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ABSTRACT

Terahertz time-domain conductivity measurements in 2–100 nm thick iron films resolve the femtosecond time delay between the applied
electric fields and the resulting currents. This current response time decreases from 29 fs for the thickest films to 7 fs for the thinnest films.
The macroscopic response time is not strictly proportional to the conductivity. This excludes the existence of a single relaxation time univer-
sal for all conduction electrons. We must assume a distribution of microscopic momentum relaxation times. The macroscopic response time
depends on the average and variation of this distribution; the observed deviation between the response time and conductivity scaling corre-
sponds to the scaling of the variation. The variation of microscopic relaxation times depends on the film thickness because electrons with dif-
ferent relaxation times are affected differently by the confinement since they have different mean free paths.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5142479

Conductivity in metals is typically described using a highly sim-
plified model: a gas of identical electrons characterized by a single, uni-
versal relaxation time.1–4 This contrasts with the complexity of the
underlying process where all electronic states on the Fermi surface con-
tribute to conduction,3,5 and relaxation times often vary strongly across
the Fermi surface.6–10 The time delay of a few femtoseconds between
an applied field and the resulting current—the current response time
sC—reflects the macroscopic momentum relaxation of an ensemble of
charges. Resolving this delay can, therefore, provide insights into the
relaxation processes and connect microscopic scattering to macro-
scopic conduction.

This is particularly relevant for thin metal films1,2,4,11–13 for
which different electrons can be affected differently by confinement.
Here, we determine sC as a function of thickness for thin metal films
and demonstrate that different types of electrons with different relaxa-
tion times are present in the films.

We performed substrate referenced transmission terahertz time-
domain transmission spectroscopy14,15 at room temperature (293K) on
iron films with thicknesses ranging from 2.2 to 100nm. The films were
deposited on double-polished MgO (100) substrates and capped with
ca. 12nm of MgO. The films were grown by molecular beam epitaxy at

room temperature, with subsequent annealing. The thicknesses a
were controlled in situ by quartz balance sensing and confirmed ex situ
by small-angle x-ray diffraction (XRD) for selected samples (see
supplementary material Fig. S1). Roughnesses extracted from the XRD
are on average 0:96 0:1 nm, without a significant dependence on the
thickness. Reflection high-energy electron diffraction images indicate
that this preparation method achieves single-crystalline films with a bcc
lattice structure (see Figs. S2 and S3 in the supplementary material).

Terahertz radiation was generated and detected in 1mm ZnTe
crystals using 800nm 40 fs pulses from an amplified Ti:sapphire laser
emitting 1000 pulses per second.14 We alternated recording the tera-
hertz transmission through the samples with the transmission through
a bare reference substrate. We performed three rounds of measure-
ments, each with a different combination of samples, alternatingly
acquiring traces for the sample and reference 10–30 times. We cor-
rected the terahertz transmission relative to the reference substrate for
substrate thickness differences.16 We then numerically solved the
transfer matrices17 for the corrected transmission data, using the thin
conductive film approximation15,18 to generate starting values. This
approach allows reliably determining the phase u of the conductivity
~r, even for films for which the phase acquired by the terahertz pulse
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during a direct transit is non-negligible (see the supplementary
material).

The current response time sC can be obtained from the measured
phase u of the conductivity ~r at a specific frequency f , through

sC fð Þ ¼ tan u ~r fð Þð Þð Þ= 2pfð Þ: (1)

If a universal relaxation time su existed, the current response time sC
would be constant and equal to the universal relaxation time su of the
Drude model. Previous measurements of the current response time in
metals were limited to ca. 10 fs accuracy, due to uncertainties in the
thickness of the reference substrate.19,20 Our thickness correction tech-
nique allows determining the current response time with an error of
ca. 1 fs16 for most cases, allowing to compare response times between
different samples. Figure 1 shows three exemplary phase-resolved con-
ductivity spectra for a very thin (2.2nm), an intermediate (10.3nm),
and a thick film (100nm). The phase-resolved conductivity is plotted
in terms of amplitude r and current response time sC . The spectra are
essentially flat, with the exception of the conductivity amplitude r of
the 100nm film, which slightly decreases with increasing frequency.
Deviations from flat spectra are larger than the statistical errors and
correlate between different samples; for example, an increase in
response time sC for high frequencies occurs for both the 2.2 and
10 nm films shown in Fig. 1. These residuals only correlate between
different samples measured in the same round; the residuals do not
correlate with the same samples measured in a different round several
months later with a different reference substrate (see supplementary
Fig. S4). Therefore, we consider these residuals as artifacts.

The amplitude spectra rðf Þ are flat due to the very low relaxation
times s. The flat response time spectra sCðf Þ appear to be consistent
with the hypothesis of a universal relaxation time su; as the hypothesis

predicts the response time to be constant and equal to su, as a univer-
sal relaxation time results in a Drude type dispersion,

~r ¼ rDC= 1� i2pf suð Þ: (2)

The universal relaxation time assumption also predicts that the DC
conductivity rDC is proportional to su. We find that the conductivity
amplitudes r are lower for the thinner films, with the difference
between 10 and 2.2 nm being much larger than that between 100 and
10nm. The current response time sC behaves quite differently. It is
also lower for thinner films, but the relative difference in response
times between 100 and 10nm is almost twice that of the conductivity
amplitudes, contrary to the assumption of direct proportionality. The
2.2 nm thin film shows higher current response times than direct pro-
portionality would predict from the conductivity amplitudes.

To compare the scaling of conductivity amplitude and response
time, we extract the spectral average sC of the current response times
for each film. We then compute the DC-limit of the conductivity of a
Drude type dispersion from each frequency step by multiplying the con-

ductivity amplitudes r at each frequency f with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2pf sCð Þ2
� �q

.

The resulting spectra for the DC parameter are then also averaged. The
residual artifacts are the main source of error on both the response time
sC and DC-conductivity rDC parameters extracted from each spectrum.
The residuals are taken into account by multiplying the variance of the
weighted averages by the reduced sum of weighted residuals.
Furthermore, we use the instances where we have measurements of the
same sample in different rounds to estimate the precision. These mea-
surements deviate between 0.1 and 2.7 fs from another, i.e., slightly
more than what we estimate from the residuals. We use the larger esti-
mate where we have measurements from different rounds, and we add
the average unexplained variance of (0.8 fs)2 to the variance from the
residuals where we do not have measurements from different rounds.
Furthermore, we add the variances caused by a possible 1% error in the
substrate refractive index, by the uncertainty of the substrate thickness
correction and the uncertainty of the film thickness a.

The thickness scaling of the extracted response time and DC-
conductivity is shown in Fig. 2. From thick toward thin films, the DC

FIG. 1. The complex conductivities ~r extracted from time-domain spectroscopy,
represented as amplitude r (full squares, left axis) and current response time sC
(empty circles, right axis), which are the tangent of the phase over angular fre-
quency. Conductivity spectra are displayed for a thick (100 nm, black), intermediate
(10.3 nm, blue), and very thin (2 nm, red) sample. The error bars indicate the stan-
dard error of the mean, inferred from repeated measurements. Wherever invisible,
the error bars are smaller than the markers. The lines denote effective Drude
responses derived from spectral averages sC (dashed lines, right axis) and rDC

(full lines, left axis) of sCðf Þ and rðf Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2pfsCð Þ2
� �r

.

FIG. 2. DC-conductivities rDC (left axis, black) and current response times sC (right
axis, red) extracted from the complex conductivity spectra of 12 iron films from 2.2 to
100 nm thickness. The conductivity decreases and the current response becomes
faster for thinner metal films, as expected from increased surface scattering, but they
are not directly proportional. All measurements were performed at 293 K.
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conductivity first hardly decreases, then jumps down from 10 to 8nm
and then keeps decreasing strongly. The current response time first
decreases quickly, also jumps down from 10 to 8nm, and then levels
out toward thinner films. So while both parameters decrease with
decreasing thickness a, the detailed scaling is different.

None of the existing models for the thickness scaling of conduc-
tivity predict the response time.1,2,4,11–13 Further, the jump between
8 and 10nm does not fit with any model. We hence do not focus on
trying to find a detailed microscopic model for the exact thickness
scaling of these iron films. We rather focus on the peculiarity of seeing
constant current response time spectra, but no proportionality
between conductivity and current response time. The spectrally con-
stant response time is predicted by the universal relaxation time
hypothesis; the deviations from proportionality contradict this hypoth-
esis. To investigate the deviation from proportionality, we plot the
quotient Q ¼ sC=rDC of the response time and the DC-conductivity
in Fig. 3. We see that those values are not constant, but rather start out
high, decrease down to 10nm, and increase again. We analyze how sig-
nificant these deviations from proportionality are. We assume that our
data obey a normal distribution. Our error bars are our best estimates
for the 68% confidence interval. The best fit for a constant quotient lies
several interval widths above the 68% confidence intervals for the inter-
mediate films around 10nm, and several times below those for 100nm.
The probability of obtaining data fitting worse than the hypothesis of a
universal relaxation time is 10�9, equivalent to six standard deviations
for a normal distribution. The deviations are significant.

How can we explain now that the spectra of the response time
are flat but the response time is not the universal relaxation time?
Similar behavior has been observed by Kamal et al.21 in a metal oxide
film. The entire spectrum of the metal oxide can only be described by
a distribution of scattering rates s�1; but for the low frequency limit, a
single effective current response time suffices.21 Similarly, we can
also understand our observation by considering a distribution of

microscopic relaxation times s. We start by using the full description
of the phase-resolved conductivity spectrum within the relaxation
time approximation in the semi-classical Bloch–Boltzmann formalism.
For a cubic crystal, this yields3,6,22

~r fð Þ¼1
3
e2

8p3

X
b;s

ð1
0

ðð
S Eð Þ
�@g
@E vg

~S;E;b;s
� � s ~S;E;b;s

� �
1� i2pf s ~S;E;b;s

� �dSdE:
(3)

Here, we sum over all bands b and both spin projections s and inte-
grate over all iso-energy surfaces SðEÞ in reciprocal space. The conduc-
tivity contribution for each point~S on such an iso-energy surface is
given by the group velocity vg and the relaxation time s, which both
may vary between each point~S, energy E, band b; and spin s.6 The
contribution is weighted by the energy derivative of the electron
distribution function g; when the electron population conducts in a
steady-state, this is the Fermi-distribution. The derivative of the Fermi
distribution means that only electronic states close to the Fermi surface
contribute. g will deviate from the Fermi distribution when the energy
of the photons hf is larger than the typical thermal excitation kBT . For
room temperature (293K), this implies frequencies f larger than
6THz. Since we stay below 6THz, the observables we measure only
depend on the same microscopic properties which govern steady-state
transport at room temperature.

The key point is that already in the semi-classical theory, the
relaxation time is not necessarily universal, but varies between the elec-
tronic states contributing to conduction. Since we want to assess the
phase and frequency dependence of the conductivity, we convert the
integral of Eq. (3) into an integration over the relaxation times,

~r fð Þ ¼W�1
ð1
0

w sð Þs
1� i2pf s

ds: (4)

Basically, all parameters~S; E; b; and s have been expressed as functions
of s, allowing us to express the integrand as a single function wðsÞ.
The prefactorW�1 is chosen such that wðsÞ is normalized. This allows
interpretingwðsÞ as a probability distribution density. The distribution
of microscopic relaxation times wðsÞ gives the probability that a
microscopic excitation of unit conductivity per relaxation time will
relax in a time s. W only depends on the electronic structure of the
material and not on the relaxation times s. In the case of a universal
relaxation time su, the distribution wðsÞ reduces to a delta distribution
dðs� suÞ. Inserting this in Eq. (4) and looking at the DC-limit, we
identifyW as the quantity q0su calculated by Gall

3 by integrating com-
puted group velocities over the Fermi surface. Within Drude’s
assumption of a universal relaxation time and photon energy indepen-
dence of @g

@E, W is connected to Drude’s plasma frequency xP via
W�1 ¼ e0xP

2.
We measure the low-frequency limit of ~r fð Þ. Therefore, we

Taylor-expand Eq. (4) for frequencies f lower than 1=ð2ps),

~r fð Þ ¼ 1
W

X1
l¼0

i2pfð Þl slþ1h i; (5)

¼ rDC

1� i2pf sC
þ O 2pf sð Þ2

� �
: (6)

Here, hi denotes the average over the distribution of relaxation
times wðsÞ. Equation (5) tells us that the conductivity is directly

FIG. 3. Quotient Q of the current response time sC by the DC-conductivity rDC as
a function of the film thickness. The blue dashed line is a constant fitted to the data,
as predicted by the hypothesis of a universal relaxation time. The data lie outside
the 99.9 99 999% (6 Gaussian standard deviations) confidence interval for the uni-
versal relaxation time hypothesis. The red curve is a second-order polynomial fit in
1=a, consistent with two competing processes altering the variation C of the relaxa-
tion times. Data are within the 68% (1 std) confidence interval of the red curve.
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connected to the moments slh i of the relaxation time distribution
wðsÞ. Theoretically, all moments could be inferred from the spectrum,
and thereby the entire distribution. In practice, we can infer informa-
tion about the first two moments: Equation (6) holds for

rDC ¼
sh i
W

and sC ¼
s2h i
sh i
¼ sh i 1þ C2ð Þ: (7)

The first moment, the mean relaxation time sh i, gives us the average
magnitude. The second centralized moment is the variance V . The
standard deviation

ffiffiffiffi
V
p

measures the absolute width of the distribu-
tion. To decide how much impact the shape of the distribution has, we
need to compare the standard deviation to the mean. This ratioffiffiffiffi
V
p

= sh i is the coefficient of variation C. We hence can interpret the
deviations of Q ¼ sC=rDC ¼Wð1þ C2Þ from a constant value in
Fig. 3 in terms of a change in variation C of the microscopic relaxation
times.

Now, we will show that the deviations of Q from a constant value
are not random, but depend systematically on film thickness a. To this
end, we show that a simple polynomial function of the thickness a
describes the data reasonably well. This polynomial is Q að Þ ¼ Q1
�b1=aþ b2=a2, displayed as the red curve in Fig. 3. The probability p
of obtaining data fitting worse than this polynomial is 0.21. The expec-
tation value of this probability is 0.5. The p value is within 0.34
(one Gaussian standard deviation) of its expected value. This indicates
a good fit. The fit parameters are Q1 ¼ 34:8� 10�22 Xms, b1¼ 9:2
�10�15 X s, and b2¼ 2:9� 10�6 X s=m. This description with a sim-
ple polynomial function shows that the thickness scaling of Q is
systematic.

Next, we describe two effects by which surface scattering may
alter the variation C of microscopic relaxation times and thereby quali-
tatively explain the thickness scaling of Q. First, the anticorrelation of
bulk and surface scattering may decrease C. Surface scattering pre-
dominantly affects electrons with a long expected free path, since those
electrons are most likely to reach the surface instead of scattering in
bulk. This anticorrelation starts cutting off the long relaxation time
“tail” of the distribution of microscopic relaxation times, which
decreases the variation. The thinner the film, the larger the role of sur-
face scattering and the larger the reduction of the variation from bulk
scattering by the anticorrelated surface scattering. We can interpret
the b1-term in the empirical polynomial as representing this narrow-
ing of the relaxation time distribution by anticorrelated scattering
mechanisms.

Second, the surface scattering will add positional (z) and direc-
tional (vz) variation between microscopic relaxation times
sð~S; E; b; s; z; vzÞ. An electron may scatter very soon from the surface
when it is close to the surface and travels toward the surface. An elec-
tron that is far away from the surface or traveling parallel to the surface
will hardly scatter from it. So the relaxation times due to surface scat-
tering will vary strongly, and the directional variation will increase for
increasingly thinner films. This variation will add to the intrinsic varia-
tion, increasing the total variation C. We can motivate the b2 term by
this effect. We should mention that contrary to the decrease in Q from
100 to 8 nm, the strong rise of Q for the thinnest films is much less sig-
nificant due to large uncertainties. Further, competing explanations
for this increase exist. First, at thicknesses of a few nm, the roughness
of almost 1 nm will cause systematic errors, as described by Namba.23

Second, recent x-ray absorption measurements on a 1.5nm film24

suggest some changes to the electronic structure for such a thin film
compared to the bulk. This means for the thinnest films, the value of
Wmay change.

We now check whether our explanation of two mechanisms
changing the variation of relaxation times is consistent with the
observed conductivity scaling: When surface scattering dominates, the
increase in directional variation will increase Q with decreasing thick-
ness. When bulk scattering dominates, the anticorrelation effect will
decrease the variation with decreasing thickness. Therefore, a mini-
mum in variation C and quotient Q should occur when bulk and sur-
face scattering contributions are about equal, which implies a
conductivity of ca. half the bulk value. In our measurement, the con-
ductivity drops to half the value of the thickest film between 5 and
8nm film thickness a, which coincides with the minimum the empiri-
cal Q(a) scaling. So we have found a qualitative explanation for how
surface scattering can cause the scaling of the variation C and therefore
the observed scaling of Q, and this explanation is consistent with the
scaling of the conductivity.

Last but not least, we check the consistency of the variation scal-
ing explanation by comparing Q1 to values of W calculated from the
electronic band structure. The anticorrelation between bulk and sur-
face scattering can only take effect when a large variation C1 exists in
bulk, which implies that Q1 must be larger thanW. Cazzaniga et al.25

use the density functional theory with local spin density approxima-
tion to calculate a dc-conductivity rDC of 155� 106 S/m for an
assumed universal relaxation time su of 143 fs, from which we can cal-
culate a value for W ¼ su=rDC of 9:2� 10�22 Xms. For nickel, a
cubic ferromagnet like iron, Gall3 reports a similar calculated value of
10:0� 10�22 Xms. Cazzaniga’s value for W is 3.8 times smaller than
the 34:8� 10�22 Xms we observe forQ1 ¼Wð1þ C12Þ. This trans-
lates to a variation C1 of 1.7 in bulk; that means the standard deviation
of the relaxation time distribution is 1.7 times larger than the mean. This
variation would certainly be large enough for narrowing of the relaxation
time distribution by anticorrelated surface scattering to occur.

We illustrate the impact of the variation of microscopic relaxa-
tion times on the current response time by using Cazzaniga’s value for
W to estimate the mean relaxation time sh i from the conductivity of
the 100 nm film. We estimate 8 fs, while the observed current response
time sC is 29 fs.

In summary, we have resolved the phase of the THz conductivity
of iron films with enough precision to demonstrate decreasing current
response times sC with the decreasing thickness. We could further
resolve significant deviations between the scaling of the DC-
conductivity and the response time. This can happen when no univer-
sal relaxation time su exists. At this point, we need to distinguish
between the observable macroscopic response time sC , the various
microscopic relaxation times s, and the mean relaxation time sh i
parameterizing DC-conduction. The conductivity spectrum can be
fully described by the distribution wðsÞ of microscopic relaxation
times. For the low-frequency limit, the observable DC-conductivity
depends on the mean sh i, the response time on mean sh i and varia-
tion C of the distribution of relaxation times. We explain the thickness
scaling of the quotient Q ¼ sC=rDC by surface scattering, changing
the shape of the distribution of relaxation times.

The relaxation time distribution picture allows predicting the
response time sC for other metallic systems: Mott7 explained the
temperature-independent conduction in Constantan and Manganin
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alloys by a process that changes the distribution, but not the average
relaxation time. Therefore, the response time sC should increase with
temperature in these alloys.

See the supplementary material for iron film characterization,
terahertz data treatment, and spectral averaging/residual spectra.
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School of Excellence Material Science in Mainz. D.T. acknowledges the
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funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation)-Projektnummer 278162697-SFB 1242.
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