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Summary
We describe the numerical scheme for the discretization and solution of 2D ellip-
tic equations with strongly varying piecewise constant coefficients arising in
the stochastic homogenization of multiscale composite materials. An efficient
stiffness matrix generation scheme based on assembling the local Kronecker
product matrices is introduced. The resulting large linear systems of equations
are solved by the preconditioned conjugate gradient iteration with a convergence
rate that is independent of the grid size and the variation in jumping coeffi-
cients (contrast). Using this solver, we numerically investigate the convergence
of the representative volume element (RVE) method in stochastic homogeniza-
tion that extracts the effective behavior of the random coefficient field. Our
numerical experiments confirm the asymptotic convergence rate of systematic
error and standard deviation in the size of RVE rigorously established in Gloria
et al. The asymptotic behavior of covariances of the homogenized matrix in the
form of a quartic tensor is also studied numerically. Our approach allows lap-
top computation of sufficiently large number of stochastic realizations even for
large sizes of the RVE.
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1 INTRODUCTION

Homogenization methods allow to derive the effective mechanical and physical properties of highly heterogeneous mate-
rials from the knowledge of the spatial distribution of their components.1–3 In particular, stochastic homogenization via
the representative volume element (RVE) methods provide means for calculating the effective large-scale characteristics
related to structural and geometric properties of random composites, by utilizing a possibly large number of probabilistic
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realizations.4–9 The numerical investigation of the effective characteristics of random structures is a challenging problem
since the underlying elliptic equation (the corrector problem) with randomly generated coefficients should be solved for
many thousands realizations and for domains with substantial structural complexity to obtain sufficient statistics. Note
that for every realization of the random medium one should construct a new stiffness matrix and right-hand side to
solve the discretized corrector problem. Therefore, construction of fast solvers (which allow to confirm numerically the
quantitative results in the stochastic homogenization) using the conventional computing facilities is a challenge.

This article presents the numerical study of the stochastic homogenization of an elliptic system with randomly gener-
ated coefficients. Our approach is based on the finite element method (FEM)-Galerkin approximation of the 2D elliptic
equations in a periodic setting by using fast assembling of the FEM stiffness matrix in a sparse matrix format, which is
performed by agglomerating the Kronecker tensor products of simple 1D FEM discrete operators.10 We use the product
piecewise linear finite elements on the rectangular grid assuming that strongly varying piecewise constant equation coef-
ficients are resolved on that grid. This scheme provides efficient approximation of equations with complicated jumping
coefficients. The numerical analysis of the error in the Galerkin FEM approximation indicates the convergence rate O(h𝛽)
in the L2-norm with 3∕2 ≤ 𝛽 ≤ 2.

The resulting large linear system of equations is solved by the preconditioned conjugate gradient (PCG) iteration,
where the convergence rate is proven to be independent on the grid size and the relative variation in jumping coeffi-
cients, that is, on the contrast. The preconditioned iterative solvers for the discrete elliptic systems of equations with
variable coefficients have been long studied in the literature on numerical methods for multidimensional and stochas-
tic partial differential equations (PDEs), see References 11–14 and the literature therein. The review article15 on sparse
tensor approximation of high-dimensional stochastic PDEs discusses many different numerical schemes on the topic.

In this article, we consider an ensemble of two-valued random coefficient fields, which is based on independently
and uniformly placed (and thus overlapping) axis-parallel square inclusions of fixed side length. We investigate the RVE
method that (approximately) extracts the effective (i.e., large-scale) behavior of the medium in form of the deterministic
and homogeneous matrix Ahom from a given (stationary and ergodic) ensemble. This method produces an approximation
to Ahom by solving two-dimensional elliptic equations on a square of (lateral) size L with periodic boundary conditions
and a specific right-hand side (the corrector equation), by taking the spatial average of the flux of these solutions, and
by taking the empirical mean over N independent realizations of this coefficient field under the naturally periodized
version of the ensemble. This is an approximation in so far as the outcome is still random (as quantified by the standard
deviation of the outcome of a single realization) and that the periodic boundary conditions affect the statistics (which
we call the systematic error, because the periodization introduces artificial long-range correlations, and which can be
considered as a bias). In Reference 8, Gloria, Neukamm, and the last author rigorously derived upper bounds how the
standard deviation and the systematic error decrease with increasing RVE size L. Our numerical experiments confirm
the scaling of these bounds. Since numerically, there is no access to exact values of the variance (or standard deviation)
or the expectation, we replace these quantities by their empirical counterparts for a large number of realizations N. We
thus first provide numerical evidence that these quantities have saturated in N (i.e., reach convergence of a Monte Carlo
estimate of variance), and second that their limiting values display the predicted scaling in L.

In work16 by Duerinckx, Gloria, and the last author, it was worked out that the properly rescaled variance of the output
of the RVE converges as L↑∞ to a quartic tensor Q that governs the leading-order fluctuations of any solution. In this
article, we show how the symmetry properties of the ensemble yields symmetry properties of Q (and its approximation).
Also, a convergence rate was rigorously established in that work, and is being numerically investigated here. In the range
of investigated parameters N and L the numerical findings confirm the theoretic results.16

In numerical tests on the stochastic properties of the 2D RVE method we study the asymptotic of empirical variance
versus the size of RVE L ≤ 128, and of the systematic error versus the number of realizations N up to N = 105. Further-
more, we estimate the convergence of the quartic tensor by implementing a large number of stochastic realizations. The
proposed techniques allow to compute a sufficiently large number of realizations of random coefficient fields with a large
number of overlapping inclusions up to L2 = 1282 corresponding to the stiffness matrix size 5132 × 5132 using MATLAB
on a moderate computer cluster.

The numerical investigation of the stochastic homogenization problem attracts interest and becomes an active field
of research, see the survey1 and references therein. Recently, the numerical solution of the corrector-type problem, in the
context of homogenization of the diffusion equation with spherical inclusions by using boundary element methods and
the fast multipole techniques has been considered in Reference 17.

The rest of the article is organized as follows. In Section 2, we address the problem setting and define the ellip-
tic equations of stochastic homogenization. Section 3 describes the Galerkin-FEM discretization scheme based on the
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fast matrix generation by using sums of Kronecker products of single-dimensional matrices. We also outline the pre-
conditioned conjugate gradient (PCG) iteration applied in the computer simulations and provide numerics on the FEM
discretization error (see Appendix). Section 4 introduces the computational scheme for the stochastic average coefficient
matrix. Furthermore, in Section 4.3 we describe the construction and properties of the covariances of the homogenized
matrix in the form of a quartics tensor. Section 5 presents results of numerical experiments on the empirical average and
systematic error at the limit of a large number of stochastic realizations. The asymptotic of the quartic tensor versus the
leading order variances is analyzed numerically in Section 5.3. Conclusions outline the main results of the article.

2 ELLIPTIC EQUATIONS IN STOCHASTIC HOMOGENIZATION

In this section, we describe the problem setting in the stochastic homogenization theory. For given f ∈ 2(Ω) such that
∫Ωf (x)dx = 0, we consider the class of model elliptic boundary value problems on the d-dimensional hypercube Ω ∶=
[0,L)d of side-length L ∈ N with periodic boundary conditions: find 𝜙 ∈ H1(Ω), s.t.

𝜙 ∶= −∇ ⋅ A(x)∇𝜙 = f (x), x = (x1,… , xd) ∈ Ω, (1)

with the diagonal d × d uniformly elliptic coefficient matrix A(x), ∞ > 𝛽0I ≥ A(x) ≥ 𝛼0I > 0. In this article, we consider
the case d = 2 and focus on the special class of elliptic problems (1) arising in stochastic homogenization theory for the
corrector problem, where the highly varying coefficient matrix and the right-hand side (RHS) are defined by a sequence
of stochastic realizations as described in References 5–9, see details in Sections 3 and 4.

In what follows, we present the numerical analysis for 2D stochastic homogenization problems (1) with periodic
boundary conditions on Γ = 𝜕Ω, in the form

𝜙(0, x2) = 𝜙(L, x2),
𝜕

𝜕x1
𝜙(0, x2) =

𝜕

𝜕x1
𝜙(L, x2), x2 ∈ [0,L) ,

𝜙(x1, 0) = 𝜙(x1,L),
𝜕

𝜕x2
𝜙(x1, 0) =

𝜕

𝜕x2
𝜙(x1,L), x1 ∈ [0,L) .

The diagonal 2 × 2 coefficient matrix A(x) = A(x, 𝜔) is defined by

A(x, 𝜔) =
(

a(x, 𝜔) 0
0 a(x, 𝜔)

)
, x ∈ Ω,

where the scalar function a(x, 𝜔) > 0 is piecewise constant in the domain Ω and the randomness is encoded in the coeffi-
cient a(x, 𝜔) via stochastic realizations as described in Sections 3 and 4. The efficient numerical simulation presupposes
the fast numerical solution of Equation (1) in the case of many different realizations of the coefficients A(x) and RHSs,
generated by certain stochastic procedure, and in the calculation of various functionals on the sequence of solutions 𝜙. In
this problem setting, the bottleneck task is fast and accurate generation of the FEM stiffness matrix in the sparse matrix
form, which should be recalculated many hundred if not thousand times in the course of stochastic realizations.

In asymptotic analysis of stochastic homogenization problems the coefficient and the RHS are chosen in a specific
way, see References 5 and 7 for the particular problem setting. In this article, we describe the conventional 2D FEM
discretization scheme in the domain Ω = [0,L)2. Given the size of RVEs L = 2, 3,…, we randomly and independently pick
L2 points on the discretization grid according to the uniform distribution, which for L → ∞ approximate the Poisson point
process with uniform density. Then, we consider the union of L2 equal unit cells Gs, s = 1,… ,L2, each of size 2𝛼 × 2𝛼,
centered at these points (which of course often overlap, see Figure 1). For numerical convenience, we further rescale
the computational domain to the unit square, [0,L)2 → [0, 1)2. In our numerical experiments the occupation factor 𝛼 is
chosen in the range 0 < 𝛼 ≤ 1∕2, so that the size of unit cell rescales to 2𝛼

L
× 2𝛼

L
. Stochastic characteristics of the system

can be estimated at the limit of a large number L.
We consider a sequence of random coefficient realizations {Gs} n, numbered by n = 1,… ,N, where the particular set

{Gs} = {Gs} n for fixed n will be called a realization. For any fixed realization define the covered domain

Ĝ = Ĝn ∶=
L2⋃

s=1
Gs, (2)
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and the respective coefficient

â(x) = â(n)(x) =

{
1 if x ∈ Ĝn,

0 otherwise.
(3)

The stochastic model is specified by the choice of the overlap constant 𝛼 ∈ (0, 1∕2] and the scaling factor 𝜆 ∈ (0, 1]. In
the following, the constant 𝜆 will be fixed in the interval 0.1 ≤ 𝜆 ≤ 0.8. Given the model parameters 𝛼 and 𝜆, we denote
the “stochastic” elliptic operator for the particular realization by (n) or just  (if n is fixed) so that

(n) = −∇ ⋅ A(n)(x)∇,

where the corresponding 2 × 2 coefficient matrix A(n)(x) = A(n)(x, 𝜆, 𝛼, {Gn}) is defined by

A
(n)(x) = 𝜆

(
1 0
0 1

)
+ (1 − 𝜆)

(
â(n)(x) 0

0 â(n)(x)

)
∶=

(
a(n)(x) 0

0 a(n)(x)

)
, x ∈ Ω, (4)

and the diagonal matrix coefficient takes the form

a(n)(x) = 𝜆 + (1 − 𝜆)â(n)(x). (5)

We use the notation Â
(n)
(x) for the “stochastic part” of a matrix associated with the diagonal coefficient â(n)(x), that is,

Â
(n)
(x) =

(
â(n)(x) 0

0 â(n)(x)

)
.

Now the elliptic equations in stochastic homogenization are formulated as follows. Fixed the realization of coefficient
Â

(n)
(x), for i = 1, 2 solve the periodic elliptic problems in Ω,

−𝜆Δ𝜙i − (1 − 𝜆)∇ ⋅ Â
(n)
(ei + ∇𝜙i) = 0, (6)

where the directional unit vectors ei, i = 1, 2, are given by e1 = (1, 0)T and e2 = (0, 1)T , see Section 4 for more details. For
given realization of the coefficient Â

(n)
(x), the variational form of the deterministic elliptic equation (6) reads as follows

∫Ω
(𝜆∇𝜙i ⋅ ∇𝜓 + (1 − 𝜆)â(n)(x)[ei + ∇𝜙i] ⋅ ∇𝜓)dx = 0 ∀ 𝜓 ∈ H1(Ω). (7)

Equation (6) can be also written in the classical form (1)

(n)𝜙i = fi, with fi = (1 − 𝜆)∇ ⋅ â(n) ei. (8)

Figure 1 illustrates an example of the particular realization of stochastic coefficient a(n)(x) in the case L = 8, 𝜆 = 0.2,
and 𝛼 = 1∕4 visualized on m1 × m1 grid with m1 = 97. In this example the stochastic part of the coefficient varies in the
range [0.2; 1].

F I G U R E 1 A realization of a
stochastic coefficient with L2 overlapping
cells for L = 8, m0 = 8, 𝛼 = 3∕8, 𝜆 = 0.2
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The problem setting remains verbatim in the d-dimensional case, d > 2. In this case, Equation (8) takes the same form,
where a d × d coefficient matrix is given by

A
(n)(x) = diag{a(n)(x),… , a(n)(x)}, x ∈ Ω

and ei ∈ Rd, i = 1,… , d, represents the set of directional unit vectors in Rd.

3 MATRIX GENERATION AND ITERATIVE SOLUTION

In this section, we describe the FEM discretization scheme and the fast matrix generation approach based on the use of
tensor Kronecker products of “univariate” matrices.

3.1 Galerkin FEM discretization

First, we introduce the uniform ms × ms rectangular grid Ωhs in Ω with the grid size hs = 1
ms−1

, such that ms = m0L + 1,

m0 = 2p0 , that is, hs = 1
m0L

. We assume that the unit cell Gs, s = 1,…L2, of size 2𝛼
L
× 2𝛼

L
is adjusted to the square grid

Ωhs , such that the center cs of Gs belongs to the set of grid points in Ωs, while the overlap factor 𝛼 may take values 𝛼 ∈{
1

m0
,

2
m0
,… 2p0−1

m0

}
. In this construction, the univariate size of the unit cell varies as

2𝛼
L

= 2𝛼m0

m0L
= khs, with k = 2, 4,…m0.

In the following numerical examples we normally use the occupation constant 𝛼 = 1∕4. In the case of 𝛼 = 1∕2, the unit
cell of the size 1

L
× 1

L
contains m0 + 1 grid points in each spatial direction leading to ms × ms rectangular grid with ms =

m0L + 1.
The FEM discretization of the elliptic PDE in (8) can be constructed, in general, on the finer grid Ωh compared with

Ωs, which serves for the resolution of jumping coefficients. To that end, we introduce the m1 × m1 rectangular grid Ωh
with the mesh size h = 1

m1−1
, m1 ≥ ms, that is obtained by a dyadic refinement of the grid Ωs, such that the relation

m1 − 1 = (ms − 1)2p, with p = 0, 1, 2,… (9)

holds, implying hs = 2ph. Now the grid-size of the unit cell Gs on the finer grid Ωh is given by (m02p + 1) × (m02p + 1).
Given a finite dimensional space X ⊂ H1(Ω) of tensor product piecewise linear finite elements

X = span{𝜓𝜇(x)},

associated with the grid Ωh, with 𝜇 = 1,… ,Md, Md = md
1, for d = 2 incorporating periodic boundary conditions, we are

looking for the traditional FEM Galerkin approximation of the exact solution in the form

𝜙(x) ≈ 𝜙X (x) =
Md∑
𝜇=1

u𝜇𝜓𝜇(x) ∈ X ,

where u = (u1,… ,uMd)
T ∈ RMd is the unknown coefficients vector. Fixed realization of the coefficient a(n)(x), for i = 1, 2

we define the Galerkin-FEM discretization (with respect to above defined finite dimensional space X) of the variational
equation (7) by

Aui = fi, A = [a𝜇𝜈] ∈ R
Md×Md , fi = f = [f𝜇] ∈ R

Md , (10)

where the Galerkin-FEM matrix A generated by the equation coefficient A(n)(x) is calculated by using the associated
bilinear form

a𝜇𝜈 = ⟨𝜓𝜇, 𝜓𝜈⟩ = ∫Ω
(𝜆∇𝜓𝜇 ⋅ ∇𝜓𝜈 + (1 − 𝜆)â(n)(x)∇𝜓𝜇 ⋅ ∇𝜓𝜈)dx, (11)
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and

f𝜇 = ⟨f , 𝜓𝜇⟩ = ∫Ω
(1 − 𝜆)∇ ⋅ â(n)(x) ei𝜓𝜇 dx = −(1 − 𝜆)∫Ω

â(n)(x)
𝜕𝜓𝜇

𝜕xi
dx. (12)

Corresponding to (8) and (11), we represent the stiffness matrix A in the additive form

A = 𝜆AΔ + (1 − 𝜆)Âs, (13)

where AΔ represents the Md × Md FEM Laplacian matrix in periodic setting that has the standard two-term Kronecker
product form. Here matrix Âs provides the FEM approximation to the “stochastic part” in the elliptic operator correspond-
ing to the coefficient â(n)(x), see (4). The latter is determined by the sequence of random coefficients distribution in the
course of stochastic realizations, numbered by n = 1,… ,N.

In the case of complicated jumping coefficients the stiffness matrix generation in the elliptic FEM usually constitutes
the dominating part of the overall solution cost. In the course of stochastic realizations, Equation (10) is to be solved many
hundred or even thousand times, so that every time one has to update the stiffness matrix A and the RHS f .

Our discretization scheme computes all matrix entries at the low cost by assembling of the local Kronecker product
matrices obtained by representation of â(n)(x) as a sum of separable functions. This allows to store the resultant stiffness
matrix in the sparse matrix format. Such a construction only includes the precomputing of tridiagonal matrices represent-
ing 1D elliptic operators with jumping coefficients in periodic setting. In the next sections, we shall describe the efficient
construction of the “stochastic” term As.

3.2 Matrix generation by using Kronecker product sums

To enhance the time-consuming matrix assembling process we apply the FEM Galerkin discretization (11) of Equation (8)
by means of the tensor-product piecewise linear finite elements

{𝜓𝝁(x) ∶= 𝜓𝜇1 (x1)…𝜓𝜇d (xd)}, 𝝁 = (𝜇1,… , 𝜇d), 𝜇𝓁 ∈ 𝓁 = {1,… ,m𝓁}, 𝓁 = 1,… , d,

where 𝜓𝜇𝓁 (x𝓁) are the univariate piecewise linear hat functions*. The Md × Md stiffness matrix is constructed by the stan-
dard mapping of the multi-index 𝝁 into the long univariate index 1 ≤ 𝜇 ≤ Md for the active degrees of freedom in periodic
setting. For instance, we use the so-called big-endian convention for d = 3 and d = 2

𝝁 → 𝜇 ∶= 𝜇3 + (𝜇2 − 1)m3 + (𝜇1 − 1)m2m3, 𝝁 → 𝜇 ∶= 𝜇2 + (𝜇1 − 1)m2,

respectively. In what follows, we consider the case d = 2 in more detail.
In our discretization scheme, we calculate the stiffness matrix by assembling of the local Kronecker product terms

by using representation of the “stochastic part” in the coefficient â(n)(x) as an R-term sum of separable functions. To that
end, let us assume for the moment that the scalar diffusion coefficient a(x1, x2) can be represented in the separate form
(rank-1 representation)

a(x1, x2) = a(1)(x1)a(2)(x2).

Then the entries of the Galerkin stiffness matrix A = [a𝜇𝜈] ∈ RMd×Md can be represented by

a𝜇𝜈 = ⟨𝜓𝜇, 𝜓𝜈⟩ = ∫Ω
a(1)(x1)a(2)(x2)∇𝜓𝜇 ⋅ ∇𝜓𝜈dx

= ∫(0,1)
a(1)(x1)

𝜕𝜓𝜇1 (x1)
𝜕x1

𝜕𝜓𝜈1(x1)
𝜕x1

dx1∫(0,1)
a(2)(x2)𝜓𝜇2(x2)𝜓𝜈2(x2)dx2

+ ∫(0,1)
a(1)(x1)𝜓𝜇1(x1)𝜓𝜈1 (x1)dx1∫(0,1)

a(2)(x2)
𝜕𝜓𝜇2 (x2)
𝜕x2

𝜕𝜓𝜈2(x2)
𝜕x2

dx2,

*Notice that the univariate grid size m𝓁 is of the order of m𝓁 = O(1∕𝜖), where the small homogenization parameter is given by 𝜖 ≈ 1∕(m0L),
designating the total problem size Md = m1m2 …md = O(1∕𝜖d).
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which leads to the rank-2 Kronecker product representation

A = A1 ⊗ S2 + S1 ⊗ A2,

where⊗ denotes the conventional Kronecker product of matrices, see Definition 1 below. Here A1 = [a𝜇1𝜈1] ∈ Rm1×m1 and
A2 = [a𝜇2𝜈2] ∈ Rm2×m2 denote the univariate stiffness matrices and S1 = [s𝜇1𝜈1] ∈ Rm1×m1 and S2 = [s𝜇2𝜈2] ∈ Rm2×m2 define
the weighted mass matrices, for example

a𝜇1𝜈1 = ∫(0,1)
a(1)(x1)

𝜕𝜓𝜇1 (x1)
𝜕x1

𝜕𝜓𝜈1(x1)
𝜕x1

dx1, s𝜇1𝜈1 = ∫(0,1)
a(1)(x1)𝜓𝜇1(x1)𝜓𝜈1(x1)dx1.

Definition 1. Recall that given p1 × q1 matrix A and p2 × q2 matrix B, their Kronecker product is defined as a p1p2 × q1q2
matrix C via the block representation

C = A ⊗ B = [aijB], i = 1,… , p1, j = 1,… , q1.

Let us discuss in more detail the calculation of the 1D stiffness matrices A1 and A2 in the case of variable 1D coeffi-
cients. We choose the Galerkin FEM with m = m1 piecewise-linear hat functions

{
𝜓𝜇1

}
in periodic setting in Ω = [0, 1),

constructed on a uniform grid with a step size h = 1∕m, and nodes x𝜇1 = h 𝜇1, 𝜇1 = 1,… ,m. If we denote the diffusion
coefficient by a(x1), then the entries of the exact stiffness matrix A1 read as

(a)𝜇1,𝜇
′
1
= ⟨a(x)∇𝜓𝜇1 (x), ∇𝜓𝜇′1 (x)⟩L2(D), 𝜇1, 𝜇

′
1 = 1,… ,m.

We assume that the coefficient remains constant at each spatial interval [x𝜇1−1, x𝜇1 ], which corresponds to the evaluation
of the scalar product above via the midpoint quadrature rule yielding the approximation order O(h2).

Introducing the coefficient vector a = [a𝜇1] ∈ Rm, a𝜇1 = a(x𝜇1−1∕2), 𝜇1 = 1,… ,m, where xi1−1∕2 is the middle point of
the integration interval, the symmetric tridiagonal matrix of interest can be represented by

A1 = −1
h

⎡⎢⎢⎢⎢⎣
a1 + a2 −a2 −a1
−a2 a2 + a3 −a3

⋱ ⋱ ⋱
−am−1 am−1 + am −am

−a1 −am am + a1

⎤⎥⎥⎥⎥⎦
. (14)

By simple algebraic transformations (e.g., by lamping of the mass matrices) the matrix A can be simplified to the form
(without loss of approximation order)

A → A = A1 ⊗ D2 + D1 ⊗ A2, (15)

where D1,D2 are the diagonal matrices with positive entries. This representation applies in particular to the periodic
Laplacian. We notice that the product finite element space X of the univariate piecewise linear hat functions applied in
this article guarantees the low Kronecker rank representation for stiffness matrix of the elliptic operator with separable
coefficients. In the case of Laplacian we use the standard finite element scheme.

In the general case, the piecewise constant stochastic coefficient can be represented as an R-term sum of separable
coefficients. This leads to the linear system of equations

Au = f, (16)

constructed for the general R-term separable coefficient a(x1, x2) with R > 1.
For preconditioning needs, we use the simplified version of (15) in the form of anisotropic Laplacian type matrix

A → B = 𝛼2A1 ⊗ I2 + 𝛼1I1 ⊗ A2,

where 𝛼1 and 𝛼2 define the average values of the diagonal entries of matrices D1 and D2, respectively. The matrix B will
be used as a prototype preconditioner in the PCG iteration for solving the target linear system (16).

Taking into account the rectangular structure of the grid, we use the simple finite-difference (FD) scheme for the
matrix representation of the negative Laplacian operator −Δ. In this case the discrete Laplacian incorporating periodic
boundary conditions takes the form
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AΔ = Δ1 ⊗ Im2 + Im1 ⊗ Δ2, (17)

where

Δ1 = 1
h2

(
tridiag{1,−2, 1} + P(1)) ∈ R

m1×m1 ,

such that the entries of the “periodization” matrix P(1) ∈ Rm1×m1 are all zeros except

P(1)
1,m1

= P(1)
m1,1

= 1.

Here Im1 ∈ Rm1×m1 is the identity matrix, Δ1 = Δ2 is the 1D FD Laplacian (endorsed with the periodic boundary condi-
tions), and ⊗ denotes the Kronecker product of matrices, see Definition 1. We say that the Kronecker rank of both A in
(15) and AΔ in (17) equals to 2.

Notice that the m1 × m1 Laplacian matrices for the Neumann and periodic boundary conditions in 1D read as

ΔN = 1
h2

⎡⎢⎢⎢⎢⎣
−1 1 … 0 0
1 −2 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … −2 1
0 0 … 1 −1

⎤⎥⎥⎥⎥⎦
and ΔP = 1

h2

⎡⎢⎢⎢⎢⎣
−2 1 … 0 1
1 −2 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … −2 1
1 0 … 1 −2

⎤⎥⎥⎥⎥⎦
, (18)

respectively.
In the d-dimensional case we have the similar Kronecker rank-d representations. For example, in the case d = 3 the

“periodic” Laplacian Md × Md matrix AΔ takes a form

AΔ = A1,P ⊗ I2 ⊗ I3 + I1 ⊗ A2,P ⊗ I3 + I1 ⊗ I2 ⊗ A3,P,

such that its Kronecker rank equals to 3, and similar for the arbitrary d ≥ 3.

3.3 Fast matrix assembling for the stochastic part

The Kronecker form representation of the “stochastic” term in (13) further denoted by Âs is more involved. For given
stochastically chosen distribution of overlapping cells Gs, s = 1,… ,L2, we construct the minimal nonoverlapping decom-
position of the full covered grid domain Ĝ = ∪L2

s=1Gs colored by gray in Figure 1 (we have a(x) = 1 for x ∈ Ĝ and a(x) = 𝜆

for x ∈ Ω ∖ Ĝ) in a form of a union of elementary square cells Sk, k = 1,… ,K, K ≥ L2, each of the grid-size m0 × m0,

Ĝ = ∪K
k=1Sk. (19)

Here m0 = 2p + 1, and p = 0, 1, 2,…, is fixed as above by relation m1 − 1 = (ms − 1)2p, see (9). Recall that the grid
with ms grid points specifies the the construction of stochastic realization (coarse grid), while the possibly finer grid with
m1 points defines the FEM discretization space. Hence, in the case p = 0 we have m1 = ms, while in general there holds
m1 ≥ ms.

In this construction, the nonoverlapping elementary cells Sk for different k are allowed to have the only common edges
of size m0. Notice that in the case of nonoverlapping decomposition (2) the set of cells {Sk} coincides with the initial set
{Gs} which allows to maximize the size m0 × m0 of each Sk, k = 1,… ,L2, to the largest possible, that is, to m0 = m02p + 1.

To finalize the matrix generation procedure for Âs, we define the local m0 × m0 matrices representing the discrete
Laplacian with Neumann boundary conditions,

Q̂m0
∶= tridiag{1,−2, 1} + diag{1, 0,… , 0, 1} ∈ R

m0×m0 ,

and the diagonal lamped matrix

Îm0
∶= diag{1∕2, 1,… , 1, 1∕2} ∈ R

m0×m0 ,
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see the visualization in (18). Here, we may select m0 = 2, 3, 5,… that corresponds to the choice p = 0, 1, 2,… in (9). In the
case of m0 × m0 matrix with minimal size m0 = 2, both discrete Laplacians in (18) simplify to

ΔN = 1
h2

[
−1 1
1 −1

]
and ΔP = 1

h2

[
−1 1
1 −1

]
. (20)

Let the subdomain Sk be supported by the index set I(1)k × I(2)k of size m0 × m0 for k = 1,… ,K. Introduce the
block-diagonal matrices Qk ∈ Rm1×m1 and Ik ∈ Rm1×m1 by inserting matrices Q̂m0

and Îm0
as diagonal blocks into m1 × m1

zero matrix in the positions I(1)k × I(1)k and I(2)k × I(2)k , respectively.
Now the stiffness matrix Âs is represented in the form of a Kronecker product sum as follows,

Âs =
1
h2

( K∑
k=1

(Qk ⊗ Ik + Ik ⊗ Qk) + P(2)

)
, (21)

where

P(2) = P(1) ⊗ Im1 + Im1 ⊗ P(1) ∈ R
Md×Md

is the “periodization” matrix in 2D, where the entries of the “periodization” matrix P(1) ∈ Rm1×m1 for the case of
discretization with Neumann boundary conditions on elementary cells Sk, k = 1,… ,K, are all zeros except (cf. (18))

P(1)
1,m1

= P(1)
m1,1

= 1 and P(1)
1,1 = P(1)

m1,m1
= −1.

In a d-dimensional case the representation (21) generalizes to a sum of d-factor Kronecker products

Âs =
1
h2

( K∑
k=1

(Qk ⊗ Ik ⊗ · · ·⊗ Ik + · · · + Ik ⊗ · · ·⊗ Ik ⊗ Qk) + P(d)

)
, (22)

where P(d) is the “periodization” matrix in d dimensions, constructed as the d-term Kronecker sum similar to the case
d = 2.

The Kronecker product form of (17) and (21) leads to the corresponding Kronecker sum representation for the total
stiffness matrix A. This allows an efficient implementation of the matrix assembly and low storage for the stiffness matrix
preserving the Kronecker sparsity. Hence, it proves the following storage complexity for the matrix A.

Lemma 1. Let K be the number of elementary cells in the nonoverlapping decomposition of the domain Ĝ, see (19), then the
storage size for the Kronecker factors composing the stiffness matrix A is bounded by

Stor(A) ≈ Stor(Âs) = O(dm0K + dm1).

Here, in general, the number K of elementary cells† is larger than L2, and it coincides with L2 only in the case of
nonoverlapping decomposition Ĝ = ∪L2

s=1Gs, where different patches Gs are allowed to have joint pieces of boundary but
no overlapping area.

In the general case d ≥ 2 and K ≥ Ld, the Kronecker rank of the matrix A is bounded by

rankKron(A) ≤ d K.

The Kronecker rank of the stiffness matrix reduces dramatically in two cases:

(a) For the case of nonoverlapping cells Gs, s = 1,… ,L2, we have

rankKron(A) ≤ Ld.

†For example, for cells of minimal size, m0 × m0 with m0 = 2, as in (20), we have K = O(m2
1).
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a

b

c

d

F I G U R E 2 Example of the covering domain Ĝ (right) and
the typical locations of sampling points for the grid representation
of Ah(xh) (left)

(b) In the case of cell-centered locations of subdomains Gs (special case of geometric homogenization) there holds

rankKron(A) ≤ Ld−1.

The corresponding vector representation fi ∈ RMd of the right-hand side fi(x) is computed by multiplication of the
discrete upwind gradient matrix ∇h with a vector yi ∈ RMd . Here the vector yi represents the multiple of the vector ei, i =
1, 2, and the equation coefficient A(n) = A(x) = diag{a(n)(x), a(n)(x)}, discretized on the grid Ωh, that is, each block-entry
of the “discretized” matrix coefficient A(x) → Ah(xh) is given by an Md-vector array with Md = m2

1,

Ah(xh) = diag{a(n)(xh), a(n)(xh)}, a(n)(xh)|xh∈Ωh ∈ R
Md .

Hence, we finally arrive at

fi = (1 − 𝜆)∇h ⋅ yi, yi = [yi(xh)] ∈ R
Md with yi(xh) = Ah(xh)ei, xh ∈ Ωh,

for i = 1, 2. Specifically, given the grid-point xh ∈ Ωh, the corresponding diagonal value of Ah(xh) is defined by a(n)(xh), see
(5). Here the variable part â(n)(xh), describing the jumping coefficient, is assigned by 1 for interior points in Ĝ, (d), by 1∕2
for interface points, (b), (the angle equals to 𝜋∕2), by 3∕4 for the “interior” L-shaped corners, (c), (the angle equals to 3𝜋∕4)
and by 1∕4 for the “exterior” corner of Ĝ, (a), (the angle equals to 𝜋∕4), see points (d), (b), (c), and (a) in Figure 2, respec-
tively. This figure corresponds to L = 2, the discretization parameter n0 = 4 and periodic completion of the geometry. One
observes the complicated shape of the strongly jumping coefficients.

3.4 Preconditioned CG iteration

Let the RHS in (10) satisfy ⟨f, 1⟩ = 0, then for a fixed m, the equation

A(n)u = (𝜆AΔ + (1 − 𝜆)A(n)
s )u = f, (23)

has the unique solution under the same constraints ⟨u, 1⟩ = 0. We solve this equation by the PCG iteration (routine pcg
in MATLAB library) with the preconditioner

B = 1 + 𝜆
2

AΔ + 𝛿I = 1 + 𝜆
2

Δh + 𝛿I,

where 𝛿 > 0 is a small regularization parameter introduced only for stability reasons (can be ignored in the theory) and I
is the Md × Md identity matrix.

It can be proven that the condition number of preconditioned matrix is uniformly bounded in m1, L and in the number
of stochastic realizations n = 1,… ,N. The particular estimates on the condition number in terms of a parameter 𝜆 can
be derived by introducing the average coefficient

a0(x) =
1
2
(a+(x) + a−(x)),

where a+(x) and a−(x) are chosen as majorants and minorants of a(n)(x) in (4), respectively. The following simple result
holds.
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Lemma 2. Given the preconditioner B with 𝛿 = 0, then the condition number of the preconditioned matrix B−1A(n) is
bounded by

cond{B−1A(n)} ≤ C𝜆−1.

Proof. Lemma 4.1 in Reference 18 shows that the preconditioner A0 generated by the coefficient a0(x) = 1
2
(a+(x) + a−(x))

allows the condition number estimate

cond{A−1
0 A(n)} ≤ Cmax

1 + q
1 − q

, with q ∶= max(a+(x) − a0(x))∕a0(x) < 1.

The preconditioner B corresponds to the choice a+(x) = 1 and a−(x) = 𝜆, hence, we obtain a0(x) = 1+𝜆
2

and the result
follows. ▪

The PCG solver for the system of equations (16) with the shifted discrete Laplacian as the preconditioner demonstrates
robust convergence with the rate q ≪ 1. In the practically interesting case 𝛼 ≈ 0.5 we found that q does not depend on
𝜆. This can be explained by the fact that in this case the total overlap in all subdomains covers the large portion of the
computational box Ω. In all numerical examples considered so far the number of PCG iterations was smaller than 10 for
the residual stopping criteria 𝛿 = 10−8. We use the univariate grid size m1 = ms, corresponding to the choice p = 0 in (9)
which is fine enough to resolve geometry for larger L.

To complete this section we notice that the numerical complexity of the presented algorithm scales at least
quadratically in L, that is, by O(L2). On the other hand the larger parameter 𝛼 > 0, that controls the density of
filled in area in random media (covered domain Ĝ), enforces the larger number K of elementary square cells Sk
each corresponding to the one Kronecker product term in the matrix assembling process. Hence this leads to the
larger numerical cost of the order O(dK) for the matrix generation, with the lower bound K ≥ Ld, see the discussion
in Lemma 1.

We demonstrate the numerical performance of our scheme in Section 5.

4 ASYMPTOTIC CONVERGENCE TO THE STOCHASTIC AVERAGE

In this section, we describe the computational scheme for calculation of the homogenized coefficient matrix for each
stochastic realization.

4.1 Computational scheme for the stochastic average

For fixed stochastic realizations specifying the variable part in the 2 × 2 coefficient matrix Â
(n)
(x), n = 1,… ,N, we consider

the problems
−𝜆Δ𝜙i − (1 − 𝜆)∇ ⋅ Â

(n)
(⋅)(ei + ∇𝜙i) = 0, (24)

for i = 1, 2. The RHS in Equation (24), rewritten in the canonical form (8), reads as

fi(x) = (1 − 𝜆)∇ ⋅ Â
(n)
(x)ei.

Taking into account (4), where the diagonal of Â
(n)
(x) is defined in terms of the scalar function â(n)(x), we arrive at

f1(x) = (1 − 𝜆)𝜕â(n)(x)
𝜕x1

, f2(x) = (1 − 𝜆)𝜕â(n)(x)
𝜕x2

.

Figure 3 illustrates an example of the calculated (reshaped) RHS vector in Rm1×m1 and the respective solution𝜙1 for L = 12,
m1 = 193, and m0 = 16.

Fixed L, for the particular realization A(n), by definition, the averaged coefficient matrix A
(n)
L = A

(n)
= [ā(n)

ij ] ∈ R2×2,
i, j = 1, 2, with the constant entries is given by

A
(n)

ei = ∫Ω
A

(n)(x)(ei + ∇𝜙i)dx, (25)



12 of 23 KHOROMSKIJ et al.

F I G U R E 3 Right-hand side (left) and the solution 𝜙1 (right) for L = 12, m1 = 193, m0 = 16

which implies the representation for matrix elements

ā(n)
L,ij ≡ ā(n)

ij = ∫Ω
[(𝜆I2×2 + (1 − 𝜆)Â

(n)
(x))(ei + ∇𝜙i)]j)dx, i, j = 1, 2.

The latter leads to the entry-wise representation of the matrix A
(n)

= [ā(n)
ij ], i, j = 1, 2,

ā(n)
11 = ∫Ω

a(n)(x)
(
𝜕𝜙1

𝜕x1
+ 1

)
dx,

ā(n)
12 = ∫Ω

a(n)(x)𝜕𝜙1

𝜕x2
dx,

ā(n)
21 = ∫Ω

a(n)(x)𝜕𝜙2

𝜕x1
dx,

ā(n)
22 = ∫Ω

a(n)(x)
(
𝜕𝜙2

𝜕x2
+ 1

)
dx. (26)

The representation (26) ensures the symmetry of the homogenized matrix A
(n)

, that is, ā(n)
ij = ā(n)

ji . Indeed, we calculate
the difference between the scalar product of the first equation in Equation (24) with 𝜙2,

⟨𝜆∇𝜙1 + (1 − 𝜆)Â
(n)
∇𝜙1,∇𝜙2⟩ − (1 − 𝜆)⟨∇ ⋅ Â

(n)
(⋅)e1, 𝜙2⟩ = 0,

and the second equation in Equation (24) with 𝜙1,

⟨𝜆∇𝜙2 + (1 − 𝜆)Â
(n)
∇𝜙2,∇𝜙1⟩ − (1 − 𝜆)⟨∇ ⋅ Â

(n)
(⋅)e2, 𝜙1⟩ = 0,

and get the relation ⟨
𝜕â(n)

𝜕x1
, 𝜙2

⟩
−
⟨
𝜕â(n)

𝜕x2
, 𝜙1

⟩
= 0,

which then implies the desired property via integration by parts, and taking into account the relation (5),⟨
a(n),

𝜕𝜙2

𝜕x1

⟩
=
⟨

a(n),
𝜕𝜙1

𝜕x2

⟩
.

In numerical implementation, we apply the Galerkin scheme for FEM discretization of Equation (24) its RHS. We use
the same quadrature rule for computation of integrals in (26) thus preserving the symmetry in the matrix A(n) inherited
from the exact variational formulation (see argument above and Section 4.3 for the more detailed discussion).

Integrals over Ω in (25), (26) for the matrix entries (A
(n)
)i,j, i, j = 1, 2, are calculated (approximately) by the scalar

product of the N-vector of all-ones with the discrete representation of integrand on the grid Ωh, see Figure 2.
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T A B L E 1 Symmetry in the

matrix A
(n)
L , with fixed n, versus

residual stopping criteria 𝛿

Tol. 𝜹 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11

||A − AT|| 10−6 3 × 10−7 10−7 3 × 10−9 10−10 3.6 × 10−11 10−11 10−12 5.7 × 10−15

To complete this section, we check numerically that the FEM discretization scheme preserves the symmetry in the
matrix A

(n)
L for fixed L if the discrete system of equations (10) is solved accurately enough. Table 1 demonstrates that the

symmetry in the matrix A
(n)
L with fixed n is recovered on the level of residual stopping criteria 𝛿 > 0 in the preconditioned

iteration for solving the discrete system of equations. For this calculation we set L = 4, m0 = 8, 𝛼 = 0.5, and 𝜆 = 0.2.

4.2 Asymptotic of systematic error and standard deviation

The set of numerical approximations {A
(n)
L } to the homogenized matrix Ahom is calculated by (25) for the sequence

{A(n)
L (x)} of n = 1,… ,N realizations, where N is large enough, and the artificial period L defines the size of RVEs. For a

fixed L, the approximation A
N
L is computed as the empirical average of the sequence {A

(n)
L }N

n=1,

A
N
L = 1

N

N∑
n=1

A
(n)
L . (27)

By the law of large numbers we have that the empirical average converges almost surely to the ensemble average
(expectation) ⟨AL⟩L = lim

N→∞
A

N
L . (28)

Furthermore, by qualitative homogenization theory, as the artificial period L → ∞, this converges to the homogenized
matrix

Ahom ∶= lim
L→∞

⟨AL⟩L. (29)

In what follows, we use the entrywise notation for d × d matrices A = [aij], i, j = 1,… , d, for example, ⟨AL⟩ = [āL,ij]
and A

(n)
L = [ā(n)

L,ij], and so forth.
In terms of square expectations, the convergence rate for the computable quantities can be estimated by, see

Reference 8, ⟨|AN
L − Ahom|2⟩1∕2

L
≤ C1√

N
L−d∕2 + C2L−dlogdL. (30)

We numerically study the asymptotic of both terms on the RHS of (30) separately by considering the random part of
the error,

var1∕2
L (AL) =

⟨|||Ahom − ⟨AL⟩L
|||2⟩1∕2

L
≤ C1L−d∕2, (31)

and the systematic error |||Ahom − ⟨AL⟩L
||| ≤ C2L−dlogdL, (32)

where ⟨AL⟩L is approximated by ⟨A(N)
L ⟩L for large enough N.

4.3 Covariances of the homogenized matrix in the form of quartic tensor

Let ⟨⋅⟩L be an ensemble of uniformly elliptic symmetric coefficient fields on the d-dimensional hypercube [0,L)d with
periodicity constraints. Assume that it is invariant under translation (stationary) and under the group  of all orthogonal
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transformations R of Rd that leave the (hyper-)cube [0,L)d invariant (this is generated by rotations in one of the Cartesian
two-dimensional planes and reflections along any Cartesian hyperplane) in the sense of (A1) below. In case of isotropic
(i.e., scalar) coefficient fields A(x), (A1) turns into

A(R⋅) and A have the same distribution under ⟨⋅⟩L,

which is certainly the case for the ensembles we consider numerically.
Let X be a finite-dimensional space of functions on the periodic cell [0,L)d of side-length L with square-integrable

gradients, for example, coming from continuous, piecewise affine Finite Elements. For a given realization A(x) =
A(n)(x) (see (4) and (24)) of the coefficient field and any direction i = 1,… , d, we consider 𝜙i ∈ X defined
through

∀ 𝜓 ∈ X ∫[0,L)d
∇𝜓 ⋅ A(ei + ∇𝜙i) = 0, (33)

where ei denotes the unit vector in direction i. If X contains the constant functions (as would be the case for the
Finite Element space), 𝜙i has to be normalized to be unique, for example, by imposing ∫[0,L)d𝜙i = 0, but this should
be irrelevant since we are only interested in ∇𝜙i. If X is indeed a Finite Element space, and if {𝜓𝛼} nodes𝛼 denotes the
standard basis of piecewise linear functions, then the (stiffness) matrix A = [a𝛼𝛽] and the right-hand side f = [f𝛼] are
given by

a𝛼𝛽 = ∫[0,L)d
∇𝜓𝛼 ⋅ A∇𝜓𝛽 and f𝛼 = −∫[0,L)d

∇𝜓𝛼 ⋅ Aei. (34)

Here it is important to treat periodicity correctly: In practice, one identifies functions on [0,L)d with functions on Rd

that are periodic in each (Cartesian) argument of period L, hence if the node 𝛼 is such that one of the adjacent triangles
crosses the boundary of the periodic cell [0,L)d ⊂ Rd, then there is a piece of 𝜙𝛼 that appears on the other side. If a
quadrature rule is used for computing the stiffness matrix, it is important that the same one is used for approximation of
the RHS.

Let us consider the d × d matrix AL = [āL,ij] = AL(A) defined through (see also (25))

āL,ij ∶= ej ⋅ ∫[0,L)d
A(ei + ∇𝜙i), (35)

(where again, the same quadrature rule should be used). Then we have for every realization

AL is symmetric, that is, āL,ij = āL,ji. (36)

Let us consider the ensemble average ⟨AL⟩L, which by the law of large numbers is given by (see also (28))

⟨AL⟩L = lim
N↑∞

1
N

N∑
n=1

A
(n)
L , (37)

almost surely, where A
(n)
L come via (35) from independent realizations A = A(n) according to the distribution ⟨⋅⟩L. Sup-

pose that the finite-dimensional space X is invariant under reflections in the coordinate directions in the sense of (A2)
below. This imposes a more serious restriction on the Finite Element space, namely that it is based on a subdivision
of the torus [0,L)d into axi-parallel cubes (instead of triangles) and that the function space on each cube is spanned
by functions that are multilinear in the Cartesian coordinates (as opposed to affine). If this condition is satisfied, then
we have ⟨AL⟩L is isotropic, that is ⟨āL,ij⟩L = 𝜆L𝛿ij, (38)

for some 𝜆L ∈ (0,L).
We are interested in the covariances of the entries of AL, and note that by the law of large numbers
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cov⟨⋅⟩L[āL,ij, āL,i′j′ ] ∶=
⟨
(āL,ij − ⟨āL,ij⟩L)(āL,i′j′ − ⟨āL,i′j′⟩L)

⟩
L

= lim
N↑∞

1
N − 1

N∑
n=1

(
ā(n)

L,ij −
1
N

N∑
m=1

ā(m)
L,ij

)(
ā(n)

L,i′j′ −
1
N

N∑
m′=1

ā(m′)
L,i′j′

)
.

More precisely, we are interested in its rescaled version

QL,iji′j′ ∶= Ldcov⟨⋅⟩L [āL,ij, āL,i′j′ ]

which is easier to understand as the four-linear form

QL(𝜂, 𝜉, 𝜂′, 𝜉′) ∶= Ldcov⟨⋅⟩L [𝜂 ⋅ AL𝜉, 𝜂
′ ⋅ AL𝜉

′].

We claim that it has the invariance property

QL(R𝜂,R𝜉,R𝜂′,R𝜉′) = QL(𝜂, 𝜉, 𝜂′, 𝜉′). (39)

In the case of d = 2, this implies that QL is just characterized by three different numbers:

QL(e1, e1, e1, e2) = QL(e1, e1, e2, e1) = QL(e1, e2, e1, e1) = QL(e2, e1, e1, e1) = 0, (40)

QL(e1, e2, e2, e2) = QL(e2, e1, e2, e2) = QL(e2, e2, e1, e2) = QL(e2, e2, e2, e1) = 0, (41)

QL(e1, e2, e1, e2) = QL(e1, e2, e2, e1) = QL(e2, e1, e1, e2) = QL(e2, e1, e2, e1), (42)

QL(e1, e1, e2, e2) = QL(e2, e2, e1, e1), (43)

QL(e1, e1, e1, e1) = QL(e2, e2, e2, e2). (44)

Proofs of the properties of quartics tensor are presented in Appendix A2.

5 NUMERICAL STUDY OF STOCHASTIC HOMOGENIZATION

In this section, we estimate numerically the mean constant coefficient in the system (8) depending on L and other model
parameters at the limit of N → ∞, see References 5 and 7 for the respective problem setting.

5.1 Tests on performance of the numerical method

In this paragraph we demonstrate the numerical performance of our numerical scheme.
Recall that the homogenization problem is solved in the unit square Ω = [0, 1]2 with the grid size ms × ms, where

ms = m0 L + 1. Due to tensor-based construction of the stiffness matrix and sparse representation of matrix entities, in our
numerical experiments using MATLAB, the largest number of generated homogenization cells in the domain Ω reaches
the value up to L2 = 1282. It corresponds to the problem (vector) size Md = 263169 (ms = 513 with m0 = 4).

Figure 4 illustrates examples of distributions of L2 randomly located (overlapping) cells specifying the equation coeffi-
cient in the cases of moderate and large size of the RVEs for L = 4, 8,… , 128, used in the study of asymptotic of empirical
variance/average versus the size of the RVE, L.

Table 2 presents the central processing unit (CPU) times for generating the stiffness matrix, the RHS, and for the
solution of the discretized system for the case of overlapping inclusions, for tolerance 𝜀 = 10−8. Number of inclusions (L2)
varies from 16 to 16,384. The latter is computed on a mesh of size 513 × 513. We observe that matrix generation takes the
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F I G U R E 4 Realization examples of a stochastic process with L2 overlapping cells for L = 4, 8, 16 (top) and L = 32, 64, 128 (bottom),
m0 = 4, 𝛼 = 1∕4

L2 m/m2 Matrix RHS PCG time

42 17/289 0.012 0.01 0.006

82 33/1089 0.06 0.045 0.137

162 65/4225 0.34 0.19 0.11

322 129/16,641 3.0 0.8 0.5

642 257/66,049 36 3.7 2.6

1282 513/263,169 561 22 13.8

Note: PCG stopping criteria is 𝜀 = 10−8.
Abbreviations: CPU, central processing unit; PCG, preconditioned conjugate gradient;
RHS, right-hand side.

T A B L E 2 CPU times (s) versus the number of
inclusions (i.e., L2) for generating the stiffness matrix, the
RHS, and for the solution of the discretized system for the
case of overlapping inclusions

dominating time. In case of large grids, the time growth factor for increasing values of L approaches 16 which corresponds
to a product of O(L2) summation terms in (21) and O(m2

1) operations for the computation of each Kronecker product.

5.2 Systematic error and empirical variance versus L

In what follows, we numerically check the theoretical convergence rate (30), in form of checking (31) and (32) separately.
Figure 5 serves to illustrate the asymptotic convergence of the systematic error see (32), at the limit of large L. Since

we do not have access to the ensemble averages ⟨AL⟩L, we take empirical averages A
N
L for large enough N, (cf. (29)) as a

proxy. Furthermore, due to the fact that Ahom is not computable we compare the differences in ⟨āL,11⟩L computed on a
sequence of increasing values of L.

Figure 5 shows the differences in matrix entries ⟨āL,11⟩L − ⟨ā2L,11⟩2L for increasing sizes of the RVE, that is, for
L = 2p, p = 1, 2, … , 5, computed with N = 105, N = 104, and N = 103 stochastic realizations. It illustrates the asymptotic
convergence of the systematic error, see (32), |||⟨AL⟩L − Ahom

||| ≲ L−dlogdL,
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F I G U R E 5 Systematic error ⟨āL,11⟩L − ⟨ā2L,11⟩2L versus L, for increasing
L = 2p, p = 1, 2, … , 5 computed for the largest number of realizations N = 105.

2 3 4 5

log2L

10-4

10-3

N= 10 5

N= 10 4

N= 10 3

L-d

T A B L E 3 Systematic error ⟨āL,11⟩L − ⟨ā2L,11⟩2L versus L, for increasing
L = 2p, p = 1, 2, … , 5, computed for N = 105, 104, and 103 realizations.

L∕N 105 104 103

4 0.003095 0.003316 0.003665

8 0.000792 0.000598 0.001198

16 0.000277 0.000330 −0.000034

32 0.000067 0.000077 0.000031

at the limit of large L. Calculations are performed with m0 = 4, 𝛼 = 1
4
, and 𝜆 = 0.4 and tolerance 𝜀 = 10−8. The black line

corresponds to the curve L−d, with d = 2.
The largest size of RVE with p = log2L = 5, presented in statistics in Figure 5, corresponds to the most left picture in

the bottom row in Figure 4. In this example the jumping coefficient contains 322 (overlapping) inclusions, and the discrete
problem of size m2

s = 1292 (i.e., vector size is 16,641) has been solved N = 105 times for providing the representative
statistics. For readers convenience, Table 3 presents the same data visualized in Figure 5.

We now turn to the random error, that is, the variance of ⟨AL⟩L = [āij]. Since by symmetry considerations, ⟨ā11⟩L =⟨ā22⟩L and ⟨ā12⟩L = 0, we monitor ⟨(āL,11 − āL,22)2⟩1∕2
L and ⟨(āL,12)2⟩1∕2

L ,

which should decay as 1∕L. Again, since we do not have access to the ensemble averages defining the standard deviation,
we replace them by their empirical approximation for large enough N,(

1
N

N∑
n=1

(ā(n)
L,12)

2

)1∕2

≈ ⟨(āL,12)2⟩1∕2
L ≤ C1L−d∕2, (45)

(
1
N

N∑
n=1

(ā(n)
L,11 − ā(n)

L,22)
2

)1∕2

≈ ⟨(āL,11 − āL,22)2⟩1∕2
L ≤ C1L−d∕2. (46)

Figure 6 presents the empirical average (standard deviation) for āL,12 and āL,11 − āL,22 versus L = 2, 4, … , 64, corre-
sponding to N = 500, 103, and 104 realizations (𝛼 = 1

4
, 𝜆 = 0.4), confirming the estimates (45) and (46). Notice that starting

from N = 500 the values of empirical average for different number of realizations practically coincide. The results for the
homogenized matrix for the largest p = 6 presented in Figure 6 correspond to ensembles with 4096 overlapping cells, and
the size of the discrete problem (i.e., vector/matrix size) is 66,049. These systems of equations have been solved 104 times.
An example of realization for p = 6 is shown in Figure 4 (middle bottom panel).

Related to Figure 6, Table 4 presents standard deviation of āL,12 (left) and āL,11 − āL,22 (right) versus L, with L = 2p,
p = 1, 2, … , 6, for N = 500 and N = 104. We choose the following discretization and model parameters m0 = 4, 𝜀 = 10−8,
𝛼 = 1

4
, and 𝜆 = 0.4.
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1 2 3 4 5 6

log2L

10-3

N=104

N=103

N=500
O(1/L)

-d/2=-1

1 2 3 4 5 6

log2L

10-3

10-2
N=104

N=103

N=500
O(1/L)

-d/2=-1

F I G U R E 6 Standard deviation
of āL,12 (left) and of (āL,11 − āL,22)
(right) versus L, with L = 2p,
p = 1, 2, … , 6, for N = 500, 103, and
104

āL,12 āL,11 − āL,22

L∕N 104 500 104 500

2 0.003643 0.003716 0.011402 0.011531

4 0.002287 0.002346 0.005875 0.005828

8 0.001258 0.001193 0.003052 0.003156

16 0.000656 0.000670 0.001527 0.001543

32 0.000337 0.000329 0.000778 0.000792

64 0.000167 0.000165 0.000386 0.000372

T A B L E 4 Standard deviation of āL,12 (left) and āL,11 − āL,22

(right) versus L, with L = 2p, p = 1, 2, … , 6, for N = 500 and
N = 104

We summarize that numerical results presented in Figures 5 and 6 (see also Tables 3 and 6) confirm the asymptotic
convergence rates of the systematic error (32) and the empirical average (45), (46) in the size L of RVE.

5.3 The asymptotic of quartic tensor versus leading order variances

In this section, we consider the convergence of the quartic tensor QL, representing covariances of the matrix AL, to its
leading order variances Qhom, see Section 4.3. For the large number of realizations N, the computable approximation,
Q

N
L ∈ R2×2×2×2, to the scaled quartic tensor is defined by

Q
N
L = Ld

N − 1

N∑
n=1

(
A

(n)
L − 1

N

N∑
n′=1

A
(n′)
L

)⊗2

, (47)

so that by the central limit theorem
QL ∶= lim

N→∞
Q

N
L .

The equivalent matrix representation of Q
N
L is obtained by setting the operation ⊗2 in (47) as the Kronecker product of

matrices (see Definition 1), further denoted by

Q
N
L = [qL,ij] ∈ R

4×4, i, j = 1,… , 4.

In our numerical tests we shall check the asymptotic behavior⟨|||||| Ld

N − 1

N∑
n=1

(
A

(n)
L − 1

N

N∑
n′=1

A
(n′)
L

)⊗2

− Qhom

||||||
2⟩

L

≲ L−dlndL,

which can be expected at the limit of large size L of the RVE, see References 8 and 16.
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F I G U R E 7 qL,11 − q2L,11 (left)
and qL,14 − q2L,14 (right) versus
L = 2p, p = 1,… , 6, N = Ld

2 3 4 5 6

log2L

10-4

N=Ld

O(1/L)

-d/2=-1

2 3 4 5 6

log2L

10-5

10-4

N=Ld

O(1/L)

-d/2=-1

It is worth to note that the quartic tensor QL can be calculated at no further cost than the effective homogenized
matrix AL.

Figure 7 shows the diagonal elements, qL,11 − q2L,11 and qL,14 − q2L,14, in quartic tensor Q
N
L versus increasing size of

RVE L = 2p, p = 1,… , 6, (see (47)), for N = Ld. Figure 7 confirms convergence rate of qL,11 − q2L,11 in RVE L as O(Ld/2.

6 CONCLUSIONS

We present the numerical scheme for discretization and solution of 2D elliptic equations with strongly varying piecewise
constant coefficients arising in stochastic homogenization of multiscale random materials. The resulting large linear
system of equations is solved by the PCG iteration with the convergence rate that is independent of the grid size and of
the variation in jumping coefficients. For a fixed size of the RVE, our approach allows to avoid the generation of the new
FEM space in each stochastic realization. For every realization, fast assembling of the FEM stiffness matrix is performed
by agglomerating the Kronecker tensor products of 1D FEM discretization matrices. The resultant stiffness matrix is
maintained in a sparse matrix format.

Our numerical scheme allows to investigate the asymptotic convergence rate of significant quantities of stochastic
homogenization process in the course of a large number of realizations (of the order of N = 105) and for large sizes of the
RVEs up to L = 128, corresponding to the number of inclusions 16,384 and matrix size 5132 × 5132. Note that for every
realization a new matrix generation and solution of the respective linear system is performed.

Our numerical experiments study the asymptotic convergence rate of systematic error and standard deviation in the
size of RVE, rigorously established in Reference 8. In particular, we confirm in various numerical tests the theoretical
asymptotic estimates, see Section 4.2, concerning the convergence rate O(1∕L) for the empirical variance at the limit of
large L, but with a moderate number of stochastic realizations N, and the asymptotic CL−2ln2L in the case of large N. Our
numerical scheme applies to a stationary ergodic problems where the asymptotic convergence is subject to the central
limit theorem. The model elliptic problem is posed in periodic setting. The randomness is encoded by geometry which is
described by the set of square inclusions specified on the Cartesian grid, which allows the fast matrix generation by using
a sum of the Kronecker product terms. The respective FEM discretizations are constructed on the refined tensor grid.

The asymptotic behavior of covariances of the homogenized matrix in the form of quartic tensor are studied numeri-
cally. In particular, we consider the asymptotic of the quartic tensor versus the leading order variances, computed for the
large number of stochastic realizations up to N = 104. In this way, the asymptotic O(L−dlndL), for d = 2, is confirmed on
a sequence of increasing sizes of the RVE, up to L = 64.

The stochastic characteristics of the system are analyzed for a range of intrinsic model parameters like the number
of realizations, the size of periodic RVE, the jump-ratio in the stochastic equation coefficients (contrast) and various grid
discretization parameters. The presented numerical scheme allows to perform large scale simulations using MATLAB

on a moderate computer cluster. The uniform convergence of the PCG iteration can be expected for a class of nonde-
generate elliptic equations which excludes situations with the very small parameter 𝜆 → 0. The tensor-based numerical
techniques for matrix generation presented in this article can be extended to 3D and higher dimensional problems. The
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application of our approach is limited by the class of random geometries described on the tensor product Cartesian grids.
Here we apply these techniques to the scalar-valued linear elliptic problems in divergent form.
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APPENDIX A1. NUMERICAL ANALYSIS OF THE FEM APPROXIMATION ERROR

We tested convergence of the solutions on a sequence of dyadic refined grids, for the fixed configuration of coefficients
and the right-hand side given by f = sin(2𝜋x)cos(6𝜋y). Test examples are performed for L = 2, 4, 8, corresponding to 4,
16, and 64 bumps in the coefficients, respectively. For each fixed L, we compare the solution vectors up calculated on a
sequence of five dyadic refined grids with the grid size Md = m2

p = Md,p, with mp = 24+p − 1, p = 1,… , 5, equal to Md,p =
312, 632, 1272, 2552, 5112, and 10232, respectively. The matrix size is given by Md × Md. A FEM interpolation error in
the Hr(Ω)-norm is expected of the order of O(m−𝛽+r) for 𝛽 ∈ (0, 2] and r ∈ [0, 1], where h = O(1∕m) and 𝛽 measures the
regularity of the solution u ∈ H𝛽(Ω).

Table A1 shows the decay of the solution error in L2-norm estimated on a sequence of dyadic refined grids, and for
different values of L = 2, 4, 8. The solution is supposed to be represented on a sequence of grid in the form up = c0 + c1h𝛽p
up to higher order terms. We expect the asymptotic error behavior O(h𝛽) with 1 ≤ 𝛽 ≤ 2, where in our case 𝛽 is close to
3∕2 that corresponds to decay factor 2

√
2 ≈ 2.8. The latter can be expected in the case of reduced regularity in the solution

caused by cusps by the multiple interior corners in the configuration of coefficient jumps. The respective convergence
rate in the H1-norm is of the order of O(h𝛽−1).

Figure A1 illustrates examples of the solution u discretized over m × m grid with the univariate grid size m = 255 and
for L = 2 and L = 4.

Figure A2 represents differences in solutions on pair of m × m grids with m = 127, 255 (left) and m = 5, 111, 023 (right)
for f = sin(2𝜋x)cos(6𝜋y) and fixed L = 4. One can observe the expected increase in the approximation error towards the
interior corners in the geometry specifying the jumping coefficient function. The error decays by a factor about 10 which
agrees with the expected decay by 2.82. For ease of comparison both solutions are interpolated onto the common grid with
m = 63.

T A B L E A1 Differences in the relative
norms of solutions ||up − up−1||2∕||up−1||2,
p = 1,… , 5, on dyadic refined grids
computed in L2-norm for L = 2, 4, 8 and
𝛼 = 0.5, 𝜆 = 0.1.

Grid size mp 63 127 255 511 1023

Vector size Md,p 3969 16,129 65,025 261,121 1,046,529

L = 2 — 0.0051 0.0015 5.03e−04 1.806e−04

L = 4 — 0.0057 0.0020 7.13e−04 2.638e−04

L = 8 — — 0.0035 1.40e−03 5.257e−04

F I G U R E A1 Examples of solutions u for
m = 255, where L = 2 (left) and L = 4 (right)
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F I G U R E A2 Differences in solutions on
the m × m grids with m = 127, 255 (left) and
m = 511, 1023 (right) for L = 4

-5

60
50

6040

0

30

× 10 -3

40
20

2010

5

-5

60
50

6040

0

30

× 10 -4

40
20

2010

5



22 of 23 KHOROMSKIJ et al.

APPENDIX A2. PROOFS FOR THE PROPERTIES OF THE QUARTIC TENSOR

Argument for (36). According to (33), definition (35) may be reformulated as

āL,ij = ∫[0,L)d
(ej + ∇𝜙j) ⋅ A(ei + ∇𝜙i),

so that the symmetry of A yields the symmetry of AL.
Argument for (38). Identifying the points on the periodic cell with [0,L)d ⊂ Rd, let  denote the subgroup of the

orthogonal group that leaves [0,L)d invariant. According to our assumption, for any R ∈ ,

Rt
A(R⋅)R and A have the same distribution under ⟨⋅⟩L, (A1)

where RtA(R⋅)R denotes the matrix field [0,L)d ∋ x → RtA(Rx)R. According to our assumption on X we have

𝜓 ∈ X ⇒ 𝜓(R⋅) ∈ X , (A2)

where 𝜓(R⋅) denotes the function [0,L)d ∋ x → 𝜓(Rx).
For a fixed vector 𝜉 ∈ Rd, we consider 𝜙𝜉 ∶= 𝜉i𝜙i (Einstein's summation convention) and note that in view of (33), for

given realization A = A(n), the function 𝜙𝜉 = 𝜙𝜉(A) (at least up to additive constants) is characterized by

∀ 𝜓 ∈ X ∫[0,L)d
∇𝜓 ⋅ A(𝜉 + ∇𝜙𝜉) = 0, (A3)

We now argue that 𝜙 transforms under R ∈  as follows

𝜙R𝜉(A;Rx) = 𝜙𝜉(Rt
A(R⋅)R; x). (A4)

Indeed, this relies on the straightforward orthogonal transformation rule

∫[0,L)d
∇y[𝜓(RTy)] ⋅ A(y)(R𝜉 + ∇𝜙R𝜉(y))dy

y=Rx
= ∫[0,L)d

∇𝜓(x) ⋅ Rt
A(Rx)R(𝜉 + ∇x[𝜙R𝜉(Rx)])dx.

According to (A2) and (A3) (with 𝜉 replaced by R𝜉) the left-hand side vanishes for all 𝜓 ∈ X; hence by the
characterization (A3) applied to the RHS, we obtain (A4).

We now argue note that from (A4) we obtain for the gradient ∇𝜙R𝜉(A;Rx) = ∇𝜙𝜉(RtA(R⋅)R; x) and thus for the flux
q𝜉(A; x) ∶= A(𝜉 + ∇𝜙𝜉(A; x)) the transformation rule

qR𝜉(A;Rx) = Rq𝜉(Rt
A(R⋅)R; x),

from which we obtain by definition (35) that

AL(A)R𝜉 = RAL(Rt
A(R⋅)R)𝜉. (A5)

According to (A1) this yields the following invariance property for the symmetric matrix ⟨AL⟩L

⟨AL⟩LR𝜉 = R⟨AL⟩L𝜉.

Since this holds for all 𝜉 ∈ Rd and all R ∈ , by an argument of elementary algebra, we obtain the isotropy of ⟨AL⟩L,
cf (38).
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Argument for (39). This follows from (A5) in form of

(R𝜂) ⋅ AL(A)R𝜉 = 𝜂 ⋅ AL(Rt
A(R⋅)R)𝜉

and from (A1).
Argument for (44)–(40). The four identities in (42) on the variances just follow from the symmetry of the underlying

random variable AL, compare (36), in form of

e1 ⋅ ALe2 = e2 ⋅ ALe1.

The identity (43) follows from the symmetry of the covariance in its two arguments. The vanishing of the eight entries
stated in (40) and (41) follows from (39) applied to the reflection R ∈  given by Re1 = −e1 and Re2 = e2. The identity
(44) follows from (39) applied to the reflection R ∈  given by Re1 = e2 and Re2 = e1.


