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Abstract
Wedevelop general tools to characterise and efficiently compute relevant observables ofmultimode
N-photon states generated in nonlinear decays in one-dimensional waveguides.We then consider
optical interferometry in aMach–Zender interferometer where a d-mode photonic state enters in each
armof the interferometer.We derive a simple expression for the quantumFisher information in terms
of the average photon number in eachmode, and show that it can be saturated by number-resolved
photonmeasurements that do not distinguish between the different dmodes.

1. Introduction

Photonic states with a large and fixed numberN of photons play a crucial role in quantum technologies but are
extremely challenging to prepare experimentally. The paradigmatic example are single-mode Fock states,

ñ µ ñN a 0N∣ ( ) ∣† , where all the photons share the same spatio-temporalmode (a†), andwhich are the basis of
many quantummetrology protocols [1–4]. Nowadays, themostwidely usedmethod to generate them is based
on combiningwith post-selection heralded single photons emitted in spontaneous parametric down-
conversion processes [5–9]. Thismethod, however, suffers from an exponential decrease of efficiencywithN,
hindering its application for large photon numbers. Single-mode Fock states can also be emitted naturally from
entangled atomic states in ensembles withmanymore atoms thanN [10]. However, exciting such atomic states
is highly non-trivial because of the linear energy spectrumof such systems [11–14].

Away of circumventing these limitations is the usenonlinear systems for the generationof such photonic
states. These type of systems appear inmanydifferent contexts, such as in cavitieswithKerr-type nonlinearities
[15], inmulti-level quantumdots due to biexcitonbinding-energies [16, 17], or even in atomic ensembles simply
because an atomcannot be doubly excitedor by exploitingRydberg blockade [18, 19]. Thesemechanisms
ultimately translate into either non-harmonic energy splittings (Kerr cavityQED)ornon-harmonicdecay rates
(saturation), which can be harnessed formultiphoton emission. An illustrationof that is the proposal put forward
byus in [20] to generatemultiphoton stateswith quantumemitters coupled to photonicwaveguides [21–30].
There,N excited emitters interactwith thewaveguide in the so-calledmirror configuration [28, 29], such that its
dynamics is describedby thewell-knownDickemodel [31]. In that situation, the emitters experience a nonlinear
decay process, known as superradiant decay,which enhances the probability of emitting thephotons into the
waveguide as compared to other decay channels. Beyond the collective enhancement, the non-linearity has another
effect: thephotons released into thewaveguide have an inherentmultimode structure [13]:
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where aki

† is the creationoperator of awaveguidephotonofmomentum ki. The coefficient =A Ak k k k, , n1 2{ } 

characterizes themultimodal structure of thewavepacket, andwill be non-factorizable ( ¹A N A Ak k kn1
!{ }  )

for photons emitted fromany type of nonlinear system (e.g. non-harmonic energies or nonlinear decay rates). This
non-trivialmultimodenature of the emittedwavepackets forces one to revisit the results derived for single-mode
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Fock states as they are not necessarily valid anymore. For example, themultimodal structure poses limits on the
scalability as Fock state sources from spontaneous parametric downconversion processes [32–34], is required to
accurately predict the scattering of quantumpulses [35, 36], or, aswe showed inour recentmanuscript [20],
renormalizes the results of single-modequantummetrology protocols.

Motivated by these observations, the goal of this article is to develop general tools to deal withmultimode
states generated in nonlinear decays, both from the point of view of its characterisation as well as applications in
quantummetrology.We start by considering a generalN-dimensional emitter decaying in a nonlinear fashion
with awaveguide. Thewavefunction of the emitted photonic state (given by A k{ } in(1)) can be obtained through
the techniques of [37], and it involves N! terms due to bosonic symmetrisation. Given this highly non-trivial
state, themain contributions of this article are:

1. To develop a framework to compute relevant observables ofmultimode states generated in nonlinear decays
in an efficientmanner, with the complexity scaling polynomially withN.

2. To apply these general tools to the characterisation of Dicke superradiant photonic states where we find that
most photons are contained in a fewmodes: a singlemode contains 91%of the photons, and two (three)
modes already contain 98.4% (99.6%) of them.

Having identified general properties ofmultimode states, and in particular superradiantDicke states, we then
study their potential for quantummetrology [1–4]. Building on our previous work [20], our goal is to extend
well known results in quantumoptical interferometry [38, 39] to the presence of a non-trivialmultimode
structure within the input photonic states, as in equation (1). For that, we consider phase estimation in aMach–
Zender (MZ) interferometer, where the input state of each armof the interferometer is a generic d-mode state
with afixed total photon number. Then, ourmain contributions are:

1.We show that the quantumFisher information [40] (QFI) takes the particularly simple form

å= + + +
=

 n m m n2 1 1 . 2
j

d

j j j j
1

( ) ( ) ( )

where ni,mi are the average photon number in the ithmode of the two incomingwavepackets.

2.We show that the QFI (2) can be saturated by number-resolved (NR) measurements which cannot
distinguish between the different dmodes.

3. Finally, we also discuss the effect of photon loss in the interferometer and in themeasurement devices given
the proposal of [20] for quantum-enhancedmetrologywith twinDicke superradiant states.

The paper is structured as follows: we start presenting the generalmultimode structure of the photons
emitted fromnonlinear systems intowaveguides in section 3, whereas the tools to characterise such photonic
states are developed in section 3. These tools are applied to superradiant photonic states in section 4. In section 5
we consider quantummetrologywithmultimode states, and finally we summarise ourfindings in section 6.

2.Nonlinear systems decaying in 1Dwaveguides

In the interest of generality, we consider the emission process coming from aN-level system ( ñ ñ ¼ ñN0 , 1 , ,∣ ∣ ∣ )
with energiesωj. Its freeHamiltonian is then given by (taking º 1):

å w s=
=

H 3S
j

N

j j j
1

, ( )

with s = ñái kik ∣ ∣. The system is coupled to a 1Dwaveguide, described by a one-dimensional and chiral photon
bathwith a linear dispersion (both the chirality and linearity assumptions can be relaxed obtaining similar
results) w = cqq . Taking c≡ 1, itsHamiltonian read:

ò=H q qa ad . 4B q q ( )†

Finally, the system-bath interactionHamiltonian is assumed to be given by:
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where γj denotes the decay rate of the transition from the jth to the -j 1( )th level. The globalHamiltonian
describing the emission process is then given by the sumof the three terms: = + +H H H HS B SB. Thewhole
physical set-up is illustrated infigure 1.

We consider that initially thewaveguideB is in the ground state, whereas the system S initially containsN
excitations.When the excitations decay into thewaveguide, the photonic state is described by thewavefunction
(naturally extending the considerations of [13]):
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⎡⎣ ⎤⎦∣ ∣( ) ( ) Furthermore, the

bosonic creation and annihilation operators a a,s s
† satisfy the standard commutation relation

d= -a a s t, . 8s t[ ] ( ) ( )†

The use of this general light-matterHamiltonianH allows to capture the physics of very differentmodels,
such as:

• Saturated atomic ensembles in the atomicmirror configuration. As explained in [13, 20], within theMarkov
approximation the coupling of the ensemblewith thewaveguide can be described by a single collective dipole
operator. This can be effectively described asN-level systemwith equally spaced energy levels,ωn=nω0, but
nonlinear decay rates: g = G - +n N n 1n 1d ( ). In the text, we shall call these emitted states superradiant states,
or superradiant photonic states.

• Anharmonic cavities. In the case of a nonlinear resonator, with a Kerr nonlinearity of the form
w= + -H a a Ua a a a 1B a ( )† † † , but coupled to thewaveguide in a linear fashion such that its reduced

dynamics is given by the standard Lindblad form r r rG - -a a a a a a2 21d( )† † † , the energy levels are now
nonlinear: w w= + -n n n U1n a ( ) , while the decay rates are harmonic g = Gnn 1d.

Along thismanuscript, wewill focus on the characterisation of thefirst ones, as theywill be themost relevant
for quantummetrology.However, all the formalismdeveloped is valid for any combination of w g,n n{ }.

3. Towards effective characterisations ofmultimode states

We start this section by developing techniques that enable us to compute relevant observables of f ñN∣ ( )

efficiently for largeN. This ismotivated by noting that the analytical form (6) contains N! terms due to the time
ordering in (7), making such an expression challenging to handle beyond lowN.

Wefirst consider a single emitted photon (with γ≡γ1−γ0 andω≡ω1−ω0):

òf ñ = ñ º ñg w
g w

¥
tB a bd 0 0 , 9t t

1

0

,
,∣ ∣ ∣ ( )( ) ( ) † †

Figure 1.A the nonlinear system (in blue)withN levels with energy wn, couples to a 1Dwaveguide. The couplingwith thewaveguide
induce single-photon transitions  -n n 1 (in red arrows) at a rate γn. Around the nonlinear system,we depict the two example of
nonlinear system that we consider along themanuscript, that are, equally spaced atomic ensembles and anharmonic cavities.
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wherewe have defined gºg w w- + g
B et

t, i 2( )( ) and òºg w
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follows. Given such single-mode operators g wb , ʼs, we have developed techniques to compute efficiently
observables of the form

f fá ñb b b b... ... . 11N
x y x y x y x y

N
, , , ,n n n n1 1 1 1

∣ ∣ ( )( )
˜ ˜
†

˜ ˜
† ( )

The computational techniques for dealingwith (11) are rather involved and are developed in detail in the
appendix A.Here, we instead explain themain ideas and implications:

1. The computation of (11) is developed by expressing it as a recurrence relation, which is then transformed
into amatrixmultiplication.

2. The solution is exact as the integrals in (6) are carried out analytically. Yet, in practice it is convenient to
perform thematrixmultiplication numerically in order to access largeN.

3. The size of the involved matrices is at most - +N n4 1n 2( ( )) , although usually this can be reduced if there
are some symmetries in the calculation (i.e. if some of the xiʼs and yiʼs in (11) are the same). In practice, this
means that for n=1 (corresponding to average photon number), one can easily reach up toN≈1000,
whereas for n=2 (corresponding to the variance) one can reachN≈100. This should be contrasted to the
naive calculation of (11) from (6)which involves N 2( !) integrals.

4. Since the g wb ,
† ʼs form an (overcomplete) basis of the Fock space spanned by at

† ∀t, one can in principle
compute arbitrary observables through this approach.

4. Characterisation of superradiant photonic states

Wenow apply themachinery developed in the previous section to the characterisation of superradiant photonic
states emittedwhenN excited atoms are placed next to thewaveguide in the atomicmirror configuration, as
previously proposed by us in [20]. This corresponds to taking f ñN∣ ( ) in (11)with g = G - +n N n 1n 1d ( )
and w w= nn 0.

Before proceeding to its characterisation, let usmention that there are twomain features thatmake this
proposal particularly appealing [20]:

• In the absence of photon loss (i.e. when the atom-waveguide set-up is perfectly isolated) and assuming perfect
control on the system’sHamiltonian, the protocol is deterministic and scalable. That is, simply by placingmore
atoms next to thewaveguide, one can generate a largerN-photon state.

• In the presence of photon loss in free space, the probability of success scales as» - G GN1 ln 1d*( )( ), where
G1d is the decay rate into thewaveguide and G* into free space, for G G 11d*  . This slow decrease with Nln
arises due to the enhanced collective decay and should be contrastedwith the standard success probability
» - G GN1 1d*( ) obtained forN independent decay processes (see [20] formore details).

Hence, Dicke superradiant decays provide a natural framework to generateN-photonic states in a deterministic,
scalable and robust-to-photon-lossmanner. Furthermore, current experimental nanophotonic platforms have
already achieved ratios G G » 601d * with G ~ 1 GHz1d [26].

4.1. Average photon number
Wefirst consider the photon number

g w f fº á ñg w g wn b b, . 12N N
, ,( ) ∣ ∣ ( )( ) † ( )

We start by fixing the decay rate γ and varyingω aroundω0, corresponding to the frequency of the two-level
emitters. Figure 2 shows how the average photon number is centred atω0, as onewould have expected physically.

Next we consider n(γ,ω) for afixedω=ω0 and varying γ. The results are shown infigure 3, wherewe
compute n(γ,ω0) forN=100, 200, 300. Interestingly, note that themaximumof n(γ,ω) appears at
=x N Nln . To understand this, note that the time scale τ of decay of the photons is proportional to γ−1. In

particular, for the superradiant decay, the jth collective exitation decays with a time scale g-
j

1, with

g = G - +j N j 1j ( ), and the average decay time is given by

4
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Hence, we realise from (6) that the choice g = N Nln corresponds to single-mode photons decayingwith the
average decay time of the superradiant photons. This provides an heuristic explanation for the optimal choice of
γ thatmaximises n(γ,ω0), i.e. the number of photons in themode g wb , .

4.2.Most relevantmodes
The results offigures 3 and2 suggest that a rather large proportions of photons (between50%and60% for
N=100, 200, 300) canbe contained in a small set ofmodes centred around the frequencyω andwith inverse
decay rate g = N Nln . Thismotivates us to consider a set ofDmodeswith frequencyω0 and varying
G = jN Nln , with j=1,K,D; that is, w =bjx j

D
, 10

{ } with =x N Nln . Note that thesemodes are not orthogonal
due to (10). A set of orthogonalmodes canbe constructed by solving the generalised eigenvalue equation

l=Tv Rv , 14k
k

k ( )( ) ( ) 

whereT andR arematrices of sizeD2 whose elements are given by
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This leads to a set ofD bosonicmodes

å= =w
=

c v b x
N

N
with

ln
. 16k

j

D

j
k

jx
1

, 0 ( )( )

The usual commutation relations

d=c c, , 17i j ij[ ] ( )†

are guaranteed by (14) (plus appropriate normalisation).

Figure 2.Ratio of photons of a superradiantN-photon state f ñN∣ ( ) in amodewith frequency w w+ D0 and inverse decay rate γ.

Figure 3.Ratio of photons of a superradiantN-photon state f ñN∣ ( ) in amodewith frequencyω0 and varying inverse decay rate γ. Note
that themaximal number of photons is found for g » N Nln .
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Let us nowdefine the number operators (for a givenD)

åº
=

n c c , 18d
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d
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( )†

and the corresponding ratio of photons

f f
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á ñ
C
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N
. 19d

N
d

N∣ ∣ ( )
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Infigure 4, we showCd as a function ofN forD=10 (i.e. themodes ckʼs are a linear combination of 10modes

wbkx, 0
ʼs). Note thatCd quickly saturates withN. The values ofCd for differentDʼs are shown in the following

table, which is evaluated atN=100:
These numbers can be slightly increased by considering larger dʼs orDʼs. It is remarkable thatwith only 2 (3)

modeswe can cover 98.4% (99.6%) of the photons, and thatmore than 90%photons live in a singlemode.
Hence, although the superradiant state f ñN∣ ( ) maynaively appear as a highlymultimode state, it can be described
bymeans of only a fewmodes. At the same time, it is worth noticing that althoughwe reached this result by a
rather heuristicmethod, these descriptions are almost optimal: since the small set of consideredmodes already
contains around 99.9%of the photons, it is not possible that by considering amuch larger (possibly infinite) set
ofmodes the effective descriptions can considerably change. In otherwords, while a fewmodes seem to suffice to
describe f ñN∣ ( ) with high accuracy, it is not possible to describe it by a single one.

4.3. Variance
Let us further characterise the fact thatmost photons are contained in a fewmodes by studying thefluctuations
of the number operators nkʼs given in (18). In particular consider the variance

s = á ñ - á ñn n , 20n d d
2 2

d ( ) ( )

with f fá ñ º á ñ... ...N N∣ ∣( ) ( ) . To compute such expressions,first we expand themusing the commutation relations
(17) as

á ñ = á ñ - á ñ - - á ñ

á ñ= á ñ + á ñ + á ñ - á ñ - á ñ -

n c c n n

n c c c c c c c c n n
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† † † †

and similarly for higher á ñnj
2 . Each term can be evaluated by using (16) and then computing á ñb b b bi j k l

† † (or á ñb bi j )
by the appropriate recurrence relation derived in appendix A. For numerical purposes, it is convenient tofirst
compute á ñb b b bi j k l

† † " i j k l, , , where i=1,K,D and save the results. In the numerical simulations of this
section, we takeD=8, for whichwe already cover 99%of the photons as shown in table 1. The results are
shown infigure 5 for d=1, 2, 3 andD=8. As expected, snd

decreases as d increases, and for d=3 andD=8
the variance is rather small: less than one photon forN=40. This confirms the previous results that a few
modes can covermost of the photons contained in the superradiant state. Furthermore, we also observe that snd

grows linearly withN, which is compatible with the proportion of photons staying constant withN as shown in
figure 2.

4.4. Effective descriptions
Themain insight of the previous sections is that 2 or 3modes suffice to describemost of the photons of f ñN∣ ( ) .
We can use this insight to build effective descriptions of f ñN∣ ( ) within these subspaces. This can be achieved by
computing the overlaps

Figure 4.Proportion of photons in dmodes as quantified by (19) forD=10 as a function of the number of photonsN in the
superradiant state.
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1{ } such that å =k Nd d , andwhere d is the number of consideredmodes. For that, wefirst express

(22) as a combination of fá ñw w wb b b0 ...x
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∣ ∣ ( ) through (16). Then, in appendix A, we develop a recurrence

relationmethod to compute fá ñw w wb b b0 ...x
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0
∣ ∣ ( ) which requires themultiplication of N( )matrices of

dimension dim,which satisfies  N N Ddim D( ) . In order to compute (22), it is convenient tofirst compute
all possible fá ñw w wb b b0 ...x

k
x

k
Dx
k N

, 2 , ,
D

0
1

0
2

0
∣ ∣ ( ) for all =kj j

N
1{ } such thatå =k Nj j and save such coefficients. There are

 ND( ) such coefficients, which provides the necessary space to carry out the computation.Overall, thewhole
computation is challenging, both in terms of the number of operations and the complexity of each one, but
becomes feasible for smallN and D 10, which is enough to capturemost of the photons (see table 1).

We consider the following unnormalised two and threemode state:
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N ∣( ) and a f= á - - ñj k N j k, ,j k

N
, ∣( ) . The normalisation (for two

modes)

å a=
=

 , 24
j

N

j
0

2∣ ∣ ( )

or a= å j k j k, ,
2∣ ∣ for three, indicates the overlap between y ñN

2,3∣ ( ) and f ñN∣ ( ) , i.e. how good the approximation in

the two or threemode subspace is. Infigure 6, we showhow  is close to 1 for lowN�10, especially for d=3
where it stays above 0.97. This implies that f ñN∣ ( ) can indeed bewell described by two or threemode states as in
(23). For d=2, the coefficients are given infigure 7 and the coefficients for d=3 are provided in appendix A.
These approximate states of the form (23) become handy in calculations for quantum information tasks, as we
will later illustrate for quantummetrology, and importantly our techniques enable us to quantify how close are
our approximate states to the real f ñN∣ ( ) . As afinal remark, we note that the linear decrease of  withN is also
compatible with our previous results wherewe observed that the proportion of photons in a givenmode stays
constant.

Table 1.

C1 C2 C3 C4 C5 C6 C7 C8

D=2 0.653 0.688

D=4 0.852 0.918 0.921 0.921

D=6 0.894 0.973 0.980 0.981 0.981 0.981

D=8 0.901 0.983 0.993 0.995 0.995 0.995 0.995 0.995

D=10 0.902 0.984 0.996 0.998 0.999 0.999 0.999 0.999

Figure 5.Variance of the number operators n1, n2, and n3 defined in (18) forD=8.
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5. Applications in quantummetrology

Wenow apply the different insights and techniques developed in the last section to quantumoptical
interferometry, in particular by considering phase estimation in a standardMZ interferometer.We consider that
each armof theMZ inteferometer is described by a set ofmodes =ak k

d
1{ } and =bk k

d
1{ } , respectively (see figure 8).

When d=1, we recover the standard two-mode optical interferometry [4], and our goal is precisely to extend
well-known results to themultimode regimewhere d>1.We start this section by introducing some basic
concepts of quantummetrology, as well as describing the set-upwe consider here in detail.

We consider the estimation of a parameterj bymeasuringN photonswhich encode information about it.
The (possibly entangled)N-photon state is described by y ñj∣ . Let us assume that we apply ameasurementM on
y ñj∣ , the statistics being described by a probability distribution jP sj( ∣ )where {sj} are the possible outcomes of
themeasurement given the valuej of the unknown parameter to be estimated. If this process is repeated ν times,
in the limit n 1 theCramer–Rao boundguarantees that themean-squared error jD2 ˜ of any unbiased and
consistent estimator j̃ ofj is lower bounded by [41, 42]:

Figure 6.Overlap for the two-mode (blue) and three-mode (orange) approximations forD=8.

Figure 7.Coefficients of the two-mode state forN=3, 5, 7, 9 andD=8.

Figure 8.Amultimode state (generated e.g. through a superradiant decay) enters each armof aMZ interferometer. Each armof the
interferometer is described by the set ofmodes: a b,k k{ } { }.
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where  is the classical Fisher information (CFI)

å j
j

j
=

¶

¶


P s

P s1
. 26

j j

j
2⎛

⎝⎜
⎞
⎠⎟( ∣ )

( ∣ )
( )

TheCFI quantifies the best resolution of a particular estimation scheme as defined through y ñj∣ and a
measurementM. In their seminal work, Braunstein andCaves optimised  over all possible quantum
measurementsM [40]. The resulting quantity is theQFI , which satisfies

j
n n

D
 

 1 1
272 ˜ ( )

and, for pure states, is given by

y y y y= á ñ - á ñj j j j 4 282( ∣ ∣ ∣ ∣ ) ( )  

with y y= ¶j j j . TheQFI quantifies the potential of a particular state y ñj∣ for quantummetrology [40].
Let us nowdiscuss howwe encodej in the standardMZ interferometer, but extended to themultimode

regime.We consider as an initial state y f fñ = ñ,A B∣ ∣ , where
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andwhere a Î  ni{ } ( ) iff aå = ni i , andwith + =n m N . That is, we consider that two independent (but
generic) states ofm andnphotons, eachof themdescribed bydmodes, enter the two armsof the interferometer.
For d=1, the states are single-mode states andhence Fock states.We also assumebosonic commutation relations

d d= =a a b b, , , , 31i j ij i j ij[ ] [ ] ( )† †

which can always be satisfied by a proper choice of the initialmodes through the generalised eigenvalue equation,
as in (14). The initial state y f fñ = ñ,A B∣ ∣ goes through a balanced beam splitterUBS, gains a relative phasej
when travelling through the two arms of the interferometer, and finally enters another beam splitter; thefinal
state then reads

y f fñ = ñj
j-U Ue , 32BS

H
BS A B

i∣ ∣ ( )†

with = å -=H a a b bi
d

i i i i
1

2 1( )† † , andwhere the transformation j-U UeBS
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where a b,j j˜ ˜ are the outputmodes. Using this transformationwe easily obtain
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On the other hand, y ñj∣ can be explicitly written as:
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Finally, it will be useful to note that

j j j j= =a b b a
1

2
,

1

2
. 37j j j j( ) ( ) ( ) ( ) ( )† † † † 

5.1.QFI for puremultimode states
When yñ = j-e Hi∣ in (28), thenwe have the convenient expression for theQFI:

y y y y= á ñ - á ñj j j j H H4 2 2( ∣ ∣ ( ∣ ∣ ) ). Using (31) and (34), we obtain

å
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wherewe defined the average photon numbers f fº á ñn a aj A j j A∣ ∣† and f fº á ñm b bj B j j B∣ ∣† . In the particular case
ni=mi, e.g. for twin states, wefinally obtain

å= +
=

 n n2 1 . 39
j

d

j j
1

( ) ( )

From this expression one can immediately recover theQFI of twin Fock states (TFS) = + N N1 2( ) [38],
which corresponds to d=1 and n1=N/2. For twin superradiant states, fromour considerations of section 4.2
we have that » »n N n N2 0.90 , 2 0.081 2 and »n N2 0.023 , fromwhichwe obtain » + N N0.41 2 , hence
recovering our previous results [20].

More generally, (38)provides a simple and clear expression for the potential of a particularmultimode state
for optical interferometry, and from itwe learn that

1. To obtain the QFI of a twin multimode state with N 2 photons in each arm, it is enough to compute the
average photon number of the internalmodes of each arm.

2.When the multimode state is generated through a nonlinear decay as described in section 2, then our
techniques enable us to compute theQFI for large photon number (N up toN≈1000).

3.Heinseberg scaling (i.e. µ N 2) is possible when the number of relevant modes is independent ofN, and
quantum-enhanced scaling (i.e. µ a+ N1 withα>0)when the number of relevantmodes grows
sublinearly withN.

5.2. Number resolvedmeasurements andQFI
Although theQFI provides themaximal sensitivity of y ñj∣ toj, it is equally important to understand how to
achieve it in practice. For that, in this sectionwe considerNRmeasurements in both outputs of the
interferometer. In particular, we consider two types ofmeasurements

• Mode-number-resolved (MNR)measurements. That is, photonmeasurements that are able to distinguish
both the specificmode and the number of photons. In this case, defining j a b jºab = =P P ,j j

d
j j

dMNR
1 1( ) ({ } { } ∣ )( )

andwith (30)we have

j y a b= á ñ Ä ñab jP . 40j a j b
MNR 2( ) ∣ ∣(∣{ } ∣{ } )∣ ( )( )

• NRmeasurements.We also consider standard photon countingmeasurements that are not able to distinguish
between the differentmodes. In this case the corresponding probability distribution to obtain n andm
photons in each output of the interferometer reads

åj j=
a b

a b
Î Î 

P P . 41nm
n m

NR

,
,
MNR( ) ( ) ( )( )

{ } ( ) { } ( )

( )

In both cases, we assume that the detector frequency-bandwidth is larger than the photonic wavepackets
linewidth, which in the superradiant case scale as g µ N Nln (see section 4.1 andfigure 3).

Let us now compute theCFI(26) forMNR andNRmeasurements whenj  0 by extending the
considerations of [43] tomultimode states.Wefirst expand jabP ( ) aroundj=0:
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0 42,
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,
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up to order j 3( ). Let us now consider this expansion for different cases:

1. n photons in one output and m photons in the other one, i.e. jabP MNR ( )( ) ʼs such that a Î  nj{ } ( ) and
b Î  mj{ } ( ). Then using (37)we obtain, j j= +ab P 1 ,MNR 2( ) ( )( ) which does not contribute to (26).

2. n 1 photons in one output and mm1 photons in the other one. That is, jabP MNR ( )( ) ʼs such that

a Î  n 1j{ } ( ) and b Î  m 1j{ } ( ) . Then again using (37)wehave j j=ab abP P 0MNR 1

2
2( ) ̈ ( )( ) with

y a b= á ñab j= = =P 0 2 ,j j
d
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0 1 1
2̈ ( ) ∣ ∣{ } { } ∣ . This case does contribute to (26).

3. n m photons in one output and m m photons in the other one, with m 2. Then we have,
j j=ab

+P m 1( ) ( ), which again does not contribute to (26).

Putting together these considerations we obtain:
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where in the third line we used that y ñj=0∣  has only support in the subspace of n 1photons in one arm and
m 1 in the other one, and in the fourth linewe used y yá ñ =j j= = 00 0∣  . Hence, we conclude that = 
aroundj=0 forMNRmeasurements.

Crucially, the derivation (43) follows analogously forNRmeasurements, i.e. for the coarse-grained
distribution (41). This has the very important consequence for practical implementations that experimentally
one does not need to distinguish between the differentmodes to saturate theQFI. These conclusions hold
aroundj=0, but there is in principle no reasonwhy they should also hold for otherj. To address this point,
we consider two illustrative states:

åf ñ = - ñ
= n

j n j
1

, , 44
j

n

1
0

∣ ∣ ( )

f ñ = ñ + ñn n
1

2
0, , 0 , 452∣ (∣ ∣ ) ( )

and compute theCFI for the corresponding twin states (i.e. y y ñ,1 1∣ or y y ñ,2 2∣ are the input states of theMZ
interferometer). Infigure 9we plot the CFI for (44) and (45)with n=5 and givenMNR andNRphoton
measurements.We observe that =  forMNRmeasurements whereas for theNRmeasurement the equality
is only saturated aroundj=0 (ormultiples ofπ/2). It is worth stressing that one can always add phase shifters
to compensate forj ¹ 0 during the estimation process in order to guarantee that =  forNRmeasurements.
These are crucial considerations to take into account in implementations of quantummetrologywith
multimode states. It is alsoworth noticing that themultimode structure of the state leads to a non-trivial change
of theCFI forNRmeasurements, as illustrated infigure 9.

Finally, we also compareNR andMNRmeasurements for twin-superradiant states as shown infigure 10,
which also illustrates the optimality of choosingj≈0. To obtain the results of figure 10, we have used the
effective descriptions obtained in section 4.4which enable us to describe superradiant states through effective
descriptions using a lownumber ofmodes (herewe use two-mode descriptions, d=2, for simplicity).

While our techniques enable us to compute themetrological properties up to hundreds of photons, we note
that current experimental implementations of photon-number detectors are limited to few photons resolution
(N�10), see e.g. [44, 45]. It is alsoworthmentioning that recent theoretical proposals show that atoms coupled
to thewaveguide could also be used for photon detection up to considerably larger photon numbers [46–48],
which hints to the exciting possibility that atoms suitably coupled towaveguides can be both used to generate
and detect photons. In the next sectionwe discuss a proposal for quantummetrologywith superradiant states in
the presence of photon loss for realistic photon numbers, namelyN�10.
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5.3. Photon loss in the interferometer and themeasurement device
Besides finding specificmeasurement schemes to saturate, in practice it is also crucial to consider
imperfections in the interferometer and in themeasurement devices. In fact, quantum-enhancements in
metrology are largely affected by imperfections (either in the interferometer or due to imperfectmeasurements),
as photon loss preventsHeisenberg scaling for sufficiently largeN [49–52]. To intuitively understandwhy
Heisenberg scaling is lost, note that for obtaining =  in (43) requires photon-measurement detectors that
are capable of distinguishing a single photon (i.e. betweenN photons andN±1 photons in the outcomes of the
MZ interfereometer); yet, in the presence of anyfinite photon loss (see figure 8), this is no longer possible when
ηN; 1, where η is the probability of losing a photon. Still, quantum enhancements in the presence of photon
loss can appear as a better prefactor in µ N [50–52] as classical schemes are limited by the shot-noise limit

  N . This advantage however highly depends on the state into consideration: for example, GHZ states, which
are optimal in ideal conditions, are known to quickly lose any sensitivity toj in the presence photon loss. TFS,
on the other hand, are known to be a good candidate for quantummetrology even in the presence of photon loss
η (quantifying the probability of losing a photon in each armof the interferometer), as in this case theQFI
becomes

Figure 9.Classical Fisher information forMNRmeasurements (in orange) and forNRmeasurements (in blue)when two copies of
y ñ1∣ in (44) (case (a)) or two copies of y ñ2∣ in (45) (case (b)) enter through aMZ interferometer. TheCFI forMNRmeasurements
coincides with theQFI for allj.

Figure 10.Classical Fisher information forMNRmeasurements (in orange) and forNRmeasurements (in blue) for a twin
superradiant state withN=10 (i.e. n=5).
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which is half of the optimal one in the limit of largeN [50, 53]. It is also important to stress that although these
considerations (e.g. (46)) are derived in the asymptotic limit (ηN?1), they provide valuable insights already for
moderateN [50, 53]. To extend (46) and the general considerations of [49–52] tomultimode states is certainly an
interesting but also challenging endeavour, as themultimode structure of the statemakes it difficult to
diagonalise it to be able to compute. In this section, we instead pursue amore humble goal: we compare
(twin) superradiant and Fock states for some specific case-studies ofMZ interferometery and find that they
perform similarly even in the presence of photon loss (which is expected as superradiant states contain 0.9N
photons in a singlemode).

We consider photon loss by adding a beam splitter with transmitivity η before eachmeasurement apparatus
(this is equivalent to placing the beam splitters before the second beam splitter of theMZ interferometer as the
losses are symmetric). This is implemented by adding orthogonalmodes = =e f,j j
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Weagain characterise the input superradiant states through the effective descriptions obtained in section 4.4
with d=2. These effective descriptions enable us to easily account for photon loss, whichwould be highly
challenging through the continuous descriptions (6). Still, our results are limited to lowN, both because we can
only obtain the coefficients of the state forN<10 (see 4.4), and also because the possible outcomes of the
experiment (i.e. the size of the probability distribution ja bP ,

MNR ( )( ) ) grows as N4( )when dealingwith two-
mode states in each armof the interferometer, hencemaking it difficult to compute the analytical expression
(26) for highN.

Infigure 11we show  in the presence of photon loss in themeasurement devices for different
configurations: TFS ofN=8 (orange) andN=10 (blue)photons andNRmeasurements, and twin
superradiant states withN=10 andNR (green) andNMR (red)measurements.We observe how twin
superradiant states perform close to Fock states, and howNRmeasurements for superradiant (and hence
multimode) states become optimal aroundj=0, as expected fromour previous considerations. It is worth
pointing out that as η increases, the optimal valuemoves away fromj=0, which happens forNR andNMR
measurements, and for single-mode andmultimode states. These observations are confirmed by further
numerical results for other values ofN and η, which are shown in appendix B. From these results, we conclude
that twin-superradiant states behave fairly similar to twin-Fock states in terms of theirmetrological performance
also in the presence of photon loss; this conclusion is indeed expected given that superradiant states contain
≈0.9N photons in a singlemode.

Figure 11.Classical Fisher information in the presence of photon loss (η=0.9) for: NRmeasurements in twin Fock states ofN=8
(orange) andN=10 (blue) photons, and twin superradiant states withN=10 andNR (green) andNMR (red)measurements.
Finally, the straight purple line shows the classical shot noise limit (SNL) corresponding to = N .
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6. Conclusions

To sumup,wehavedeveloped the theoretical tools to characterise (i.e. compute observables)of awide class of
multimodephotonic states coming fromthe emissionof a general nonlinear level structure. Besides,weprovide a
constructivewayof capturing theproperties of thesemultimodal stateswith few-modedescriptions. To illustrate the
potential of these tools,wehave applied them to the case of superradiant photonic states, showing, for example, their
observables canbe captured efficiently alreadywith twoor threemodesup to a largenumber of photons. Finally,we
applied these ideas to aphase estimationproposal based on twin superradiant states andnumber resolved
measurements.Our results suggest that twin superradiant states ofNphotons are a promising candidate for quantum
metrology, as they performapproximately as aTFSwith≈0.9Nphotons,which are in fact thenumber of photons
contained in a singlemode.The crucial difference is that twin superradiant states canbe generated in a deterministic
and scalablemanner (assumingnophoton loss andperfect control on the system’sHamiltonian to ensure the
collective decay), in contrast to standardprobabilisticmethods to create Fock states,whose success probability decays
exponentiallywithN even in ideal conditions.Wehope these ideasmotivate its experimental implementation in
nanophotonicwaveguides coupled to atoms [21–23, 28–30], artificial emitters [24, 26, 27], ormolecules [25].

Our results in quantumoptical interferometry are in fact general and can be applied to arbitrarymultimode
states with afixed photon number. Indeed, we have considered phase estimation in aMZ interferometer and
derived a simple expression for theQFI obtainedwhen the input state of each armof the interferometer is a
generic n-photon d-mode state, and shown that it can be saturated by number-resolvedmeasurements that
cannot distinguish between the differentmodes. This is a crucial observation for experiments, as it shows that
single-mode proposals for quantummetrology, e.g. [38, 39, 43, 50, 53–55], can be naturally extended to the
multimode regimewithout requiring extra resources in terms of themeasurement devices.
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AppendixA. Recurrence relations

Herewe build recurrence relations to compute

f f= á ñ=f x y x y b b b b, , , ... ... . A.1j j j j j
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As the derivation is rather non-trivial, for clarity wewill start by computing simple but relevant cases where
n=0, 1, 2 before deriving a general relation for (A.1).

Along the derivationwewill use that from (8) it follows that
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A.1. Normalisation
It is instructive tofirst check that f ñN∣ ( ) is normalised.Wewant to compute
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Using the symmetry of At t... N1
under permutations over tj{ }and the commutation relation (8), we arrive at

ò ò f fá ñ =
¥
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j t t
0 , 1

...
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!
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In order to solve this integral, which includes a time-ordering operation  , we split the integral as a sumof
integrals using

ò ò ò ò ò òá ñ = á ñ + á ñ
¥ ¥ ¥ ¥ ¥ ¥

      x y y x x yd d d d d d . A.6x y
y
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x

y x
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There are N! such integrals, and they are equivalent. Hencewe have that

ò ò ò f f g g gá ñ = -
¥ ¥ ¥

=
-t t t td ... d d exp . A.7N N

N
t t j

N

j j j j
0

2 1
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1
3 2

∣ [( ) ] ( )( ) ( )

This integral can be easily worked out using ò =
¥ - -sd e e

s
at as/a, which leads to the desired result

f fá ñ = 1. A.8N N∣ ( )( ) ( )

A.2. Average photon number
Wefirst consider f x y x y, , ,1 1 1 1( ˜ ˜ ). Before proceeding to its calculation, first note

f f=
+ + -

+ á ñf x y x y
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x x i y y
b b, , ,

2

2
. A.9N
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Using (8) and (A.2) and the symmetry of At t... N1
over permutations, we first have
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This integral is challenging to compute because of the time-ordering  .Wewill compute the integral through a
recurrence relation. The rough idea is as follows: first one splits the integral as a sumof integrals using (A.6).
Since the number of integrals increases exponentially withN, it is crucial to use that when any of the tjʼs is
integrated, the resulting integral is the same due to the symmetry ofA under permutations. This allows us to
keep the computation efficient, as the number of integrals grows linearly withN. Let us implement this idea by
developing a recurrence relationwhere each step corresponds to an integration through one of the variables of
integration (u v t t, , , ...1 2 ). Let us start by defining the integrals
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with

g

g g w w
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with j=1,K,N. Note that
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Wecan then compute -F N
1,1

1( ) by noting the following recurrence relation (with j=1,K,N):
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Next, the idea is to express (A.15) as amatrixmultiplication. In particular, let us define amatrix of size N4 2( )
given by:
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and the remaining submatrices are zero. Defining the initial vector: = ¼v 1, 0, , 00 { }
, onefinds that

= +v M v. , A.18f
N 1

0 ( ) 

where

= ¼ -v F0, , 0, , A.19f
N

1,1
1{ } ( )( )

which provides the desired result.When computing this numerically, it is convenient to compute instead
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which directly provides I x y x y, , ,N
1 1 1 1 1( ˜ ˜ )( ) in (A.14).

A.3. Two-photon correlators
Let us nowmove to the computation of
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wefind the following recurrence relation (a natural extension of (A.15))
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and
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In order to compute the recurrence relation (A.25) as amatrixmultiplication, it convenient to define basis
vectors: ñk s s t t, , , ,1 2 1 2∣ with = ¼ -k N1, , 1{ }, and Îs s t t, , , 0, 11 2 1 2 { }. Then, the idea is to define amatrix
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which provide the coefficients ofM. Then, notice that from (A.25) one obtains
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which gives the desired result. Note that thematricesM are nowof size -N2 14 2( ( )) .

A.4.Higher order terms
Given these previous considerations, it is in principle not difficult (but quite tedious) to extend these techniques
to higher-order correlators of the form f fá ñb b b b... ...N

x y x y x y x y
N

, , , ,n n n n1 1 1 1
∣ ∣( )

˜ ˜
†

˜ ˜
† ( ) . Essentially, following the previous

considerations we need to compute integrals of the form

ò ò 



=

´

=

¥ ¥

= +

=
+ +

I x y x y
N

t

u v B B A A

, , ,
1

... d

d d . A.31

n
N

j j j j j
n

j n

N

j

j

n

j j u
x y

v
x y

u u t t v v t t

1
0 0 1

1

, ,
... ... ... ...j

j j
j

j j
n n N n n N1 1 1 1

* *

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

({ ˜ ˜} )
!

( )

( )

( ) ( ˜ ˜ )

In complete analogywith the previous considerations, we can define
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and the following recurrence relation can be derived (a natural extension of (A.25))
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This recurrence relation (A.33) can be computed through amatrixmultiplication of M N( ) in analogywith the
previous sections, whereM is now amatrix of size - +N n2 1n2 2( ( )) . Hencewe notice that the complexity of
the calculation grows exponentially with the order of the correlator.
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wherewe used (16). As in the previous section, we can compute each integral by solving the following recurrence
relation:
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Figure A1.Coefficients of the three-mode approximation of a superradiant state forN=8 andD=8.
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Following the same logic as in the following sections, this integral can be computed by a product ofmatrices in a
space of dimension

=
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which is approximately bounded as
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Infigure A1we illustrate these ideas by computing all fá ñc c c0 k k k N
1 2 3

1 2 3∣ ∣ ( ) withN=8,D=8 and d=3.

Appendix B.Numerical results on quantummetrologywith photon loss

This section showsmore numerical results on theCFIwith photon loss and considering as input states TFS and
twin superradiant states, as shown infigures B1–B3.

Figure B1.Classical Fisher information in the presence of photon loss (η=0.95) for: NRmeasurements in twin Fock states ofN=8
(orange) andN=10 (blue) photons, and twin superradiant states withN=10 andNR (green) andNMR (red)measurements.
Finally, the straight purple line shows the classical ShotNoise Limit (SNL) corresponding to = N .

Figure B2.Classical Fisher information in the presence of photon loss (η=0.9) for: NRmeasurements in twin Fock states ofN=6
(orange) andN=8 (blue) photons, and twin superradiant states withN=8 andNR (green) andNMR (red)measurements.
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