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In the strongly interacting limit of the Hubbard model localized double occupancies form effective hard-core
bosonic excitations, called doublons, which are long lived due to energy conservation. Using time-dependent
density-matrix renormalization group methods we investigate numerically the dynamics of doublons arising
from the sudden expansion of a spatially confined band-insulating state in one spatial dimension. By analyzing
the occupation scaling of the natural orbitals within the many-body state, we show that doublons dynamically
quasicondense at the band edges, consistent with the spontaneous emergence of an η quasicondensate. Building
on this, we study the effect of periodically driving the system during the expansion. Floquet analysis reveals
that doublon hopping and doublon repulsion are strongly renormalized by the drive, breaking the η-SU(2)
symmetry of the Hubbard model. Numerical simulation of the driven expansion dynamics demonstrates that
the momentum in which doublons quasicondense can be controlled by the driving amplitude. These results
point to new pathways for engineering nonequilibrium condensates in fermionic cold-atom experiments and are
potentially relevant to driven solid-state systems.
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I. INTRODUCTION

Strongly correlated quantum systems are well known to
exhibit a wide variety of novel phenomena like antiferromag-
netism, the fractional quantum Hall effect, and high-Tc super-
conductivity. If such systems are driven out of equilibrium the
emerging physics is expected to be richer still. So far only a
small portion of this phenomenological landscape has been
explored experimentally, and even less is understood theoret-
ically. As a result the nonequilibrium dynamics of quantum
many-body systems is one of the most challenging branches
of modern physics. Yet it is attracting growing attention due to
the spectacular experimental advances in numerous complex
quantum systems, ranging from cold-atom [1,2], photonic
[3–5], optomechanical [6], and condensed-matter platforms
[7–9]. In particular the intense interest stems from the ability
to implement controllable strong perturbations to a system and
subsequently measure its properties in real time with a resolu-
tion commensurate with the intrinsic microscopic timescales
[10]. This capability has opened up new spectroscopies for
probing nonequilibrium dynamics as well as new approaches
for manipulating them [11].

One exciting example of this has been the enormous
progress over the past decade in ultrafast THz pump-probe
experiments on solid-state systems [11–13]. By strongly driv-
ing low-energy structural or electronic degrees of freedom of
a solid [14] the ultrafast melting of equilibrium long-ranged
order, such as charge-density waves [7,15–18], magnetic or-
der [19,20], and orbital order [21], has been demonstrated.
Even more remarkably, recent experiments have also used

strong external modulations to induce superconducting order
far from equilibrium in several different materials [22–25].
The long-term goal of this approach is ultimately to design
and control quantum materials properties “on demand” by
using driving to stabilize order that is otherwise inaccessible
thermally [26,27]. From a theoretical perspective these ex-
periments raise important fundamental questions about what
mechanisms exist for the emergence of order in driven sys-
tems, some of which have been explored in a number of recent
studies [28–33].

Complementary to real materials, there have been equally
spectacular experiments with systems of ultracold atomic
gases in optical lattices [34–36]. These “synthetic” solids
provide near ideal quantum simulations of Hubbard-like
Hamiltonians. Consequently they offer unique perspectives
on nonequilibrium dynamics of interacting systems, owing to
the unprecedented tunability of their time-dependent hopping
amplitudes and interparticle interactions, as well as the ability
to engineer novel initial states [2]. Cold-atom systems have
thus opened up many long-standing nonequilibrium prob-
lems to exquisite experimental scrutiny, such as quenching
across quantum phase transitions [1], controlling exchange
interactions [37,38], transport effects with strong interactions
[39–42], as well as the influence of integrability [43,44] and
many-body localization [45] on closed system thermalization
[46]. Of particular relevance to our paper are recent exper-
iments [47,48] where the effect of periodic driving on the
basic interactions in fermionic cold-atom systems has been
unravelled.
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Motivated by all these developments, here we focus on a
particularly intriguing example of the spontaneous emergence
of order, namely, dynamical quasicondensation, predicted
[49] and observed experimentally in cold-atom systems [50].
Our aim is to assess whether a similar effect occurs with
fermions, with broader implications for electronic systems.
Dynamical quasicondensation manifests from a unit-filled
Mott insulating region of strongly interacting bosons confined
to the center of a one-dimensional (1D) optical lattice with
spacing a. Upon quenching the confinement this inhomoge-
neous initial state expands out into the surrounding empty
lattice. It is found that the momentum distribution of the hard-
core bosons quickly develops sharp peaks at quasimomenta
qc = ±π/2a and power-law decaying spatial correlations,
signaling unconventional current-carrying quasicondensation
[49,51]. This unusual phenomenon has since been explained
by showing the time-evolved state in this case is always an
eigenstate of a time-dependent emergent Hamiltonian, non-
trivially related to the underlying Hamiltonian governing the
system [52].

In this paper we examine whether dynamical quasiconden-
sation occurs with the expansion of a spatially confined band-
insulating state in the fermionic Hubbard model. In this case
the initial state is a cluster of double occupations (doublons),
which for strong repulsive interactions is highly energetic.
However, when this energy far exceeds the single-particle
bandwidth energy conservation demands that the decay of
doublons occur through multiparticle scattering processes that
are exponentially suppressed with increasing energy [53]. The
stability of such repulsively bound pairs has been confirmed
experimentally [53–55] and their distillation dynamics [56]
has recently been observed [57,58]. Since doublons are long-
lived bosonic quasiparticles the question of whether they
Bose condense (quasicondense) has been addressed. It was
found that they do condense at the band edge qc = ±π/a,
leading to adiabatic proposals [59,60] for generating the
much sought-after η condensate [61]. Using time-dependent
density-matrix renormalization-group (td-DMRG) methods
[62–66] we demonstrate here that the sudden expansion of the
band insulator also undergoes dynamical η quasicondensation
with definitive signatures emerging within tens of hopping
times.

We significantly expand the relevance of quench induced
dynamical quasicondensation by examining its interplay with
a simultaneously applied strong periodic driving. The effect of
time periodic external fields can be captured by Floquet theory
[67–69] and has been successfully used to predict and explain
wide ranging phenomena in condensed-matter and cold-atoms
systems. Seminal examples include induced topological ef-
fects for cold atoms via optical lattice modulation [70,71]
or exposure to circularly polarized light [72,73] in solids,
dynamical localization induced Mott transitions [74,75], ef-
fective repulsive to attractive interaction conversion by band
flipping [76], and the renormalization of the superexchange
interaction [32,77,78]. Here we use Floquet theory to show
that the driving breaks the η-SU(2) symmetry of the Hubbard
model [79] and that by tuning above resonance a wide range
of doublon dynamics is realizable, including one where they
are noninteracting and directly mimic hard-core bosons [49].
We compare this effective theory to td-DMRG numerical

calculations to show that even finite frequency driving applied
on short timescales can accurately control the momentum at
which quasicondensation occurs.

This paper is organized as follows. In Sec. II, we introduce
the driven Hubbard model and initial state that are the focus of
this paper. Section III is devoted to deriving and analyzing a
simpler effective theory. This begins in Secs. III A and III B by
employing a combination of a strong-coupling expansion and
Floquet theory to reduce the full driven problem into a quench
of an effective doublon Hamiltonian with a driving amplitude
dependent anisotropy. Building on this Secs. III C and III D
then describe td-DMRG calculations that solve the quench
dynamics of this effective Hamiltonian for large systems.
Section IV then returns to analyze numerically the full driven
Hubbard model by confirming in Secs. IV A and IV B that the
behavior seen in the effective model also manifests when the
interactions are moderate and when a finite frequency drive
is applied abruptly. In Sec. IV C we examine the realization
of the full driven Hubbard model with current cold-atom
experiments and analyze how signatures of driving controlled
dynamical quasicondensation in the momentum distribution
will appear in real-time measurements. Finally we conclude
in Sec. V.

II. MODEL AND SETUP

In this paper we investigate dynamics of the fermionic
Hubbard model in one dimension with L sites and open
boundaries. The Hamiltonian is HHub = −tHkin + UHint com-
posed of single-band kinetic and on-site interacting contribu-
tions (taking h̄ = 1 throughout):

Hkin =
L−1∑
i=1

∑
σ

(c†
iσ ci+1,σ + H.c.),

Hint =
L∑

i=1

ni,↑ni,↓,

(1)

with the hopping amplitude t and the on-site repulsion U � 0.
Here, c†

i,σ operators create a spin-σ = {↑,↓} fermion local-
ized on lattice site i, with the corresponding density for spin
σ on the site being ni,σ = c†

i,σ ci,σ and ni = ni,↑ + ni,↓.
We will consider the regime of strong interactions U � t

large enough that strongly correlated effects become readily
apparent both in and out of equilibrium [58]. We take the
initial state of the system to be the ground state of HHub +
Hcon, where Hcon = ∑L

i=1 vini is a box confinement potential,
with vi = 0 for sites i ∈ O inside a contiguous patch of the
chain O of size N = |O|, and vi � U otherwise. We assume
the system has a total of N↑ = N↓ = N electrons making the
region O doubly filled and the ground state

|ψinit〉 =
(∏

i∈O

c†
i↑c†

i↓

)
|vac〉, (2)

which is a spatially confined band insulator, a portion of which
is depicted in Fig. 1(a).

We consider the dynamics of this system in real time
τ simultaneously subject to two different time-dependent
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(a)

(b)

(c)

FIG. 1. Schematic of the setup. (a) The initial state is created
with a strong confining potential Hcon to produce a band insulator
of double occupations. (b) The confining potential is then removed
allowing doublons to expand into the empty region. (c) A driving
potential Hdrv is switched on simultaneous with the confinement
quench.

perturbations which together give a Hamiltonian:

Hfull(τ ) = HHub + θ (−τ )Hcon + θ (τ )Hdrv(τ ). (3)

The first perturbation describes the sudden switch off at τ = 0
of the confining potential, resulting in a quench the expansion
dynamics of which melts |ψinit〉, as depicted in Fig. 1(b). The
second perturbation describes the abrupt switch on at τ = 0
of an external periodic driving

Hdrv(τ ) = A

2
cos(�τ )

∑
i

(−1)ini, (4)

describing an oscillating on-site energy alternating between
sublattices with a frequency of � and amplitude A, as illus-
trated in Fig. 1(c). We will be considering high-frequency
cases where � � U is the largest energy scale in the system.
The driving term Hdrv(τ ) can be realizable in cold-atom
experiments by laterally modulating in time the position of
a zig-zag optical lattice configuration [80].

We calculate the time evolution of this system using td-
DMRG [62–66] with a time step δτ < T/50 where T =
2π/� is the drive period, and a matrix product bond di-
mension χ > 1000 sufficient to ensure the discarded weight
εdisc < 10−6. In our numerical calculations we take the region
O to be the right half of a chain with L � 2N giving an
initial state of the form |ψinit〉 = | ��� ... � 0...000〉. This
asymmetric setup, where particles can only expand in one
direction, allows access to longer timescales compared to the
more experimentally motivated case where O is located at the
center of the system that is overall twice as large. Once L is
large enough that no reflections occur at either open boundary
in the simulated time we find the same results as those of the
symmetric setup [81].

III. QUENCHED EFFECTIVE MODEL

Accurately computing the dynamics of the full driven
Hubbard model Hfull(τ ) on long timescales is extremely chal-

lenging. For this reason, and to give a deeper understanding of
the physics, we begin our analysis by deriving an equivalent
quench problem for a simpler effective model, applicable
in the regime of the strong interactions U � t and high-
frequency � � U drives.

A. Undriven system

For the Hubbard model HHub in the strongly interacting
limit, doublons are known to be repulsively bound long-lived
excitations, owing to their binding energy far exceeding the
single-particle bandwidth [54,55]. The decay of doublons
within the Hubbard model, in the presence of background
holes, is dominated by multiparticle processes that generate
many particle-hole pairs. A diagrammatic perturbative ar-
gument [53] indicates that the rate of doublon decay � is
exponentially suppressed with U/t as

� ∼ Ct exp[−α(U/t ) log(U/t )], (5)

where the constants are α ≈ 0.82 and C ≈ 1.6. This motivates
examining the expansion dynamics of |ψinit〉 using an effective
model that explicitly conserves doublons.

Given |ψinit〉 contains a maximally localized doublon do-
main for its filling, it is a highly excited state of HHub with an
energy E ≈ UN . This places it predominantly in the highest
well-isolated band of Hubbard eigenstates when U � t . An
effective Hamiltonian Heff describing just this highest set of
eigenstates is derived in a standard perturbative approach
accounting for virtual transitions to lower eigenstates. This
is entirely analogous to the well-known derivation of the
isotropic antiferromagnetic Heisenberg spin model describing
the lowest-lying eigenstates of the half-filled Hubbard model
[82]. The result reveals that the system is governed to second
order in t/U (up to a constant) by

Heff = P

[
J0

2
(Hhop + Hrep)

]
P, (6)

where P is the projector onto real-space configurations con-
taining no singly occupied sites and

Hhop =
L−1∑
i=1

(d†
i di+1 + H.c.),

Hrep =
L−1∑
i=1

(nd,i(1 − nd,i+1) + H.c.).

(7)

Here the allowable empty |0〉 or doubly occupied | �〉 local
charge states are equivalent to the absence or presence of
a hard-core boson described by the doublon creation oper-
ator d†

i = c†
i↓c†

i↑ obeying (d†
i )2 = 0 and associated number

operator nd,i = d†
i di. For U > 0, the doublon hopping term

Hhop gives a single-doublon band with its minimum at the
zone boundary q = ±π/a, while the interaction term Hrep

gives repulsion between neighboring doublons and holes.
In Eq. (6) these terms have an identical coupling given by
superexchange interaction J0 = 4t2/U .

The isotropy between Hhop and Hint makes the ground
state of Heff with N doublons a so-called η-pair state |ηN 〉 ∼
(η+)N |vac〉, where η+ ∼ ∑

i(−1)id†
i creates a doublon at

q = ±π/a momentum. This is a direct manifestation in Heff
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of the celebrated η-SU(2) symmetry of the Hubbard model,
[HHub, η

+] = Uη+, first introduced by Yang [61]. Conse-
quently, |ηN 〉 is an exact eigenstate of HHub with an energy
E = UN for any U . Furthermore, since

〈ηN |d†
i d j |ηN 〉 = N (L − N )

L(L − 1)
eiπ (i− j), (8)

the η-pair state displays staggered off-diagonal long-range
order consistent with N doublons Bose condensing at the
zone edge qc = ±π/a. Various proposals for generating in
the Hubbard model an η condensate, or states with η-like
correlations, have been put forward. These include adiabatic
switching of an optical lattice confinement and superlattice
potentials [60], flipping of the band structure induced by driv-
ing the attractive Hubbard model [79], and as an eigenstate
of a “dark” Hamiltonian created from a Hubbard model with
spin dephasing [83].

B. Generalizing to the driven system

For τ � 0 the driven Hubbard model in Eq. (3) is time
periodic: Hfull(τ ) = Hfull(τ + T ). Analogous to Bloch’s the-
orem for discrete spatial translational symmetry, discrete time
translational symmetry constrains the solutions of the time-
dependent Schrödinger equation via Floquet’s theorem [68].
The key result is that the time-evolution operator U(τ2, τ1)
of the driven system between two times τ1 and τ2 can be
decomposed into a product of three unitaries:

U(τ2, τ2) = e−iK (τ2 )e−i(τ2−τ1 )HF eiK (τ1 ). (9)

Here HF is the time-independent Floquet effective Hamilto-
nian which generates continuous evolution between τ1 and τ2.
This is sandwiched between two unitaries generated by the
Hermitian kick operator K (τ ), with parametric dependence on
the application time τ such that K (τ ) = K (τ + T ). The kicks
describe micromotion within each drive period. We will dis-
cuss its impact on the observables in Sec. IV C. In particular
we find that the initial kick has no effect on the density or
momentum distributions, meaning the effective Hamiltonian
HF is sufficient to fully characterize the dynamics at times τ

that are integer multiples of T , namely, the stroboscopic time
evolution of the driven system.

In general the computation of HF is a highly nontrivial
problem. As detailed in Appendix A, we use an approach
based on diagonalizing the so-called Floquet quasienergy
operator F in an extended Floquet-Hilbert space after trans-
forming to the frame rotating with the driving via the uni-
tary R(τ ) = exp[−i

∫
dτ ′Hdrv(τ ′)]. Specifically, for the driven

Hubbard model, F is composed of diagonal blocks that are
replicas of the Hubbard Hamiltonian HHub, each shifted in
energy by � relative to its neighboring block, and with Hkin

renormalized by the drive by J0(ν), where ν = A/� and
Jm(ν) is the mth Bessel function of the first kind. The off-
diagonal couplings between blocks m and m′ is given by Hkin

renormalized by Jm′−m(ν), corresponding to fermion hopping
accompanied by an exchange of m′ − m quanta with the drive.

The diagonalization of F is accomplished approximately
by again employing standard degenerate perturbation theory
in which we isolate simultaneously the band of highest-
energy eigenstates of HHub within one block and account for

FIG. 2. A depiction of the second-order processes contributing
to (a) J (ν, �) in Eq. (11) and (b) �(ν, �) in Eq. (12).

corrections due to virtual transitions to eigenstates both in
this block and all others. To second order in t/U we obtain
a driving dependent effective Hamiltonian:

H̃eff(ν,�) = P

[
J (ν,�)

2
(Hhop + �(ν,�)Hrep)

]
P, (10)

where the modified superexchange and anisotropy are

J (ν,�) = J0

∞∑
m=−∞

(−1)m Jm(ν)2

1 + m�/U
, (11)

�(ν,�) = J0

J (ν,�)

∞∑
m=−∞

Jm(ν)2

1 + m�/U
, (12)

obtained by summing over all blocks m.
The (−1)m factor in J (ν,�) arises because the hopping

of a doublon consists of two single-particle hops in the same
direction, as in Fig. 2(a). If the first hop is Fourier shifted by
m� with an amplitude Jm(ν) then the second hop returning to
the same initial band would be a Fourier shift of −m� with
an amplitude J−m(ν) = (−1)mJm(ν). In contrast the doublon-
hole repulsion strength arises from the hopping of a single
fermion forwards and back, with the same amplitude Jm(ν), as
in Fig. 2(b). Consequently, the effective model has a driving
induced anisotropy that breaks the η-SU(2) symmetry of
the undriven model [79,84]. The reason for this is that the
effective model describes charge degrees of freedom and the
driving couples directly to charge. Had we considered instead
the more conventional lowest-lying eigenstates of the half-
filled Hubbard model, where the effective model describes
spin degrees of freedom, no such anisotropy would be induced
since the driving does not break the spin SU(2) symmetry.

In the undriven limit we have limν→0 J (ν,�) = J0 and
limν→0 �(ν,�) = 1, recovering Eq. (6). For any finite ν

in the high-frequency driving limit, � � U � t , only the
m = 0 contribution to Eqs. (11) and (12) survives, giving
lim�/U→∞ J (ν,�) = J0J0(ν)2 and lim�/U→∞ �(ν,�) = 1,
so isotropy is preserved with a renormalized superexchange.
Thus η-SU(2) symmetry breaking arises when �/U is finite.
Here we will study driving frequencies � � U , while avoid-
ing direct resonant couplings between Hubbard excitations to
first order in t [85].

In Fig. 3 we plot J (ν,�) and �(ν,�) for U = 20t for two
moderate driving frequencies. In both cases the anisotropy
�(ν,�) is suppressed for moderate nonzero amplitudes ν.
The doublon-hole repulsion can even be completely removed
at ν0, as highlighted in Fig. 3, where the doublons then behave
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(a) (b)

FIG. 3. Parameters J (dashed) and � (solid) of the effective spin
model as a function of dimensionless driving strength ν = A/�, U =
20t ; driving frequency is � = 24t (a) and � = 30t (b). The marked
points v0 indicate the dimensionless driving strength at which the
model is rendered noninteracting.

as noninteracting hard-core bosons. For both �’s stronger
driving can induce doublon-hole attraction �(ν,�) < 0.

C. Doublon domain melting

We have established that in the regime U � t and � � U
the stroboscopic dynamics of the periodically driven Hubbard
model introduced in Sec. II reduces to an effective model.
Specifically, the driven dynamics is approximated as a sudden
quench at τ � 0 of interacting hard-core bosons governed
by the effective model in Eq. (10) specified by J (ν,�) and
�(ν,�) with an initial state |11 . . . 1100 . . . 00〉. Analyzing
this effective model brings several benefits. First, it is compu-
tationally much simpler than the full Hubbard model, allowing
much larger system sizes to be accessed numerically. Second,
it is isomorphic to magnetic domain-wall melting in the XXZ
spin model, so insight can be gleaned from the extensive
studies on this spin model [86–88].

For 0 � � � 1 the quench dynamics of the initially sharp
domain generically displays an expansion of bosons outwards
from the boundary of the domain, and correspondingly holes
inwards into the domain. For a selection of �’s, Fig. 4 shows
the evolution of the doublon density profile 〈nd,i(τ )〉 up to
a time τ = 24/J . Centered on the domain boundary we see
that a melt lobe forms with a size that grows linearly in
time for 0 � � < 1, grows sublinearly for � = 1, and stops
growing after finite time for � > 1. For 0 � � � 1 the melt
profile displays a universal form. Formally this is revealed by
rescaling the site coordinates in some appropriate way x̄(τ )
such that the melt profile at all times collapses onto itself. To
illustrate this Fig. 5(a) shows the melt profile for each site
i for times between τ = 5/J and 24/J with � = 1. Owing
to the anomalous superdiffusive transport properties at the
isotropic point a power-law rescaling x̄(τ ) = a(i − N )/(Jτ )p

with p = 3/5 [88] is found to induce the profile collapse, as
shown in Fig. 5(b). For all other interaction strengths 0 �
� < 1, a linear rescaling x̄(τ ) = a(i − N )/v(�)τ with a �

dependent speed v(�) = J
√

1 − �2 establishes universality,
as depicted in Figs. 5(c)–5(f). For � = 0 the density pro-
file in the universal region is known [89] to be 〈nd,i(τ )〉 =
arccos[x̄(τ )]/π .

FIG. 4. Time evolution of the on-site density of doublons 〈nd,i〉
as the domain wall melts for various interaction strengths. The outer
dashed lines represent the maximal velocity J . The inner solid lines
in (b), (c), and (d) indicate the slower melting of the domain with
a velocity J

√
1 − �2 < J . In (e), the inner curve represents the

superdiffusive nature of the isotropic point � = 1, with the domain
wall spreading as a power law in time with an exponent ≈3/5.
Finally, in (f) for � > 1 after some initial transients the melting re-
mains localized and has neither ballistic nor superdiffusive behavior.
These calculations used a lattice size L = 60, with N = 25 particles,
time step Jδτ = 0.01, and an MPS bond dimension χ = 1200.

Here our central focus is on the properties of the system,
beyond the density profile, within the melt lobe universal-
ity region −1 � x̄(τ ) � 1 as a function of the interaction
0 � � � 1. In particular, as first discovered by Rigol and
Muramatsu [49], for quenches in the noninteracting � = 0
limit dynamical quasicondensation occurs. This novel effect
is only revealed by examining the full doublon one-particle
density matrix (OPDM)

ρi j (τ ) = 〈φ(τ ) |d†
i d j |φ(τ )〉, (13)

computed from the time-evolving state |φ(τ )〉 of the effective
model. In Fig. 6 color maps of the OPDMs for some repre-
sentative interaction strengths are shown for three time slices.
The expanding black square signifies the universal region. For
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. (a) For a system of size L = 60 with N = 25 particles
〈d†

i di〉 is shown for times Jτ = 0, 2, . . . , 24 around the domain-wall
boundary. (b) The same plot of density 〈d†

i di〉 but with the site
coordinate i rescaled as x̄(τ ) = a(i − N )/(τ )p where p = 3/5 with
the collapse indicating a universal form is approached. (c–f) Collapse
of melt profiles for � < 1 using a rescaling x̄(τ ) = a(i − N )/v(�)τ .
Numerical details are the same as in Fig. 4.

� = 0 the universal region expands at the maximum speed
J of the single-doublon band and so spans the light cone
of the system dynamics. Even with interactions there remain
small contributions to the OPDM throughout the light cone
due to a tiny fraction of doublons escaping the domain at
a speed J from short-time perturbative adjustments to the
sudden quench. However, for � > 0 the expansion speed
v(�) defining the melt lobe becomes increasingly slow in
comparison. As we shall show this separation of speeds makes
the analysis of the interacting system numerically challenging,
because the full light cone must still be captured such that
L ∼ N ∼ Jτ to avoid spurious boundary effects.

By exploiting the equivalence of the � = 0 limit to nonin-
teracting spinless fermions Rigol and Muramatsu [49] solved
numerically exactly the dynamics of large systems over long
times. Surprisingly, they found that the evolution of the mo-
mentum distribution of the hard-core bosons

nq(τ ) = 1

L

∑
i j

e−iq(i− j)aρi j (τ ), (14)

FIG. 6. (a) For a system of size L = 100 with N = 50 particles
a color map around the domain-wall boundary of the OPDM 〈d†

i d j〉
is shown for three time slices Jτ = 5, 16, 26. The expanding black
square delineates the universal region. The same MPS bond dimen-
sion χ = 1200 and time step Jδτ = 0.01 were used.

quickly changes from a featureless constant, characterizing
the localized state at τ = 0, to a distribution with a pro-
nounced peak at finite momentum qca = π/2, indicative of
a condensate forming dynamically. This result is reproduced
here in Fig. 7(a) using td-DMRG.

Our analysis of the interacting system similarly begins by
examining the momentum distribution. A simple energetic
argument anticipates that a peak in the momentum will shift
towards qa = π as � approaches the isotropic point, and
that no peak will develop for � > 1. Initially, the sharp
domain wall has an average energy 〈Heff〉 = J�/2 coming
exclusively from the doublon-hole repulsion at the interface
...1 1 1 1 0 0 0 0 .... If we now consider a doublon at the
interface unbinding and propagating into the empty region as
...1 1 1 0 0 1 0 0 ... then the interfacial interaction energy
remains unchanged, but the isolated doublon now contributes
an additional interaction energy of J�. If this melting is to
occur conservation of energy demands that the increased inter-
action is compensated by a reduction in the isolated doublon’s
kinetic energy. Given that the single-doublon dispersion is
εhop(k) = J cos(qa) this implies that the propagating doublon
will possess a momentum

qca ∼ ± arccos(−�) = ± arccos(�) + π. (15)

Assuming the melt lobe is dilute in the long-time limit we
thus anticipate the accumulation of melting doublons into this
momentum state. The relation Eq. (15) is in agreement with
qca = π/2 for � = 0, and also reveals that for � > 1 the
finite bandwidth is insufficient to compensate the interaction
precluding condensation at any qc.

To confirm these expectations we have computed the mo-
mentum distribution from the interacting OPDM. Crucially,
to isolate the contributions from the melting, Eq. (14) was
not applied directly. Instead, we first restricted the Fourier
transform of the OPDM to the universal melt lobe region
defining a subsystem centered on the domain boundary with
a time-dependent size �(τ ) = 2v(�)τ/a for 0 � � < 1, or
�(τ ) = 2(Jτ )p/a for � = 1 [90]. Next, to allow a clean com-
parison to Eq. (15) given the limited resolution in momentum
space available for small systems, we applied a phase shift to
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. (a–d) For increasing interactions � the momentum dis-
tribution nq (solid line) inside the universal region of the melt state.
Within each panel nq is displayed for a sequence of occupations (or
times) N (τ ) = �(τ )/2. The peak heights grow in order of increasing
N , and for comparison the qa = π momentum peak of the ground
state of the same Hamiltonian for the same sequence of doublon
numbers at half filling is also plotted (dotted line). The height of the
momentum peak P as a function of the particle number for N for a se-
quence of interactions � = {0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0}
is shown for (e) the ground state (dotted) and (f) the melt state (solid).
The arrow within these panels shows the ordering of the curves with
increasing �. Calculation parameters are identical to those of Fig. 6.

the OPDM as

ρi j (τ ) → ρi j (τ )ei(i− j) arccos(�), (16)

before taking the Fourier transform. The purpose of this was
to shift any contribution at qc to precisely q = π/a, which is
guaranteed to coincide with a discrete momentum available
since �(τ ) is always even. After taking the Fourier transform
the momentum grid was then shifted back. The resulting nq

are shown in Fig. 7 for several interaction strengths and times.
The number of doublons in the melt lobe is N (τ ) = �(τ )/2.

The evolution of the momentum distributions in Figs. 7(b)–
7(d) reveals an intriguing parallel to the noninteracting behav-
ior in Fig. 7(a)—as time progresses we see the emergence
of an increasingly sharp peak at finite momentum close to

qc predicted by Eq. (15). These peaks are a smoking gun of
dynamical quasicondensation, and indicate that this effect is
not simply an anomalous feature of the noninteracting system.
Also plotted are the momentum distributions of the half-filled
ground state calculated with DMRG using the same interac-
tion strength � and system size �(τ ) as the corresponding
melt state. All ground states display a peak at qa = π that
becomes sharper with increasing � and the magnitude of
which grows with N sublinearly for 0 � � < 1, consistent
with quasicondensation, and linearly for � = 1 consistent
with η condensation, as shown in Fig. 7(e).

The behavior of the melt state peak at qc in Fig. 7(f)
displays the same trends. While the ground-state peak growth
with N settles quickly into a universal asymptotic form, the
melt dynamics with interactions lags behind and the form
of its growth form has yet to fully stabilize. Nonetheless for
� < 0.5 there is good correspondence between the melt state
and ground-state peak growth. For � > 0.5, even though there
are severe melt lobe size (or melt time) limitations, the growth
appears suppressed. For � = 1 the peak in the melt state dis-
tribution shown in Fig. 7(d) does not occur exactly at qa = π ,
but is instead located at the discrete momentum state directly
adjacent to it, suggesting it may approach qa = π only in
the thermodynamic limit. For � > 1 (not shown) a small
peak emerges, caused by the sharp initial state transients, the
magnitude of which rapidly saturates with N (τ ).

For � = 0 it is known that the melt state asymptotically
converges to a boosted ground state [52], apparent here al-
ready for relatively short times with the similarity of the peaks
in Fig. 7(a). A natural question is whether melting gives a
boosted ground state more generally in the interacting case.
An affirmative answer was obtained in previous work which
focused on a initial “soft” domain wall [86,91]. In this case
the initial state was the ground state of a weak confinement
potential vi ∝ tanh(βi), where the constant β controls the wall
width. As a result the initial state has a small difference in
the density δ � 0.5 far to the left 〈nd,i�0〉 ∼ 0.5 + δ and far
to the right 〈nd,i�0〉 ∼ 0.5 − δ of the interface. Using both
numerical [86] and analytic hydrodynamic arguments [91]
it was shown that the correlations of the melt state in the
long-time limit generated around the domain boundary (far
from the edges of the chain) have a simple relation to the
corresponding half-filled ground state as

〈d†
i d j〉melt = 〈d†

i d j〉GS e−iθ (i− j), (17)

where θ = 2δ arccos(�). For the setup we consider here,
where the ground state displays a peak at qa = π and a
“hard” domain wall is used so δ = 0.5, we see that this phase
relation agrees with Eq. (15) used above. Yet there are some
differences in the behavior of the melt states and ground states
shown in Fig. 7. To better assess these difference we now
move on to compute other properties of the melt state expected
of a quasicondensate.

D. Further signatures of quasicondensation

While the emergence of a sharp peak in the momentum
distribution is suggestive of a condensation phenomenon, a
more careful examination of the scaling properties of the
OPDM is needed to fully identify the nature of the melt state.
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. The form of the absolute value of the lowest natural
orbitals as a function of x̄(τ ) plotted for times τ = 15, 16, . . . , 25.
Within −1 < x̄(τ ) < 1, |φ0| largely remains constant. The most
significant change with � is the enlarged tails caused by single
doublons moving off from the more slowly expanding melt region.
Calculation details are identical to Fig. 6.

Following the analysis for � = 0 performed by Rigol and
Muramatsu [49] we diagonalized the OPDM to find the nat-
ural orbitals and their occupations as a function of time after
the quench. The emergence of quasicondensation is revealed
by the behavior of the so-called lowest natural orbital (LNO)
φ0 with the largest occupation λ0. For simple unfragmented
dynamical quasicondensation the LNO should display, after
transients have subsided, a time-invariant universal form with
the rescaled coordinate x̄(τ ). In Fig. 8 the rescaled LNOs for a
variety of �’s are shown for times 15 � Jτ � 25. Identically
to the density profile we find that within the melt lobe |x̄(τ )| �
1 the form of LNO for all �’s is effectively constant in time
confirming its universality. Decaying contributions outside the
melt lobe are seen in all cases, but are especially prominent for
larger interactions due to the slower expansion speed.

The next crucial property for quasicondensation is the
scaling of the LNO occupation λ0 with the number of dou-
blons N (τ ) in the melt lobe. True condensation occurs if
λ0(N ) = αN , implying a finite O(1) fraction of particles
σ (N ) = λ0(N )/N occupy the LNO in the thermodynamic
limit. Quasicondensation is instead a sublinear power-law

(a) (b)

FIG. 9. The density of the LNO occupation as a function
of particle number σ (N ) = λ0(N )/N for (a) the ground state
and (b) the melt state for a sequence of interactions � =
{0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8.0.9, 1.0}. In both cases a monotonic
increase in σ (N ) is observed for increasing � as indicated by the
arrow. For the melt state a shrinking range of N (τ ) is accessible
numerically due to the slowness of the dynamics. Calculation are
details are identical to Fig. 6.

growth of λ0(N ) ∝ N p with 0 < p < 1 so the occupancy
fraction vanishes as σ (N ) ∼ 1/N1−p. Analogous to our anal-
ysis of the momentum distribution we determined LNOs by
diagonalizing the OPDM only inside the melt lobe region
−1 < x̄(τ ) < 1 for each �. The behavior of σ (N ) for the
corresponding half-filled ground state for the same � and
particle number N (τ ) is shown in Fig. 9(a). For 0 � � < 1
this shows a power-law decrease in σ (N ) with N , but the
decay slowing down with increasing �. At the point � = 1
the LNO density saturates to a constant σ (N ) → 0.5 signaling
η condensation.

In Fig. 9(b) we show σ (N ) for the melt state. For � = 0 a
power-law decay identical to that of the ground state is seen.
For interacting systems � > 0 the basic trend is similar to
the ground state with the decay in σ (N ) slower than � = 0
and softening with increasing �. This is indicative of stronger
dynamical quasicondensation with increasing interactions,
consistent with the sharpening momentum distributions with
� observed already in Figs. 7(a)–7(d). However, for all inter-
acting cases the behavior of σ (N ) displays more discernible
differences to the ground state than was apparent in the
momentum distribution alone. None of the decay curves have
fully converged to a power-law form, even for the weakest
interactions, and there are even signs of saturation. However,
due to the limitation in reachable N (τ )’s, which is most severe
as � → 1, it is currently not completely conclusive whether
genuine dynamical condensation is occurring.

Another important property of quasicondensation is the de-
cay of long-ranged correlations and off-diagonal correlations
in the OPDM within the spatial support of the LNO. For the
noninteracting case a distinctive power-law decay is found:

ρi j ∝ eiqc (i− j)a

√|i − j| , (18)

with a phase difference of qca = π/2 between neighboring
sites signaling quasicondensation at finite momentum [92].
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(a) (b)

(c) (d)

(e) (f)

FIG. 10. The absolute value of the off-diagonal correlations of
the OPDM ρi j for fixed i = N = 50 at the domain wall and varying
j. Solid blue lines are the off diagonals for the melted domain wall
plotted at a time τJ = 30 for a selection of �’s. Solid red lines
are the correlations of the ground state of a system with the same
Hamiltonian and system size at half filling. The dotted vertical lines
delineate the melt lobe region which shrinks rapidly as � → 1.
Calculation details are identical to Fig. 6.

The observed 1/2 exponent for the algebraic decay of correla-
tions is identical to the ground state of the same noninteracting
system, as expected from Eq. (17). In Fig. 10 the absolute
value of doublon correlations |ρN, j | from the domain-wall
boundary at a time Jτ = 30 is shown for various �’s. Here for
all nonzero interactions we see even more visible differences
from the power-law decay of the corresponding ground state
that are also shown. For � � 0.5 in Figs. 10(a)–10(c) the melt
state displays stronger correlations over the melt lobe than the
ground state, while in contrast for � > 0.5 in Figs. 10(d)–
10(f) they are increasingly weaker. None of the interacting
cases considered over the times accessible in our calculations
agree with the soft wall hydrodynamic prediction [93] in
Eq. (17).

Overall, we have found distinctive signatures of dynamical
quasicondensation within the effective model of doublons
arising from the driven Hubbard model. However, due to the
separation of expansion speeds the system sizes reached in our

calculations are insufficient to fully quantitatively diagnose
the nature of this quasicondensation.

IV. DRIVEN HUBBARD MODEL

Having observed that a form of quasicondensation emerges
within the effective model we now return to the full driven
Hubbard model in Eq. (3). In particular we will now demon-
strate that this novel effect is robust beyond the strongly
interacting and high-frequency approximations underlying the
validity of the effective model. Moreover, we will show that
it continues to occur for large but finite interactions U > t
and for finite driving frequencies � > U not too close to
resonance.

A. Zero driving case

As a baseline we consider first the undriven Hubbard
model, corresponding to � = 1 in the effective model, and
examine agreement as U/t is decreased. A readily accessible
indicator within td-DMRG of the increased complexity of
the full Hubbard model is the entanglement entropy of the
time-evolved state |ψ (τ )〉:

SE (i) = −
∑

α

�[i]
α log

(
�[i]

α

)
, (19)

where �[i]
α are the squared Schmidt coefficients of |ψ (τ )〉

for a bipartition of the system between sites i and i + 1. In
Fig. 11(a) SE (i) is plotted for various U/t’s for sites i close
to the domain wall after a time Jτ = 10 with J = 2t2/U . For
this short time, the slow expansion for � = 1 gives a melt
lobe extending around

√
10 ∼ 3 sites on either side of the

wall interface. As expected the strongest interaction U/t = 20
closely follows the SE (i) of the effective model up to the
speed J light cone of ten sites, and so captures the small
contribution of the ballistically escaping doublons. However,
the full Hubbard model solution also has a non-negligible en-
tropy beyond the effective model’s light cone arising from the
partial disassociation of doublons into fast-moving fermions
with a speed 2t > J . The full Hubbard model thus has yet
another speed associated to the quench dynamics. As expected
this fermion contribution becomes more pronounced with
decreasing U/t as doublons become less stable.

Despite having a finite U/t the decay of doublons quickly
saturates with time. This is confirmed by computing the
deviation in the total number of doublons δD(τ ) = 〈D̂(0)〉 −
〈D̂(τ )〉, with D̂ = ∑

i n̂d,i in the time-evolved state. Second-
order time-dependent perturbation theory predicts this observ-
able will behave as

δD(τ ) = 8

(
t

U

)2

sin2

(
1

2
Uτ

)
. (20)

In Fig. 11(b) we plot δD(τ ) for several U/t’s showing that it
saturates to a constant given by the time average of Eq. (20)
and is thus suppressed as (t/U )2.

Given the bounded fraction of fermions generated by finite
U/t we next examined the key characteristics of quasicon-
densation in the full Hubbard model. In Fig. 11(c) the LNO
occupation of the doublon OPDM computed from the full
Hubbard model is compared to the effective model with the
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(a)

(c) (d)

(b)

FIG. 11. (a) The entanglement entropy across the system for the
effective model with J = 4t2/U (black line) at Jτ = 10 compared
with the undriven Hubbard model for a sequence of U/t’s. (b) The
loss in the number of doublons δD in the undriven Hubbard model
with time for the same set of U/t’s [symbols, see legend of (c)].
The dotted line denotes the perturbative prediction of Eq. (20).
(c) The value of the LNO occupation of the undriven Hubbard model
(symbols) with time for the same U/t’s compared to the effective
model (solid lines). In (a)–(c) the arrow indicates the curves with
decreasing value of U/t . (d) The dotted line is the momentum
distribution of the entire system for the undriven Fermi-Hubbard
model and the solid blue line is the effective model of hard-core
bosons (HCB). These calculations used L = 200 sites, tδτ = 0.005,
and an MPS bond dimension χ = 2000. The effective model (b) is
calculated on L = 200 sites with N = 100 doublons and MPS bond
dimension χ = 1200.

appropriate superexchange J = 2t2/U . We find good agree-
ment for the LNO growth with time, even for very moderate
interaction strengths U/t = 8. In Fig. 11(d) we verify that a
peak in the momentum distribution of the melt lobe continues
to manifest close to qca = π in agreement with the effective
model at � = 1. These results together confirm that the
quasicondensation seen in the effective model is extremely
robust to the presence of a small amount of initial doublon
disassociation. The reason for this is that the fermions rapidly
expand beyond the melt lobe region leaving it essentially
undisturbed. Such a distillation of doublons and fermions was
recently demonstrated experimentally [58].

B. Driven case

We now address how well the effective model quench
describes the full Fermi-Hubbard model dynamics with an
abrupt application of finite frequency driving. Since the Flo-
quet effective model is formally only a stroboscopic descrip-
tion of the driven Fermi-Hubbard model we compare the

models in this section at times τ that are integer multiples of
the driving period T . This ensures that both the kick operators
K (τ ) and transformation R(τ ) from the laboratory to the
rotating frame are equal to identity. We focus on two represen-
tative cases with the driving amplitude ν tuned to a moderate
strength, so �(ν,�) = 0.5, and also stronger so �(ν,�) = 0.
In Figs. 12(a)–12(d) we plot the LNO occupation in time of
the driven Hubbard model for these two �(ν,�)’s for a range
of U ’s and two different driving frequencies �/U = 1.5 and
1.8. We observe good agreement with the growth predicted by
the effective model over the times examined, despite the finite
interactions and driving frequency. As expected the agreement
improves when increasing U/t and/or �/U . In Figs. 12(e)–
12(h) we plot the corresponding δD. For the driven Hubbard
model we observe an order-of-magnitude increase in the
doublon loss compared to the undriven case in Fig. 11(a).
Furthermore the doublon loss does not saturate and instead
displays a roughly exponential increase in time with a rate
constant that is suppressed with increasing �. This behavior is
a remnant of Floquet heating. The doublon losses also explain
the more noticeable lag in the LNO population growth for the
lowest values of U/t , e.g., seen in Figs. 12(a) and 12(c).

Given the exponential doublon losses we estimate that in
the worse case considered, namely, U/t = 8, �/U = 1.5 and
�(ν,�) = 0 in Fig. 12(g), the quasicondensate predicted by
the effective model will be completely depleted by tτ ∼ 50.
For more favorable parameters, such as U/t = 20 and �/U =
1.8 in Fig. 12(h), this time is significantly extended to tτ ∼
200. In this case, examining tτ ≈ 42 below this time where
doublon loss is negligible, Fig. 13(a) shows that the doublon
momentum distribution displays a sharp peak positioned at
qca = π/2. Remarkably this is very close to what is expected
from the free expansion of noninteracting hard-core bosons
in the effective model (also shown), yet is realized here in
a driven, strongly interacting fermionic Hubbard model with
a moderate drive frequency � � U . In Fig. 13(b) at weaker
driving where �(ν,�) = 0.5 we find a peak at qca > π/2.
Together with the zero driving peak in Fig. 11(d) approaching
qca = π , we see that a controllable range of quasicondensing
momenta is indeed accessible in the driven Hubbard model.

C. Cold-atom implementation

The driven dynamical quasicondensation outlined is real-
izable in a standard optical lattice experiment with feasible
lattice parameters [58,94–96]. To illustrate this we consider
the well-studied case of fermionic K40 in an undriven three-
dimensional optical lattice potential. One-dimensional sys-
tems are realized by choosing anisotropic depths Vx = 8ER

along the axis of the chains and Vy = Vz = 33ER for the trans-
verse confinement, where ER = h̄2k2

L/2ma is the recoil energy
with λL = 2π/kL = 532 nm being the laser wavelength and
ma is the atomic mass. For this system the nearest-neighbor
hopping amplitude of the Hubbard model is t ∼ 0.54 kHz,
with small next-nearest-neighbor t ′ ∼ t/50. Given that typical
fermionic cold-atom systems can remain coherent for up to
1 s this in principle allows for a total experiment time of tτ ∼
500. This is consistent with a central domain on the order of
100 sites surrounded by similarly sized empty regions. The
band-insulating initial state can be generated using additional
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 12. (a–d) Comparison between the LNO occupations during the melting of an effective model of hard-core bosons (solid lines) and
the full driven Hubbard model (symbols) for increasing interaction strengths ordered as U/t = {8, 10, 15, 20} from left to right within each
panel. The driven system is driven with an amplitude large enough that the anisotropy �(ν,�) in Eq. (12) is � = 0.5 (a, b) and � = 0 (c, d).
Two driving frequencies have been used, � = 1.5U (a, c) and � = 1.8U (b, d). (e–h) Loss in the number of doublons for the driven system
δD(τ ) = D(0) − D(τ ), where D = 〈∑i ni↑ni↓〉, for the same parameter sets and symbols used in (a) and (b) above, on a log-linear scale. All
system sizes for the Fermi-Hubbard model are L = 200, with internal dimension χ = 2000 and time step tδτ = 2π/(50�). The comparison
to the effective model used the calculations from Fig. 6.

magnetic trapping and tuning the system to have attractive
interactions via a Feshbach resonance.

The implementation of the alternating potential driving
term included in the Hamiltonian Eq. (4) is slightly non-

(a) (b)

FIG. 13. The momentum distributions of doublons in the full
driven Fermi-Hubbard model (black dotted line) for two driving
strengths corresponding to (a) � = 0 and (b) � = 0.5 evaluated at
the driving period commensurate time τ specified. In both cases
this is plotted with the effective model of hard-core bosons (HCB)
(blue solid line) at the same time, with a superexchange Eq. (11)
and anisotropy Eq. (12). Calculation details of the Fermi-Hubbard
model are identical to Fig. 12. The effective model is calculated
on L = 200 sites with N = 100 particles and MPS bond dimension
χ = 1200.

standard, but is nonetheless realizable with state-of-the-art
optical lattice experiments. Conventionally an optical lattice
is driven by shaking the entire trapping potential by a length
δ(τ ) = δ0 cos(�τ ) via kHz piezoelectric modulation of the
lattice laser’s phase. Shaking along the x axis then induces
an effective linear potential in the noninertial reference frame
V (x) = −�2δ0max. To create an alternating driving potential
we propose a scheme based on a zig-zag chain geometry
[80,97] where odd and even sites are laterally displaced. Shak-
ing perpendicular to the chain but parallel to the zig zag then
induces an effective modulated potential difference between
odd and even sites. More details and parameter estimations
for this setup are discussed in Appendix B.

In optical lattice experiments, a shallow confinement is
usually present along the length of the one-dimensional tubes.
Expansion dynamics into a nonflat region affects the sig-
natures of quasicondensation. This was analyzed in detail
for � = 0 noninteracting hard-core bosons in the original
cold-atom experiment [50]. The authors of that work found
that as the domain wall melts the curvature of the shallow
potential causes a time-dependent shift to the position of the
quasimomentum peak, but no additional broadening. The total
shift observed at τ ∼ 30/t was approximately 10% of the
predicted π/2 position. We expect similar shifts to occur to
the momentum peak positions for the 0 < � � 1 interacting
quasicondensates considered here. However, they should be
smaller owing to the reduced expansion speed v(�). For a
fixed experimental time the interacting quasicondensates will

033604-11



MATTHEW W. COOK AND STEPHEN R. CLARK PHYSICAL REVIEW A 101, 033604 (2020)

FIG. 14. Contour maps of the evolution of the momentum dis-
tribution over a single driving period. The system was evolved to
τ = 80T ≈ 16.7/t with the driven Hubbard model using U/t = 20,
�/t = 30, and four different driving strengths corresponding to
�(ν,�) = 0, 0.3, 0.5, and 0.8. System size L = 40 with N = 20 of
each species and MPS bond dimension χ = 2000.

have a much smaller spatial extent, as we have seen already
in Fig. 6, and thus probe less of the curvature of the trapping
than the � = 0 case.

Neither time-of-flight nor in situ measurements of cold
atoms will implement perfect stroboscopic sampling of the
driven system. As such we now examine how the momentum
distribution of the driven Fermi-Hubbard model deviates from
the effective model at times inside a single driving period.
Specifically, we time evolved the full driven Hubbard model
in the laboratory frame given in Eq. (3) with U/t = 20
until τ = 80T ≈ 16.7/t and then frequently measured the
momentum distribution over the next driving period at small
increments �t ≈ 0.05T . The contour plots of the resulting
distributions for various driving strengths are displayed in
Fig. 14. The contour plots begin at a commensurate time
τ = 80T so as expected a peak centered at the qc of the
corresponding effective model’s � is seen. As time progresses
within the drive period the momentum distribution oscillates
at a frequency 2� by exchanging weight from the primary
peak to another secondary peak shifted by a momentum π/a.
The relative amplitude of the secondary peak depends on the
driving strength, starting at zero for the undriven � = 1 case
and reaching unity for the strongly driven � = 0 case.

We confirmed that the transformation from the rotating
frame R(τ ) [given by Eq. (A4) in Appendix A] is the origin
of this oscillatory behavior. In Fig. 15 the amplitudes of the
primary and secondary peaks for strong and moderate driving
strengths from the full driven Hubbard model’s momentum
distribution are directly compared to those of the effective
model’s after transforming back to the laboratory frame. The
excellent agreement between the two models indicates that
the kick operators have a negligible effect for this observable.
Furthermore, the appearance of two distinguishable momen-

FIG. 15. The height of the momentum distribution taken at two
given momenta which are separated by δqa = π . The height is
plotted as a function of time over a single driving period. Solid
lines are the result of the effective model transformed back into the
laboratory frame [the transformation R†(τ ) of Eq. (A4) has been
applied], while ∗’s are obtained from the momentum distribution
of the driven Fermi-Hubbard model using the entire L = 200 site
system over one driving period T = 2π/�. Calculational details are
identical to Fig. 12.

tum peaks for measurements at general times is a desirable
experimental signature of the alternating driving scheme pro-
posed here since it is robust to time averaging.

V. CONCLUSIONS

We have demonstrated that dynamical quasicondensation
at a controllable finite momentum can emerge from a band-
insulating domain initial state the expansion of which is
governed by a one-dimensional driven Hubbard model in the
strongly interacting regime. To establish this we first exam-
ined a Floquet effective model. We showed how the known
dynamical quasicondensation of noninteracting � = 0 hard-
core bosons at qca = π/2 not only persists in the interacting
systems with doublon-hole repulsion 0 < � � 1, but does so
with a stronger LNO growth and at a momentum that shifts
towards qca = π . However, our numerical calculations were
not fully conclusive on the nature of this quasicondensation
owing to the slowing down of the doublon propagation with
increasing � which limited the system sizes accessible. We
found significant differences between the melt state and a
boosted ground state for the times examined, in contrast to
hydrodynamical calculations for soft domain walls. We cannot
rule out that these differences are transient and that such a
correspondence may yet emerge at much longer times when
the initial hard domain has been softened by the expansion.
Next, we went beyond the effective model and simulated the
full driven Hubbard model. We demonstrated good agreement
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with the predictions of the effective model for key observables
over short times, even at very moderate finite interactions and
driving frequencies. The presence of Floquet heating induced
doublon loss, not captured by the effective model, was shown
to be present but does not preclude quasicondensation for the
times examined.

Given that all the ingredients of the setup proposed have
been implemented in current state-of-the-art cold-atom se-
tups the effects outlined are in principle within reach of
experimental observation [2]. Indeed a cold-atom quantum
simulator might be the most definitive means of answering the
open question as to whether dynamical quasicondensation of
doublons also occurs in higher spatial dimensions. Moreover,
our quench setup presents a potentially fast and robust scheme
for creating a much sought-after η quasicondensate with cold
atoms [59,60].

As an outlook it is interesting to speculate whether dy-
namical quasicondensation can be relevant to experiments on
driven solid-state systems. Several features make this plausi-
ble. First, owing to the beam spot size and limited penetration
depth of all pump-probe experiments so far, only a small
excitation volume of the sample is driven [11]. Consequently
the induced excited state is necessarily inhomogeneous and
it is an open question whether the subsequent expansion
dynamics of charge carriers out of this excitation volume into
the rest of the material plays a crucial role in the nonequilib-
rium superconducting coherence observed [25,98]. Second, a
sharper domain, more similar to that considered here, can be
engineered in a solid by heterostructuring. For example, the
time-resolved scrambling of magnetic order in a thin film due
to the expansion of interfacial shockwaves of mobile carriers
from a substrate has been observed [99]. The possibility of
observing instead the dynamical ultrafast emergence of order
from a shockwave is intriguing.
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APPENDIX A: FLOQUET EXPANSION

Floquet’s theorem dictates that any Hamiltonian with pe-
riodic time dependence will have solutions to the time-
dependent Schrödinger equation H (τ )�(τ ) = i∂τ�(τ ) of
the form |ψn(τ )〉 = exp(−iεnτ )|φn(τ )〉 where εn is the
quasienergy associated with the T -periodic Floquet state
|φn(τ + T )〉 = |φn(τ )〉. In the basis {|φn(τ )〉} the time-
dependent Schrödinger equation is recast as

F |φn(τ )〉 = [H (τ ) − i∂τ ]|φn(τ )〉 = εn|φn(τ )〉, (A1)

where F = H (τ ) − i∂τ is the Floquet quasienergy operator.
The task of finding the quasienergies εn and the Floquet

modes |φn(τ )〉 can be achieved by diagonalizing F over an
extended Hilbert space F. Specifically, F = H ⊗ T is the
tensor product space of the original Hilbert space H and
the space T of functions f (τ ) = f (τ + T ) with periodicity
T = 2π

�
. We denote states in T with a double angled bracket

| f 〉〉 and use a scalar product:

〈〈 f , g〉〉 = 1

T

∫ T

0
dτ f ∗(τ )g(τ ). (A2)

In this derivation it is convenient to choose the Fourier basis of
time periodic functions |n〉〉 = exp(in�τ ) that are eigenstates
of ∂τ with ∂τ |n〉〉 = in�|n〉〉 obeying 〈〈n, m〉〉 = δn,m. The
index n ∈ Z is often called the “photon number” of a Floquet
sector. The matrix elements of the quasienergy operator F
using this basis for T and any basis for H are then

〈〈m|〈v|F |u〉|n〉〉 = 〈〈m|〈v|H (τ )|u〉|n〉〉 + n�δn,m. (A3)

Since 〈〈m|〈v|H (τ )|u〉|n〉〉 only depends on the difference (n −
m), the quasienergy operator F contains replicas of H for
each photon number n, each shifted in energy by n�. Despite
the infinite duplication of the many-body Hilbert space, for
very high-frequency driving, where � is larger than all matrix
elements, standard degenerate perturbation theory can be used
to derive an approximate description of a single band due to
corrections from the neighboring bands.

Here we describe a strong-coupling expansion onto both
a single Floquet sector and onto a specific band of Hub-
bard eigenstates with a given doublon number. In the lab-
oratory frame, the coupling between the Floquet sectors is
only nonzero for n − m = ±1, and the coupling strength is
comparable to �. This is an unsuitable starting point for
perturbation theory. However, the coupling can be reduced by
transforming into a frame rotating with the driving, where the
time dependence becomes a Peierls phase with periodic time
dependence. This is achieved with the unitary

R(τ ) = exp

[
i
∫ τ

0
dτ ′Hdrv(τ ′)

]
(A4)

= exp

[
i

A

2�
sin(�τ )

∑
iσ

(−1)iniσ

]
, (A5)

which transforms the Hamiltonian into the rotating frame as

H̄ (τ ) = iṘ(τ )R†(τ ) + R(τ )H (τ )R†(τ ). (A6)

The first term removes the driving potential Hdrv(τ ), and the
second term puts a time-dependent momentum shift onto the
kinetic energy term as

R(τ )HkinR†(τ )

= − t
∑

iσ

exp

[
i
A

�
sin(�τ )(−1)i

]
c†

iσ ci+1σ + H.c.

= − t
∑
iσm

Jm(ν) exp [im�τ (−1)i]c†
iσ ci+1σ + H.c.,

(A7)

where Jm(·) is the Bessel function of the first kind and ν =
A/� is the dimensionless driving strength.

A perturbative expansion around the relevant set of eigen-
states requires two projectors. First, Pn projects onto the
eigenstates with D double occupations,

PD = (−1)D∂D
α

D!

[∏
i

(1 − αni↑ni↓)

]∣∣∣∣∣
α=1

, (A8)
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and Mn projects onto the n photon sector:

Mn =|n〉〉〈〈n|. (A9)

We define the small parameter λ = t/U and let the frequency
� be of comparable magnitude to the interaction strength U ∼
� � t . We then define the dimensionless Floquet quasienergy
operator in the rotating frame as:

F̄ ′ = F̄/U = F̄ ′
0 + λF̄ ′

1 , (A10)

where F̄ ′
0 = ∑

D,n PD ⊗ Mn ED,n is the operator which counts
doublon number and photon index, with a highly degenerate
set of eigenvalues ED,n = D + (�/U )n. The perturbation F̄ ′

1
contains the kinetic coupling of eigenstates of different dou-
blons and photons as:

F̄ ′
1 = −

∑
iσmn

Jm(ν)c†
iσ ci+1σ ⊗ |n + m(−1)i〉〉〈〈n| + H.c.

(A11)

We denote the perturbative expansion of the quasienergy
operator F̄ ′ about the set of eigenstates with exactly D dou-
blons and n photons as F̄ ′

D,n. For the relevant case of the
maximum doublon number D = N and the dc Floquet sector
n = 0 we have:

F̄ ′
N,0 = EN,0 + λ(PN ⊗ M0)F̄ ′

1 (PN ⊗ M0)

+ λ2
∑

a �=0,b∈Z

(PN ⊗ M0)F̄ ′
1 (Pa ⊗ Mb)F̄ ′

1 (PN ⊗ M0)

EN,0 − Ea,b
.

(A12)

To second order the only contributions in this effective model
are from consecutive hops which break up and reform a dou-
blon. This reformation can occur on the same site the doublon
started on, or on a neighboring site. Since the sign of the
Floquet transitions depends on the direction of the hopping,
the processes involving two hops in a single direction will
pick up different amplitudes to processes which are two hops
in opposite directions.

To compute these amplitudes we define two operators. The
first is

h†
i jσ = niσ̄ c†

iσ c jσ (1 − n jσ̄ ), (A13)

which creates a doublon on site i when a fermion of spin σ

occupied site j and a fermion of spin σ̄ = −σ occupied site i.
The second is

gi jσ = (1 − niσ̄ )c†
iσ c jσ (1 − n jσ̄ ) + niσ̄ c†

iσ c jσ n jσ̄ , (A14)

which describes the hopping of singly occupied sites over
either a doublon or a hole. Using these operators the term
c†

iσ c jσ describing hopping of a spin σ fermion from j to i is
decomposed into

c†
iσ c jσ = h†

i jσ + h jiσ + gi jσ . (A15)

The energy change to second order is EN,0 − EN−1,b = U −
b�, and the numerator in the expansion of F̄ ′

N,0 is made of two
parts. We automatically drop the g and h† contributions from
F̄ ′

1 (PN ⊗ M0), since there is no single fermion hop which
preserves doublon number and there are no free fermions
available to create a doublon. We similarly drop all h and
g types from (PN ⊗ M0)F̄ ′

1 for the same reason. Finally we
remove the projectors from the middle of the expression since
we are automatically guaranteed to step down by one doublon.
The expression for F̄ ′

N,0 then becomes

F̄ ′
N,0 = λ2

∑
bi jστnmn′m′

(PN ⊗ M0)Jm(ν){[h†
j+1, j,σ |n + m(−1) j〉〉〈〈n|] + [h†

j, j+1,σ |n〉〉〈〈n + m(−1) j |]}

Jm′ (ν){[hi+1,i,τ |n′ + m′(−1)i〉〉〈〈n|] + [hi,i+1,τ |n′〉〉〈〈n′ + m′(−1)i|]}(PN ⊗ M0)/(EN,0 − Ea,b). (A16)

Multiplying out the two hopping processes gives

F̄ ′
N,0 = λ2

∑
bi jστnmn′m′

Jm(ν)Jm′ (ν)(PN ⊗ M0){[h†
j+1, j,σ hi+1,i,τ |n + m(−1) j〉〉〈〈n|n′ + m′(−1)i〉〉〈〈n′|]

+ [h†
j, j+1,σ hi+1,i,τ |n〉〉〈〈n + m(−1) j |n′ + m′(−1)i〉〉〈〈n′|] + [h†

j+1, j,σ hi,i+1,τ |n + m(−1) j〉〉〈〈n|n′〉〉〈〈n′ + m′(−1)i|]
+ [h†

j, j+1,σ hi,i+1,τ |n〉〉〈〈n + m(−1) j |n′〉〉〈〈n′ + m′(−1)i|]}(PN ⊗ M0)/(EN,0 − Ea,b).

(A17)

The sum over lattice site j can be removed by noting that unless the doublon is created by h† on one of the same two sites as h
we will change doublon number. Therefore the only allowed combinations are of the form h†

i, jhi, j or h†
j,ihi, j . We also replace the

inner products in T with the constraints 〈〈n|m〉〉 = δn,m to give

F̄ ′
N,0 = λ2

∑
bi jστnmn′m′

Jm(ν)Jm′ (ν)(PN ⊗ M0){[δi, jδn,n′+m′(−1)iδn′,0δn+m(−1)i,0h†
j+1, j,σ hi+1,i,τ ]

+ [δi, jδn,0δn+m(−1) j ,n′+m′(−1)iδn′,0h†
j, j+1,σ hi+1,i,τ ] + [δi, jδn+m(−1) j ,0δn,n′δn′+m′(−1)i,0h†

j+1, j,σ hi,i+1,τ ]

+ [δi, jδn,0δn+m(−1) j ,n′δn′+m′(−1)i,0h†
j, j+1,σ hi,i+1,τ ]}(PN ⊗ M0)/(U − b�). (A18)
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FIG. 16. The potential which creates the zig-zag optical lattice
plotted here for Vx = −10ER, Vy = Vx , Vx̄ = 2Vx , and Vsq = 0.

We omit the left and right projectors PN ⊗ M0 from here
on since their presence is implied. The three remaining con-
straints on the four indices denoting the Floquet sectors leave
one independent photon index to sum over as

F̄ ′
N,0 =λ2

∑
iσm

Jm(ν)J−m(ν)

U + m�
[h†

i+1,i,σ hi+1,i,σ + h†
i,i+1,σ hi,i+1,−σ ]

+ Jm(ν)Jm(ν)

U + m�
[h†

i,i+1,σ hi+1,i,−σ + h†
i+1,i,σ hi,i+1,σ ].

(A19)

The two parts to the Hamiltonian can be interpreted as nearest-
neighbor repulsion of a doublon and a hole,

h†
i+1,i,σ hi+1,i,σ = ni+1,σ ni+1,−σ (1 − ni,σ )(1 − ni,−σ ), (A20)

and a nearest-neighbor hopping of doublons in one direction
and holes in the opposite direction:

h†
i,i+1,σ hi+1,i,σ = c†

i,σ c†
i,−σ ci+1,−σ ci+1,σ . (A21)

The two amplitudes given in Eqs. (11) and (12) are recovered
since J−m(ν) = (−1)mJm(ν).

APPENDIX B: IMPLEMENTING A ZIG-ZAG LATTICE

One possible way of creating a driving term of the form
Eq. (4) is using a one-dimensional chain with a lateral dis-
placement of nearest-neighbor sites, i.e., a zig-zag-type ge-
ometry. Proposals for creating a zig-zag-type lattice (as well
as rhombic, sawtooth, etc.) are detailed in Ref. [80]. With
specific choices of lattice laser phases they derive a potential

FIG. 17. The dominant hopping amplitudes between sites in a
zig-zag lattice created by the potential in Fig. 16.

of the form

V (x, y) = Vx cos2(kLx) + √
VxVy cos(kLx) cos(kLy)

+Vx̄ cos2(kLx/2 − π/4)

+Vsq[cos2(kLx/2) + cos2(kLy/2)], (B1)

which is capable of creating a “zig-zag” type of lattice under
certain parameter choices. A suitable example is as follows:
we set Vsq = 0 to ensure the onsite energy of each Wannier
orbital is equal, while Vx = −10ER, Vy = Vx, Vx̄ = 2Vx. Here
ER is the recoil energy, which for K40 is ER ≈ 17 kHz. An
additional deep confinement potential in the z direction of
−20ER cos2(kLz) is used to achieve 1D tubes. The resulting
potential is shown in Fig. 16.

For this choice of parameters we have computed the domi-
nant Hubbard Hamiltonian matrix elements using the Wannier
MATLAB package as detailed in Ref. [100]. We find that the
hopping amplitudes displayed in Fig. 17 are t = 0.03ER ≈
0.6 kHz for nearest-neighbor hopping between A and B sites,
t ′ = 7 × 10−4ER ≈ 0.01 kHz for next-nearest-neighbor hop-
ping, and t ′′ = 1.2 × 10−4ER ≈ 0.002 kHz for the hopping
across neighboring one-dimensional channels between A and
B sites. The on-site Hubbard interaction is U ≈ 48g/λ3

L where
g/(hλ3

L ) = 4πash̄
2/mahλ3

L ≈ 0.1 kHz using the s-wave scat-
tering cross section as which is 118 bohrs for K40 [95,96].
The interaction strength U can be independently tuned via
a Feshbach resonance. Nearest-neighbor density interactions
between A and B sites in the same one-dimensional chan-
nel are approximately 3 Hz. Finally, the average separation
between the two Wannier orbitals is on the order of λ/2. To
obtain a potential difference of V0/(h̄�) ≈ 1, sufficient for im-
plementing the strongly driven noninteracting effective model
with � ≈ 2U/h̄ = 40t/h̄, we have V0 = −�2(λL/2)maδ0 →
1 = |�(λL/2)maδ0/h̄| → δ0 ≈ 2h̄/(�λLma) ≈ 200 nm, and
so require a modulation close to the lattice spacing.
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