, for I'* /T4 < 1. This slow decrease with In N
arises due to the enhanced collective decay and should be contrasted with the standard success probability
~1 — N (I'*/T14) obtained for Nindependent decay processes (see [20] for more details).

Hence, Dicke superradiant decays provide a natural framework to generate N-photonic states in a deterministic,
scalable and robust-to-photon-loss manner. Furthermore, current experimental nanophotonic platforms have
already achieved ratios Ii4 /T* ~ 60 with I;4 ~ 1 GHz [26].

4.1. Average photon number
We first consider the photon number

n(y, w) = (M6 by lo™). (12)

We start by fixing the decay rate yand varying w around wy, corresponding to the frequency of the two-level

emitters. Figure 2 shows how the average photon number is centred at wy, as one would have expected physically.
Next we consider n(y, w) for a fixed w = wyand varying . The results are shown in figure 3, where we

compute n(7, wp) for N = 100, 200, 300. Interestingly, note that the maximum of n(, w) appears at

x = N/InN. To understand this, note that the time scale 7 of decay of the photons is proportional toy . In

particular, for the superradiant decay, the jth collective exitation decays with a time scale v !, with

7; = IJ(N — j + 1), and the average decay time is given by

4
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Figure 2. Ratio of photons of a superradiant N-photon state |¢™) in a mode with frequency wy + Aw and inverse decay rate .
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Figure 3. Ratio of photons of a superradiant N-photon state |¢™) in a mode with frequency w; and varying inverse decay rate . Note
that the maximal number of photons is found for y ~ N/InN.

S 1 ~ ! N .
SN+ D 2InN

N
(o< 32 =T (13)
=1
Hence, we realise from (6) that the choice v = N/ In N corresponds to single-mode photons decaying with the
average decay time of the superradiant photons. This provides an heuristic explanation for the optimal choice of
~ that maximises 71(7, wp), i.e. the number of photons in the mode b, .

4.2. Most relevant modes

The results of figures 3 and 2 suggest that a rather large proportions of photons (between 50% and 60% for

N = 100, 200, 300) can be contained in a small set of modes centred around the frequency w and with inverse
decayrate y = N/ In N. This motivates us to consider a set of D modes with frequency w, and varying

I' = jN/InN,withj = 1,..., Dy thatis, { b ., }]D:l with x = N/ In N. Note that these modes are not orthogonal
due to (10). A set of orthogonal modes can be constructed by solving the generalised eigenvalue equation

Tv® = N\ Rv®, (14
where T'and R are matrices of size D* whose elements are given by
T = <¢(N) |b]jx)w0 blx,w0|¢(N)>)

23kl

Ry = [brewos b, ] = PR (15)
This leads to a set of D bosonic modes
= i v](-k)b]-x,wo with x = lnTN (16)
The usual commutation relations
[ci, ¢]1 = 65 17)

are guaranteed by (14) (plus appropriate normalisation).

5
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Figure 4. Proportion of photons in d modes as quantified by (19) for D = 10 as a function of the number of photons N'in the
superradiant state.

Let us now define the number operators (for a given D)

d
ng=>y, c]ch, (18)
=1
and the corresponding ratio of photons
) (N)
c, = 9 Ifli\;zlfﬁ ) (19)

In figure 4, we show C,as a function of N for D = 10 (i.e. the modes ¢;’s are a linear combination of 10 modes
bix,w, s)- Note that C; quickly saturates with N. The values of C, for different D’s are shown in the following
table, which is evaluated at N = 100:

These numbers can be slightly increased by considering larger d’s or D’s. It is remarkable that with only 2 (3)
modes we can cover 98.4% (99.6%) of the photons, and that more than 90% photons live in a single mode.
Hence, although the superradiant state |!\)) may naively appear as a highly multimode state, it can be described
by means of only a few modes. At the same time, it is worth noticing that although we reached this result by a
rather heuristic method, these descriptions are almost optimal: since the small set of considered modes already
contains around 99.9% of the photons, it is not possible that by considering a much larger (possibly infinite) set
of modes the effective descriptions can considerably change. In other words, while a few modes seem to suffice to
describe |¢™)) with high accuracy, it is not possible to describe it by a single one.

4.3.Variance
Let us further characterise the fact that most photons are contained in a few modes by studying the fluctuations
of the number operators 1;’s given in (18). In particular consider the variance

Ony = N (nd) — ((na))?, (20)

with (...) = (¢M]...|p"N). To compute such expressions, first we expand them using the commutation relations
(17)as

<”12> = <512(51T)2> —3(m) — 2 — (<”1>)2
(n3) = (e )?) + (e5(e)?) + 2(aaec}) — 5(m) — 5(m) — 6 (21)

and similarly for higher <n]2> Each term can be evaluated by using (16) and then computing (b; b;b; b;) (or (b; b))
by the appropriate recurrence relation derived in appendix A. For numerical purposes, it is convenient to first
compute (b;b;b{ b) Vi, j, k, [ wherei = 1, ..., Dand save the results. In the numerical simulations of this
section, we take D = 8, for which we already cover 99% of the photons as shown in table 1. The results are
shownin figure5ford = 1,2,3and D = 8. As expected, o,,, decreases as d increases, and ford = 3and D = 8
the variance is rather small: less than one photon for N = 40. This confirms the previous results that a few
modes can cover most of the photons contained in the superradiant state. Furthermore, we also observe that o,,,
grows linearly with N, which is compatible with the proportion of photons staying constant with N as shown in
figure 2.

4.4. Effective descriptions

The main insight of the previous sections is that 2 or 3 modes suffice to describe most of the photons of |},
We can use this insight to build effective descriptions of |¢¥)) within these subspaces. This can be achieved by
computing the overlaps
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Figure 5. Variance of the number operators n;, 11,, and 3 defined in (18) for D = 8.
Table 1.
C, C, Cs C, Cs Cs C; Cq
D=2 0.653 0.688
=4 0.852 0.918 0.921 0.921
D=6 0.894 0.973 0.980 0.981 0.981 0.981
D=38 0.901 0.983 0.993 0.995 0.995 0.995 0.995 0.995

D =10 0.902 0.984 0.996 0.998 0.999 0.999 0.999 0.999

(Olcficf ... chalp®y, (22)

forall {¢; }’]’-l (suchthat 3~ k; = N,and where dis the number of considered modes. For that, we first express

(22) as a combination of <0|b,f‘wo 2"; w Dx ol |¢™)) through (16). Then, in appendix A, we develop a recurrence
relation method to compute <0|bf‘wn bzx e Dx o |@®) which requires the multiplication of O(N) matrices of
dimension dim, which satisﬁes N< d1m<(N /D)P.In order to compute (22), it is convenient to first compute
all possible (0[b, b2 . ... bR, u}0|(/§(N ) forall {k;}\_, such that >_; ki = N and save such coefficients. Thereare
O(NP) such coefficients, Wthh provides the necessary space to carry out the computation. Overall, the whole
computation is challenging, both in terms of the number of operations and the complexity of each one, but
becomes feasible for small Nand D < 10, which is enough to capture most of the photons (see table 1).

We consider the following unnormalised two and three mode state:

N
W57 =3 ajli N = j)
—J
&) = 325" ajulis ks N = j— k) (23)

with|j, N = j) = OV V10) /N = D1, kb N = j = k) = (1) (e ()N 40) /
JN = j = WY, o5 = (M, N — jland ajx = (¢™], k, N — j — k). The normalisation (for two

modes)
N
N=lasP, (24)
=0

or N'= 3. |a;i[* for three, indicates the overlap between [1/9%) and |¢V)), i.e. how good the approximation in
the two or three mode subspace is. In figure 6, we show how N is close to 1 forlow N < 10, especially ford = 3
where it stays above 0.97. This implies that | ™)) can indeed be well described by two or three mode states as in
(23).For d = 2, the coefficients are given in figure 7 and the coefficients for d = 3 are provided in appendix A.
These approximate states of the form (23) become handy in calculations for quantum information tasks, as we
will later illustrate for quantum metrology, and importantly our techniques enable us to quantify how close are
our approximate states to the real |¢™)). As a final remark, we note that the linear decrease of ' with Nis also
compatible with our previous results where we observed that the proportion of photons in a given mode stays
constant.
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Figure 6. Overlap for the two-mode (blue) and three-mode (orange) approximations for D = 8.
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Figure 7. Coefficients of the two-mode state for N = 3,5,7,9and D = 8.
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Figure 8. A multimode state (generated e.g. through a superradiant decay) enters each arm of a MZ interferometer. Each arm of the
interferometer is described by the set of modes: {a}, {bi}.

5. Applications in quantum metrology

We now apply the different insights and techniques developed in the last section to quantum optical
interferometry, in particular by considering phase estimation in a standard MZ interferometer. We consider that
each arm of the MZ inteferometer is described by a set of modes {a;, }’,il:1 and {b; }z: > respectively (see figure 8).
Whend = 1, werecover the standard two-mode optical interferometry [4], and our goal is precisely to extend
well-known results to the multimode regime where d > 1. We start this section by introducing some basic
concepts of quantum metrology, as well as describing the set-up we consider here in detail.

We consider the estimation of a parameter ¢ by measuring N photons which encode information about it.
The (possibly entangled) N-photon state is described by |1/,). Let us assume that we apply a measurement M on
[1),), the statistics being described by a probability distribution P (sj|¢) where {s;} are the possible outcomes of
the measurement given the value ¢ of the unknown parameter to be estimated. If this process is repeated v times,
in thelimit v > 1 the Cramer—Rao bound guarantees that the mean-squared error A2( of any unbiased and
consistent estimator @ of ¢ is lower bounded by [41, 42]:

8
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1
Ny > —, 25
Pz (25)
where C is the classical Fisher information (CFI)
OPGsilo) Y
c=y 1 (—(W)) . (26)
j p (Sjl‘P) dp

The CFI quantifies the best resolution of a particular estimation scheme as defined through [,,) and a
measurement M. In their seminal work, Braunstein and Caves optimised C over all possible quantum
measurements M [40]. The resulting quantity is the QFI Q , which satisfies

1 1
Np>— > — 27
p2527 0 (27)
and, for pure states, is given by
Q - 4(<¢¢|%> - |<1/)<p|¢ga> |2) (28)

with 1/J¢ = 0,%,. The QFI quantifies the potential of a particular state |1/,,) for quantum metrology [40].
Let us now discuss how we encode ¢ in the standard MZ interferometer, but extended to the multimode
regime. We consider as an initial state [¢)) = |¢,, ¢p), where

o= > Chll{a}

{oil eCm)
gy =" > CHl{aly (29)
(i} €Com)
with
(‘11 )()/1 (ad )11,1
0
H{a}). = — o 0)
T oy by
apy = &0 G (30)

Jog! Jag!

andwhere {o;} € C(n)iff }°; a; = n,andwith n 4+ m = N.That s, we consider that two independent (but
generic) states of 1 and n photons, each of them described by d modes, enter the two arms of the interferometer.
Ford = 1, the states are single-mode states and hence Fock states. We also assume bosonic commutation relations

lai all = &5 [bi, b1 = & 31

which can always be satisfied by a proper choice of the initial modes through the generalised eigenvalue equation,
asin (14). The initial state |} = |d,, @5) goes through a balanced beam splitter Ugs, gains a relative phase ¢
when travelling through the two arms of the interferometer, and finally enters another beam splitter; the final
state then reads

V) = Ufse " Usslds, op) (32)
with H = 7(2‘1 \a; a; — bb;),and where the transformation Ujjge " Ugg can be described by:

)26 0 06

where a;, I;] are the output modes. Using this transformation we easily obtain

. d
H = UjHUgs = %Z(bfai — aib). (34)
On the other hand, [¢),) can be explicitly written as:
cBe®
[Yy) = > 7,
{aijeCm, (Byecam 11 il Bi!
(@ (9)...ap () (b (9)h..(B) (9)]0) (35)

with
a]T(cp) = cos(gp/Z)a]T + sin(<,0/2)b]T
bl (p) = —sin(p/2)a] + cos(p/2)b;. (36)
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Finally, it will be useful to note that

1) = b, b = el (37)

5.1. QFI for pure multimode states
When [¢)) = e~?H in (28), then we have the convenient expression for the QFI:
Q = 4((YulH¥thy) — ((ulH[1Y,))?). Using (31) and (34), we obtain

Q = (¢, dplH’Ip> ) — ((Dpr BplHlIys D)7
d

=>"[nj(A + my) + m;(A + n))], (38)
j=1
where we defined the average photon numbers n; = ((;SAla]T ajl¢,)and m; = ((;SBlb]T bi|¢g). In the particular case
n; = m;, e.g. for twin states, we finally obtain

d
Q=2 ni(nj+ 1). (39)
=1

From this expression one can immediately recover the QFI of twin Fock states (TEFS) @ = N(1 + N /2)[38],
which corresponds tod = 1and n; = N/2. For twin superradiant states, from our considerations of section 4.2
we have that 21, ~ 0.90N, 21, ~ 0.08N and 2n; ~ 0.02N, from which we obtain Q ~ 0.41N? + N, hence
recovering our previous results [20].

More generally, (38) provides a simple and clear expression for the potential of a particular multimode state
for optical interferometry, and from it we learn that

1. To obtain the QFI of a twin multimode state with N /2 photons in each arm, it is enough to compute the
average photon number of the internal modes of each arm.

2. When the multimode state is generated through a nonlinear decay as described in section 2, then our
techniques enable us to compute the QFI for large photon number (N up to N = 1000).

3. Heinseberg scaling (i.e. @ oc N2) is possible when the number of relevant modes is independent of N, and
quantum-enhanced scaling (i.e. @ o< N'™@ with @ > 0) when the number of relevant modes grows
sublinearly with N.

5.2. Number resolved measurements and QFI

Although the QFI provides the maximal sensitivity of |¢/,) to ¢, it is equally important to understand how to
achieve it in practice. For that, in this section we consider NR measurements in both outputs of the
interferometer. In particular, we consider two types of measurements

* Mode-number-resolved (MNR) measurements. That is, photon measurements that are able to distinguish
both the specific mode and the number of photons. In this case, defining P(%NR) (¢) = P({q; }?: b {6]»}?: %)
and with (30) we have

POND(@) = [(l(I{aj})a @ {81 P 40)

+ NR measurements. We also consider standard photon counting measurements that are not able to distinguish
between the different modes. In this case the corresponding probability distribution to obtain n and m
photons in each output of the interferometer reads

PO (p) = 3 PN (). (41)
{a}eC(n),{B}eC(m)

In both cases, we assume that the detector frequency-bandwidth is larger than the photonic wavepackets
linewidth, which in the superradiant case scale as ¥ &« N/ In N (see section 4.1 and figure 3).

Let us now compute the CFI (26) for MNR and NR measurements when ¢ — 0 by extending the
considerations of [43] to multimode states. We first expand P,3(¢) around ¢ = 0:

10
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B

= (MNR
PN () =PM(0) + pONR

O)p + % OINI) () 2 42)

up to order O(?). Let us now consider this expansion for different cases:

1. n photons in one output and m photons in the other one, i.e. P(%INR)(QD)’S such that {o;} € C(n) and
{Bj} € C(m).Thenusing (37) we obtain, P(%{NR)(QO) = 1 + O(p?), which does not contribute to (26).

a‘

2.n £ 1 photons in one output and m F 1 photons in the other one. That is, PC%NR)(@)’S such that
{oj} € C(n £ D and {B;} € C(m F 1). Then again using (37) we have B, 3(p)M®) = %P'aﬂ(o)goZ with

B5(0) = 2| {3, {aj}]d - {ﬁj}‘f _ 1)’ This case does contribute to (26).

3.n £ m photons in one output and m F m photons in the other one, with m > 2. Then we have,
B.s(p) = O(¢™*1), which again does not contribute to (26).

Putting together these considerations we obtain:

lim C =2 > B,5(0)
70 (o} CnE 1), (B} €COomF 1)
=4 > [(tho—ol fai¥iors {8 ) P

{aj}EC(nil),{ﬂj}e(Z(miFl)

=4l >0 Hegh, (6i1) (e {83} |1d=0)
{a;h {5}
= 4<¢¢:0|¢¢:0>
= lim Q, (43)
p—0

where in the third line we used that |zl)p:0) has only supportin the subspace of n £+ 1 photons in one arm and
m F 1in the other one, and in the fourth line we used <¢v:0|¢¢:0> = 0. Hence, we conclude that C = Q
around ¢ = 0 for MNR measurements.

Crucially, the derivation (43) follows analogously for NR measurements, i.e. for the coarse-grained
distribution (41). This has the very important consequence for practical implementations that experimentally
one does not need to distinguish between the different modes to saturate the QFI. These conclusions hold
around ¢ = 0, but there is in principle no reason why they should also hold for other ¢. To address this point,
we consider two illustrative states:

n

1 .. .
lp,) = ;go ﬁ“’ n—j, (44)
1
|$,) = f(IO, n) + |n, 0)), (45)

and compute the CFI for the corresponding twin states (i.e. |1y, 1) or [1),, 1),) are the input states of the MZ
interferometer). In figure 9 we plot the CFI for (44) and (45) with n = 5 and given MNR and NR photon
measurements. We observe that C = Q for MNR measurements whereas for the NR measurement the equality
is only saturated around ¢ = 0 (or multiples of 7/2). It is worth stressing that one can always add phase shifters
to compensate for ¢ = 0 during the estimation process in order to guarantee that C = Q for NR measurements.
These are crucial considerations to take into account in implementations of quantum metrology with
multimode states. It is also worth noticing that the multimode structure of the state leads to a non-trivial change
of the CFI for NR measurements, as illustrated in figure 9.

Finally, we also compare NR and MNR measurements for twin-superradiant states as shown in figure 10,
which also illustrates the optimality of choosing ¢ = 0. To obtain the results of figure 10, we have used the
effective descriptions obtained in section 4.4 which enable us to describe superradiant states through effective
descriptions using alow number of modes (here we use two-mode descriptions, d = 2, for simplicity).

While our techniques enable us to compute the metrological properties up to hundreds of photons, we note
that current experimental implementations of photon-number detectors are limited to few photons resolution
(N < 10), seee.g. [44, 45]. It is also worth mentioning that recent theoretical proposals show that atoms coupled
to the waveguide could also be used for photon detection up to considerably larger photon numbers [46—48],
which hints to the exciting possibility that atoms suitably coupled to waveguides can be both used to generate
and detect photons. In the next section we discuss a proposal for quantum metrology with superradiant states in
the presence of photon loss for realistic photon numbers, namely N < 10.

11
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Figure 9. Classical Fisher information for MNR measurements (in orange) and for NR measurements (in blue) when two copies of
[401) in (44) (case (a)) or two copies of [1),) in (45) (case (b)) enter through a MZ interferometer. The CFI for MNR measurements
coincides with the QFI for all ¢.
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Figure 10. Classical Fisher information for MNR measurements (in orange) and for NR measurements (in blue) for a twin
superradiant state with N = 10 (i.e.n = 5).

5.3.Photon loss in the interferometer and the measurement device

Besides finding specific measurement schemes to saturate Q, in practice it is also crucial to consider
imperfections in the interferometer and in the measurement devices. In fact, quantum-enhancements in
metrology are largely affected by imperfections (either in the interferometer or due to imperfect measurements),
as photon loss prevents Heisenberg scaling for sufficiently large N [49-52]. To intuitively understand why
Heisenberg scaling is lost, note that for obtaining C = Q in (43) requires photon-measurement detectors that
are capable of distinguishing a single photon (i.e. between N photons and N = 1 photons in the outcomes of the
MZ interfereometer); yet, in the presence of any finite photon loss (see figure 8), this is no longer possible when
1NN~ 1, where nis the probability of losing a photon. Still, quantum enhancements in the presence of photon
loss can appear as a better prefactorin @ o< N [50-52] as classical schemes are limited by the shot-noise limit

Q < N.Thisadvantage however highly depends on the state into consideration: for example, GHZ states, which
are optimal in ideal conditions, are known to quickly lose any sensitivity to ¢ in the presence photon loss. TES,
on the other hand, are known to be a good candidate for quantum metrology even in the presence of photon loss
71 (quantifying the probability of losing a photon in each arm of the interferometer), as in this case the QFI
becomes

12
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Figure 11. Classical Fisher information in the presence of photon loss ( = 0.9) for: NR measurements in twin Fock states of N = 8
(orange) and N = 10 (blue) photons, and twin superradiant states with N = 10 and NR (green) and NMR (red) measurements.
Finally, the straight purple line shows the classical shot noise limit (SNL) correspondingto C = N.

omrs - N1—-1

R for nN > 1, (46)
2

which is half of the optimal one in the limit of large N [50, 53]. It is also important to stress that although these
considerations (e.g. (46)) are derived in the asymptotic limit (7N >> 1), they provide valuable insights already for
moderate N [50, 53]. To extend (46) and the general considerations of [49—-52] to multimode states is certainly an
interesting but also challenging endeavour, as the multimode structure of the state makes it difficult to
diagonalise it to be able to compute Q. In this section, we instead pursue a more humble goal: we compare
(twin) superradiant and Fock states for some specific case-studies of MZ interferometery and find that they
perform similarly even in the presence of photon loss (which is expected as superradiant states contain 0.9N
photons in a single mode).

We consider photon loss by adding a beam splitter with transmitivity 1 before each measurement apparatus
(this is equivalent to placing the beam splitters before the second beam splitter of the MZ interferometer as the
losses are symmetric). This is implemented by adding orthogonal modes {¢; }jD: b fj}jDzl and implementing the

transformations Ugg:
a;\ U 1— a;
({)&L i "({) (47)
€j V2\-J1=n g7 N4

and

(48)

)=l )
B AT )

We again characterise the input superradiant states through the effective descriptions obtained in section 4.4
with d = 2. These effective descriptions enable us to easily account for photon loss, which would be highly
challenging through the continuous descriptions (6). Still, our results are limited to low N, both because we can
only obtain the coefficients of the state for N < 10 (see 4.4), and also because the possible outcomes of the
experiment (i.e. the size of the probability distribution PC(YI’%NR) (¢)) grows as O(N*) when dealing with two-
mode states in each arm of the interferometer, hence making it difficult to compute the analytical expression
(26) for high N.

In figure 11 we show C in the presence of photon loss in the measurement devices for different
configurations: TFS of N = 8 (orange) and N = 10 (blue) photons and NR measurements, and twin
superradiant states with N = 10 and NR (green) and NMR (red) measurements. We observe how twin
superradiant states perform close to Fock states, and how NR measurements for superradiant (and hence
multimode) states become optimal around ¢ = 0, as expected from our previous considerations. It is worth
pointing out that as 77 increases, the optimal value moves away from ¢ = 0, which happens for NR and NMR
measurements, and for single-mode and multimode states. These observations are confirmed by further
numerical results for other values of N and 7, which are shown in appendix B. From these results, we conclude
that twin-superradiant states behave fairly similar to twin-Fock states in terms of their metrological performance
also in the presence of photon loss; this conclusion is indeed expected given that superradiant states contain
~0.9N photons in a single mode.

13
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6. Conclusions

To sum up, we have developed the theoretical tools to characterise (i.e. compute observables) of a wide class of
multimode photonic states coming from the emission of a general nonlinear level structure. Besides, we provide a
constructive way of capturing the properties of these multimodal states with few-mode descriptions. To illustrate the
potential of these tools, we have applied them to the case of superradiant photonic states, showing, for example, their
observables can be captured efficiently already with two or three modes up to a large number of photons. Finally, we
applied these ideas to a phase estimation proposal based on twin superradiant states and number resolved
measurements. Our results suggest that twin superradiant states of N photons are a promising candidate for quantum
metrology, as they perform approximately as a TFS with ~0.9N photons, which are in fact the number of photons
contained in a single mode. The crucial difference is that twin superradiant states can be generated in a deterministic
and scalable manner (assuming no photon loss and perfect control on the system’s Hamiltonian to ensure the
collective decay), in contrast to standard probabilistic methods to create Fock states, whose success probability decays
exponentially with N even in ideal conditions. We hope these ideas motivate its experimental implementation in
nanophotonic waveguides coupled to atoms [21-23, 28-30], artificial emitters [24, 26, 27], or molecules [25].

Our results in quantum optical interferometry are in fact general and can be applied to arbitrary multimode
states with a fixed photon number. Indeed, we have considered phase estimation in a MZ interferometer and
derived a simple expression for the QFI obtained when the input state of each arm of the interferometer is a
generic n-photon d-mode state, and shown that it can be saturated by number-resolved measurements that
cannot distinguish between the different modes. This is a crucial observation for experiments, as it shows that
single-mode proposals for quantum metrology, e.g. [38, 39, 43, 50, 53-55], can be naturally extended to the
multimode regime without requiring extra resources in terms of the measurement devices.
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Appendix A. Recurrence relations
Here we build recurrence relations to compute

FUxp v % FH) = (@D bryy, e by b5 b 5 10N). (A1)
As the derivation is rather non-trivial, for clarity we will start by computing simple but relevant cases where

n = 0, 1, 2 before deriving a general relation for (A.1).
Along the derivation we will use that from (8) it follows that

0) = Vs (A2)

Olb 1 bfl ~| .
< XY X5 X + .561 4 21(}71 - yl)
and similarly
2\x %
[bxl,yl; b;l;)yl] = s (A.3)

X+ &2 -y

A.1. Normalisation
Itis instructive to first check that |¢™)) is normalised. We want to compute

1 % N .
(pM|pM)y = e ff; Atl,,,,NA:MSN H dt; ds; <0|asl...a5,\,a,1 ...a,L|O>. (A.4)
' k=1
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Using the symmetry of A, _,, under permutations over {¢;} and the commutation relation (8), we arrive at
N)| (N 1 o & 2
(6o = f f T1 dt 14,0 P (A5)
N! o |z

In order to solve this integral, which includes a time-ordering operation 7, we split the integral as a sum of
integrals using

fo fo dxdy T(0,0,) :fo dyj; dx (0,0, +j; dxj; dy (0,0 (A.6)
There are N!such integrals, and they are equivalent. Hence we have that
o0 [o.¢] o0 N
(MM :fo diy j; dt, ftz dy jl:[l'yj exp[(vj-1 — )l (A.7)

This integral can be easily worked out using L ™ dse = = e~ /a, which leads to the desired result

(M%) = 1. (A.8)

A.2. Average photon number
We first consider f (xi, y;, %, 7). Before proceeding to its calculation, first note

~ o~ 2 X15C’1 .
X Yo For ) = J 4 (6D by O, A9
fGas %5 77) Mt &2, — ) (™| W x,y1|¢ ) (A.9)

Using (8) and (A.2) and the symmetry of A, _,, over permutations, we first have

2{x1%
~ 1. 1,, + NIl(N)(xb N> % }’2) (AlO)
X+ X + 21(}/1 — yl)

f(xl: yp 5511 )7]) =

with

o0 o0 N -~ ~
I™ ey &y §) = % J; fo [] dt; du dv Ay, A%, BEW*BED, (A.11)
! =

This integral is challenging to compute because of the time-ordering 7 . We will compute the integral through a
recurrence relation. The rough idea is as follows: first one splits the integral as a sum of integrals using (A.6).
Since the number of integrals increases exponentially with N, it is crucial to use that when any of the ¢;’s is
integrated, the resulting integral is the same due to the symmetry of A under permutations. This allows us to
keep the computation efficient, as the number of integrals grows linearly with N. Let us implement this idea by
developing a recurrence relation where each step corresponds to an integration through one of the variables of
integration (u, v, 4, t;...). Let us start by defining the integrals

] o oo B N-j)
Fﬁri]):f f H de |du dv e max{tuv}
0 0 \k=jt1

X ﬂ@jloﬂotﬁl OtN|¢N> (<§0jlo1/ofj+1 OtleN> )*Btgx}‘yl)*ByChyl)

. 00 00 N )
Fl(l(\)rij) = f f H dty |du dv e—cly Vmax(tju)
’ 0 0

k=j+1
X ﬂ@jloﬂotﬁl OtN|¢N> (<§0j|01‘j+1 OtNlQDN>)*B15x}’yl)*

N
. o0 [o'e}
F(gl\lrij)zf f H dt |du dv e—co) max(t;v)
’ 0 0

k=j+1
X 1Oy, - Onlion) (510, Oy . Ouln)) B

N
. 00 oo »
Féf\é*]):j; fo [T do|du dv ecod "maxis)

k=j+1
X T<S0j|otj+1 e Onln) (<90j|otj+1 e Olon))* (A.12)
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with
Cl(ﬁf—]) =71
(N—j) 1,~ 1 e~
o =S + E(WH + %) — i) — (Wj—1 — wy)
i 1 1 .
con =2+ SO+ )+ i) — @ — W)
1 - . ~
Cél\é D= E(xl + X))+ + 1()’1 - )’1)»
withj = 1, ..., N. Note that
M (x, Vs X J) = N FI(I}’ )

We can then compute F} " by noting the following recurrence relation (withj = 1, ...

FON=) _ (N - J)’YJF(N -, N 1% NI pv- VA NI vy
L1 05D (NP 5D

pov—p _ N = D F-i=0 ¢ N pav))
1,0 R N—j) " 0.0
Co,0
povy — N T DB v N v,
01 N——» ol N=j) " 0.0
10 0,0
- — N = D% pov o
0,0 (N—j—1) 0,0 >
0,0
together with
0
F%=1.

M Perarnau-Llobet et al

(A.13)

(A.14)

(A.15)

(A.16)

Next, the idea is to express (A.15) as a matrix multiplication. In particular, let us define a matrix of size (4N )?

given by:

My My Ms My
My My My Moy
Mz Ms; Mss My |
My My My My

where Mj; are matrices of size N? with entries M;;[[k, I]] given by

Mullj+ L, 411 —] Tl with j = 1,..N—1, and 0 otherwise
oo
Mallj + 1, 1] = 7”12(’]%1“ with j = 1,..N—1,
Mys[[j + 1, 1] —]—W with j = 1,..N—1,
Mullj+1,711=j (1_1) with j = 1,...N—1, and 0 otherwise
Mullj, jll = \/—7 with j = 1,...N, and 0 otherwise
oo
ML), i1l = ’YIZ A with j = 1,...N, and 0 otherwise
0,0
Myllj, i1l = 71277]')/ with j = 1,...N, and 0 otherwise
10
Mysllj, i1 = \/— with j = 1,...N, and 0 otherwise

0,1

and 0 otherwise

and 0 otherwise

(A.17)
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and the remaining submatrices are zero. Defining the initial vector: ¥ = {1, 0, ..., 0}, one finds that

V= MN+13,
where

\_}f = {0, ceey 0, Fl(ﬁril)},

which provides the desired result. When computing this numerically, it is convenient to compute instead

=1 1]

N
V= [H —M ].M.VO
which directly provides Il(N )(xl, %> %, ) in (A.14).

A.3. Two-photon correlators
Let us now move to the computation of

£ 70 % TR0 = (6 lby e bl 5 b [6).

Using (8) and (A.2) and the symmetry of A, _,, over permutations, we arrive at

2,[?(31?21)/1)71

(x1 + 551 + 2i(}71 — yl)(JQ + J~Cz + 2i(}72 — yz)

21 wqilylil

+ e - -
(o + % + 21(7 — p)0e + % + 217 — 5,)

fxj o X, )7]'}?:1) =

2% N) S~

, L7000, 155 %, 35)

X1 —+ 9?1 —+ 21(}71 — yl) ! 2 2
2x1% L~

+ N s Il(N)(x2: }’2, X1 )’1)

X+ %+ 2, — p)

Z\I.XZ.?NC&

X + f] + 21()71 — yz)

21¢XZ)‘(~?2

X + 5(52 + 21()72 — }/2)

+ N Il(N)(xla yly XZ) }72)

Il(N)(xl) }’1, 5611 }71)

+ N(N - 1)I§N)(xl) yp X5 }’2, 521) }71) 522’ )72))

where we have defined

~ - - ~ 1 o0 o0
B0 3o %0 10 80 Jop % 1) = 1o fo fo (T, dt)) duy du dv, dv,

* ()% p (0, % p (EL,7) B (%2,7)
XAuluztsmfNAvlvzt3...lNBu1 ! Buz 2 Bvl IBVZ 2

in analogy with (A.11). Identifying

12(N)(x1> )’1, X5 }’2, 561) }71) 5621 }72) =

we find the following recurrence relation (a natural extension of (A.15))

F(N,l,k) -5 OF(N,],k) VXL Vk+s2 ()F(Nilik) V2 Vk+s
1 S

—spl—sp,1—1,1—1, 0,1—s5,1—1,1—1t> (N—-1—k) + 632) 1—5,0,1—8,1—1¢, (N—1—k)
0,1—s,1—1,1—1t 0,1—s5,1—t;,1—t;

\lfl’}/k-%tz (N—1—k) v BYk+1

(N—1—k)
+ 6t1,0F1—51,1—52,0,1—t2 (N—1—k) + 6tz,OF1—sl,1—sz,1—t1,0 (N—1—k)

1—5,1—5,0,1—1, 1—5,1—55,1—1,0

N—2-K) N Vk st YVttt

—spl—s5,1—1,1—1 (N—2—k)
1—sp1—s,1—t,1—-1,

+ (N -k — DF

withk =1,...,N — 2,and

() f—
Fo000=1

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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and

2 ~
N—2—k X . Xi .~
Cl(—sl,l—si,l—n,l—tz => Si(j + Wi) + ti(j - U’i)

i=1
1 .
+ E(7$1+Sz+k + Vot k) + Wkt 46— Wkt s,45,)- (A.27)

In order to compute the recurrence relation (A.25) as a matrix multiplication, it convenient to define basis
vectors: |k, si, 55, 1y, H)ywithk = {1,..., N — 1},and 5, 55, 5, £ € {0, 1}. Then, theidea is to define a matrix
M that satisfies

Mk, s1, s, i, 12) = Ck—Lspsprtl € — 1, S1> 52, B £2) + Crosi—Lsptunl k> 51 — 1, 82, 8, 12)
+ Crsps—1ttlks s 52 = L, t, 12) + Crogosnti— 1,615 1 52 1 — 1, 1)
+ Crspsntnt—1lks 1, 52, 11, 12 — 1) (A.28)

with

N Vksi+5, Ve4-4+1,
Ckfl,sl,sz,tl,tz - (N — k- 1) (N—2—k)
Clospl—sul—ty1—t
X1 YVk+s,
Ck)5171»52)t1)t2 = (551,0 (N—1—K)
0,1—sp1—t,1—1,
X2 Vk+s;
Ck,sl,szfl,thtz = 552,0 (N—1-k)
Co,1-sp1=t,1— 1t

C _ N Vkt1y
k,si,51—1,t, — 04,0 (N—1—k)
1—51,1—5,0,1—1,

Yo Vk+1
Crspsnitr—1= 61‘2,0W (A.29)

1—s,1—55,1—1,0

which provide the coefficients of M. Then, notice that from (A.25) one obtains
MN*N — 1,1, 1, 1, 1) = FN1711, 0, 0, 0, 0), (A.30)
which gives the desired result. Note that the matrices M are now of size (2*(N — 1)).

A.4.Higher order terms

Given these previous considerations, it is in principle not difficult (but quite tedious) to extend these techniques
to higher-order correlators of the form (¢™|by, ;... by, b - ... b;n,y”,, |¢p™)). Essentially, following the previous
considerations we need to compute integrals of the form

1 00 00 N
(N) . A = — ;
I (xj, Yo Xjs yj}Fl) =N f(; j; H dt;

j=n+1

n
(xjpy) % 1 (% 77)
X H duj de Bujj ! vjj ! Aul...untnﬂ...tNAji (A.31)

e Vnlpg1o INT
j=1
In complete analogy with the previous considerations, we can define

(N—n)
1,...,1

N!

and the following recurrence relation can be derived (a natural extension of (A.25))

1N (xp, ypy % Y1) = (A.32)

i X L
FWN-n+1-k) _ Z 5 OF(N,nJ_rl,k) XV s
{1=silio (1=t C PO s L0 (=il (1=t (N—n+1—K)

= (1=} 0, {1=siinjy 1, {11}

n x~'7k noy
— — A +25
}: Stj, F(N n+1—k) J=11

s =10 0=ty  (N=n+ 1)

(1=siH_ 1,0, {1 =5}y, (1=}

+ (N —k—n+ HFE-E™ NkrsaTktntn

{(T=sifio (1—1}) (N—k—n)
{I=sifio, (1=}

(A.33)
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withk=1,...,N — nand
F® ,=1, (A.34)

.....

and

n ~
N—k— 1 X; . Xi .~
A Zsi(_l + U’i) + ti(—l - lJ’i)
) 2 2
1
+

+ i(w ). (A.35)

n
Es+k 72 tit+k k+zt, k+2 si
i=1

This recurrence relation (A.33) can be computed through a matrix multiplication of M®®) in analogy with the
previous sections, where M is now a matrix of size (22*(N — n + 1))2. Hence we notice that the complexity of
the calculation grows exponentially with the order of the correlator.

A.5.Overlap

Consider the computation of <0|c1k1 c
of products of the form

(Ol b ..bigto™) = [ [ [H dt][ﬁ w*]

ki+k N
<[ TT B&*f{ TI B |A.u (A.36)

j=ki+1 j=N—kp+1

k. c;‘d |¢p™N))with 37| k; = N. This can expressed by a linear combination

where we used (16). As in the previous section, we can compute each integral by solving the following recurrence
relation:

D NGRS
7Tk sk
Fooop, = 20 01k = si1(kj = ) F(i—s)i=Lk—s— 1 (k=5 2.1, ‘ , (A.37)
j= Clki—siYZLk—si— L {ki—silP

where 0[x] is the step function (6[—|x|] = 0and 0[|x|] = 1), together with the initial condition

Fop =1=1, (A.38)
and the coefficients
Clki—si)i (Z%x] + Wzs]] (A.39)
=1
This provides the desired solution as:
Fp, = (0lbgb .. b21o™). (A.40)

2

Figure A1. Coefficients of the three-mode approximation of a superradiant state for N = 8 and D = 8.
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Following the same logic as in the following sections, this integral can be computed by a product of matrices in a
space of dimension

D
dim=]] kj, (A41)

j=1

which is approximately bounded as

N < dim<(N/D)P. (A.42)

In figure A1 we illustrate these ideas by computingall (0|¢f c¥2c5|¢™)) with N = 8,D = 8andd = 3.

Appendix B. Numerical results on quantum metrology with photon loss

This section shows more numerical results on the CFI with photon loss and considering as input states TFS and
twin superradiant states, as shown in figures B1-B3.

40 W
c
30

20 /\ /\

0.0 0.5 1.0 1.5 2.0 25 o 3.0

Figure B1. Classical Fisher information in the presence of photon loss (7 = 0.95) for: NR measurements in twin Fock states of N = 8
(orange) and N = 10 (blue) photons, and twin superradiant states with N = 10 and NR (green) and NMR (red) measurements.
Finally, the straight purple line shows the classical Shot Noise Limit (SNL) correspondingto C = N.
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Figure B2. Classical Fisher information in the presence of photon loss (7 = 0.9) for: NR measurements in twin Fock states of N = 6
(orange) and N = 8 (blue) photons, and twin superradiant states with N = 8 and NR (green) and NMR (red) measurements.
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Figure B3. Classical Fisher information in the presence of photonloss (7 = 0.95) for: NR measurements in twin Fock states of N = 8
(orange) and N = 10 (blue) photons, and twin superradiant states with N = 8 and NR (green) and NMR (red) measurements.
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