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Abstract

A selection of algorithms for the rational approximation of matrix-valued
functions are discussed, including variants of the interpolatory AAA method,
the RKFIT method based on approximate least squares fitting, vector fitting,
and a method based on low-rank approximation of a block Loewner matrix. A
new method, called the block-AAA algorithm, based on a generalized barycen-
tric formula with matrix-valued weights is proposed. All algorithms are com-
pared in terms of obtained approximation accuracy and runtime on a set of
problems from model order reduction and nonlinear eigenvalue problems, in-
cluding examples with noisy data. It is found that interpolation-based methods
are typically cheaper to run, but they may suffer in the presence of noise for
which approximation-based methods perform better.

Keywords: rational approximation, block rational function, Loewner matrix.

1 Introduction

Rational approximation is a powerful tool in applied science and engineering. To
give just two examples, it is very commonly used for model order reduction [2–4]
and the solution of nonlinear eigenvalue problems [16, Section 6]. Recently, several
new algorithms for the rational approximation and interpolation of scalar-valued
functions have been proposed, including (in reverse chronological order) the AAA
algorithm [21], the RKFIT algorithm [7, 8], vector fitting [13, 15], and methods
based on the Loewner matrices [20]. The aim of this paper is to explore extensions of
these methods for the purpose of approximating a matrix-valued (or block) function
F : Λ→ Cm×n on a discrete set Λ in the complex plane.

The paper contains two key contributions. Firstly, we propose an extension of
a barycentric formula to non-scalar weights and develop it into a new algorithm
for the computation of rational approximants of matrix-valued functions. This al-
gorithm, referred to as the block-AAA algorithm, generalizes the AAA algorithm
in [21]. Secondly, we perform extensive numerical comparisons of several rational
approximation algorithms proposed by different communities (model reduction, nu-
merical linear algebra, approximation theory). To the best of our knowledge, this is
the first paper that offers a comprehensive study of these algorithms. As part of our
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experiments, we identify potential problems of interpolation-based algorithms when
the data samples are polluted by noise.

The paper is structured as follows. Section 2 contains a brief review of existing al-
gorithms for scalar rational approximation. In Section 3 we introduce new represen-
tations of matrix-valued rational approximants and the new block-AAA algorithm.
In Section 4 we briefly review other popular algorithms for rational approximation,
including methods based on partial fractions, rational Krylov spaces, and state space
representations. Section 5 contains a collection of numerical experiments and dis-
cussions, guided by six examples from different application areas. Section 6 further
discusses the performance of the different methods for each numerical example. We
conclude in Section 7 with some ideas for future work.

2 Scalar rational approximation

In this section we summarize several algorithms for the rational approximation of a
scalar function f : Λ→ C sampled at a nonempty set of points Λ := {λ1, . . . , λ`} ⊂
C. This serves as an introduction of our notation, but also as a template for the
block variants in Sections 3 and 4.

2.1 Adaptive Antoulas–Anderson (AAA) algorithm

The AAA algorithm proposed in [21] is a practically robust and easy-to-use method
for scalar rational interpolation. The degree d interpolant rd obtained after d itera-
tions of the AAA algorithm is of the form

rd(z) =

d∑
k=0

wkfk
z − zk

d∑
k=0

wk
z − zk

, (1)

with nonzero barycentric weights wk ∈ C, pairwise distinct support points zk ∈ C,
and function values fk = f(zk). A key ingredient of the AAA algorithm is its
greedy choice of the support points, one per iteration j = 0, 1, . . . , d, intertwined
with the solution of a least squares problem to determine the barycentric weights

w
(j)
0 , . . . , w

(j)
j at each iteration j. The core AAA algorithm can be summarized as

follows:

1. Set j = 0, Λ(0) := Λ, and r−1 :≡ `−1
∑`

i=1 f(λi).

2. Select a point zj ∈ Λ(j) where |f(z)− rj−1(z)| is maximal, with

rj−1(z) :=

j−1∑
k=0

w
(j−1)
k fk
z − zk

j−1∑
k=0

w
(j−1)
k

z − zk

for j ≥ 1.

3. If |f(zj)− rj−1(zj)| is small enough, return rj−1 and stop.

4. Set fj := f(zj) and Λ(j+1) := Λ(j) \ {zj}.
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5. Compute weights w
(j)
0 , . . . , w

(j)
j with

∑j
k=0 |w

(j)
k |

2 = 1 such that

j∑
k=0

w
(j)
k

z − zk
f(z) ≈

j∑
k=0

w
(j)
k fk

z − zk

is solved with least squares error over all z ∈ Λ(j+1).

6. Set j := j + 1 and go to step 2.

MATLAB implementations of the AAA algorithm can be found in [21] and the
Chebfun package [11] available at

https://www.chebfun.org/

In [21, Section 10] a non-interpolatory variant of the AAA algorithm is also men-
tioned, which is obtained by allowing the weights in the numerator and denominator
of (1) to be different.

2.2 Rational Krylov Fitting (RKFIT)

The RKFIT method introduced in [7, 8] is based on iteratively relocating the poles
of a rational function in the so-called RKFUN representation. An RKFUN is a
triple rd ≡ (Hd,Kd, c) with upper-Hessenberg matrices Hd,Kd ∈ C(d+1)×d and a
coefficient vector c ∈ Cd+1. For a given point z ∈ C, the RKFUN rd(z) is evaluated
as a dot-product rd(z) := n(z)·c, where n(z) is the unique left nullvector of zKd−Hd

normalized such that its first component is 1 (note that the unique existence of this
nullvector is guaranteed by the fact that zKd−Hd is an unreduced upper-Hessenberg
matrix).

The matrices Hd and Kd of the RKFUN representation satisfy a rational Arnoldi
decomposition AVd+1Kd = Vd+1Hd associated with a rational Krylov space

Qd+1(A,b) := q(A)−1span{b, Ab, . . . , Adb},

with A ∈ C`×`, b ∈ C`, Vd+1 ∈ C`×(d+1), and a monic polynomial q ∈ Pd such that
q(A) is invertible. It can be shown that the columns of Vd+1 = [v1, . . . ,vd+1] are all
of the form vk+1 = pk(A)q(A)−1b with polynomials pk ∈ Pd for k = 0, 1, . . . , d. In
other words, the rational Arnoldi decomposition encodes a basis of scalar rational
functions rk := pk/q all sharing the same denominator q. Further, one can show that
the roots ξj of q(z) =

∏
ξj 6=∞(z− ξj) correspond to the quotients of the subdiagonal

elements of the upper-Hessenberg matrices Hd and Kd, i.e., ξj = hj+1,j/kj+1,j for
j = 1, . . . , d. These quotients are referred to as the poles of the rational Arnoldi
decomposition [7].

Given a matrix F ∈ C`×`, the RKFIT algorithm attempts to identify an RK-
FUN rd ≡ (Hd,Kd, c) such that rd(A)b ≈ Fb in the least squares sense. Starting
with an initial rational Arnoldi decomposition AVd+1Kd = Vd+1Hd having poles

ξ
(0)
1 , . . . , ξ

(0)
d , one RKFIT iteration consists of solving a least squares problem for

finding a unit-norm vector v̂ ∈ span(Vd+1) such that

v̂ = arg min
v=Vd+1c
‖c‖2=1

‖(I − Vd+1V
∗
d+1)Fv‖2,

https://www.chebfun.org/
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and to use the roots of r̂ = p̂/q associated with v̂ = r̂(A)b as the new poles

ξ
(1)
1 , . . . , ξ̂

(1)
d for the next iteration. This process is iterated until a convergence

criterion is satisfied.
A MATLAB implementation of RKFIT is provided in the Rational Krylov Tool-

box [6] available at

http://www.rktoolbox.org/

RKFIT can naturally deal with scalar rational approximation by choosing diagonal
matrices A = diag(λ1, . . . , λ`), F = diag(f1, . . . , f`), and b = [1, 1, . . . , 1]T . We
emphasize that RKFIT is a non-interpolatory method.

2.3 Vector Fitting (VF)

The VF algorithm, originally proposed in [15], seeks to fit a rational function in
partial fraction (pole–residue) form

rd(z) = δ +

d∑
k=1

γk
z − ξk

=
p(z)

q(z)
.

The iterative algorithm is initiated by choosing the degree d of the rational approx-

imant and an initial guess for the poles {ξ(0)1 , . . . , ξ
(0)
d }. At iteration j = 0, 1, . . . one

determines parameters c
(j)
k and d

(j)
k such that

d∑
k=1

c
(j)
k

z − ξ(j−1)k

+ c
(j)
0︸ ︷︷ ︸

p(j)(z)

≈
( d∑
k=1

d
(j)
k

z − ξ(j−1)k

+ 1︸ ︷︷ ︸
q(j)(z)

)
f(z)

is solved with least squares error over all z ∈ Λ. Afterwards, the next set of poles

{ξ(j)1 , . . . , ξ
(j)
d } is computed as the roots of the polynomial q(j)(z) by solving a linear

eigenvalue problem. The iteration continues until a convergence criterion is satisfied.
Vector fitting is a non-interpolatory method. A MATLAB implementation of this
method is available at

https://www.sintef.no/projectweb/vectorfitting/

2.4 Loewner framework (LF)

This LF method uses the full data set in matrix format by forming (possibly very
large) Loewner matrices. The original method, introduced in [20], is based on con-
structing a reduced-order rational function in state-space representation. In recent
years, the Loewner framework has been extended to classes of mildly nonlinear sys-
tems, including bilinear systems [5].

Assuming that `, the number of sampling points, is an even positive integer, the
first step in the Loewner framework is to partition Λ = ΛL ∪ ΛR into two disjoint
sets of the same cardinality. The set ΛL contains the left points {x1, . . . , x`/2},
while ΛR contains the right points {y1, . . . , y`/2}. Similarly, the set of scalar samples
(evaluations of the function f on Λ) is partitioned into two sets.

One then defines matrices L ∈ C`/2×`/2 (the Loewner matrix) and Ls ∈ C`/2×`/2
(the shifted Loewner matrix) with entries

Li,j =
f(xi)− f(yj)

xi − yj
and Lsi,j =

xif(xi)− yjf(yj)

xi − yj
,

http://www.rktoolbox.org/
https://www.sintef.no/projectweb/vectorfitting/
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respectively. Additionally, one defines vectors V ∈ C`/2×1, W ∈ C1×`/2 as

V =
[
f(x1), f(x2), . . . , f(x`/2)

]T
, W =

[
f(y1), f(y2), . . . , f(y`/2)

]
. (2)

The next step is to compute a rank-d truncated singular value decomposition of the
Loewner matrix L ≈ XSZ∗ with X ∈ C`/2×d, S ∈ Cd×d and Z ∈ C`/2×d. Finally,
by means of projecting with the matrices X and Z, the fitted rational function is

rd(z) = WZ (X∗(Ls − zL)Z)−1X∗V. (3)

This is a subdiagonal rational function of type (d− 1, d) whose d poles are given by
the generalized eigenvalues of the matrix pair (X∗LsZ,X∗LZ).

3 Matrix-valued barycentric forms and block-AAA

The simplest matrix-valued barycentric form is obtained from (1) by replacing the
function values fk with matrices Fk := F (zk):

Rd(z) =

d∑
k=0

wkFk
z − zk

d∑
k=0

wk
z − zk

. (bary-A)

Provided that all weights wk are nonzero, the function Rd interpolates the function F
at all the support points zk. Each (i, j) entry of Rd is a rational function of the form
pij(z)/q(z), where pij , q ∈ Pd are polynomials of degree d. Note that all these entries
share the same scalar denominator q.

A slight modification of (bary-A) yields a new matrix-valued barycentric formula

Rd(z) =

(
d∑

k=0

Wk

z − zk

)−1( d∑
k=0

WkF (zk)

z − zk

)
(bary-B)

with weight matrices Wk ∈ Cm×m. If all these Wk are nonsingular, Rd interpolates
F at all the support points zk. Given a set of support points z0, . . . , zk different from
any point in Λ, a linearized version of the approximation problem Rd(λi) ≈ F (λi) is

∑̀
i=1

∥∥∥∥∥
(

d∑
k=0

Wk

λi − zk

)
F (λi)−

d∑
k=0

WkF (zk)

λi − zk

∥∥∥∥∥
2

F

→ min
Wk

.

The weight matrices can now be obtained from a trailing left-singular block vector
[W0, . . . ,Wd] of unit norm such that

[W0, . . . ,Wd]


F (λ1)−F (z0)

λ1−z0 · · · F (λ`)−F (z0)
λ`−z0

...
...

F (λ1)−F (zd)
λ1−zd · · · F (λ`)−F (zd)

λ`−zd

 =: WL
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Block-AAA algorithm

Inputs: Discrete set Λ ⊂ C with ` points, function F , error tolerance ε > 0
Output: Rational approximant Rj−1 in the form (bary-B)

1. Set j = 0, Λ(0) := Λ, and R−1 :≡ `−1
∑`

i=1 F (λi).

2. Select a point zj ∈ Λ(j) where ‖F (z)−Rj−1(z)‖F is maximal, with

Rj−1(z) :=

(
j−1∑
k=0

W
(j−1)
k

z − zk

)−1(j−1∑
k=0

W
(j−1)
k Fk
z − zk

)
for j ≥ 1.

3. If ‖F (zj)−Rj−1(zj)‖F ≤ ε, return Rj−1 and stop.

4. Set Fj := F (zj) and Λ(j+1) := Λ(j) \ {zj}.

5. Find matrix [W
(j)
0 , . . . ,W

(j)
j ] of unit Frobenius norm such that

j∑
k=0

W
(j)
k

z − zk
F (z) ≈

j∑
k=0

W
(j)
k Fk

z − zk

is solved with least squares error over all z ∈ Λ(j+1).

6. Set j := j + 1 and go to step 2.

Figure 1: Pseudocode of the block-AAA algorithm

has smallest possible norm. Note that the matrix L is a block Loewner matrix.1

It is now easy to derive an AAA-like algorithm based on (bary-B). It is shown in
Figure 3 and referred to as the block-AAA algorithm.

A MATLAB implementation of the block-AAA algorithm is available at

https://github.com/nla-group/block_aaa

As it will become clearer from the discussions in Section 4, the block-AAA algorithm
is different from the set-valued AAA [19] and the fast-AAA [18] algorithms: the
entries of a block-AAA approximant Rd do not share a common scalar denominator
of degree d. Indeed, a block-AAA approximant Rd of order d can have a larger
number of up to dm poles, i.e., its McMillan degree can be as high as dm. For this
reason we refer to the order of a block-AAA approximant instead of its degree.

Finally, we mention for completeness two other barycentric formulas which might
be of interest elsewhere. One is given as

Rd(z) =

(
d∑

k=0

Dk

z − zk

)−1( d∑
k=0

Ck
z − zk

)
(bary-C)

1In the Loewner framework discussed in Section 2.4, the Loewner matrix entries

Lij =
v∗i rj − `∗iwj

µi − λj

are defined in terms of left and right directions (µi, `i,vi) and (λj , rj ,wj), but here we have a
special case where the left and right directions `i and rj are chosen as the unit vectors.

https://github.com/nla-group/block_aaa
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with the matrices Ck ∈ Cm×n and Dk ∈ Cm×m chosen such that R`(λi) ≈ F (λi). We
assume that the zk and λi are pairwise distinct and consider the linearized problem

∑̀
i=1

∥∥∥∥∥
(

d∑
k=0

Dk

λi − zk

)
F (λi)−

d∑
k=0

Ck
λi − zk

∥∥∥∥∥
2

F

→ min
Ck,Dk

.

This least squares problem is solved by a trailing left-singular block vector given by
[C0, . . . , Cd, D0, . . . , Dd] of unit norm such that

[C0, . . . , Cd, D0, . . . , Dd]



−I
λ1−z0 · · · −I

λ`−z0
...

...
−I

λ1−zd · · · −I
λ`−zd

F (λ1)
λ1−z0 · · · F (λ`)

λ`−z0
...

...
F (λ1)
λ1−zd · · · F (λ`)

λ`−zd


has smallest possible norm. Provided that the matrices Dk are nonsingular, we
have Rd(zk) = D−1k Ck and in general the approximation is non-interpolatory. Such
approximants might be useful for the solution of nonlinear eigenvalue problems; see
also the appendix.

It is also possible to have matrix-valued ”support points” Zk ∈ Cm×m, result-
ing in

Rd(z) =

(
d∑

k=0

(zI − Zk)−1Dk

)−1( d∑
k=0

(zI − Zk)−1Ck

)
. (bary-D)

This leads to tangential interpolation determined by the eigenvalues and eigenvectors
of the matrices Zk. We do not further explore this form here.

4 Other block methods

In this section we list methods for the rational approximation of matrix-valued
functions using the barycentric formula (bary-A), as well as methods based on other
representations of their approximants. These methods will be compared numerically
in Sections 5 and 6.

Set-valued AAA (fast-AAA): The set-valued AAA algorithm presented in [19],
and similarly the fast-AAA algorithm in [18], applies the standard AAA algorithm
to each component of F using common weights and support points for all of them,
thereby effectively producing a barycentric interpolant in the form (bary-A).

Surrogate AAA: This method presented in [12] applies the standard AAA al-
gorithm to a scalar surrogate function f(z) := aTF (z)b, with vectors a,b chosen
at random. The resulting block interpolant is of the form (bary-A), obtained by
replacing the scalar values fk = f(zk) by the matrices Fk = F (zk).

RKFIT (block): The RKFIT algorithm has been generalized in [8] to the prob-

lem of finding a family r
[k]
d (z) = p[k](z)/q(z) of scalar rational functions such that

r
[k]
d (z) ≈ f [k](z) in the least squares sense over all z ∈ Λ. All computed functions
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r
[k]
d are represented in the RKFUN format and share the common scalar denomina-

tor q of degree d. In our setting, we simply associate with each (i, j) entry of F a
corresponding function f [k](z) and run RKFIT on that family.

Matrix Fitting: The extension of vector fitting to matrix-valued data has been
implemented in the MATLAB Matrix Fitting Toolbox available at

https://www.sintef.no/projectweb/vectorfitting/downloads/

matrix-fitting-toolbox/

As described in the manual [14] associated with the toolbox, the primary intention
of this software is the rational multi-port modelling of data in the frequency domain.
In particular, the toolbox deals with fitting so-called admittance values (known also
as Y parameters) and scattering values (known also as S parameters).

The fitted rational function is provided in the pole–residue form

Rd(z) = D +

d∑
k=1

Ck
z − ξk

,

or as an equivalent state space model

Rd(z) = D + C(zI −A)−1B,

where D,Ck ∈ Cn×n for k = 1, . . . , d, C ∈ Cn×nd, A ∈ Cnd×nd, and B ∈ Cnd×n. For
both representations, stable poles can be enforced. Note that the matrix elements
of Rd share a common set of d poles.

The above mentioned matrix fitting implementation [14] works with the elements
of the upper triangular part of the matrix samples Fi := F (λi) (i = 1, . . . , `),
i.e., the entries [Fi]a,b for a ≤ b, which are stacked into a single vector. Hence,
this implementation can be used only for symmetric matrix-valued functions. The
elements of the vector are fitted using an implementation of the “relaxed version”
of vector fitting [13], provided in the function vectfit3.m of the toolbox. The
main driver function VFdriver.m accepts as input arguments sample points Λ =
Λ = {λ1, . . . , λ`} on the imaginary axis in complex conjugate pairs (see Section 3.1,
page 7 of the toolbox manual). In our context of fitting on arbitrary discrete sets Λ
in the complex plane, this requirement might represent an inconvenience. Also, the
available driver seems to be intended to be run for even orders d only, although this
is not an inherent restriction of vector fitting.

Block Loewner framework: The extension of the Loewner framework to matrix-
valued functions is covered in [20]. Therein, the case of directionally-sampled matrix
data is treated in detail. Introducing left directional vectors `i ∈ Cm and right
directional vectors rj ∈ Cn, one defines a Loewner matrix L ∈ C`/2×`/2 and a
shifted Loewner matrix as follows:

Li,j =
`∗iF (xi)rj − `∗iF (yj)rj

xi − yj
,

Lsi,j =
xi`
∗
iF (xi)rj − yj`∗iF (yj)rj

xi − yj
.

The definition of the matrices V ∈ C`/2×n, W ∈ Cm×`/2 is also different from those
in the scalar case in (2), namely the directional vectors appear in the form

V ∗ =
[
F (x1)

∗`1, F (x2)
∗`2, . . . , F (x`/2)

∗``/2
]
,

W =
[
F (y1)r1, F (y2)r2, . . . , F (y`/2)r`/2

]
.

https://www.sintef.no/projectweb/vectorfitting/downloads/matrix-fitting-toolbox/
https://www.sintef.no/projectweb/vectorfitting/downloads/matrix-fitting-toolbox/
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The rational matrix-valued function Rd is then computed exactly as in the scalar
case (3) in the form

Rd(z) = WZ (X∗(Ls − zL)Z)−1X∗V,

where the truncated singular vector matrices X,Z are the same as before.

5 Numerical comparisons

In all our tests we assume that Λ = {λ1, . . . , λ`} and all the samples F (λi) are
given. We will compare the six algorithms introduced in the previous sections, using
MATLAB implementations provided by their authors whenever available. In order
to compare the algorithms with respect to their approximation performance, we use
the root mean squared error

RMSE =

(
1

`

∑̀
i=1

‖F (λi)−Rd(λi)‖2F

)1/2

.

As before, d generally refers to the order of the rational approximant Rd, but it is
the same as the degree for all algorithms except block-AAA. The RMSE values are
reported for various examples and different different orders d in Tables 1, 2, 3, 4,
and 5.

We also report timings for all algorithms under consideration. Although MAT-
LAB timings might not always be reliable, the differences in the runtimes are usually
large enough to give some indication of algorithmic complexity. In order to reduce
random fluctuations in the timings, we run each algorithm for 20 times and com-
pute the average execution time for a single run. All experiments were performed
on a desktop computer with 8 GB RAM and an Intel(R) Core(TM) i7-7500U CPU
running at 2.70 GHz.

5.1 Two toy examples

We first consider a rational function given by

F (z) =

[
2
z+1

3−z
z2+z−5

3−z
z2+z−5

2+z2

z3+3z2−1

]
.

The entries of F can be written with a common scalar denominator of degree d = 6,
e.g., q(z) = (z + 1)(z2 + z − 5)(z3 + 3z2 − 1). We use ` = 100 logarithmically
spaced samples of F on the imaginary axis in the interval [1, 100]i. As in addition
the samples of F are symmetric matrices, this example is suitable for the Matrix
Fitting Toolbox [14].

The RMSE values obtained with all discussed algorithms for varying orders d =
0, 1, . . . , 20 are shown in Figure 2 (left). Note that all methods eventually recover
the function accurately. The Loewner approach requires a slightly higher order than
the other methods, i.e., d1 = 8. The block-AAA algorithm correctly identifies F
when the order is d2 = 5.

Next, we modify the (1,2) entry of the function F by replacing its denominator
by z2 + z+ 5. The entries of F can then be written with a common denominator of
degree d = 8, e.g., q(z) = (z + 1)(z2 + z − 5)(z2 + z + 5)(z3 + 3z2 − 1). The RMSE
values are shown in Figure 2 (right). Now the VF approach fails as the modified
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Figure 2: Accuracy comparison for the two toy examples in Section 5.1. Left:
approximating a symmetric 2 × 2 matrix-valued function. Right: modified non-
symmetric case.

function F is no longer symmetric. The block-AAA algorithm again identifies F
correctly with an order of d1 = 5, while all other methods require a degree of d2 = 8
as expected.

5.2 An example from the MF Toolbox

We now choose an example from the Matrix Fitting Toolbox [14]. We use the file
ex2 Y.m provided therein, containing 300 samples of 3× 3 admittance matrices for
a three-conductor overhead line. The sampling points are all on the imaginary axis
within the interval 62.8319 · [1, 104]i. Figure 3 (left) depicts the magnitude of the
nine matrix entries over the sampled frequency range.

1 2 3 4 5 6

105

10-4

10-3

10-2

10-1

0 10 20 30 40 50
10-15

10-10

10-5

100

set-valued AAA
surrogate AAA
VF (5 iter)
VF (10 iter)
RKFIT (5 iter)
RKFIT (10 iter)
Loewner
block-AAA

Figure 3: Example with admittance matrices from the MF Toolbox, described in
Section 5.2. Left: entries of the 3× 3 matrix F (z) over the frequency range. Right:
accuracy performance.

Figure 3 (right) shows the RMSEs achieved by each of the tested algorithms
for varying orders d = 0, 1, . . . , 50. For two particular orders, namely d = 10 and
d = 20, we report the numerical RMSE values and the corresponding timings in
Table 1.

5.3 A first model order reduction example

We now consider the CD player example from the SLICOT benchmark collection
[1]. The mechanism to be modelled is a swing arm on which a lens is mounted by
means of two horizontal leaf springs. The challenge is to find a low-cost controller
that can make the servo-system faster and less sensitive to external shocks. The
LTI system that models the dynamics has 60 vibration modes, hence the dimension
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Table 1: Selected RMSE values and timings for all tested algorithms — MF Toolbox
example

RMSE Runtime (ms)
d = 10 d = 20 d = 10 d = 20

Set-valued AAA 6.522 · 10−3 1.707 · 10−3 14.7 24.7
Surrogate AAA 1.278 · 10−2 2.501 · 10−2 11.6 18.5
VF (5 iter) 1.374 · 10−2 6.143 · 10−3 38.3 69.4
VF (10 iter) 1.139 · 10−2 6.069 · 10−3 55.1 103.6
RKFIT (5 iter) 6.619 · 10−3 1.568 · 10−3 80.2 182.6
RKFIT (10 iter) 6.246 · 10−3 1.233 · 10−3 132.5 302.2
Loewner 1.795 · 10−2 1.675 · 10−2 21.7 33.3
block-AAA 1.421 · 10−4 8.625 · 10−12 122.3 288.0

n = 120. Additionally, there are m = 2 inputs and p = 2 outputs. See [10] for more
details.

The system’s transfer function is a rational function of size 2×2 which we sample
at 200 logarithmically spaced points in the interval [101, 105]i. Figure 4 (left) shows
the magnitude of the 4 matrix entries over the frequency range. Figure 4 (right)
shows the RMSE values achieved by each of the algorithms for varying orders d =
0, 1, . . . , 80. The numerical RMSE values and the corresponding timings for orders
d = 10 and d = 20 are listed in Table 2.

101 102 103 104 105
10-5

100

105

0 20 40 60 80

10-5

100

105 set-valued AAA
surrogate AAA
VF (5 iter)
VF (10 iter)
RKFIT (5 iter)
RKFIT (10 iter)
Loewner
block-AAA

Figure 4: CD player example from Section 5.3. Left: entries of the 2 × 2 matrix
F (z) evaluated at 200 points on the imaginary axis. Right: accuracy performance.

5.4 A second model order reduction example

We consider another model reduction example, namely the ISS model from the
SLICOT benchmark collection [1]. There, an LTI system is used as structural model
for the component 1R (Russian service module) in the International Space Station
(ISS). The state space dimension of the linear system is 270 with m = n = 3
inputs and outputs. The matrix transfer function of this system is sampled at 400
logarithmically spaced points in the interval [10−1, 102]i. In Figure 5 (left) we depict
the absolute value of the matrix entries. Figure 5 (right) shows the RMSE achieved
by each of the algorithms for varying orders d = 0, 1, . . . , 80, and selected numerical
RMSE values and corresponding timings for orders d = 10 and d = 20 are given in
Table 3.
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Table 2: Selected RMSE values and timings for all tested algorithms — CD player

example

RMSE Runtime (ms)
d = 10 d = 20 d = 10 d = 20

Set-valued AAA 2.258 · 103 8.564 · 10−2 15.3 16.9
Surrogate AAA 1.129 · 100 4.301 · 100 8.7 13.8
VF (5 iter) 1.702 · 101 1.675 · 101 35.7 42.4
VF (10 iter) 1.683 · 101 1.674 · 101 75.4 59.5
RKFIT (5 iter) 3.675 · 100 5.270 · 10−1 70.8 143.6
RKFIT (10 iter) 3.806 · 10−1 9.061 · 10−3 114 245.1
Loewner 1.011 · 100 1.784 · 10−2 11.3 17
block-AAA 6.897 · 10−2 2.863 · 10−2 66 166.9

10-1 100 101 102
10-10

10-5

100

0 20 40 60 80

10-14

10-10

10-6

10-2

set-valued AAA
surrogate AAA
VF (5 iter)
VF (10 iter)
RKFIT (5 iter)
RKFIT (10 iter)
Loewner
block-AAA

Figure 5: ISS example from Section 5.4. Left: entries of the 3 × 3 matrix F (z)
evaluated at 400 points on the imaginary axis. Right: accuracy performance.

5.5 A nonlinear eigenvalue problem

We consider the buckling example in [17], a 3×3 nonlinear eigenvalue problem that
arises from a buckling plate model. Since we are interested in the approximation
of non-rational functions by means of rational functions, we select only the non-
constant part of F (z). Hence, we consider the following 2 × 2 symmetric matrix-
valued function

F (z) =

 z(1−2z cot 2z)tan(z)−z + 10 z(2λ−sin 2z)
sin(2z)(tan(z)−z)

z(2λ−sin 2z)
sin(2z)(tan(z)−z)

z(1−2z cot 2z)
tan(z)−z + 4

 .
We choose 500 logarithmically spaced sampling points in the interval [10−2, 10]i.
Figure 6 shows the RMSE values achieved by the tested algorithms for varying
orders d = 0, 1, . . . , 30. As before, we report the numerical RMSE values and the
corresponding timings for two selected orders d = 10 and d = 20 in Table 4.

5.6 A scalar example with noise

In this experiment we investigate the effects of noisy perturbations on the approxi-
mation quality. As a test case, we use a scalar function f(z) = (z − 1)/(z2 + z + 2).
Only two methods will be considered for this experiment, namely RKFIT (a non-
interpolatory method) and AAA (an interpolatory method). We sample the function
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Table 3: Selected RMSE values and timings for all tested algorithms — ISS example

RMSE Runtime (ms)
d = 10 d = 20 d = 10 d = 20

Set-valued AAA 3.895 · 10−4 5.543 · 10−5 18.8 36.5
Surrogate AAA 4.662 · 10−4 3.209 · 10−5 14.6 24.9
VF (5 iter) 6.811 · 10−4 3.523 · 10−4 49.2 97.1
VF (10 iter) 6.729 · 10−4 3.016 · 10−4 72.3 135.4
RKFIT (5 iter) 1.555 · 10−4 2.345 · 10−5 101.8 240
RKFIT (10 iter) 8.735 · 10−5 1.507 · 10−5 164.9 363.8
Loewner 9.419 · 10−4 2.225 · 10−4 54.8 56.5
block-AAA 5.378 · 10−5 4.678 · 10−6 165.4 418.9

10-2 10-1 100 101
100

101

0 5 10 15 20 25 30

10-10

10-5

100
set-valued AAA
surrogate AAA
VF (5 iter)
VF (10 iter)
RKFIT (5 iter)
RKFIT (10 iter)
Loewner
block-AAA

Figure 6: The buckling problem in Section 5.5. Left: entries of the 2× 2 (symmet-
ric) matrix F (z) evaluated at 500 points on the imaginary axis. Right: accuracy
performance.

f(z) at 500 logarithmically spaced points in the interval [10−1, 101]i, and then add
normally distributed noise with a standard deviation of τ = 10−2 to these samples.

We compute rational approximants of degree d = 5 using the (scalar) RKFIT
and AAA algorithms. For RKFIT, we perform three iterations starting with the
default initialization of all poles at infinity. As it can be observed in Figure 7
(left), the red curve corresponding to the RKFIT approximants follows the noisy
measurements very well on average. At the same time, the blue curve corresponding
to the AAA approximant shows considerable deviations from the measurements. By
inspecting the deviation between the two rational approximants and the original
function f(z) in Figure 7 (right), we find that RKFIT approximation error for is
comparable to the noise level. The RKFIT approximant has effectively estimated
the additive noise rather accurately, which is also confirmed visually by the true
noise curve overlaid as a dotted line on top of the RKFIT error curve. On the other
hand, the approximation error attained by the AAA method is between 1–2 orders
of magnitude larger than the added noise level.

Finally, we vary the degree d = 0, 1, . . . , 5 and compute the corresponding RMSE
values of the RKFIT and AAA approximants. The results are depicted in Figure 8.
Note that the RKFIT method achieves lower RMSE values than the AAA method
and exhibits a more “regular” convergence. The RKFIT error stagnates at the noise
level of approximately τ = 10−2 when the degree d = 2 is reached. We believe that
this preferable approximation performance is due to the non-interpolatory nature of
RKFIT, and that AAA suffers from the fact that noisy values are being interpolated
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Table 4: Selected RMSE values and timings for all tested algorithms — buckling

problem

RMSE Runtime (ms)
d = 10 d = 20 d = 10 d = 20

Set-valued AAA 2.543 · 10−9 1.258 · 10−10 18.4 27.3
Surrogate AAA 7.640 · 10−5 3.132 · 10−4 20.7 31.8
VF (5 iter) 1.476 · 10−4 1.270 · 10−11 49.2 108.1
VF (10 iter) 1.476 · 10−4 2.216 · 10−11 63.6 146.4
RKFIT (5 iter) 2.924 · 10−10 2.969 · 10−12 112.9 269.1
RKFIT (10 iter) 2.924 · 10−10 2.389 · 10−12 171.7 341.2
Loewner 6.309 · 10−5 4.397 · 10−8 83.8 86.8
block-AAA 6.272 · 10−12 3.530 · 10−12 143.8 330.8

10-1 100 101

10-1

100 function
RKFIT
AAA

10-1 100 101

10-4

10-2

100

RKFIT
AAA
true noise

Figure 7: Scalar example with noisy measurements from Section 5.6. Left: the
original scalar function f(z) and the computed RKFIT and AAA approximants of
order d = 5. Right: the deviation between the two approximants and the original
function f(z).

(resulting in the observed oscillations of the approximants).

5.7 A second example with noise

For this case, we analyze a noisy version of the ISS model considered in Section 5.4.
We modify the original LTI system (A,B,C) by choosing C = BT in order to obtain
a symmetric transfer function and be able to apply the Matrix Fitting Toolbox.

The sample values are corrupted by additive normally distributed noise with
standard deviation τ = 10−2. In Figure 9 (left) we depict the magnitude of each
entry of the perturbed 3× 3 matrix transfer function.

The RMSE values for varying orders d = 0, 1, . . . , 80 are plotted in Figure 9
(right). Now, for d = 10 and d = 20 we record the numerical RMSE values for
all methods in Table 5. In accordance with our observations on the previous scalar
example (Section 5.6) we find that the non-interpolatory methods like RKFIT and
VF exhibit the most steady convergence behaviour, while the interpolation-based
methods (AAA, Loewner) produce approximants whose accuracy varies wildly as
the order d changes. The only methods that reliably attain an RMSE close to the
noise level of τ = 10−2 are RKFIT and VF, with RKFIT (10 iterations) consistently
attaining the lowest RMSE values for all considered orders.

Recall that we considered the original (nonsymmetric) ISS model without noise
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0 1 2 3 4 5
10-2

10-1

100
RKFIT
AAA

Figure 8: RMSE convergence of the approximants computed via RKFIT (non-
interpolatory) and AAA (interpolatory) for increasing degree d. The original func-
tion is rational of degree 2, and noise with a standard deviation of τ = 10−2 has
been added to perturb it.

in Section 5.4. As the timings of all methods are similar to those reported in Table 2,
we do not report them separately for the noisy case considered here.
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Figure 9: Noisy ISS example from Section 5.7. Left: the entries of the perturbed
3× 3 matrix F (z). Right: performance comparison.

6 Discussion

In this section we present a more detailed discussion of the numerical results re-
ported in Section 5. The discussion will address each method separately, taking into
consideration both the approximation quality and also the amount of time needed
to run the method (runtime).

6.1 Set-valued AAA

A main benefit of the set-valued AAA algorithm is its fast runtime. With one
exception, the set-valued AAA method was the second fastest method in our tests,
surpassed only by the surrogate AAA method.

With respect to the approximation quality, this method produced models with
similar accuracy to RKFIT for the example in Section 5.2 (see Figure 3, right).
Similar behaviour is observed for the following three examples, producing good and
very good results. For the example in Section 5.3 it even produced results comparable
in accuracy to the block-AAA method when the order d was very high; see Figure 4
(right). For the examples in Sections 5.6 and 5.7 with added noise, however, the
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Table 5: RMSE values for all tested methods - noisy ISS example

d = 10 d = 20

Set-valued AAA 1.124 · 100 1.857 · 100

Surrogate AAA 1.961 · 100 7.438 · 10−1

VF(5 iter) 5.556 · 10−1 4.702 · 10−2

VF (10 iter) 5.557 · 10−1 4.693 · 10−2

RKFIT (5 iter) 3.197 · 10−1 5.862 · 10−2

RKFIT (10 iter) 6.280 · 10−2 3.798 · 10−2

Loewner 4.998 · 10−1 4.140 · 10−1

block-AAA 2.721 · 10−1 1.121 · 10−1

method produced poor results. In particular for the noisy ISS example, the RMSE
values produced by the set-valued AAA method are the highest (see Figure 9, right).
As discussed above, we believe that the reason for this poor approximation is the
interpolation of noisy data values.

6.2 Surrogate AAA

The surrogate AAA method performs best in terms of timings, and it might be an
attractive approach when the problem dimension (m,n) is very large and approxi-
mation accuracy is not the main concern. The algorithm produces, in general, quite
poor approximants compared to the other methods. For the example in Section 5.2,
it did not reach an RMSE value below 10−9, while the set-valued AAA, RKFIT, and
block-AAA methods were able to converge below 10−13; see Figure 3 (right).

A similar behaviour was observed for both MOR examples in Section 5.3 and
5.4. For the later, the method was the second worst (after VF). For the buckling
plate example in Section 5.5 it produced the poorest approximation results (see
Figure 6). Finally, for the ISS example with noise in Section 5.7, we observed that the
method produced quite poor results, comparable to those produced by the Loewner
framework.

6.3 Vector Fitting

For this method we used the implementation provided in [14]. One limitation of this
toolbox is that it can only be applied for symmetric matrix-valued functions, i.e.,
the samples must be symmetric matrices. Consequently, this implementation of VF
could not be applied for two examples, namely the ones in Sections 5.3 and 5.4.

For the example in Section 5.2 we observed that the VF method produced poor
approximants compared to some of the other methods. On the other hand, for the
buckling plate example in Section 5.5 the VF method surpassed three methods and
reached an RMSE of about 10−12 for the degree d = 30 (see Figure 6). Note also
that VF together with RKFIT are the only methods that reliably attain an RMSE
value (τ = 0.03) close to that of the noise level (τ = 10−2), as could be observed in
Figure 9 (right).

Another observation is that it is generally not worth performing 10 VF iterations
instead of just 5. We did not observe any significant approximation enhancement and
the total runtime of VF will approximately double for 10 VF iterations. Throughout
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the experiments performed in Section 5, we found that VF was generally slower than
the set-valued and surrogate AAA methods, but faster than the RKFIT and block-
AAA methods.

6.4 RKFIT

For the RKFIT method we used the implementation in the RKToolbox. For each
experiment, we ran the RKFIT algorithm for a fixed prescribed number of iterations.
When stopping after five iterations, RKFIT was the second slowest method for the
experiments in Sections 5.2, 5.3, and 5.5 (faster only than the block-AAA method)
and the slowest for the experiments in Sections 5.4 and 5.7.

On the other hand, the RKFIT method proved to yield the second lowest RMSE
values for the first five experiments, beaten only by block-AAA. This is not surpris-
ing given that RKFIT produces approximants Rd where all matrix entries share a
common scalar denominator of degree d, say, while a block-AAA approximant of the
same order d can have up to dm singularities. Hence, among the scalar denominator
methods, RKFIT was the most accurate. Moreover, RKFIT proved to be the most
robust when dealing with noise. For both variants (with 5 and 10 iterations), the
RMSE values obtained by RKFIT were the lowest among all methods (see Figure 9,
right), comparable only to those of VF.

The runtime of the RKFIT method linearly depends on the number of iterations.
It was observed in some cases that the RMSE values would not significantly decrease
when increasing the number of RKFIT iterations from five to ten. For example, it
can be seen in Figure 3 (right) and also in Figure 6 (right), that the two RMSE curves
for RKFIT (5 iterations) and RKFIT (10 iterations) are practically indistinguishable.
In practice, a dynamic stopping criterion based on the stagnation of the RMSE
should therefore be used.

6.5 The Loewner framework

The Loewner framework, as introduced in Section 2.4, is the only direct method out
of the six included in this study, i.e., it does not rely on an iteration. This could be an
advantage with respect to the speed of execution. In general, this method performs
very well in terms of running times for small, and medium to large data sets. The
reason for this is that it relies on computing a full singular value decomposition of
a matrix with dimension half of the data set.

It was observed that, with some exceptions, the Loewner framework was the third
fastest method, surpassed only by the set-valued and surrogate AAA methods. This
is not surprising since all the three methods rely on multiplying the matrix-valued
samples with left and right tangential vectors, thereby reducing the dimension of
the SVD problem to be solved at each iteration.

In terms of approximation accuracy, the Loewner framework produced rather
poor results as compared to other methods. For example, in Section 5.2 it was
observed that the RMSE values achieved by this method were only lower than those
of VF (see Figure 3, right). For the experiments in Sections 5.4 and 5.5, it produced
results better only than those of surrogate AAA. Note that, for the CD player
example in Section 5.3, the approximation quality was comparable to that of the
set-valued AAA method and the RKFIT (with 5 iterations). Finally, the Loewner
method failed for the example with added noise (see Figure 9).
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6.6 Block-AAA

The block-AAA method introduced in Section 4 is the only method in this com-
parison which produces rational approximants with nonscalar denominators. As
such, the approximation quality obtained for a certain order d might not be fully
comparable to that of another method. In terms of the execution times, the method
proved to be the second slowest for the examples in Sections 5.2, 5.3, and 5.5 (in
these cases, only the RKFIT method with 10 iterations was slower). Additionally,
for the example presented in Section 5.4, the block-AAA method was indeed the
slowest. The reason for this inefficiency is the repeated solution of the SVD problem
in Step 5 of the algorithm (see Figure 3), involving a matrix of size m(j+ 1)× `n at
each iteration j = 0, 1, . . . , d, as well as the greedy search in Step 2 which requires
the evaluation of Rj−1(z) at all remaining sampling points in Λ(j) to determine the
next interpolation point zj . We have tried to speed up Step 5 using the updating
trick of the SVD decomposition described in [19], but noticed some numerical insta-
bilities for sufficiently large degrees. We have therefore not used any SVD updating
strategy for the block-AAA results reported here.

In terms of approximation accuracy, the block-AAA method usually produced
the best results for a given order d, with the noisy ISS MOR example being the
only exception. A representative illustration is Figure 3 (right), where block-AAA
requires an order of d = 25 to reach an RMSE value of 10−14, while RKFIT and
the set-valued AAA method require d = 50 (twice the order). The other methods
do not even reach this accuracy. A similar behaviour is observed in Figure 4 (right)
for the CD player example and in Figure 5 for the ISS example. For the noisy data
experiment in Section 5.7, block-AAA was outperformed by RKFIT and, again, we
believe this is due to RKFIT’s non-interpolatory character.

7 Conclusion

We proposed an extension of the AAA algorithm to the case of matrix-valued inter-
polation. The block-AAA method uses a new generalized barycentric representation
of the interpolant with matrix-valued weights. Our numerical experiments indi-
cate that this modification allows for the computation of accurate approximants of
low order. Having a low order might be particularly interesting in cases where the
approximant needs to be linearized for further processing, e.g., in the context of
nonlinear eigenvalue computations. In the appendix we show how the generalized
barycentric interpolants can be linearized into a corresponding eigenvalue problem
of size proportional to the order. The use of block-AAA for this application will be
explored in future work. In terms of algorithmic complexity and runtime, the block-
AAA method is currently inefficient and can be practically applied only for problems
of small dimensions. Further work is required to improve its performance. One ap-
proach to deal with this shortcoming could be to replace the full singular value
decomposition performed at each step of block-AAA with a CUR decomposition
(selecting only a small number of relevant columns and rows in the block Loewner
matrix), and to somehow restrict the search for the next interpolation point to a
smaller set.

Our comparisons indicated that there was no method that always performed
best with respect to accuracy and runtime. Interpolation-based methods are often
cheaper to run, but they may suffer in the presence of noise for which approximation-
based methods perform better. It seems fair to say that, despite the exciting recent
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developments in the area, there is still a lot of work to be done to design robust and
fast methods for the rational approximation of matrix-valued functions.
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Appendix: Linearization of generalized barycentric forms

While we have been primarily concerned with evaluating the various algorithms
in terms of their RMSE approximation performance, in the context of nonlinear
eigenvalue problems one also requires the computed approximants to be suitable for
pole and “root” computations. More precisely, in nonlinear eigenvalue problems one
is interested in the points ξ ∈ C where one or more entries of the rational function
Rd(z) have a pole, and the nonlinear eigenvalues λ ∈ C where Rd(λ) is a singular
matrix. Naturally the latter problem requires Rd(z) to be a square matrix.

Let us discuss the suitability of the matrix-valued barycentric forms in Section 3
for nonlinear eigenvalue computations based on linearization; see, e.g., [16, Sec-
tion 6]. First note that (bary-A) and (bary-B) are special cases of (bary-C), respec-
tively: we obtain (bary-A) from (bary-C) by setting Ck = wkF (zk) and Dk = wkI,

https://www.sintef.no/projectweb/vectorfitting/downloads/matrix-fitting-toolbox/
https://www.sintef.no/projectweb/vectorfitting/downloads/matrix-fitting-toolbox/
http://eprints.maths.manchester.ac.uk/
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while we obtain (bary-B) from (bary-C) by setting Ck = WkF (zk) and Dk = Wk.
Hence it is sufficient to focus on the most general representation (bary-C).

If λ ∈ C is a nonlinear eigenvalue of Rd(z), then clearly Rd(z)
−1 has a pole at z =

λ, and vice versa. It is therefore sufficient to be able to find the nonlinear eigenvalues
of Rd defined in (bary-C) as those points λ ∈ C for which the “numerator”

N(z) =

d∑
k=0

wk[Ck/wk]

z − zk∑̀
k=0

wk
z − zk

is a singular matrix. It is well known that for given support points z0, z1, . . . , zd, we
can choose nonzero weights w0, w1, . . . , wd such that N(z) is an interpolating matrix
polynomial:

wk =
1∏

j 6=k(zj − zk)
;

see, e.g., [9, eq. (3.2)] and [22, eq. (3.4)]. With this choice of the weights, we
can immediately apply [22, Thm. 4.8], which states that the matrix pencil L(z) =
L0 − zL1, where

L0 =


z1C0 z2C1 · · · zd−1Cd−2 z`Cd−1 + zd−1θ

−1
d Cd

z0I −z2θ1I
. . .

. . .

zd−3I −zd−1θd−2I
zd−2I −zdθd−1I


and

L1 =


C0 C1 · · · Cd−2 Cd−1 + θ−1d Cd
I −θ1I

. . .
. . .

I −θd−2I
I −θd−1I


with θj = wj−1/wj for j = 1, . . . , d is a strong linearization of N(z). In other words,
the nonlinear eigenvalues of N(z) can be computed as the generalized eigenvalues
of the matrix pair (L0, L1). As long as Rd does not also have a pole at a nonlinear
eigenvalue λ of N(z), λ will be a nonlinear eigenvalue of Rd(z).

Finally, it is perhaps interesting to note that we have freedom to choose the
nonzero weights wj and this choice will likely influence the numerical stability of the
linearization (L0, L1). This might be explored in some future work.
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