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Abstract

Focused-ion beam lift-out and annular milling is the most common method used for obtain-

ing site specific specimens for atom probe tomography (APT) experiments and transmission

electron microscopy. However, one of the main limitations of this technique comes from the

structural damage as well as chemical degradation caused by the beam of high-energy

ions. These aspects are especially critical in highly-sensitive specimens. In this regard, ion

beam milling under cryogenic conditions has been an established technique for damage mit-

igation. Here, we implement a cryo-focused ion beam approach to prepare specimens for

APT measurements from a quadruple cation perovskite-based solar cell device with 19.7%

efficiency. As opposed to room temperature FIB milling we found that cryo-milling consider-

ably improved APT results in terms of yield and composition measurement, i.e. halide loss,

both related to less defects within the APT specimen. Based on our approach we discuss

the prospects of reliable atom probe measurements of perovskite based solar cell materials.

An insight into the field evaporation behavior of the organic-inorganic molecules that com-

pose the perovskite material is also given with the aim of expanding the applicability of APT

experiments towards nano-characterization of complex organo-metal materials.

Introduction

The uniqueness of atom probe tomography (APT) lies on its ability to analyze physical nano-

structures and correlate them to the corresponding chemical information with sub-nanometer

resolutions [1, 2]. State-of-the-art specimen preparation techniques have made APT increas-

ingly amenable to analyze the chemistry and structure of a wide range of advanced functional

and structural materials ranging from multi-layer devices used in the photovoltaic industry to

metallic glasses for diverse applications [1–6]. In particular, the evolution of laser-assisted APT

has permitted the analysis of materials with semiconducting properties since specimen
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requirement for high electrical conductivity may be circumvented by the use of light pulses to

trigger field evaporation [1, 2, 7]. In this case, a local increase in temperature at the tip of the

needle-shaped specimen subsequent to absorption of the laser light from the pulse provides

the necessary energy for surface atoms to desorb from the lattice and, under the influence of

the intense electrostatic field, ionize and accelerate towards the detector. This increase in tem-

perature decreases the effective evaporation field. Thus, the probability of sample fracture

attributable to the electrostatic pressure that originates from stress induced by the electrostatic

field at the specimen surface is considerably reduced [2, 8].

One of the main challenges associated with analyzing organic materials with APT is the

preparation of suitable specimens. Inevitably a needle-shaped specimen of approximately 100

nm diameter at its apex must be obtained to promote field evaporation within the range of

working voltages accessible to commercial atom probe setups, i.e. 2–14kV. In this regard, two

of the most commonly employed methods for preparation of organic samples for APT speci-

mens [7–10] are: (1) electrochemical polishing of a metal wire with the desired shape and

dimensions used as a substrate for depositing a thin layer of the actual organic material of

interest; (2) site-specific or bulk lift-out and shaping by means of a focused ion beam (FIB),

usually in a dual beam configuration within a scanning electron microscope (FIB-SEM).

In the case of FIB-based specimen preparation, and in particular for sensitive materials,

great care must be taken in order to minimize ion–milling-induced damage. The conventional

acceleration voltages (16-30kV), currents (�2.5 nA) that are used to successfully shape speci-

mens from metallic materials can lead to amorphization, chemical degradation and formation

of structural defects within organic specimens [11–13]. Additionally, the temperature increase

on the sample surface induced by ion milling may also adversely affect the microstructure and

consequently the properties of different type of materials [13–15].

In general, FIB milling with high energy ions (normally Ga) without the application of nec-

essary safeguards induces overall degradation of organic materials from their pristine state [11,

16–19]. For this reason, one of the approaches used to considerably mitigate damage during

FIB preparation is milling under cryogenic conditions, normally below 150 K. It is well estab-

lished that cryo-FIB preparation modifies the ion sputtering mechanism on the specimen by

limiting sample heating during the sputtering process [12, 20]. Consequently, Ga implantation

during milling is reduced which better preserves the structure and integrity of sensitive materi-

als including extremely delicate organic or biological specimens [20–23].

Here, we demonstrate how cryo-FIB preparation can be used to diminish beam damage of

organo-metal halide perovskite based solar cells (PSC) for APT measurements. In particular,

PSCs with mixed organic/inorganic cations such as methylammonium (MA, CH6N+), forma-

midinium (FA, N2H5
+), rubidium (Rb+) and cesium (Cs+) as well as mixed halide anions

iodine (I-) and bromine (Br-) are studied. These materials have demonstrated remarkable per-

formance, holding record power conversion efficiencies of almost 20% at the time of writing

on par with established PV technologies while showing vast commercial potential in the pho-

tovoltaic landscape [24]. Nevertheless, some key challenges such as their toxicity and long

term stability to the circumambient atmosphere remain to be resolved before their large-scale

deployment. Hence, the intent of this work is to facilitate the usage of APT for analyzing pho-

tovoltaic perovskites by increasing the applicability horizon of the technique towards nano-

characterization of sensitive organic-inorganic material systems.

Materials and methods

Fabrication of PSC Solar Cells [25, 26]: Indium tin oxide (ITO) (On soda lime glass: Kintec)

glass was patterned with Zn powder and 2 M HCl solution, and subsequently ultrasonically

Cryo-focused ion beam preparation of perovskite-based solar cells for atom probe tomography
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cleaned with Hellmanex soap solution, water, acetone, and 2-propanol (IPA). The samples

were consequently treated with O2 plasma for 5 min just before deposition of a 2% colloidal

dispersion of SnO2 (Alfa Aesar: 44592) in H2O. Afterwards, C60 (Sigma Aldrich: 379646) was

spin coated on the SnO2 at 3500 rpm. The samples were then transferred to a nitrogen-filled

glovebox. The 1.35 M perovskite precursor in DMF:DMSO (1:10) was spin coated and

quenched by a strong N2 flow directed towards the sample, as described elsewhere [25]. The

source materials used for perovskite layer synthesis were: MAI (Greatcell Solar: MS101000),

FAI (Greatcell Solar: MS150000), RbI (Alfa Aesar: 13497), PbI2 (TCI: L0279), PbBr2 (TCI:

L0346) and CsI (Alfa Aesar:10992)

The samples were then heated for 60 min at 100˚C. Spiro-OMeTAD (Lumtec: LT-S922)

was spin coated on top at 3000 rpm, after which the samples were stored in a desiccator over-

night. Finally, an Au top contact (�100 nm) was deposited under high vacuum (�6 × 10–6

Torr). The resulting perovskite composition was Rb0.05 [Cs0.05FA)0.83 (MA)0.17) 0.95]0.95 Pb

(I0.90Br0.1)3 and the final solar cell stack architecture is illustrated in Fig 1.

In addition, these devices have remarkably exhibited excellent performance in terms of effi-

ciencies of up to 19.7%±0.2% and a stabilized power output of 20% in their pristine state as

shown in Fig 2 [25].

Preliminary imaging: Cross-sectional scanning electron microscopy (SEM) images from

the photovoltaic device were obtained in immersion mode at 5 kV and 86 pA with a dual-

beam FIB (FEI Helios Nanolab 600 and 600i).

APT needle-shaped specimen preparation: Specimens for APT were obtained with the use

of a dual-beam FIB (FEI Helios Nanolab 600) system, mostly following the procedure

described in Ref. [27]. In this case, however, for the final annular milling shaping steps a cryo-

stage for liquid nitrogen cooling (Gatan C1001) inside the vacuum chamber was used to

decrease the temperature of the specimen down to approximately -190 oC. Moreover, since the

cryo-stage cannot be tilted without damaging the SEM column pole piece due to the height of

the cryo-stage, a holder was manufactured in-house as shown in (Fig 3A and 3B). This pro-

vided the necessary orientation for the carrier of the specimen with respect to the FIB column

at 52o from the horizontal without the need for tilting the cryo-stage. Lift-outs were carried

out randomly throughout the surface of the sample and through the entire depth of the solar

cell stack as shown in Fig 1. FIB milling was performed using an accelerating voltage of 16kV

and variable currents ranging from 0.13nA to 45 pA to further minimize Ga damage. A final

milling step at a lower accelerating voltage of 5kV was performed in order to remove the

Fig 1. Solar cell stack configuration and illustration of a final atom probe specimen.

https://doi.org/10.1371/journal.pone.0227920.g001

Cryo-focused ion beam preparation of perovskite-based solar cells for atom probe tomography
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regions of the specimen that had been severely damaged by the incoming energetic Ga ions, as

documented in Ref. [27].

APT measurements were performed using a reflectron-fitted local electrode atom probe

LEAP™ 5000XR (Cameca Instruments Inc.). The specimen base temperature was maintained

at 50–60 K, and was analyzed in laser pulsing mode, with a UV-laser (355 nm wavelength),

with laser pulse energies ranging from 1 pJ to 10 pJ. The laser repetition rate was kept at 65

kHz with an average detection rate of 5 ions per 1000 pulses.

Fig 2. J-V curve of the analyzed quadruple cation perovskite. Inset: corresponding photovoltaic parameters.

https://doi.org/10.1371/journal.pone.0227920.g002

Fig 3. In-house manufactured holder for cryo-stage annular milling of atom probe specimens. (A) Holder mounted on the cryo-

stage. (B) Schematic view of the holder within the dual-beam FIB.

https://doi.org/10.1371/journal.pone.0227920.g003

Cryo-focused ion beam preparation of perovskite-based solar cells for atom probe tomography

PLOS ONE | https://doi.org/10.1371/journal.pone.0227920 January 16, 2020 4 / 14

https://doi.org/10.1371/journal.pone.0227920.g002
https://doi.org/10.1371/journal.pone.0227920.g003
https://doi.org/10.1371/journal.pone.0227920


Results

Preliminary sample characterization and specimen preparation

A cross section of the studied PSC stack is shown in Fig 4. Two notable characteristics of the

films are immediately evident, as previously described in Ref. [26], and are important for the

subsequent results obtained from the APT reconstructions: First, the perovskite layer is com-

prised of a polycrystalline structure with columnar grains of various sizes ranging from 50 nm

to 400 nm (Fig 4). This makes characterizing a grain boundary with APT challenging since the

FIB lift-outs are randomly obtained and the diameter of the final needle-shaped specimens are

considerably smaller than the grain sizes. Second, the fullerene layer is observed as discreet

islands, as seen in Fig 4, instead of an expected continuous film presumably due to the redisso-

lution of C60 upon perovskite deposition. Due to this film discontinuity, obtaining APT speci-

mens that contain fullerenes was also difficult. Moreover, C60 fullerenes decompose into

fragments when exposed to the electric field required for evaporation [7]. In this case, if the

laser energy is increased, C60 may appear in the mass spectrum as ion fragments comprised of

C10
+ and C18

+.

The sequence of steps that were followed for APT specimen preparation by means of FIB

milling is shown in Fig 5. After a lift-out and successive welding of 2 μm-wide wedges onto Si

microposts (Fig 5A and 5B), all the layers of the PSC remain clearly visible (Fig 5C). Nonethe-

less, as annular milling progresses and the tip of the specimen narrows, the layers cannot be

resolved anymore as usually observed during milling of thin-film materials. Therefore, it is

essential to monitor the annular milling process with a marker provided by the FEI-Helios

software as shown in Fig 5D; in this case a line marker was used to stop annular milling when

the Spiro-OmeTAD-Perovskite interface was positioned at the apex of the specimen (Fig 5E).

Fig 4. SEM cross section image of the full PSC stack obtained by FIB. Perovskite grains of several hundred

nanometers and fullerene islands are observed.

https://doi.org/10.1371/journal.pone.0227920.g004

Cryo-focused ion beam preparation of perovskite-based solar cells for atom probe tomography
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APT results: Mass spectrum analysis and yield

Representative mass spectra from APT measurements from non-cryo and cryo-preparation

specimens are shown in Fig 6A and 6B respectively. Some differences are readily observed: the

specimen prepared at room temperature exhibits large amounts of unidentifiable peaks (Fig

6A). These peaks might originate from CxHy fragments and/or hydrides (BrH+,PbIH+, PbH+,

etc.) induced by FIB milling at room temperature [7, 17].

On the contrary, the mass spectra from the cryo-milled samples (Fig 6B) exhibits easily

identifiable peaks and considerably less background noise at high mass-to-charge state ratios.

In this case, fragmentation of C-H chains as well as the formation of different hydrides seems

to have been considerably reduced. It is possible that the Ga ions from FIB preparation at

room temperature may have significantly modified the original perovskite structure and lead

to a modified material with a different field evaporation behavior as compared to the cryo-

milled samples.

Moreover, the Si+ peak at 28 Da shown in Fig 6B originates from the glass substrate. This

means that the APT experiment was long enough to reach the substrate, which is 1 μm below

the surface of the device. In fact, the yield is significantly affected by preparing samples at

room temperature. In this case, less than 40% of the experiments led to datasets with more

than a 1 million detected ions, which were considered as successful, while for cryo-prepared

samples more than 90% of the specimens were successfully analyzed. This may be due to

defects introduced in the lattice by the high energy Ga ions from ion beam milling at room

temperature. Since the perovskite material is highly susceptible to the electrostatic pressure

generated during an APT experiment, any defect such as protrusions, holes or material discon-

tinuity will severely cause stress concentrations in the material and lead to premature fracture

of the specimen.

Fig 5. APT specimen preparation of PSC. (A) Wedges are cut from random spots across the surface of the Au contact

and lifted out by the use of a micromanipulator. (B) The wedge is then soldered with Pt on Si microposts and cut in

depth along the green box to obtain (C) 2 μm sized wedges before annular milling, the PSC layers are still clearly

visible. (D) Marker used to manually control the end of annular milling. (E) Final specimen.

https://doi.org/10.1371/journal.pone.0227920.g005

Cryo-focused ion beam preparation of perovskite-based solar cells for atom probe tomography
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In both conditions, the MA (CH6N+, 8 atoms) and FA (CN2H5
+, 8 atoms) ions are difficult

to identify in the mass spectrum since in most cases these molecules are dissociated into frag-

ments [7] such as Cx-Hy-Nz compounds, CH2
+, CH3

+
, NH3

+, etc. between 6 and 50 Da. In

Fig 6. Mass spectra obtained by APT (60 K, 1 pJ). Main peaks are highlighted (A) Non-Cryo-prepared sample. (B)

Cryo prepared sample.

https://doi.org/10.1371/journal.pone.0227920.g006

Cryo-focused ion beam preparation of perovskite-based solar cells for atom probe tomography
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general, complex molecules can be formed under the high electrical fields generated in an APT

experiment, particularly for organic hydrogen containing chains such as MA and FA. For this

reason, providing spatial information from the organic chains that compose the perovskite will

always be considerably challenging and beyond the scope of the present article. Nonetheless,

the C and N counts determined by the peaks at 12 and 14 Da respectively are considerably

higher in the cryo-prepared specimens as seen in Fig 6B. This suggests that the organic portion

of the perovskite material was better preserved in specimens that were prepared under cryo-

genic conditions.

Finally, the laser pulsing frequency of the APT experiment must be carefully selected. Since

the perovskite material is partially comprised of heavy molecular ions such as Rb, I, Cs and Pb,

frequencies larger than 65 kHz results in these ions not being detected and forming part of the

background noise due to uncorrelated detection events. This can also be observed in the mass

spectrum throughout the experiment as a "wraparound" effect at low mass-to-charge state

ratios. In addition, higher laser pulsing frequencies will prevent heat transfer from the surface

of the specimen resulting in an increased base temperature, which consequently compromises

the mass resolution of the measurement.

Halide detection and distribution

The major problem with specimen preparation of a PSC by means of FIB is usually related to

the loss of organic cations and halides [11, 28]. In particular, the measured iodine concentra-

tion after FIB milling at room temperature is considerably lower (5 at.% lower) than that

expected from the stoichiometry of the perovskite film. Tables 1 and 2 show a summary of the

ratio of the number of detected I ions to Pb ions obtained within different APT measurements

performed on specimens prepared under non-cryo and cryo-conditions respectively. A clear

trend was found: the nominal Pb:I ratio from 6 cryo-prepared specimens is mostly maintained

Table 1. Summary of APT measurements obtained from non-cryo prepared samples.

Non-cryo prepared measurements T (K) Energy (pJ) Result (ions) Pb:I ratio

1 55 10 Fracture -

2 60 10 15.000.000 3:1

3 60 5 Fracture -

4 60 10 6.200.000 1:1

5 50 10 Fracture -

6 60 1 2.500.000 1,4:1

7 55 10 Fracture -

8 55 15 5.100.000 2,5:1

9 60 10 Fracture -

https://doi.org/10.1371/journal.pone.0227920.t001

Table 2. Summary of APT measurements obtained from cryo prepared samples. The expected Pb:I ratio (1:2,7) is considerably improved when measuring samples

prepared under this condition.

Cryo-prepared measurements T (K) Energy (pJ) Result (ions) Pb:I ratio

10 60 1–2 22.000.000 1:2,5

11 60 1 3.000.000 1:2

12 60 1 2.000.000 1:2

13 60 1 8.000.000 1:2,7

14 60 1 7.000.000 1:2,5

15 60 1 2.000.000 1:2,3

https://doi.org/10.1371/journal.pone.0227920.t002

Cryo-focused ion beam preparation of perovskite-based solar cells for atom probe tomography
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(1:2.7±0.62) whereas specimens milled at room temperature exhibited significant loss of

iodine, down to a ratio of 3:1. Additionally, since non-cryo prepared specimens were suscepti-

ble to early fracture, higher laser energies were needed to reduce the electrostatic field required

for evaporation. This likely had a detrimental effect on the measured composition of the

perovskite due to excessive heating of the perovskite film.

We can conclude from these observations that the advantages of preparing APT specimens

under cryogenic conditions are mainly twofold. First, due to the resistance of the specimens

against early fracture under a high electrostatic field, as observed by yield, lower laser energies

can be used throughout the experiment. This is mandatory since low laser energies are gener-

ally required for analysis of photovoltaic materials characterized by high absorption capabili-

ties as well as organic samples [29, 30]. Second, halide loss during FIB preparation is

considerably mitigated. It is important to highlight that the main I contribution originates

from the detection of the I2
+ peak. I2 may be present in the material in the form of PbI2 as an

ambient degradation product or from an excess added to the precursor during film processing

[26, 31]. For this reason it is difficult to discern whether this molecule is present in the original

sample or is formed as a complex ion during field evaporation. This may occur if the energy

required for field evaporation of the I2 molecule is less than that of I. However, Fig 7A shows

the contribution of I2 and I on the total iodine concentration of a representative cryo-prepared

APT specimen. It shows a smooth decrease of I as the measurement progresses towards the

ETL with a deviation from the nominal composition (24.2 at.%) of ±5at.%. This suggests that

the iodine detected during field evaporation is originated from a homogeneous distribution of

I within the perovskite film regardless of the nature of the parent iodine ion (I2 or I). This

result can be used for characterization of perovskite films that may contain inhomogeneities

or phases with a surplus or depletion of iodine of more than 5 at.%.

Fig 7. Distribution of iodine within the perovskite film of a cryo-prepared specimen. (A) Contribution of I+ and I2
+ on the total iodine concentration along the

direction shown by the dashed arrow in (B). (B) Distribution of I2 ions. (C) Distribution of I ions with the corresponding 2-D density plot on the X and Y planes.

https://doi.org/10.1371/journal.pone.0227920.g007

Cryo-focused ion beam preparation of perovskite-based solar cells for atom probe tomography
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In addition, as shown in Fig 7B and 7C, I+ is consistently found towards the bottom part of the

perovskite layer near the electron transporting layer (ETL). A few mechanisms may be contribut-

ing to this observed iodine behavior before and/or after the APT measurements. Firstly, the loss or

degradation of I to I2 may occur since the wedge is exposed to the high-energy Ga-ions or electron

beam at room temperature during the early stages of FIB preparation [11, 31]. Most of this loss

should, however, be inhibited by completing annular milling on the final atom probe specimen

under cryogenic conditions. Secondly, iodine migration might occur within the perovskite film

due to the high voltages used during an APT experiment. It has been shown that a bias of as little

as 1V/μm applied to the perovskite material at temperatures above 0˚C may induce drift of I

towards its respective sink depending on device architecture [32]. Nonetheless, the APT experi-

ment is performed at 60 K and, thus, the diffusion of I within the perovskite layer should be

expected to be significantly impeded. As shown by Li et al. [33], only a considerable increase in the

localized temperature due to laser pulsing during the measurement may be sufficient to provide

the necessary driving force for I mobility under an electric field at extremely low temperatures.

Lastly, this behavior may be explained by post dissociation of I2 during the APT measurement.

The dissociation energy of a I2 molecule is 1.68 eV [34]. This does not reflect the energy nec-

essary to further dissociate a I2
+ ion under intense electric field conditions, but can likely be

used as a proxy. Since the radius of the specimen is larger towards the substrate and the temper-

ature rise from the pulsed laser dissipates within a relatively larger volume, higher voltages are

required to maintain the desired ion detection rate. Furthermore, higher electric fields are nec-

essary in order to evaporate ions from the ETL and the glass substrate as the measurement pro-

ceeds towards the interface. The electric field at this point may then be high enough to increase

the probability of I2 dissociation. An approach that may be used for observing a change in elec-

tric field is by tracking charge state ratios for a specific element. Particularly, during field evapo-

ration of the perovskite layer peaks at 102 Da., 103 Da, 103.5 Da. and 104 Da. appeared in the

mass spectrum with natural abundance isotopic ratios corresponding to Pb++.

Indeed, as can be observed in Fig 8 an increase in electric field is readily noticeable, namely,

the Pb+/Pb++ ratio decreases as field evaporation continues towards the ETL. A general

Fig 8. Concentration of Pb+ and Pb++ along the direction indicated by the dashed arrow on the atom probe

reconstruction (inset). As field evaporation takes place towards the SnO2-ITO layers a higher electric field is required

to maintain the selected detection rate therefore leading to the post-ionization of Pb+ into Pb++.

https://doi.org/10.1371/journal.pone.0227920.g008

Cryo-focused ion beam preparation of perovskite-based solar cells for atom probe tomography

PLOS ONE | https://doi.org/10.1371/journal.pone.0227920 January 16, 2020 10 / 14

https://doi.org/10.1371/journal.pone.0227920.g008
https://doi.org/10.1371/journal.pone.0227920


increase of Pb+ is observed across the length of the APT specimen due to inhomogeneity of Pb

in the APT sample, nonetheless, the Pb++ concentration increases by an order of magnitude as

the APT experiment progresses towards the backside of the solar cell.

According to the post-ionization theory stated by Kingham [35] double ionization of Pb occurs

at higher fields, therefore the sharp increase of the Pb++ concentration directly correlates to a con-

siderable increase in the electric field necessary to maintain the desired detection rate. In fact, Pb

requires a 2nd ionization energy of 15.03eV which is more than double of that required for 1st

ionization [36]. To further support this assertion, the second ionization potential for I2 is 15.7 eV

[37] similar to that of Pb. Therefore the appearance of Pb++ towards the ETL layer signifies that it

is highly likely that I2 is also being ionized to form I2
++, which under the effect of the electric field

can be subsequently dissociated to form I+ ions due to the relatively low binding energy of I2.

Another consideration that must be noted as a consequence of these dissociative processes

is the possible formation of neutrals. Depending on the laser energy, and therefore, the

strength of the electric field on the surface of the specimen, dissociative events may occur near

or away from the apex of the APT specimen. At higher laser energies, dissociation is most

likely to occur far from the specimen surface where the probability of subsequent ionization of

a neutral molecule is low due to the decreased intensity of the electric field [38]. These neutrals

would consequently not be detected in an APT equipped with a reflectron system such as the

LEAP™ 5000XR used in this work [39, 40]. This could account for the further loss of I as a neu-

tral during the APT experiment at higher laser pulse energies, here observed with 10 pJ but

also previously reported with energies between 30–100 pJ [28]. Furthermore, since the proba-

bility for ion dissociation within the perovskite layer is high as previously explained, neutrals

may also form as a by-product of the successive dissociation of a parent ion. This behavior was

previously observed during field evaporation of GaN where a particular dissociation pathway

dissociated GaN3
++ molecules and formed N2 neutrals [40].

Rb distribution

After having shown that the perovskite material is better preserved during cryo-FIB preparation

it is possible to more reliably characterize its microstructure with APT measurements. In this

regard, an important question for solar cell applications is the distribution of Rb within the

perovskite film. In most of the specimens Rb was not detected with APT, nonetheless, in those

specimens that did contain Rb it was seen to segregate in highly concentrated regions, both in

the data from non-cryo and cryo-prepared specimens (not shown here). This experience sug-

gests that Rb segregates in the perovskite film after synthesis. Segregation of Rb is moreover in

line with a report in Ref [41] where Rb was suggested by NMR analysis not to be incorporated

into the perovskite lattice but instead forms separate RbIxBr1-x and RbxPbyBrz phases. For solar

cell applications it is yet unclear how these Rb-rich phases affect the efficiency of the photovol-

taic device in the long term. A detailed study of these phenomena lies beyond the scope of this

work. Nonetheless, further research is ongoing in order to investigate the evolution of the

perovskite microstructure during different stages of its operating lifetime by means of APT and

in correlation with other microscopic techniques and solar cell characterization. Organic-inor-

ganic specimens that are susceptible to undesired changes due to electric fields, UV-light expo-

sure and ultra-high vacuum may still lead to significant reconstruction artifacts due to the

complex nature of the field evaporation process around APT specimens of these materials.

Conclusions

Cryo-FIB was used to prepare samples of a quadruple-cation perovskite-based solar cell for

investigation by APT. It was found that halide loss, in particular that of I, was mitigated due to
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the diminished infiltration and damage of the perovskite film from high-energy Ga ions. How-

ever, further loss of I may occur during the APT experiment since formation of undetectable

neutrals I or I2 is possible due to dissociative events and the high sensitivity of the perovskite

material towards laser energy.

In addition, the Iodide contribution in the mass spectrum mainly originated from detection

of I2
+. Since the I2

+ ion forms probably during the measurement it is unclear whether this mol-

ecule is originally present in the perovskite film. I+ directly was only detected when the APT

tip was exposed to relatively large voltages, most likely due to dissociation effects caused by the

increase of the electric field the tip is exposed to towards the SnO2-ITO interface.

Regardless of the nature of the evaporated iodine ion, the total composition of iodine is

mostly maintained with respect to the nominal values. This reliability can thus be used during

APT characterization of perovskite films which may contain elemental segregation or phases

with considerable deviations from the nominal composition.

Finally, milling at low temperatures has prevented the formation of defects in the material.

The prepared APT specimens are more resistant to the elevated stresses caused by the electric

field during an APT measurement and, by extension, provide a more-easily interpretable mass

spectra. It can be concluded that cryo-FIB can be a viable solution to preserve the pristine

nature of sensitive organic-inorganic materials for subsequent APT analysis. Nonetheless, care

must be taken in interpreting the spatial distribution of elements in the reconstructions

obtained from APT.
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