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Causality has been the issue of philosophic debate since Hippocrates. It is used in formal verifica-
tion and testing, e.g., to explain counterexamples or construct fault trees. Recent work defines actual
causation in terms of Pearl’s causality framework, but most definitions brought forward so far strug-
gle with examples where one event preempts another one. A key point to capturing such examples
in the context of programs or distributed systems is a sound treatment of control flow. We discuss
how causal models should incorporate control flow and discover that much of what Pearl/Halpern’s
notion of contingencies tries to capture is captured better by an explicit modelling of the control flow
in terms of structural equations and an arguably simpler definition. Inspired by causality notions in
the security domain, we bring forward a definition of causality that takes these control-variables into
account. This definition provides a clear picture of the interaction between control flow and causality
and captures these notoriously difficult preemption examples without secondary concepts. We give
convincing results on a benchmark of 34 examples from the literature.

Introduction

A growing body of literature is concerned with notions of accountability in security protocols, as in many
scenarios, e.g., electronic voting, certified e-mail, online transactions, or when personal data is processed
within a company, not all agents can be trusted to behave according to some established protocol [3].
Thus, in order to specify accountability, i.e., the ability of a protocol to detect misbehaviour, the infor-
mation security domain needs a reliable notion of what it means for a protocol event to cause a security
violation in a given scenario. The security domain has proposed causal notions specifically for network
traces, which, in contrast to traditional notions of causality, capture actions sufficient to cause an event
and put a focus on control flow [6]. In this work, we investigate these ideas in a more general setting;
generalising, improving and validating them to provide a sound basis for causal reasoning in protocols
and beyond.

The problem we investigate is called actual causation, as opposed to type causation, which aims
at deriving general statements, e.g., “smoking causes cancer” not linked to a specific scenario. Starting
from Lewis’ ‘closest-world concept’ [21], philosophers have largely accepted counter-factual reasoning,
i.e., investigating causal claims by regarding hypothetical scenarios of the form ‘had A not occurred, B
would not have occurred’, as a means to determine actual causation. Pearl’s causality framework [23]
provides a basis for such reasoning.

So far, control flow has largely been ignored in causal reasoning. This is not very surprising, consid-
ering that the causation literature typically treats real-life examples inspired from criminal law. Control
flow is simply not a well-defined notion there. Albeit, precisely those scenarios where the order of events
is relevant, e.g., an event might prevent another event from happening, turn out to be notoriously dif-
ficult to explain using counterfactual reasoning. Once we consider each potential course of events as a
control-flow path consisting of events that may enable or prevent each other, they become easy to handle.
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To accommodate preemption, Pearl and Halpern’s very influential notion of causation has been mod-
ified several times [11], complemented with secondary notions [14] and ad-hoc modifications have been
proposed [14, p. 26]. Neither of these solutions provides a satisfying answer as to how these examples
should be handled in general.

In this work, we provide an account of the relation between control flow and causation. This gives us
the means to adequately capture preemption in cases where we can speak of control flow. We propose that
control flow variables should be modelled explicitly, as they can capture the course of events that lead to
a certain outcome. Once they are made explicit, we can capture these difficult examples and provide a
notion of actual causation that is simple and intuitive, captures joint as well as independent causes, gets by
without secondary notions of normality and defaults and readily applies to Pearl’s causality framework.
Our contributions are the following:

1. We explain how control flow should be incorporated in causal models and propose a formalism
that makes control flow explicit.

2. We show how control flow helps to handle preemption without resorting to secondary notions like
defaults and normality or ad-hoc modifications to the model. Preemption examples are notorious
for being difficult to handle [16, 18, 14],

3. We relate control flow to structural contingencies introduced by Halpern and Pearl [15], providing
evidence that what this notion achieves is very similar to a simple fixing of control flow variables,
and that it provides unintuitive results when applied outside control flow.

4. Finally, we validate our proposal, control flow preserving sufficient causation, on 34 examples,
including all scenarios discussed in [26] and [11].

Notation We write ~t for a sequence t1, . . . , tn if n is clear from the context and use (a1, . . . ,an) ·
(b1, . . . ,bm) = (a1, . . . ,an,b1, . . . ,bm) to denote concatenation. We filter a sequence l by a set S, denoted
l|S, by removing each element that is not in S.

Causality framework (Review)

We review the causality framework introduced by Pearl [23], also known as the structural equations
model. The causality framework models how random variables influence each other. The set of random
variables, which we assume discrete, is partitioned into a set U of exogenous variables, variables that
are outside the model, e.g., in the case of a security protocol, the scheduling and the attack the adversary
decides to mount, and a set V of endogenous variables, which are ultimately determined by the value
of the exogenous variables. A signature is a triple consisting of U , V and function R associating a
range, i.e., a set, to each variable Y ∈ U ∪V . A causal model on this signature defines the relation
between endogenous variables and exogenous variables or other endogenous variables in terms of a set
of equations.

Definition 1 (Causal model). A causal model M over a signature S = (U ,V ,R) is a pair of said
signature S and a set of functions F = {FX }X∈V such that, for each X ∈ V ,

FX : ( "
U∈U

R(U))× ( "
Y∈V \{X }

R(Y ))→R(X).

Each causal model induces a causal network, a graph with a node for each variable in V , and an edge
from X to Y iff FY depends on X . (Y depends on X iff there is a setting for the variables in V ∪U \{X ,Y }
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such that modifying X changes the value of Y .) If the causal graph associated to a causal model M is
acyclic, then each setting ~u of the variables in U provides a unique solution to the equations in M.
Throughout this paper, we only consider causal models that have this property. We call a vector setting
the variables in U a context, and a pair (M,~u) of a causal model and a context a situation. All modern
definitions of causality follow a counterfactual approach, which requires answering ‘what if’ questions.
Definition 2 (Modified causal model). Given a causal model M = ((U ,V ,R),F ), we define the mod-
ified causal model M~X←~x over the signature S~X = (U ,V \~X ,R|U ∪V \~X) by replacing each endogenous

variable X ∈ ~X in F with the corresponding x ∈~x, obtaining F~X←~x. Then, M~X←~x = (S~X ,F~X←~x).
We can now define how to evaluate queries on causal models w.r.t. interventions on a vector of

variables, which allows us to answer ‘what if’ questions.
Definition 3 (Causal formula). A causal formula has the form [Y1 ← y1, . . . ,Yn ← yn]ϕ (abbreviated
[~Y ←~y]ϕ), where
• ϕ is a boolean combination of primitive events, i.e., formulas of the form X = x for X ∈ V , x ∈

R(X),

• Y1, . . . ,Yn ∈ V are distinct,

• yi ∈R(Yi).
We write (M,~u) � [~Y ←~y]ϕ if the (unique) solution to the equations in M~Y←~y in the context~u satisfies ϕ .

Sufficient causes

We define a causality notion based on sufficiency. In order to allow for comparison with existing notions
of causation, we chose to formulate this notion in Pearl’s causation framework, as opposed to formalisms
that already incorporate temporality, e.g., Kripke structures, but would obscure this comparison. This
simplistic notion of causality, which we will later extend to models with explicit control flow, captures
the causal variables that, by themselves, guarantee the outcome.
Definition 4 (Sufficient cause). ~X =~x is a sufficient cause of ϕ in (M,~u) if the following three conditions
hold.
SF1. (M,~u) � (~X =~x)∧ϕ .

SF2. For all~z, (M,~u) � [(V \~X)←~z]ϕ .

SF3. ~X is minimal: No strict subset ~X ′ of ~X satisfies SF1 and SF2.
We say ~X is a sufficient cause for ϕ if this is the case for some~x. Any non-empty subset of ~X is part of the
sufficient cause ~X.

Sufficient causes are well-suited for establishing joint causation, i.e., several factors that indepen-
dently would not cause an injury, but do so in combination. Consider the following scenario:
Example 1 (Forest fire, conjunctive). Person A drops a canister full of gasoline in the forest, which
soaks a tree. An hour later, B smokes a cigarette next to that tree. A and B have joint responsibility for
the resulting forest fire (FF = A∧B). The above definition yields (A,B,FF) = (1,1,1) as the sufficient
cause.

In contrast, the traditional but-for test (or condicio sine qua non), formulates a necessary condition.
A and B on their own are necessary causes, despite the fact that the fire was jointly caused. Sufficient
causation can distinguish joint causation, like in this case, from independent causation, like in the case
where the forest was dry and both A and B dropped cigarettes independently.

Remark: Similar to how the set of necessary causes for any O = o contains the singleton cause O = o,
O = o is also a part of each sufficient cause for O = o. Hence, it can be filtered out for most purposes.
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Modelling control flow

In this section, we discuss how control flow should be incorporated into causal models. Consider the
famous late preemption example, where Suzy and Billy both throw stones at a bottle. Suzy’s stone hits
the bottle first and shatters it, while Billy would have hit, had the bottle still been there [11, Example 3.2].
We will discuss several models of this example.

Example 2 (Control flow in equations). Exogenous variables ST and BT are 1 if Suzy, respectively Billy,
throws. The endogenous variable BS is 1 (bottle shatters) if ST ∨BT.

Pearl and Halpern propose a slightly modified model of this situation which captures the relationship
between the bottle being shattered and the bottle being hittable by Billy explicitly [15]. However, the
relationship between the two is fixed in the model. Datta, Garg, Kaynar and Sharma observe this and
therefore introduce exogenous variables to determine which stone reaches the bottle first depending on
the context [5].

Example 3 (Control flow in context). Exogenous variables ST and BT are 1 if Suzy, respectively Billy
throws, and R is 1 if Suzy’s throw reaches the bottle first. Then BS ∈ V is ST if R = 1, and otherwise BT.

Pearl and Halpern’s solution can be transferred to the case where the order is not fixed a priori by
explicitly representing the temporal order in distinguished variables.

Example 4 (Control flow in variables). Exogenous variables T1 to Tn with range {S,B,N } model
whether Suzy, Billy or no-one throws a stone at point i. Endogenous variable BSi is 1 if BSi−1 = 0
and Ti 6= N. BS = 1 if BSi = 1 for any i.

BSi models whether the bottle is available for hitting at point i+1, similar to the concept of control
flow variables in programming. In programming, control flow is the order in which statements are eval-
uated. Interpreting the above model as a program, BSi controls whether BS is assigned 1, similar to n
nested if-statements surrounding an assignment BS ··= 1.

Control flow should be modelled within variables. Among these three solutions (Examples 2, 3
and 4), only the second and third solutions are able to capture preemption, as preemption is about the
temporal relation between events, and control flow captures just that. Without examining the equations
themselves, it is not possible to distinguish this order, as Example 2 demonstrates. The second solution
is not always sufficient, since control flow is often determined by data flow, e.g., when branching on a
variable. Hence, preemption can be accounted for by modelling control flow and data flow separately, at
least in scenarios where these concepts are meaningful, e.g., in programs. Even for distributed systems,
once the scheduler is made explicit, the system can be adequately modelled as a program and hence
control flow can be distinguished. In the following, we will demonstrate this point on a number of other
examples (which admittedly have little to do with programs, but we want to stay close to the literature.
They can be recast easily, imagine, e.g., Suzy’s and Billy’s stone being illegal instructions in a message
queue). Note that there might be ways of modelling preemption which do not fall in any of these three
classes, however, all examples we are aware of follow one of these three paradigms. We formalise our
assumptions on control flow as follows.

Definition 5 (Causal model with control flow). We say an acyclic causal model M = (S,F ) over a
signature S = (U ,V ,R) has control flow variables Vrch if

1. V can be partitioned into Vrch and a set of data variables Vdat,

2. R(V rch) = {>,⊥} for any V rch ∈ Vrch, and,
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3. for Gctl the subgraph of M’s causal network containing all nodes in Vrch and all edges between
them, and for all contexts~u and data variable assignments~v, if all parents~V rch

p of a node V rch ∈Gctl

are set to ⊥, this node is also set to ⊥, i.e., if (M,~u) � [ ~Vdat←~v](V rch
p =⊥) for each parent ~V rch

p ,
then (M,~u) � [ ~Vdat←~v](V rch =⊥).

The active variables in Gctl, i.e., those equal to >, represent the current control flow. Data flow
variables are assigned depending on which nodes in Gctl are active.

For instance: if we consider structured control flow, Gctl is connected and thus (because M is acyclic)
a tree. Furthermore, the set {V rch | (M,u) � V rch = >} always comprises a path. The relationship to
non-concurrent imperative programming languages becomes clearer, if we express each function FV for
a data variable V ∈ Vdat as

FV =


FV,V rch

1
if V rch

pos =V rch
1

...
FV,V rch

n
if V rch

pos =V rch
n

FV,V rch
p

otherwise

where V rch
pos is the current position, i.e., the deepest element of the path {V rch | (M,u) �V rch =>}, V rch

p

the parent of V rch
pos , and FV,V rch

1
, . . . ,FV,V rch

n
depend only on variables in Vdat. Essentially, at each control-flow

position, FV,V rch
i

may assign a value to V , or otherwise the parent assignment remains in effect.

Intervention on control flow variables. For most (but not all) purposes, we are not interested in con-
trol flow variables as parts of sufficient causes. We could filter them out, i.e., if ~X is a sufficient cause,
report ~X \ Vrch. Instead, we chose to achieve this by restricting intervention to a subset of variables
V res = Vdat = V \Vrch. Both approaches model different expectations on the system. We want to assume
the control flow to be (locally) determined and not consider failure in, e.g., conditional branching. The
same assumption is made by Datta, Garg, Kaynar, Sharma and Sinha (DGKSS) [6] and Beckers [2].

What is control flow outside computer programs? For a computer program written in an imperative
language, control flow is widely understood to be the order in which statements are executed, e.g., a
sequence of line numbers. This definition can be easily extended to distributed systems, however, many
examples in the causality literature discuss human agents in physical interaction. Our main objective is
a reliable notion of causality for distributed systems, but we also want it to be grounded in the existing
body of work on causality. To this end, we make the modelling principles we adhered to explicit. We
neither claim that these modelling principles are universal, nor that control-flow is a notion that can be
defined in all scenarios where causality applies. They applied, however, to the 34 examples we found in
the literature, as we will see.

We assume the modeller has an intuition of how a variable assignment translates to an (intuitive)
‘course of events’, and when a ‘course of events’ should be considered equivalent to another. As dis-
cussed in the previous paragraph, we restrict intervention to data flow variables. Hence, we consider only
variable assignments ~V =~v, that result from an intervention on the data flow variables, but not control
flow variables, i.e., there is a context~u and data variable assignment~vdat s.t. (M,~u)� [ ~Vdat←~vdat]( ~V =~v).
For brevity, we call these assignments valid.

1. Each control flow variable V rch should correspond to a relevant event, and vice versa.

2. For every valid assignment, V rch should be > if the corresponding event occurred.
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3. For every valid assignment, V rch should be ⊥ if the corresponding event did not, or did not yet,
occur.

4. A control flow variable should only be a parent of another control flow variable (in Gctl) iff the
occurrence of the event corresponding to the child depends on the occurrence of the event corre-
sponding to the parent.

Example 5 (Early preemption). Victoria’s coffee is poisoned by her bodyguard (B = 1), but before the
poison takes effect, she is shot by an assassin (A = 1). She dies (D = 1).

Following modelling principles 1 and 2, we introduce at least the control flow variables Pr, Sr and
PEr, which, if set to>, represent the events ‘Victoria is poisoned’, ‘Victoria is shot’ and ‘the poison takes
effect’, respectively. The poison can only take effect if Victoria was not shot, but, modelling principle 3
dictates that Sr = ⊥ only means that she was not yet shot, i.e., it might just be that not enough time
has passed, but she will eventually get shot before the poison takes effect. We thus need to introduce a
fourth control-event, ‘Victoria was not shot during the time the poison needs to take effect’, represented
by NSr. While FSr = (A = 1) and FNSr = ¬(A = 1), and thus all valid assignments result in one being
the negation of the other, we will later consider the coming about of a course of events, which includes
counterfactuals scenarios where a course of events can be incomplete. Thus, it is possible that, in a
counterfactual scenario, Sr = NSr =⊥, which intuitively means that not enough time has passed for the
poison to take effect.

Following modelling principle 4, PEr is a child of both Pr and NSr. The poison takes only effect
(PEr = >) if it was administered (Pr = >) and some time has passed without Victoria getting shot
(NSr =>). Following the same principle, PEr is not a child of Sr, as Sr =⊥ could mean that Victoria is
not getting shot at all, but also that she is not yet getting shot. Hence, FPEr = ¬Sr∧Pr would be incorrect,
as the poison may or may not take effect due to the shot occurring later. Note that the control-flow graph
is not linear in this case, representing the independence of poisoning and the shooting.

Preserving control flow

We present further examples that are problematic for existing definitions of cause in literature, followed
by a new definition of cause (using control flow) that handles all these examples and many others. Con-
sider the following example known as ‘bogus prevention’ [16, 18].

Example 6 (Bogus prevention, branching). An assassin has a change of heart and refrains from putting
poison into the victim’s coffee (P = 0). Later, the bodyguard puts antidote into the coffee (A = 1). Is
putting the antidote into the coffee the reason the victim survives (S = 1)? Let U = {UP,UA }, V =
{P,A,S}∪{Pr,NPr,Nr } and the following equations describe a causal model Mbogus with control flow
variables {Pr,NPr,Nr }.

P =UP A =UA

NPr = ¬(P = 1) Pr = (P = 1)

Nr = Pr ∧ (A = 1) S =


1 if NPr =>
1 if Nr =>
0 otherwise

Here, Pr and NPr model the control flow after a conditional checking if the poison was or was not
administered. In the positive branch, Pr is set, and only there Nr can be reached, namely if the antidote
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was given and thus the poison neutralized. S is set to 1 once the poison was neutralized or if it was not
administered.

This example is known to be problematic for the counterfactual approach to causation. For instance,
in Halpern’s modelling [11, Example 3.4], the bodyguard putting in antidote is part of a cause. Simi-
larly, it is part of a sufficient cause, when intervention is not restricted, or, if intervention is restricted,
the absence of the poison is not part of the sufficient cause anymore. Together with Hitchcock, Halpern
argues that this cause could be removed by considering normality conditions [14]. Blanchard and Schaf-
fer criticise ‘under-constrained unclarities’ of this approach, calling theorists to ‘pay more attention to
what counts as an apt causal model [..] before adding more widgets into causal models’ [4].1. Putting it
simply: it is often unclear what is normal. Halpern and Hitchcock [14, p. 26] provide an ad-hoc solution
by adding a variable representing the chemical reaction neutralizing the poison, basically introducing the
control flow variable Nr which is true if the control flow reached a point where the poison was previously
administered (Pr =>) and the bodyguard pours antidote into the coffee.

Intuitively, the antidote should not be considered a cause of the victim’s surviving because it was
irrelevant within the actual course of events. We can capture this through the actual value of the control
flow variables. DGKSS [6] and Beckers [2] require interventions to be consistent with the actual temporal
order in which events occurred. Translated to our setting, this is akin to considering ~X s.t. for all~z (M,~u)�
[V res \~X←~z](C = ~> =⇒ ϕ), where C is the actual control flow C := {V ∈ Vrch | (M,~u) �V =>}, and
~> is a sufficiently long sequence consisting only of >. But often, the coming about of the actual course
of action is as important as ϕ itself.
Example 7 (Agreement). A and B vote. If A = B, an agreement is reached (signified by R ∈ Vrch with
FR = (A = B)), and the outcome is announced (O = A if R = 1 and otherwise ⊥). A and B agree on v in
actuality.

If the control flow is fixed, then A = v by itself is a sufficient cause of O = v, despite the fact that A
and B need to agree to produce any outcome, as~z needs to set B to v in order to preserve R = 1. This
illustrates that the actual control flow should not be presumed a priori to the cause. On the other hand, if
ϕ is established early on (and monotone in time, e.g., violations of safety properties like weak secrecy
and authentication [1]), there is no need to find causes for the control flow after ϕ occurred.

Thus we propose the following definition of sufficient cause, which forbids deviation from the actual
control flow and is specific to causal models with control flow variables.
Definition 6 (Control flow preserving sufficient cause). For a causal model M with control flow variables
Vrch, let C ⊆ Vrch be the actual control flow in context ~u, i.e., the set of control nodes set to >. Then, a
control flow preserving sufficient cause (CFPSC) is defined like a sufficient cause (see Definition 4), but
with SF2 modified as follows:

CFS2. ∀~z.(M,~u) �
[
(V rch

v )v/∈C← ~⊥,V res \~X ←~z
]

ϕ.

This definition handles Example 7 correctly: (A,B,O) = (v,v,v) is the only CFPSC, capturing the fact
that the agreement needs to be reached in order for v to be announced. (A,O) by itself is not a CFPSC,
witnessed by~z setting B to v′ 6= v which results in R =⊥.

For Bogus prevention (Example 6), which was the motivation for Halpern and Hitchcock’s introduc-
tion of normality conditions and could previously – in its original formulation [16] – only be treated

1They also provide a more intuitive account of bogus prevention, but unfortunately, it only applies to Hitchcocks’s defini-
tion [17], which has other shortcomings [15, Example 4.4].
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by means of normality conditions, our approach provides a direct treatment. As all control flow nodes
except C = (NPr) are fixed to zero, A is not causally relevant. Intuitively, the point at which A matters
because the poison was administered (Pr) is not available for any counter factual. The actual control
flow C, where the poison is not administered, guarantees the victim’s surviving (S = 1), but needs to be
established by not administering the poison (NPr = >). Hence (P,S) is (the only) CFPSC, given that
(M,~u) � [(Pr,Nr)← (⊥,⊥),A← z]S = 1 for z = 1,2.

Late preemption (Example 4 with control flow variables BSi, i ∈ Nn) is also handled correctly; here
(T1,BS) is the only CFPSC, i.e., Suzy’s throw caused the bottle to shatter, but not Billie’s. Because
C = (BS1), BS2 is set to ⊥ and Billie’s throw has no bearing on the outcome.

Early preemption, where the victim is poisoned, but shot before the poison takes effect (Example 5,
can be captured similarly, e.g., considering the model described by Hitchcock [18, p. 526], or our own
adaptation (cf. Table 1). Intuitively, C captures the control flow where the victim is shot but the poison
has not yet taken effect. Setting its complement to ⊥ correctly disregards the control flow representing
the poison taking effect due to the victim not being shot.

Related work

We first discuss related work on sufficient causation, which is the basis for CFPSC, then related work
concerning control flow and finally link our insights on control flow to the notion of structural contin-
gencies in the literature.

Sufficient causation Going back to Lewis [21], most definitions of actual causation investigate claims
of the form ‘had A not occurred, B would not have occurred’. The notions put forward by Pearl and
Halpern [11, 15] follow this idea, which arguably captures a form of necessary causation. We elaborate
this point at the end of this section.

By contrast, Datta, Garg, Kaynar, Sharma, and Sinha aim at capturing minimal sequence of protocol
actions sufficient to provoke a violation, in order to provide a tool for forensics as well as a building
block for accountability [6]. The appeal of sufficient causation is that there is a clear interpretation of
what it means for A to be part of a sufficient cause (A,B): A is (jointly with B) causing the event. Notions
of necessary causation typically lack this kind of interpretation and require secondary notions like blame
to determine joint responsibility. Furthermore, in particular in the context of distributed systems and
program analysis, it comes in handy for debugging and forensics that each sufficient cause basically
captures a chain of events which, on its own, leads to an outcome [5].

However, necessary causes are more succinct and seem to capture what is meant by A causes B in
natural language better. We suspect the latter is because natural language often uses “cause” to mean
“part of a cause”, but weighing these two notions against each other is not the scope of this work, and
more ever, depends on the application one has in mind. We are interested in the coming about of events,
so we focus on sufficient causation.

DGKSS’s notion of causation [6] is based on a source code transformation of non-branching pro-
grams within a simple process calculus. We therefore cast their idea of intervening on events that do not
appear in the candidate cause within Pearl’s framework (see Definition 4). This methodology allows us
to understand and generalize effects implicit in the definition of the calculus and translate them back.
Sufficient causes are different from DGKSS’s cause traces in that the latter yield entire traces and that
intervention is performed on code instead of variables. DGKSS’s calculus fixes the control flow to the
actual control flow, since their cause traces contain the line number of the statement effectuating each
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event. Every intervention on these cause traces (which roughly corresponds to the z in SF2) needs to con-
tain these line numbers in the same order and is disregarded otherwise. Example 7 was the motivation to
depart from this and capture the coming about of the actual control flow.

Besides DGKSS’s work, there is only little work on sufficient causation formalizing which events
are jointly sufficient to cause an outcome. Going back to early attempts of formulating actual causation
in a purely logical framework [22], Halpern [10] formulates the NESS test [27] within Pearl’s causality
framework. As with the NESS test, this notion only allows for singular causal judgements ([10, The-
orem 5.3]) and is thus not suited for capturing joint causation. Halpern [12] also proposed a notion of
sufficient causes which requires a sufficient cause to be a) part of all actual causes (hence inducing three
variants of the definition, for each notion of actual causation put forward) and b) to ensure ϕ for all
contexts. If contingencies are restricted to control flow variables and causes to data flow variables, the
first condition is very similar to CFPSC. By way of the second condition, one avoids that ϕ appears in all
sufficient causes (as it is a trivial actual cause of itself), however, this condition prohibits capturing joint
causation in cases where rare external circumstances (e.g., strong wind making lighting the cigarette in
Example 1 impossible) could have prevented the outcome altogether, although they actually did not. For
distributed systems, this is almost always the case due to possible loss of messages in transition, hence
we consider this criterion too strong for these purposes.

Causation and control flow Instead of control flow, Beckers extends structured equations with time [2,
Part II]. His proposal for actual causation involves a notion very similar to the NESS criterion. The notion
derived from it does not capture joint causes, but captures many preemption examples.

Sharma’s thesis extends DGKSS’s model with some control flow: the⊕ operator can capture choices
the parties make, e.g., V := 0⊕1 lets the party set V to either 0 or 1 [24]. As agents can still not branch,
the previous discussion on DGKSS’s paper applies.

Besides Beckers and DGKSS, there are other formalisms for causal models that include control flow,
but do not aim at capturing actual causality [7, 25]. We purposefully formulated control flow within
Pearl’s causality framework, to compare with existing definitions and provide insight into how control
flow can guide the modelling task and improve definitions.

Relation to structural contingencies in Halpern 2015 We review Halpern’s modification [11] of
Halpern and Pearl’s definition of actual causes [15]. First, because it is well-known, second, because it
employs a secondary notion called structural contingencies, which appears to be related to control flow.
We a) give evidence that contingencies relate to control flow wherever they are successful, b) show that
they are problematic if data flow is involved, and c) provide an interpretation of structural contingencies
in terms of control flow, supporting the argument that preemption is first a modelling problem, which
should be covered by distinguishing control flow from data flow, and then a matter of the definition of a
cause.

Definition 7 (Review: actual cause). ~X = ~x is an actual cause of ϕ in (M,~u) if the following three
conditions hold.

AC1 and AC3. Just like SF1 and SF3.

AC2. There are ~W, ~w and~x′ such that (M,~u) � (~W = ~w), and (M,~u) � [~X ←~x′, ~W ← ~w, ]¬ϕ .

AC2 is a generalisation of the intuition behind Lewis’ counterfactual. The special case ~W = () cor-
responds to Lewis’ reasoning that ~X =~x is necessary for ϕ to hold, because there exists a counterfactual
setting ~x′ that negates ϕ . AC2 weakens this condition in order to capture causes that are ‘masked’ by
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other events. The set of variables ~W is called structural contingency, as it captures the aspects of the
actual situation under which ~X =~x is a cause. Variables in ~W can only be fixed to their actual values.

We observe that in all examples in Halpern’s paper where non-empty contingencies appear (Suzy-
Billy, Ex. 3.6 and Ex. 3.7 after adding variables), they exclusively contain variables added to the model
to “describ[e] the mechanism that brings about the result”. These are the precisely variables we would
consider control flow variables. The only exceptions are Example 3.9b and 3.10, where Halpern points
out that Definition 7 gives unintuitive results. Definition 6, captures Halpern’s intuition correctly (see
Table 1, Train [8] and Careful Poisoning).

While structural contingencies work well if they contain control flow variables, they can give unin-
tuitive results if they contain data flow variables. Consider the following causal model MBoS inspired by
the ‘Battle of Sexes’ two-player game.
Example 8 (Bach or Stravinsky). A couple (P1,P2 ∈ V ) agreed on meeting this evening, but they cannot
recall whether they wanted to attend a Bach or a Stravinsky concert (R(P1) = R(P2) = {B,S}). They
are taking the train (T = 1), but only if they both go to the same concert (FC = P1 = P2 for the control
flow variable C). Contrary to the awkward situation in the famous two-player game, they have left a note
N ∈ U ,R(N) = {B,S} in their calendar, which helps them remember (FP1 = N and FP2 = N). Is the
fact that the note reminds them to attend the Bach concert (N = B) a cause for taking the train together
(T = 1)?

Definition 7, as well as the definition preceding it [15], lead to an unintuitive result because variables
that concern data flow are considered as contingencies. No matter which value is chosen for N, T is
always 1. However, ~W can be set to P1 or P2, fixing it to the actual value of N. Hence, for, e.g., ~u = (B),
it holds that (MBoS,~u) � [N ← S, ~W = (P2)← B](T 6= 1), and thus the choice of the input is considered
a cause for T = 1, although 1 is output no matter what the input is. It appears that P1 and P2 should not
be permissible contingencies. Definition 6 handles this example correctly: (P1,P2,T ) is the only CFPSC,
as the control flow (C) is preserved no matter what value N has, as long as P1 and P2 agree on doing
what it says (see Table 1, BoS). Our conclusion is that contingencies should be restricted to control flow
variables to avoid such spurious causes.

Thus, if the use case allows for making control flow variables explicit, we can restrict structural
contingencies ~W to control flow variables and actual causes ~X to data flow variables, and consider AC2’
as follows:
AC2’. For ~X ⊆ V res, C⊆ Vrch and (M,~u) � ~C =~c a subset of the actual control flow, there is~x′ such that

(M,~u) � [~C←~c,~X ←~x′]¬ϕ .
Under these circumstances, we can relate actual causes and CFPSC by comparing AC2’ to CFS2. A pri-
ori, both are very different: AC2 (and AC2’) formulate a necessity criterion on ~X ,2 while CFS2 formu-
lates a sufficiency criterion. Interestingly, there is a duality between necessary and sufficient causes [20],
which we can use to compare the two w.r.t. their treatment of control flow: If the set of variables is finite,
the set of all sufficient causes can be obtained from the set of all necessary causes X = {~X1, . . . ,~Xm }
by, first, considering them as a boolean formula in ~X in disjunctive normal form (DNF) (~X is in X iff
either ~X equals ~X1, or if it equals ~X2, etc.), second, computing the conjunctive normal form of this for-
mula and, finally, switching ∧ and ∨. For example, (A,B) is the only sufficient causes in the conjunctive
forest fire example, and thus A and B are both necessary causes. We adapted this result to CFPSCs (see
the Appendix for theorem and proof) and obtain a dual definition of control flow preserving necessary
causes, where CFS2 translates to

2If ~X =~x is an actual cause under contingency ~W = ~w, then ~X ′ = ~X · ~W =~x ·~w is a necessary cause, i.e., (M,u) |= [~X ′ ←
~x ·~w]¬ϕ .
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CFN2. For ~X ⊆ V res and for C ⊆ Vrch the actual control flow, there is~x′ such that

(M,~u) � [(V rch
v )v/∈C← ~⊥,~X ←~x′]¬ϕ.

We can now compare AC2’ to CFN2 to get a clear picture of how actual causation handles control flow,
if we incorporate the distinction of control flow variables and data flow variables as discussed above.
AC2’ is much more liberal in how the counter-factual control flow can be related to the actual control
flow. By choosing an arbitrary subset of all control flow variables, not only those set to > or ⊥, each
counterfactual setting of a control flow variable may enforce the actual control flow (if it is fixed to
>), prevent counterfactual flow that contradict the actual course of events (if it is fixed to ⊥), but may
also just be computed based on the equations (if it is not part of the subset). CFN2 is more rigid in
this respect, strictly prohibiting the counter-factual control flow to deviate from the actual control flow,
but leaving it otherwise free (motivated by Example 7). This explains, e.g., the difference in Weslake’s
Careful Poisoning example (see Table 1), where the assassin only adds poison to the coffee if he is sure
the antidote was added previously. The antidote is (wrongly to most) considered an actual cause for the
victim surviving, as the counterfactual where it is not administered can still consider the control flow
where the assassin added the poison.

We summarize: a restriction of structural contingencies to control flow seems to avoid unintuitive
results in some cases, without losing accuracy on any examples we considered. Given this restriction,
contingencies obtain an interpretation in terms of the relation between the actual control flow and the
control flow considered in counterfactuals. In comparison to CFPS2, this relation is much more loose.
The Careful Poisoning example suggests that it is too loose.

Validation

Our goal was to provide an account of the relation between control flow and causation; Definition 6
served this goal by demonstrating that an explicit treatment of control flow can help (and is sometimes
even necessary) to treat cases where counterfactuals can change the course of events, e.g., in cases of pre-
emption. We further validate our definition against a benchmark suite of 34 examples from the literature.
To avoid cherry-picking, we include all examples from [26] and [11]. The source code is available at
https://github.com/rkunnema/causation-benchmark. We encourage other researchers
to use this suite to test their own definitions of causality and to extend it with new examples.

We compare Definition 6 with Definition 4 for illustration, and with Halpern’s notion of actual cau-
sation (see Definition 7) as a point of reference. We omit notions like defaults and normality, as we want
to stress that these are not necessary to deal with examples of preemption, and favour Halpern’s notion
over prior variants [15], as it distinguishes between joint causation and over-determination.3

We include the complete set of causes as a comma-separated list of sequences, as, e.g., for Careful
Poisoning (ctl) it is important to see that A (the antidote being administered) is not a CFPSC. Many
examples in the literature do not capture control flow in their modelling, in which case we present results
for the original modelling and a modelling according to Definition 5. In all examples we get results that
are satisfying according to the discussion in the literature we cite.4 For lack of space we refer to the cited
literature for deeper explanation. The only examples we added (not counting adaptations to Definition 5)

3The Litmus test are the two variants of the Forest fire example.
4For Switch and Fancy Lamp, our Definition 6 captures that S, respectively, A are not necessary for the outcome by giving

a sufficient cause which does not include them.

https://github.com/rkunnema/causation-benchmark
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Definition 4 Definition 7 Definition 6

Forest fire, Ex. 1 (A,B,FF) (A), (B), (FF) (A,B,FF)
— disjunctive (overdet.) [9, p. 278] (B,O), (S,O) (B,S), (O) (B,O), (S,O)
— disjunctive, ext. [11, Ex. 3.7] (MD,L,C,FF), (MD,B,C,FF),

(L,A,C,FF)
(MD), (L), (C), (FF) (MD,L,FF)

Late preemption, Ex. 4 (T1,BS1,BS), (T2,BS1,BS2,BS) (T1), (BS1), (BS) (T1,BS)
Early preemption [18, p. 526] (A,D1,D2), (B,P,D2) (A), (D1), (D2) (A,D2)
— (ctl), Ex. 5a (A,Sr,D), (B,Pr,Sr,PEr,NSr,D) (A), (Sr), (D) (A,D)

Bogus prevention [16] (P,S), (A,S) (P,A), (S) (P,S), (A,S)
— ad-hoc [14, p. 29] (P,S), (A,S,PN) (P), (S) (P,S)
— (ctl), Ex. 6 (P,S,NPr), (A,S,Pr,NPr,Nr) (P), (S), (NPr) (P,S)
— (ctl, reversed)b (P,D,NPr), (A,D,NPr,Pr,PNr) (P), (D), (NPr) (P,D)
Careful Poisoning [26, Ex. 11] (A,D), (P,D) (A), (D) (A,D), (P,D)
— (ctl)c (A,NAr,Pr,D), (NAr,Ar,Pr,P,D) (A), (NAr), (Pr), (D) (D)

Train [13, Ex. 4] (F,RB,A), (LB,RB,A) (F,LB), (RB), (A) (F,RB,A), (LB,RB,A)
— [8] (F,RT,A) (F), (RT), (A) (F,A)
— (ctl)d (F,Rr,A), (Lr,Rr,A) (F), (Rr), (A) (F,A)

Prisoner [19] (C,D) (C), (D) (C,D)
Backup [26, Ex. 1] (T,V), (S,V) (T), (V) (T,V), (S,V)
— (ctl) [26, Ex. 1] (T,V,Tr), (S,V,Tr,NTr,Sr) (T), (V), (Tr) (T,V)
Command [26, Ex. 8] (M,C) (M), (C) (M,C)

Agreement, Ex. 7 (A,B,R,O) (A), (B), (R), (O) (A,B,O)
BoS, Ex. 8 (P1,P2,C,T) (N), (P1), (P2), (C), (T) (P1,P2,T)

Switch [26, p. 16] (S,L2, I), (L1,L2, I) (S), (L2), (I) (S,L2, I), (L1,L2, I)
Combination Lamp [26, p. 19] (B,C,L) (B), (C), (L) (B,C,L)
Shock [26, p. 17] (B,C,C1) (A), (B), (C), (C1) (B,C)
Push A [26, p. 26] (P,B,H,D), (P,T,H,D) (P), (B,T), (H), (D) (P,B,H,D), (P,T,H,D)
— (ctl)e (P,T,Pr,H,D) (P), (T), (Pr), (H), (D) (P,T,H,D)
Push B [26, p. 26] (P,T,H,D) (P), (T), (H), (D) (P,T,H,D)
Fancy Lamp [26, p. 31] (A,N3,L), (B,N1,L) (A,B), (A,N1), (B,N3),

(N1,N3), (L)
(A,N3,L), (B,N1,L)

Vote [11, Ex. 4.1] (V1,M,P), (V2,M,P) (V1,V2), (M), (P) (V1,M,P), (V2,M,P)
Ranch [11, Ex. 3.7] (A1,A2,M1,O) (A1), (A2), (M1), (O) (A1,A2)
Vote 5:2f (V1,V2,V3,V4,O), (V1,V2,V3,V5,O),

(V1,V2,V4,V5,O), (V1,V3,V4,V5,O),
(V2,V3,V4,V5,O)

(V1,V2), (V1,V3),
(V1,V4), (V1,V5),
(V2,V3), (V2,V4),
(V2,V5), (V3,V4),
(V3,V5), (V4,V5), (O)

(V1,V2,V3,V4), (V1,V2,V3,V5),
(V1,V2,V4,V5), (V1,V3,V4,V5),
(V2,V3,V4,V5)

Pollution, k = 80 [11, Ex. 3.11] (A,D) (A), (D) (A,D)
Pollution, k = 50 [11, Ex. 3.11] (A,D), (B,D) (A,B), (D) (A,D), (B,D)
Pollution, k = 120 [11, Ex. 3.11] (A,B,D) (A), (B), (D) (A,B,D)

aModel with Vrch = {Pr,Sr,PEr,NSr } and Pr = B, Sr = A, NSr = ¬A, PEr = Pr ∧¬A and D = 1 iff Sr => or PEr =>.
bLike Ex. 6, but reversed control flow: D = 0 iff NPr => (poison not administered) or PNr => (poison neutralised).
cModel with Vrch = {NAr,Ar,Pr } and NAr = > iff A = 0, Ar = > iff A = 1, Pr = > iff NAr = >∧P = 1 and D = 1 iff

Pr =>.
dModel with Vrch = {Lr,Rr }, where Lr = > iff ¬F , Rr = > iff F and A = 1 iff Lr = > or Rr = >, allowing train to get

stuck.
eModel with Vrch = {Pr,NPr }, where Pr = > iff P = 1, NPr = > iff P = 0 and H = 1 iff either Pr = >∧ T = 1 or

NPr =>∧B = 1.
fMajority vote with 7 participants, 5 of which vote Yea, highlighting the difference between notions based on sufficiency

and necessity: 4 Yeas suffice for O = 1, but if two voters would switch to Nay, the vote would be overturned.

Table 1: Set of causes for various examples from the literature. The suffix (ctl) marks models adapted to
Definition 5.
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are Examples 7 and 8, which we explained already, and Vote 5:2, which contrasts the differing views
sufficient causes and actual/necessary causes have to offer.

Conclusion and future work

In cases where control flow can be made explicit, it is worth doing so, as this helps to deal with prob-
lematic cases like preemption. We discussed in what way it should be taken into account, and proposed
a blue-print for doing so, as well as a definition of causality that preserves the actual course of events.
This definition is simple and intuitive, does not require secondary notions, captures joint causation and
handles all 34 example in our benchmark correctly (with respect to the respective author’s views). Such
a definition is useful for computer programs and distributed systems, as the temporal order of events
between communicating agents can be captured by a non-deterministic scheduler simulating them. A
translation from Petri nets, Kripke structures or process calculi to extended causal models that adheres to
the modelling principles discussed in this work can be used to argue the soundness of causality notions
formulated within these formalisms. In fact, we advocate this approach, as we believe that a thorough
discussion of causality requires a common language.

Vice versa, the causality literature stands to benefit from such translations. Due to the generality
of Pearl’s framework, modelling is more art than science, which raises concerns about the falsifiability
of theories of causation. For bogus prevention and other difficult examples, e.g., late preemption, the
‘correct’ modelling has been debated again and again for each use case specifically. By transferring and
analysing existing domain-specific definitions, e.g., DGKSS’s definition, to Pearl’s framework, we can
find a common ground for the discussion of the ‘right’ modelling, and encourage a similar treatment for
other domains where causality is of interest. This way, experiences and observation in well-understood
domains can be fed back to the general case and modelling principles be exposed that are otherwise
easily overlooked when modelling abstract scenarios ad hoc.
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~X1, . . . ,~Xm can be represented as a boolean formula in disjunctive normal form (DNF) that is true when-
ever X is the bitstring representation of X ⊆ V res such that X ∈X : (X = X1∨X = X2∨·· ·∨X = Xm).
Here, X = X i merely compares two bitstrings for equality, i.e., it is a conjunction

∧
j∈Nn

X | j = X i| j.
Theorem 1 (control flow preserving necessary causes). For X the set of (not necessarily minimal)
CFPSCs, i.e., adhering to SF1 and CFS2, let X be the DNF representation of X . Then the set of
(not necessarily minimal) control flow preserving actual causes, i.e., adhering to AC1 and CFN2, is
represented by Y , which is obtained from X by transforming X into CNF and switching ∨ and ∧. The
same holds for the other direction.

Proof. Fix an arbitrary model M, context~u and let C⊆ Vrch be the actual control flow in this context. By
Definition 6, CFS2, we can rephrase the assumption X as follows: For all sequences of variables ~X ,

~X ∈ X ⇐⇒ ∀~z.(M,~u) �
[
(V rch

v )v/∈C← ~⊥,V res \~X ←~z
]

ϕ. (1)

As X is finite, i.e., X = {~X1, . . . ,~Xn }, we can write ~X ∈X as a boolean function over {0,1}n:

~X ∈X ⇐⇒ (X = X1)∨·· ·∨ (X = Xm).

Like any boolean function, this function can be transformed into canonical CNF and thus the right-hand
side can be expressed as c1 ∧ ·· · ∧ ck with some conjuncts ci of form

∨
j∈Nn

(¬)X | j. Whatever these
conjuncts are, we insert this CNF on the left-hand side of (1) and negate both sides. Hence, for all ~X ,

¬c1 ∨ ·· · ∨ ¬ck ⇐⇒ ∃~z.(M,~u) �
[
(V rch

v )v/∈C← ~⊥,V res \~X ←~z
]
¬ϕ.

(Note that c1, . . . ,ck depend on ~X .) We rename ~X to ~Z and~z to~x′. Let {b/a} denote b literally replacing
a. Thus, for all ~Z,

¬c1

{
Z/X

}
∨ ·· · ∨ ¬ck

{
Z/X

}
⇐⇒ ∃~x′.(M,~u) �

[
(V rch

v )v/∈C← ~⊥,V res \~Z←~x′
]
¬ϕ.

We can replace V res \~Z by a new variable ~X and quantify over ~X again. This is valid, as ~X 7→ V res \~X
is a bijection between the domain of ~X and the domain of ~Z. Note that V res \ (V res \~X) = ~X and Z =

(V res \~X) = ¬X . Thus for all ~X

¬c1

{
¬X/X

}
∨ ·· · ∨ ¬ck

{
¬X/X

}
⇐⇒ ∃~x′.(M,~u) �

[
(V rch

v )v/∈C← ~⊥,~X ←~x′
]
¬ϕ.

As each conjunct ci is a disjunction, the negation of ci with X substituted by ¬X can be obtained by
switching ∨ and ∧. The resulting term is, again, a boolean formula in DNF, so X transforms into X
easily. The reverse direction proceeds with the exact same steps, modulo variables naming.
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