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Abstract

We introduce a data-driven method and shows its skills for spatiotemporal prediction of high-

dimensional chaotic dynamics and turbulence. The method is based on a finite-dimensional approx-

imation of the Koopman operator where the observables are vector-valued and delay-embedded,

and the nonlinearities are treated as external forcings. The predictive capabilities of the method

are demonstrated for well-known prototypes of chaos such as the Kuramoto-Sivashinsky equation

and Lorenz-96 system, for which the data-driven predictions are accurate for several Lyapunov

timescales. Similar performance is seen for two-dimensional lid-driven cavity flows at high Reynolds

numbers.
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I. INTRODUCTION

Predicting the spatiotemporal evolution of high-dimensional and nonlinear dynamical

systems, such as turbulent flows, has been of long-standing interest in science and engineering

[1, 2]. For example, forecasting turbulent flows plays a key role in controlling and optimizing

various engineering systems (e.g. wind farms) and predicting the state of the atmosphere

and/or ocean (e.g. day-to-day weather) [3–5]. For many of these problems, an objective of

particular interest and wide-ranging applications is predicting extreme events at some useful

lead time [6–8].

Data-driven prediction of chaotic dynamics and turbulent flows has received significant

attention in recent years, in particular, for problems in which the high-dimensional, non-

linear governing equations cannot be solved fast enough to be useful (e.g. for online con-

trol/optimization), or in which some of the physical processes (and thus the governing equa-

tions) are not fully understood but observational data from the past are available (e.g. the

weather/climate systems) [9–14]. Rapid advances have been recently made in this area

based on using techniques from machine learning or approximating the Koopman operator.

These approaches involve using the past data to build/train a model that can produce accu-

rate and fast predictions about the future spatiotemporal evolution of the flow. Promising

results for prototypes of chaotic dynamics, e.g. Lorenz-63/96 and Kuramoto-Sivashinsky

(K-S) equations, or classical fluid examples such as vortex shedding past a cylinder and ho-

mogenous isotropic turbulence, have been reported using machine learning methods such as

long short-term memory (LSTM) networks, physics-informed neural networks, an reservoir

computing [15–22].

The Koopman operator [23], which is an infinite-dimensional linear operator that shifts

observables forward in time, offers a powerful framework for analyzing and tackling nonlinear

systems such as fluid flows [24, 25]. Data-driven, finite-dimensional approximations of the

Koopman operator, using methods such as dynamic mode decomposition (DMD) and its

variants [26–32], have been extensively used to analyze various flows in recent years [25, 33].

Coupling the Exact DMD of Tu et al. [28] with the delay-embedding theorem of Takens [34],

Arbabi and Mezić [30] introduced the Hankel-DMD method and proved its convergence

to the Koopman operator. Korda and Mezić [35] have utilized this method for the short-

term forecasting of a forced Van der Pol oscillator as well as for the feedback control of a
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bilinear DC motor. This concept was further employed by Arbabi et al. [36] to develop a

predictive-control framework for the purpose of stabilizing a two-dimensional (2D) lid-driven

cavity flow that has bifurcated to a limit cycle, with emphasis on the delay-embedding of

measurements to reduce the number of placed sensors.

Furthermore, Giannakis and collaborators have shown that projecting the delay-embedded

data onto the eigenfunctions of Laplace-Beltrami [37] or Koopman operator [12] leads to

the frameworks which are skillful in model reduction, mode decomposition and forecasting

of time series for ergodic dynamical systems with strongly nonlinear phenomena such as

intermittitencies or energy bursts. Brunton et al. [38] have built another successful data-

driven model, skilled in detecting the low-probability events of chaotic dynamics, based on

the sparse identification of nonlinear dynamics (SINDy) described in Brunton et al. [39],

and the representation of chaos as an intermittent forcing in the form of the principal com-

ponent (PC) of the last retained mode given by the singular value decomposition (SVD)

of the delay-embedded data. They notice that the statistics of this intermittent forcing

is non-Gaussian, and it is connected to the PCs of other retained modes present in the

state vector in a nonlinear fashion. The model, referred to as Hankel alternative view of

Koopman (HAVOK) by the authors, then accurately predicts the lobe-switching events of

various chaotic attractors such as Lorenz-63, Rössler and double-pendulum, one time unit

ahead of their occurrences.

The corresponence between the aforementioned Koopman-based methods which benefit

from delay-embedded measurements and the system identification method matrix pencil

(which is called Loewner method when used in frequency-domain) in time-domain is mathe-

matically established by Ionita and Antoulas [40]. This approach has been recently used for

data-driven model reduction of nonlinear systems such as Burgers’ equation [41–43]. The un-

derlying connections between the two methods have been further investigated in Pogorelyuk

and Rowley [44].

Despite the success of previous models, data-driven spatiotemporal prediction of high-

dimensional and highly chaotic systems for reasonably long times is still the subject of on-

going research. Towards this end, we develop a data-driven Koopman-based method which

models the nonlinearities as external forcings (actuations), while the observables forming

the state vector are vector-valued, delay-embedded and linear. The unknown maps (matri-

ces) appearing in the method are found using the method of Proctor et al. [45], known as
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dynamic mode decomposition with control (DMDc). The paper is organized as follows. The

mathematical derivation of the method and its implementation for some well-known proto-

types of chaos are discussed in Sec. II. Further results regarding the predictive capabilities of

the method for chaotic dynamical systems (Lorenz-63, K-S and Lorenz-96) as well as a fluid

test case (a 2D lid-driven cavity flow at high Reynolds numbers) are presented in Sec. III.

Section IV summarizes the methodology and the findings, and outlines the prospects of the

proposed method.

II. METHODOLOGY AND APPLICATIONS TO SOME CHAOTIC TEST CASES

In the following, we present a Koopman-based data-driven method, which enables the spa-

tiotemporal prediction of chaotic dynamics such as the K-S equation and Lorenz-96 system.

We also shed some insights into the accurate representation of nonlinearity. General guides

regarding the proper selection of the method’s parameters are also provided in Appendix A.

A. A data-driven predictive framework for the Kuramoto-Sivashinsky equation

We use the K-S equation, a widely-used prototype for spatiotemporal chaotic systems, as

an example to formulate our proposed data-driven method. The K-S equation is described

by

∂u

∂t
= −u∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
+ η cos(2πx/δ) , (1)

where u denotes the K-S variable. The last term in Eq. (1) is a periodic forcing which

causes spatial inhomogeneity [18]. Here, we take δ = L/2, where L is the domain length.

The choice for the number of collocation points n depends on the system’s chaoticity, which is

increased by the domain length L, so n will be reported individually for each case. A periodic

boundary condition is enforced, and a pseudospectral solver with the classic fourth-order

Runge-Kutta (RK4) is used for integrating (1), to construct training sets with N = 70000

data points and sampling interval τ = 0.02τd, where τd is the decorrelation timescale of the

principal component of the leading POD mode (PC1). The training set refers to the part of

the dataset used for building the Koopman-based predictive method, which is fully separate
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from the dataset used for examining the performance of the model, called the testing set.

The length of our training sets and sampling intervals are identical to those of Pathak et al.

[18]. We have also constructed 20 independent testing sets, each with 30000 samples, to

evaluate the performance of the proposed data-driven methods.

Relative errors are calculated as

E(t) = ‖upred − unum‖2 / ‖unum‖2 , (2)

and are averaged over all these testing sets. Note that ‖ ‖2 denotes the Euclidean norm,

and upred and unum represent the values given by the data-driven predictive methods and

the pseudospecral numerical solver, respectively, while the latter is taken as ground truth.

Another measure of error can also be defined as Eave = 1/tl
∫ tl
0
E(t)dt, which is simply the

temporal mean of E(t) from the starting point of prediction (t = 0) to the divergence time

tl, where tl corresponds to the time at which E first exceeds 0.3.

Suppose N samples of vector-valued observables ui obtained from running the numerical

solver are arranged in the Hankel matrix H

H =


u1 u2 . . . uN−q+1

u2 u3 . . . uN−q+2

...
... . . .

...

uq uq+1 . . . uN

 , (3)

where ui ∈ Rn is sampled at t = iτ , and q is the delay-embedding dimension. The size of H

is then (n× q)× (N − q + 1). Following the Hankel-DMD formulation of Arbabi and Mezić

[30], we construct

X = H(:, 1 : N − q) , Y = H(:, 2 : N − q + 1) , (4)

and conduct reduced SVD to obtain X = USV∗, in the subspace of leading r singular vectors

(∗ indicates conjugate transpose). The data-driven approximation of Koopman operator

using Hankel-DMD is computed as [30]

AHDMD = U∗YVS−1, (5)

which has the size r × r.

Once AHDMD is calculated, a future vector-valued observable um+1, that was not part of

the training set, can be predicted from

Um+1,r = AHDMD Um,r , (6)
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where Um+1,r, a vector of length r, is Um+1 = [um−q+2 um−q+3 · · · um+1]T (T indicates

transpose), a vector of length n× q, projected onto the subspace of first r singular vectors.

The first block of Um+1 is then taken as the prediction of the new state. All values in

Um = [um−q+1 um−q+2 · · · um]T and its projection onto the subspace of retained singular

vectors, Um,r, are either known from the initial condition or already predicted. We notice

that the first q − 1 predictions are the reconstruction of initial condition, and only the qth

prediction is the forecast value of the future state. Hereafter, we refer to this method, which

is thoroughly based on the Hankel-DMD method introduced by Arbabi and Mezić [30], as

M1.

One may suspect that the linear combination of a finite number of DMD modes, specifi-

cally those given by a fairly short dataset of linear observables, cannot accurately reproduce

the nonlinear characteristics of a chaotic dynamics for a reasonably long period of time.

Prior to investigating this hypothesis and the performance of M1, we attempt to develop a

modified method (M2), which is specialized to tackle the issue of the nonlinearity. Inspired

by HAVOK model of Brunton et al. [38], in which adding a forcing term to the linear model

is seen to approximate the nonlinear dynamics more accurately and yield better predictions,

we incorporate the nonlinear effects in the form of external forcings, so that any dynamical

system can be modeled as

um+1 = Aum + Bfm . (7)

Unlike [38] which uses the last retained singular vector as forcing, we choose the forcing term

in a physics-driven fashion. For instance, when some knowledge of the governing equations

is available, or one can intuitively speculate the form of nonlinearity, the forcing term can

be chosen according to that knowledge or intuition. Consequently, for the K-S equation,

forcing vector f i includes the square of u at the same snapshot and every grid point, i.e.

f i =
[
(ui1)

2 (ui2)
2 · · · (uin)2

]T
. The delay-embedded form of Eq. (7) reads

Um+1 = AUm + BFm , (8)

where the definition of Um is the same as before. Now the forcing vectors should also be
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sampled at each snapshot and sorted in the following Hankel matrix F

F =


f 1 f 2 . . . fN−q

f 2 f 3 . . . fN−q+1

...
... . . .

...

f q f q+1 . . . fN−1

 . (9)

Note that however for the K-S system the state vector u and the forcing term f are of

the same size, but in general the forcing vector could be much larger and of the length

n′ � n, depending on the form of nonlinearities and the number of nonlinear processes in

the dynamical system. The size of F is thus (n′ × q)× (N − q).

The unknown maps A and B are then found using DMDc method presented in Proctor

et al. [45], which simply minimizes the Frobenius norm ‖Y − AX − BF‖F to achieve

A = Û∗YṼS̃−1Ũ∗1Û ,

B = Û∗YṼS̃−1Ũ∗2 . (10)

Here, Y = ÛŜV̂∗, while the truncation value is taken as r, i.e. Û ∈ Rnq×r, Ŝ ∈ Rr×r

and V̂ ∈ R(N−q)×r, and [X F ]T = ŨS̃Ṽ∗ with the truncation value selected as p, so that

Ũ ∈ R(n+n′)q×p, S̃ ∈ Rp×p and Ṽ ∈ R(N−q)×p. Ũ1 and Ũ2 are made up of the first nq and

the remaining n′q rows of Ũ, respectively. Note that A and B are calculated in a reduced-

dimension subspace, and they have the respective sizes r×r and r×nq. Similar to M1, once

training is done and the unknown maps are calculated, the first q data points in the testing

set will be used to initialize the state vector, i.e. these points are not predicted. Nonetheless

all results shown after t = 0 are newly predicted values by the data-driven methods, and were

not part of the initial condition. Figure 1 summarizes the training and forecasting steps of

this method.

Figure 2(a) displays the temporal evolution of u(x = 8, t) predicted by M1 (dashed

magenta) and M2 (dashed red), and compares them to the actual data (truth) obtained

via the numerical integration of Eq. (1). We reiterate that all results shown for M1 and

M2 after t = 0 are new forecast values, and were not used during training and building the

model or as a part of the initial condition. Time is scaled by Lyapunov timescale 1/Λmax,

where the leading Lyapunov exponent Λmax is calculated following Wolf et al. [46]. As

shown in this figure, predictions rendered by the conventional Hankel-DMD method (M1)
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FIG. 1. Schematic of data-driven method M2: (a) Training on vector-valued and time-delay-

embedded observables yields unknown matrices A and B, while nonlinearites are modeled as exter-

nal forcings and DMDc of Proctor et al. [45] is utilized. (b) Matrices A and B can then be employed

for the spatiotemporal forecasting of the dynamical system. All vectors on the right-hand side are

either known from initial condition or already predicted. Note that f i is a function of xi.

diverge from the testing data fairly rapidly in less than a Lyapunov timescale, and after

that, predictions gradually decay to zero. This can be attributed to the fact all eigenvalues

of AHDMD fall inside the unit circle, with most of them located in its vicinity, meaning all the

modes corresponding to these eigenvalues are decaying (Fig. 3(a) and (c)). To distinguish

between the eigenvalues more clearly, Fig. 3 shows the eigenvalues λ of exp(τA). Therefore,

the eigenvalues of A inside/outside the unit circle correspond to the eigenvalues of exp(τA)

to the left/right of the imaginary axis. It is noteworthy that the special case of q = 1, leading

to the conventional Exact DMD, does not reveal any predictive skill, so that its predictions

become inaccurate in less than ten iterations, or 0.1/Λmax. On the other hand, the inclusion

of nonlinearity in the form of external forcings has substantially improved the performance

of the predictive framework so that, compared to the best results of M1, prediction horizon

tl is increased by a factor larger than 10. However, usually a few of eigenvalues of A given

by M2 (six in the case with L = 22 and eight in the case with L = 100) fall outside the unit

circle (Figs. 3(b) and (d)), indicating that the dynamical system has some growing modes,

the nonlinear part of the predictive method (Bf) suppresses the unbounded growth of these

modes. This is fully compatible with the underlying physics of nonlinear dynamical systems,

in which the unbounded growth of the unstable modes is suppressed by the energy-conserving
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FIG. 2. (a) Predictions given by M1 (dashed magenta) and M2 (dashed red) for the time series of

u at x = 8, compared to the ground truth obtained via the numerical integration of Eq. (1) (solid

blue). Note that y-axis is normalized by the standard deviation s of testing data. (b) Variation

of relative error E rendered by each method with time scaled by Lyapunov timescale 1/Λmax.

Again, magenta and red lines represent the results of M1 and M2, respectively, while the vertical

dotted and dashed lines mark the time at which the prediction of each method diverges from the

actual data. The studied K-S system is unforced with the domain length L = 22, the number

of collocation points n = 64, and the attractor dimension DKY = 5.20, computed based on the

Kaplan-Yorke formulation [50].

nonlinear interactions that transfer energy to the stable modes where the dissipation occurs

[47–49]. The close match between the blue circles and red crosses in the right panels of

Fig. 3 also shows that halving the length of training set does not change the eigenvalues

identified by M2, confirming that these eigenvalues are captured robustly, and the growing

modes are integral to the dynamical system. We also highlight that training in time-delay

coordinate is a crucial part of M2 as choosing q = 1 for this method yields predictions that

diverge from the actual data in less than 0.4/Λmax.
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FIG. 3. Eigenvalues λ of exp(τA) for K-S equations with L = 22 (top) and L = 100 (bottom),

normalized by sampling frequency 1/τ , and calculated via (a) M1 with (r, q) = (2500, 50), (b)

M2 with (r, p, q) = (400, 400, 20), (c) M1 with (r, q) = (2200, 40), and (d) M2 with (r, p, q) =

(800, 800, 10). The blue circles show the eigenvalues provided by the entire training set with 70000

data points, while the red crosses in panels (b) and (d) indicate the eigenvalues identified when

half the training set is used. The close agreement between the two suggests that the eigenvalues

of the systems are captured robustly. The vertical dotted lines in these panels mark the imaginary

axis. For clarity, only the first 50 eigenvalues are depicted, and the smaller panels within panels

(b) and (d) focusing on the eigenvalues of M2 with growing modes are also included. We notice

that except for the few leading eigenvalues, modes given by M2 decay at much faster rates than

those given by M1. The results of the case with L = 100 will be further discussed in Sec. III B.
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B. Accurate representation of nonlinearity beyond squared terms

Here, we consider a different commonly-explored prototype for chaotic dynamics, Lorenz-

96 system [51], whose governing ordinary differential equation (ODE) is given by

Ẋj = (Xj+1 −Xj−2)Xj−1 −Xj + F , (11)

where X and overdot indicate the Lorenz variable and time derivative, respectively, and j

varies from 1 to n = 40. The external forcing term F determines the level of chaoticity.

Here, we take F = 16. Again, RK4 along with periodic boundary condition is used to

numerically integrate the system, and to build training sets with N = 100000 data points

uniformly sampled at every τ = 0.02τd.

For this test case, although the nonlinearity still has a quadratic form, constructing the

forcing vector f using only X2
j yields short prediction horizons (see the point corresponding

to J = 0 in Fig. 4(a)). Seemingly, this is owing to the different nature of nonlinearities

appearing in ODE (11) of Lorenz-96 compared to those in the K-S equation; where the

former involves terms which are the product ofX at some distinct grid points, e.g. Xj−1Xj+1.

Motivated by the underlying dynamics of Lorenz-96, we construct the forcing vector so that

in addition to X2
j , it involves terms in the form of [XjXj+1 XjXj+2 · · · XjXj+J ], where J

indicates the number of ‘neighboring’ points incorporated for building the forcing vector.

The vector hence finds the following form

fT =
[
X2

1 X1X2 · · · X1XJ+1 · · · X2
j XjXj+1 · · · XjXj+J · · · XnXn+J

]
. (12)

Note that when the neighboring points fall outside the domain, boundary conditions are

invoked.

Figure 4(a) demonstrates how the prediction horizon tl changes as the number of neigh-

boring points in the forcing vector grows. An abrupt jump in tl is observed when J increases

from 1 to 2, which is consisent with the underlying ODE of Lorenz-96 in which nonlinear

terms in the form of Xj−1Xj+1 are present. Further increase in J results in a gradual decline

in tl, as the size of forcing vector, and subsequently, its coefficient matrix B, unnecessarily

grow, which leads to less accurate approximations of the components of this matrix.

In the problems for which no knowledge of the underlying dynamics is available, a fully

data-driven alternative approach for detecting the nonlinearities can be sought by calculating
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FIG. 4. (a) Variation of prediction horizon tl with the number of neighboring points J used for

constructing quadratic forcing terms. (b) Pearson correlation coefficient (PCC) between the time

series of the temporal derivative at a certain point (Ẋ20) and the time series of X at every grid

point. The horizontal dashed line corresponds to the threshold 0.1 for choosing the neighboring

points. For the Lorenz-96 system under consideration, the number of grid points, external forcing

term and attractor dimension respectively equal n = 40, F = 16 and DKY = 32.

the Pearson correlation coefficients (PCC) between the time series of the temporal derivative

at a certain point ẊI and the time series of Xj at all points as

PCC =
E
[
(Xj − µXj

)(ẊI − µẊI
)
]

sXj
sẊI

, (13)

where µ and s denote the mean and standard deviation of each time series, respectively,

and E represents expecation operator. However, due to the chaoticity of the system, the

temporal evolution of Lorenz variable at all grid points are interconnected, the dependence

is anticipated to be stronger, when according to ODE (11), ẊI is directly a fucntion of Xj.

Consequently, as can be seen in Fig. 4(b), PCC is substantially larger for grid point I or the

points in one- or two-grid-point distance from I, since terms involving these points explicitly

appear in the underlying ODE of Lorenz-96. The points above the threshold (dashed red line

in Fig. 4(b)) can then be selected as the neighboring points while constructing the forcing

vector. We remark that this data-driven approach solely identifies the neighboring points,

and does not provide any information with regard to the order of nonlinearity. Once the
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neighboring points are detected, one can obtain low- to high-order monomials by multiplying

the Lorenz variables at the neighboring points with each other, and stack up these terms to

build the forcing vector. The highest-order term required for constructing the forcing vector

can be determined by the investigator’s speculation or intuition.

III. TESTING THE PERFORMANCE OF METHOD M2 FOR VARIOUS CHAOTIC

DYNAMICAL SYSTEMS

In the following section, we present the detailed results of the Koopman-based method

that treats the nonlinearities as external actuations (M2), when it is used to predict the

spatiotemporal evolution of a variety of chaotic systems, from the simple and commonly-

used Lorenz-63 to high-dimensional and highly chaotic K-S and Lorenz-96 systems. The

section is then concluded by a more complex and larger-scale fluid example (a 2D lid-driven

cavity flow at Re = 20000 and 30000). For all examples, prediction horizon tl and averaged

error Eave are calculated based on the definitions and procedures introduced in Sec. II.

A. The Lorenz-63 system

Lorenz-63, one of the most well-known prototypes of chaotic dynamics, was originally

developed by Lorenz [1] as a simplified mathematical model for the atmospheric convection

from the relatively complicated equations of motion and heat transport for an incompressible

Boussinesq flow. The dynamics of the Lorenz-63 system is characterized by the following

ODEs

ẋ = σ(y − x) ,

ẏ = x(ρ− z)− y , (14)

ż = xy − βz ,

where σ and ρ represent the Prandtl and scaled Rayleigh numbers, respectively, and β is

related to the dimensions of the atmospheric layer. Following Lorenz [1], we take σ = 10,

ρ = 28 and β = 8/3, for which the system reveals a chaotic beahaviour with a strange,

butterfly-like attractor. The same RK4 scheme as Sec. II is used to numerically integrate

ODEs (14), and to construct training sets with 100000 data points, which are uniformly
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FIG. 5. Predictions of the present method M2 for the temporal evolution of the variables in a

Lorenz-63 system with σ = 10, ρ = 28 and β = 8/3, where the method parameters are selected

as (r, p, q) = (60, 120, 50). For this Lorenz-63 system, the Kaplan-Yorke-based attractor dimension

and the leading Lyapunov exponent of the system are found to be DKY = 2.06 and Λmax = 0.91.

Note that vertical axes are normalized by the standard deviation of the corresponding variable

from testing data, denoted by sx, sy or sz.

sampled at every τ = 0.02τd. Note that while developing a data-driven model via M2, all

possible quadratic combinations of x, y and z are included in the forcing vector of Eq. (7),

i.e. fT = [x2 y2 z2 xy xz yz].

As shown in Fig. 5, the predictions of M2 follow the true trajectory for more than 10

Lyapunov timescales with Eave = 2.10%, while the extreme events, i.e. events at which

|x| > 2sx and |y| > 2sy, are also accurately captured. We reiterate that using M1 or M2

14



FIG. 6. Eigenvalues λ of exp(τA) for the under consideration Lorenz-63 system, scaled by sam-

pling frequency 1/τ , and obtained using (a) M1 with (r, q) = (100, 50), (b) M2 with (r, p, q) =

(60, 120, 50). The blue circles show the eigenvalues given by the entire training set with 100000

samples, while the red crosses in panel (b) indicate the eigenvalues identified using half the training

set. The close agreement between the two suggests that the eigenvalues of the system are captured

robustly. The vertical dotted line in panel (b) corresponds to the imaginary axis. For clarity, only

the first 50 eigenvalues are depicted. Smaller panel within panel (b) magnifies the eigenvalue of

M2 with positive real part. Note that except for the few leading eigenvalues, modes given by M2

decay at much faster rates than those given by M1.

with q = 1 results in rapidly diverging predictions, so that for both Λmaxtl < 0.1, suggesting

that the delay-embedding of the measurements along with the incorporation of physics-

driven frocings are vital for reasonably long-time accurate predictions. As expected, again,

all the eigenvalues of the system identified by M1 fall inside the unit circle (Fig. 6a), which

is consistent with the quickly vanishing predictions of this method for Lorenz-63.

B. Kuramoto-Sivashinsky equation

The spatiotemporal prediction of M2 for a K-S equation with domain length L = 100 is

displayed in Fig. 7(b), and is compared against the testing set provided by the numerical

solver of Sec. II A in Fig. 7(a). The difference of the two is shown in panel (c). Futhermore,
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FIG. 7. Spatiotemporal evolution of an unforced K-S system with the domain length L = 100 and

the Kaplan-Yorke dimension DKY = 23.2. Shading shows (a) u(x, t) from integration of Eq. (1);

(b) u(x, t) predicted by M2 when a training set with 70000 data points is used; (c) Difference of

(a) and (b). The vertical dotted lines in panels (b) and (c) mark the divergence time tl of the

data-driven predictions. Λmax is the largest positive Lyapunov exponent.

the number of grid points n needed for stably advancing the K-S equation (1) in time, the

properties of the attractor (DKY and Λmax), the method parameters (r, p, q) leading to the

best results, and the assessment of the method performance (tl and Eave) are detailed in

Table I, for this case and several other K-S systems with different domain lengths. All cases

in Table I are identical to those examined in Pathak et al. [18] in terms of domain length,
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TABLE I. Prediction horizon tl and averaged error Eave for K-S equation (1) at different levels of

chaoticity controlled by domain length L. n is the number of grid points or the physical dimension,

and DKY denotes the attractor dimension calculated based on the Kaplan-Yorke formulation.

Method parameters (r, p, q) giving the best results are also reported. All cases are unforced, except

those with asterisks for which η = 0.01.

L n DKY (r, p, q) Λmaxtl Eave

22 64 5.20 (400, 400, 20) 8.35 3.36

100 128 23.2 (800, 800, 10) 8.30 5.73

100∗ 128 24.1 (800, 800, 10) 8.03 3.81

200 256 43.3 (1200, 1200, 10) 8.17 4.82

200∗ 256 44.8 (1200, 1200, 10) 8.17 6.95

400 256 85.0 (3000, 3000, 15) 7.51 6.12

800 512 167 (6000, 6000, 15) 7.12 7.32

1600 1024 338 (16000, 16000, 20) 6.43 10.9

potential forcing, attractor properties, and the length and sampling interval of the training

set. As can be seen in this table, for moderately chaotic systems (L ≤ 200), the data-

driven predictions remain accurate for more than 8/Λmax, while Eave is below 7%. As L and

choticity further grow, tl slowly declines and Eave gradually increases. Notwithstanding, for

all considered cases, M2 provides skillfull forecasts for relatively long times, and it modestly

outperforms the reservoir computing approach of Pathak et al. [18] for which, tl was found

to be around 6/Λmax for all cases, when an adequeate number of parallel reservoirs had been

used.

C. The Lorenz-96 system

Figure 8 depicts the spatiotemporal evolution of a Lorenz-96 system with the external

forcing F = 8, given by RK4 integration of Eq. (11) (panel (a)) and the data-driven pre-

diction of M2 (panel (b)). The last panel shows the difference between the two results. In

addition to this case, two other systems with F = 4 (lower chaoticity) and F = 16 (higher

chaoticity) are explored as well. For all cases, the number of grid points is fixed at n = 40.
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FIG. 8. Spatiotemporal evolution of a Lorenz-96 system with the external forcing F = 8 and

the Kaplan-Yorke dimension DKY = 28.4. (a) Testing set obtained by numerically intergrating

Eq. (11); (b) M2 predictions while the model is built using a training set with 100000 samples; (c)

Difference of (a) and (b). The vertical dotted lines in panels (b) and (c) correspond to the time

tl at which the predictions of the data-driven method diverge from the actual data. Λmax is the

largest positive Lyapunov exponent.

Further details of each case, viz., attractor properties (DKY and Λmax), the trio of optimal

method parameters (r, p, q), the prediction horizon tl and the averaged error Eave are re-

ported in Table II. It is observed that when the system exhibits a quasiperiodic behavior and

has a power spectrum with some local maxima (e.g. the test case with F = 4), contingent
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FIG. 9. Eigenvalues λ of exp(τA) for the studied Lorenz-96 system with F = 8, scaled by sam-

pling frequency 1/τ , and provided by (a) M1 with (r, q) = (200, 20), (b) M2 with (r, p, q) =

(700, 2100, 20). The blue circles and red crosses show the eigenvalues detected by the entire and

half the training set, respectively. The close agreement between the two suggests that the eigenval-

ues of the system are captured robustly. Vertical dotted lines in panel (b) indicates the imaginary

axis. For clarity, only the first 50 eigenvalues are depicted. Smaller panel within panel (b) magnifies

the eigenvalues of M2 corresponding to the growing modes. Note that except for the few leading

eigenvalues, modes given by M2 decay at much faster rates than those given by M1.

upon the availability of enough snapshots for training, M2 predictions can be accurate for

very long times, and occassionally they may never diverge, meaning the underlying dynamics

can be fully discovered. As the chaoticity of the Lorenz-96 system is increased by doubling

F , tl becomes finite (8.16/Λmax) and Eave grows by almost 2.5%. Further doubling of F

makes the system highly chaotic so that forecasting its spatiotemporal evolution becomes

challenging. Nevertheless, the present Koopman-based method still yields predictions which

are accurate for more than 4/Λmax with Eave = 7.67%, when F = 8.

Figure 9 displays the eigenvalues of the Lorenz-96 system with F = 8 given by M1 (left)

and M2 (right). As demonstrated by this figure, not surprisingly, all modes of AHDMD are

decaying again, leading to the predictions that approach zero fairly rapidly, and lose the

true trajectory in less than 0.1/Λmax. Furthermore, delay-embedding of the vector-valued

observables was found to be essential in M2, so that choosing q = 1 using this method
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TABLE II. Prediction horizon tl and averaged error Eave for Lorenz-96 system (11) with different

external forcings F . n and DKY indicate the number of grid points and Kaplan-Yorke-based attrac-

tor dimension, respectively. Method parameters (r, p, q) leading to the most accurate predictions

are also presented. Despite using very long testing sets (∼ 30/Λmax), predictions for the case with

F = 4 were seen to agree very closely with the actual data for the entire length of testing sets so

that the prediction error always remained below the divergence threshold.

F n DKY (r, p, q) Λmaxtl Eave

4 40 15.3 (400, 1200, 20) No divergence observed 4.31

8 40 28.4 (700, 2100, 20) 8.16 6.82

16 40 32.1 (1200, 1200, 40) 4.05 7.67

resulted in tl < 0.2/Λmax.

D. 2D lid-driven cavity flow

The 2D lid-driven cavity flow has been employed for decades as a benchmark for validation

of new numerical models and computational schemes (See e.g. [52–54]). Here, we choose this

problem as a gateway to the implementation of our Koopman-based method to large-scale

fluid flows at high Reynolds numbers. The schematic of the 2D cavity flow is sketched in

Fig. 10. The constant-density fluid is confined by a square box whose walls are stationary,

except for the top wall (lid), which moves to the right with the velocity U(x). This produces

a shear-driven flow mixing the entire fluid via the clockwise primary vortex at the center, as

well as some smaller-scale vortices at the corners, if Reynolds number is sufficiently large.

The nondimensional equations of motion for this unsteady and incompressible flow are in

the following form

∂u

∂x
+
∂v

∂y
= 0 ,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (15)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
,

where u, v and p denote the horizontal velocity, the vertical velocity and the pressure

fields, respectively. Characteristic length and velocity are selected as the domain length L
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FIG. 10. Schematic of a 2D lid-driven cavity flow. Here, u and v are the horizontal and vertical

velocities, respectively, and U(x) = 16x2(1− x)2.

and maximum lid velocity Umax, so that Re = UmaxL/ν, with ν indicating the kinematic

viscosity of the fluid. This also means that the time is nondimensionalized by the advective

timescale L/Umax. No-slip boundary conditions are enforced along all walls, except for the

lid at which

U(x) = 16x2(1− x)2 , v = 0 . (16)

This boundary condition allows for smooth transitions in top corners, while satisfying the

continuity and incompressibility.

To construct the required training and testing sets, direct numerical simulations (DNS)

of the flow based on primitive variables are conducted using a Chebyshev-Chebyshev pseu-

dospectral solver with 70 grid points in each direction, and dimensionless time-step ∆t =

0.005. The sufficiency of the number of grid points was examined via mesh refinement. The

simulations are then carried out to build the model for the fluid system at two relatively

high Reynolds numbers Re = 20000 and Re = 30000. We then sample horizontal and ver-

tical velocities at every other grid point (in total 35 grid points in each direction). The

sampling interval and the length of training set for both cases are taken as τ ≈ 0.025τd

and Ttrain = 2000τadv. We then remove their corresponding long time-mean values, ū and

v̄, to obtain anomalous velocities u′ = u − ū and v′ = v − v̄, and finally arrange these

mean-removed velocities in 1D vectors u′ and v′. The state vector V at each time consists
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FIG. 11. The Power Spectral Densities (PSDs) of the time series of the PC1 calculated for the

velocity field at Re = 20000 (dashed) and Re = 30000 (solid). The PSDs are evaluated by dividing

the entire data consisting of 100000 data points (∼ 2000τadv) into 200 windows with the same

length, and carrying out fast Fourier transform (FFT) coupled with Hann filter for each window.

The results of all windows are then averaged to obtain the plotted PSDs. Frequency ω is normalized

by the frequency of the advective timescale ω̃ = 2π/τadv.

of these two vectors stacked on top of each other, i.e. V = [u v]T . Motivated by the

underlying physics of the flow, we choose the Reynolds stress terms at each sampled grid

point (u′2, u′v′ and v′2) to form the nonlinear forcing vector f . The results are reported for

the normal-to-the-plane vorticity field ω = ∂v/∂x − ∂u/∂y, and the PC1 timeseries of the

horizontal velocity.

As discussed in Arbabi and Mezić [30], for Re ≤ 10000, the cavity flow converges to a

steady-state laminar solution whose corresponding attractor is in the form of a fixed point.

Upon slight increase in Re above 10000, a periodic flow with a single oscillation frequency

emerges. This behavior persists until at Re ≥ 15000 another bifurcation occurs and a

flow with quasiperiodic behavior (multiple basic frequencies) forms. The third bifurcation

occurs around Re = 18000 leading to a rapid rise in the level of kinetic energy. The kinetic

energy then continually increases so that at Re & 22000, the fluid system becomes fully

chaotic and no quasiperiodic compoenents can be further detected. Figure 11 is consistent
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FIG. 12. Snapshots of vorticity field for a lid-driven cavity flow at Re = 20000 at six distinct

dimensionless times given by DNS solver (first and third columns) and the best predictions of M2

(second and fourth columns). These results were obtained by choosing (r, p, q) = (400, 600, 3),

leading to tl = 5.2τadv = 1040∆t and Eave = 16.6%. Note that for the bottom panels, data-driven

predictions have already deviated from DNS data.

with the findings of Arbabi and Mezić [30] so that for the cavity flow at Re = 20000, the

power spectrum calculated for the timeseries of PC1 of the velocity field has a maximum at

ω/ω̃ ≈ 1, manifesting that the underlying dynamics is not fully chaotic yet. In fact, according

to [30], such flow has a mixed spectrum, i.e. it contains both discrete and continuous

components. In contrast, flow at Re = 30000 exhibits a monotonically decaying spectrum,

which is indicative of chaotic behaviour.

As demonstrated by Figs. 12 and 13, the Koopman-based method M2 renders accurate

predictions for several advective timescales, equivalent to hundreds of DNS time-steps (see

the captions of the figures for the exact values), during which the vorticity fields unergo

substantial changes. The presence of quasiperiodic components in the flow at Re = 20000 is

distinctly illustrated by Fig. 12, e.g. compare the snapshots of the vorticty field at t = 2 and

t = 4 (or at t = 3 and t = 5), or see the PC1 timeseries shown in Fig. 14(a). The performance

of M2 somewhat degrades from Re = 20000 to Re = 30000 as the underlying dynamics
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FIG. 13. Similar to Fig. 13, but for a flow at Re = 30000. The optimal method parameters are

found to be (r, p, q) = (1200, 1800, 3), for whcih tl = 2.7τadv = 540∆t and Eave = 16.8%.

becomes more complex, so that tl is nearly halved, while Eave varies insignificantly. Exact

values are provided in the captions of corresponding figures. These observations are further

supported by Fig. 14 in which the timeseries for the PC1 of horizontal velocity obtained

from DNS data (solid blue) and M2 predictions (dashed red) are displayed. Nonetheless, the

results of M2 for the studied fluid example seem promising, and can lead to a new avenue

for predictive modeling of high-dimensional and highly turbulent flows, specifically if some

modifications are considered. This prospect will be discussed in detail in Sec. IV.

Similar to chaotic dynamical systems such as K-S equation and Lorenz-96, M2 discovers

a few growing modes for the 2D cavity flow, irrespective of its Reynolds number (Figs. 15(b)

and (d)), whose growths are suppressed by the existing nonlinearites as discussed in Sec. II A.

Moreover, M1 yields rapidly vanishing predictions which diverge from the actual flowfield

in less than 40∆t when Re = 20000 and 20∆t when Re = 30000, as all eigenvalues detected

by this method lie to the left of imaginary axis (Figs. 15(a) and (b)). Note also that the

delay-embedding dimension chosen for this problem may seem small, but in fact qτ ≈ 0.2τd,

which is in the same range as what was found for the dynamical systems discussed earlier

in this section.
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FIG. 14. Timeseries of the PC1 of horizontal velocity, calculated from DNS (solid blue) and

predicted by M2 (dashed red), at Re = 20000 (top) and Re = 30000 (bottom). The results are

scaled by the standard deviation s of the PC1 timeseries from testing data. The vertical dotted

lines correspond to the time at which the predictions of M2 for the entire flowfield (not merely the

PC1 of u) diverge from DNS data.

IV. CONCLUSIONS

Within the present investigation, we have proposed a data-driven Koopman-based

method, referred to as M2 in the text, which treats the nonlinearities of the system as

external actuations, whereas the observables are linear, vector-valued, and time-delay-

embedded. Hence, a linear framework (7) is built whose unknown maps are found via the

DMDc technique of Proctor et al. [45]. This data-driven predictive framework is shown

to accurately forecast the spatiotemporal evolution of common examples of chaos such as

Lorenz-63, K-S and Lorenz-96 systems as well as a high-Reynolds-number fluid flow, namely,

a 2D lid-driven cavity flow, for several Lyapunov or advective timescales, which, in the case

of cavity flow, is equivalent to hundreds of numerical solver time-steps.
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FIG. 15. Eigenvalues λ of exp(τA) for the described 2D cavity flow at Re = 20000 (top) and

Re = 30000 (bottom), normalized by the sampling frequency 1/τ , and calculated via (a) M1 with

(r, q) = (1000, 10), (b) M2 with (r, p, q) = (400, 600, 3), (c) M1 with (r, q) = (1000, 10), and (d)

M2 with (r, p, q) = (1200, 1800, 3). The blue circles show the eigenvalues provided by the entire

training set with the length Ttrain = 2000τadv, whereas the red crosses in panels (b) and (d) exhibit

the eigenvalues obtained using half the training set. The close agreement between the two suggests

that the eigenvalues of the systems are captured robustly. Vertical dotted lines in these panels

mark the imaginary axis. For clarity, only the first 50 eigenvalues are displayed.
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As shown in Secs. II and III, the strong performance of M2 hinges on the simultaneous use

of vector-valued, delay-embedded observables and physics-inspired forcings. The resulting

linear model is built using the DMDc algorithm of Proctor et al. [45]. The advantages of

delay-embedding had been shown in previous studies [12, 28, 30, 35–38]. The novelty of M2

is in the last feature, i.e., the accurate representation of the underlying nonlinear processes

using a linear model that treats the nonlinearities as exogenous forcings, which builds on the

work of Brunton et al. [38]. Note that in M2, the forcing terms are updated as the predictions

of the new (future) state become available. Such representation of nonlinearities enables us

to capture the potentially present unstable modes, whose unbounded growth is suppressed

by the energy-conserving nonlinear interplay between the unstable and stable modes [47–

49]. It is worth noting that attempts on including such unstable modes in a linear model

such as M1 (6) leads to predictions that grow exponentially unboundedly, while attempts on

excluding them, which are integral to the spatiotemporal evolution of the system, leads to

inaccurate predictions. M2 provides a linear framework for accurately accounting for these

unstable modes.

Similar to most data-driven methods, and specifically for very large-scale and high-

dimensional systems, the success of the present method to some degree depends on the

availability of sufficiently long training sets. This is at least computationally very demand-

ing, if not prohibitive, for three-dimensional and highly turbulent flows. Motivated by the

success of Mohan et al. [20] in accurately reproducing the long-term statistics of isotropic

turbulence, we speculate that this issue might be rectified by initially compressing the 3D

turbulence data via methods such as autoencoders from machine learning. The compressed

data can then be used for training by M2, whose predictions can later be decoded and

brought back to the physical space. Otto and Rowley [55] have also shown that a neural

network combining an autoencoder with linear recurrent dynamics can be employed to pro-

vide a low-dimensional dictionary of linear and nonlinear observales for the approximation

of Koopman operator. The method of [55] has proven to be skillful in identifying the salient

dynamical modes, and making short-term predictions for some well-known chaotic dynam-

ics. Successful implementation of these ideas can result in data-assisted surrogate models

for computational fluid dynamics (CFD) solvers, that significantly reduce the computational

time of these solvers by accelerating the advancement of the flow in time. We aim to pursue

these lines of research in the subsequent sudies.

27



ACKNOWLEDGMENT

We thank Hassan Arbabi for helpful discussions, insightful comments, and sharing his 2D

incompressible flow DNS solver presented in [31], Matthias Heinkenschloss, Igor Mezić, and
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Appendix A: Methodical selection of Koopman-based method’s parameters

For each case, the optimal choices of delay-embedding dimension q and the size of the

reduced subspace r are obtained by a comprehensive search over a broad range of these

parameters on validation sets, i.e. datasets which are fully independent from training or

testing sets, and are specifically built for finding the optimal parameters. For all studied

systems, it was typically seen that choosing qτ = O(τd) leads to accurate results; the optimal

q however was not found to be necessarily equal to τd/τ , and in some cases it could be as low

as one-fifth of this value. It should be noted that the decorrelation timescale τd provides a

measure of dynamical system’s memory. We also observed that the optimal hard threshold

presented in Brunton and Kutz [56] yields a good criterion for the truncation value r. We

again highlight that the optimal value of r might be somewhat lower than what is given by

this hard thresholding, which might be associated with the shortage of data. Nonetheless,

the results are not too sensitive to the choice of r, so long as the selected r is not very

far from the threshold. Choosing r significantly larger than this criterion leads to a rapidly

diverging model, since many eigenvalues of A fall outside the unit circle in this case. Finally,

it was always observed that taking p = αr results in the most accurate predictions, where
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α is the ratio of the length of forcing vector to the length of state vector.
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