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Abstract

The unique-continuation property from sets of positive measure is here proven for

the many-body magnetic Schrödinger equation. This property guarantees that if a

solution of the Schrödinger equation vanishes on a set of positive measure, then it is

identically zero. We explicitly consider potentials written as sums of either one-body

or two-body functions, typical for Hamiltonians in many-body quantum mechanics.

As a special case, we are able to treat atomic and molecular Hamiltonians. The

unique-continuation property plays an important role in density-functional theories,

which underpins its relevance in quantum chemistry.
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1 | INTRODUCTION

Within the Schrödinger model for quantum systems of (interacting) electrons, in order to be able to describe interesting phenomena like the Zee-

man effect, the quantum Hall effect, or the Hofstadter butterfly one has to include the effects of both an electric and a magnetic field. Hohenberg

and Kohn showed for systems without magnetic fields that the one-body ground-state particle density determines the electric (scalar) potential

up to a constant.[1] Strictly speaking, the particle density determines at most one potential (modulo an additive constant) since some densities are

not associated with any potential.[2] The above correspondence between densities and potentials constitutes the theoretical foundation on which

density functional theory (DFT)—a ubiquitous tool in quantum chemistry and materials science[3,4] —is built.

In the presence of magnetic fields though, the approach of Hohenberg and Kohn to set up a universal density functional requires more than

just the particle density due to the fact that an additional vector potential enters the system's Hamiltonian. Both the paramagnetic current density

and the total (physical) current density have been suggested as basic variables alongside the particle density[5–7] and the resulting framework is

called current density functional theory (CDFT). For the theory that uses the paramagnetic current density, counterexamples to a Hohenberg-

Kohn theorem are known,[8,9] although a weaker version still holds. Note that even for degenerate systems the weaker version is enough to define

a universal paramagnetic current density functional.[10] Diener has presented an argument[7] for establishing a full Hohenberg-Kohn theorem

using the total current density. However, as first noted in Reference [11], the argument is at best incomplete.

For more detailed accounts on the existence of generalized Hohenberg-Kohn theorems within CDFT see References [9, 11, 12], and for related and

positive results within the Maxwell-Schrödinger theory and quantum-electrodynamical DFT see References [13–15]. An interesting and recent develop-

ment is also given in Reference [16] where the existence of generalized Hohenberg-Kohn theorems is further explored. A different route, where a

Hohenberg-Kohn result comes for free by virtue of the convex-analytic properties of a regularized energy functional was taken in References [17, 18]. It

was specifically implemented for CDFT in Reference [19] and can even be used to prove convergence of the associated Kohn-Sham iteration Scheme.[20]
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The current work arises as a natural ingredient for proving a generalized Hohenberg-Kohn theorem in total (physical) CDFT. It addresses

the property that a solution of the magnetic Schrödinger equation cannot vanish on a set of positive measure, a property called unique con-

tinuation, see Definition 1. Unique continuation is also a fundamental property for solutions of the magnetic Schrödinger equation in its own

right and has been well-studied.[21–26] In the context of CDFT the issue was first raised in Reference [9]. As far as DFT and CDFT are con-

cerned, it is useful to have the assumptions guaranteeing the unique-continuation property as particle-number independent as possible

(at least avoid increasing integrability constraints with increasing N), which is a difficult task. In the present work we obtain results that are

adapted to the many-body Schrödinger equation and that furthermore include vector potentials, building on the results of Kurata[25] and

Regbaoui.[26] This means that the specific structure of the potentials is beneficially taken into account. The main results, Theorem 6 and Cor-

ollary 8, that include the singular Coulomb potentials of atoms and molecules as a special case (Corollary 9), are formulated in terms of the

Kato class Kn
loc and its generalization Kn,δ

loc, with n = 3 and n = 6 (Definition 3). Although we cannot answer the question of the existence of a gener-

alized Hohenberg-Kohn theorem for the total current in CDFT, we exemplify the use of the unique-continuation property in a limited special case

(Corollary 11).

2 | UNIQUE-CONTINUATION PROPERTY AND THE HOHENBERG-KOHN THEOREM

In the most simple setting of only one particle and without vector potential, it is known that the (unique) ground state ψ in H1(R3) can be chosen

to be strictly positive, see Theorem 11.8 in Lieb-Loss.[27] This means that we can set ρ1/2 = ψ > 0 and the following relation to the scalar potential

v must hold (from the Schrödinger equation, here written as [−Δ + v]ψ = eψ )

v xð Þ= e+ Δρ xð Þ1=2
ρ xð Þ1=2

, x∈R3, ð1Þ

where Δ denotes the Laplacian and e is the ground-state energy. Conversely, given a particle density ρ we can ask if a potential v exists such that

the given ρ is the ground-state density of that potential. For the one-particle case, this problem has been studied by Englisch and Englisch[2] and

was answered in the negative even for well-behaved densities (N-representable densities). Corollary 3 in Reference [28] (including the additional

constraint Δρ1/2 ≤ Cρ1/2 and ρ−1 ∈ L1loc besides N-representability) provides sufficient conditions for one-particle v-representability, that is, v can

be computed from ρ as given in Equation (1) and ρ is the ground-state density of that v.

Returning to the general N-electron case without magnetic field, we first recall the Hohenberg-Kohn theorem: Given two systems, if ρ1 = ρ2

then v1 = v2 + constant, where ρk, k = 1,2, is the ground-state particle density of the corresponding system defined by the potential vk. The proof

of this result relies on the fact that if ψ is a ground state of both systems, then
PN

k =1 v1 xkð Þ−v2 xkð Þð Þψ = constant×ψ . If ψ does not vanish on a set

of positive (Lebesgue) measure we have v1 = v2+ constant almost everywhere. The proof can then be completed by means of the variational prin-

ciple, using the Hohenberg-Kohn argument by reductio ad absurdum.[1] (Note that a strict inequality in the variational principle is not needed, see,

eg, Reference [29] and that the results also hold for systems with degeneracy.[2])

In this article we address the more general case of N interacting, nonrelativistic (spinless) particles subjected to both a scalar and a vector

potential. The fundamental question then is, whether any eigenfunction of the corresponding Hamiltonian

HN =
XN
j=1

irj +A xj
� �� �2

+ v xj
� �

+
X
l< j

u xj,xl
� �" #

ð2Þ

can be zero on a set of positive measure without being identically zero. This is a problem of unique continuation.

Definition 1 We say that the Schrödinger equation HNψ = eψ has the unique-continuation property (UCP) from sets of positive (Lebesgue) measure if a

solution that satisfies ψ = 0 on a set of positive measure is identically zero. Furthermore, the Schrödinger equation is said to have the strong UCP if when-

ever ψ vanishes to infinite order at some point x0, that is, for all m > 0

ð
jx−x0 j≤ r

ψ xð Þj j2dx=O rmð Þ r!0ð Þ,

then ψ is identically zero. Additionally, if ψ = 0 on a non-empty open set implies that ψ is identically zero, then the Schrödinger equation has the

weak UCP.
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Remark 1 The strong UCP implies the weak UCP. The UCP from sets of positive measure allows us to conclude ψ 6¼ 0 almost everywhere for any eigen-

function of HN.

There exists a considerable amount of literature that treats the UCP for differential inequality |Δψ | ≤ |ξ1||rψ | + |ξ2||ψ |.
[21–26] In particular if

ξ1 ∈ Lnloc Rnð Þ and ξ2 ∈ Ln=2loc Rnð Þ, the corresponding differential equation Δψ = ξ1 �rψ + ξ2ψ has the UCP from sets of positive measure.[26] Note that

such Lploc constraints become more restrictive with increasing particle number, since the dimension of the configuration space n enters in the con-

ditions. Directly applied to HNψ = eψ this means that if a solution ψ in the Sobolev space H2N= N+2ð Þ
loc R3N

� �
vanishes on a set of positive measure,

XN
j=1

½v xj
� �

+ A xj
� ��� ��2 + i rj�A xj

� �� �
+
X
l< j

u xj ,xl
� ��∈ L3N=2loc R3N

� �
,

and each component of A belongs to L3Nloc R3N
� �

, then ψ is identically zero.

Such results are used by Lammert,[30] particularly in his Theorem 5.1, to give a mathematically precise proof of the Hohenberg-Kohn theo-

rem[1] in DFT including the UCP as remarked by Lieb.[31] Yet he does not consider magnetic fields and the constraints are very susceptible to the

particle number. A recent effort by Garrigue[29] removed the dependence on particle numbers for the constraints on the scalar potential by exploi-

ting their specific shape in the context of many-body (molecular) Hamiltonians. Reference [29] also contains a rigorous proof of the Hohenberg-

Kohn theorem including all the mathematical details for potentials v∈ Lploc R3
� �

, p>2.

3 | PREREQUISITES

Let the Hamiltonian HN be as in Equation (2). The Schrödinger equation is then given by HNψ = eψ . We write HN = TA + V + U, where

TA =
PN

j=1 irj +A xj
� �� �2

, rj = ∂
∂x1

j
, ∂
∂x2

j
, ∂
∂x3

j

� �
and xj = x1j ,x

2
j ,x

3
j

� �
∈R3 are the coordinates of the jth electron. Here we use (irj+A(xj))

2 in TA instead

of (−irj+A(xj))
2 in order to follow the notation in Kurata.[25] We use a slight variation of atomic units ℏ = 2me = 1 and qe = −1, such that the

Laplace operator appears without a factor 1/2.

The electric potential V is a one-body potential given by V xð Þ=PN
j=1v xj

� �
with v :R3!R. The two-particle interaction U between the electrons

is modeled by U(x) =
P

1≤ j< l≤Nu(xj, xl), for some nonnegative function u on R3×R3. We set W = V+U. Furthermore, A :R3!R3 denotes the vec-

tor potential, from which the magnetic field is obtained by B = r×A. With the notation A xð Þ= A xj
� �� �N

j=1, the Schrödinger equation is rewritten as

−Δψ +2iA�rψ + WA−eð Þψ =0, ð3Þ

where WA =W + Aj j2 + i r�Að Þ.
A function f ∈ L2loc Rnð Þ belongs to the Sobolev space Hk

loc Rnð Þ if f has weak derivatives up to order k that belong to L2loc Rnð Þ. Let the set of infi-

nitely differentiable functions with compact support on R3N be denoted by C∞
0 R3N
� �

. We say that ψ ∈H1
loc R3N
� �

is a solution of Equation (3) in

the weak sense, which will be our standard notion for solutions from here on, if for all φ∈C∞
0 R3N
� �

ð
R3N

rψ �r�φ dx+2i
ð
R3N

A� rψð Þ�φ dx+
ð
R3N

WA−eð Þψ�φ dx=0: ð4Þ

The present work takes off from the following result:

Theorem 2 (Theorem 1.2 in Regbaoui[26]). Let N ≥ 1. Assume that WA ∈ L3N=2loc R3N
� �

and each component of A is an element of L3Nloc R3N
� �

. Then the

Schrödinger equation has the UCP from sets of positive measure, that is, if a solution ψ ∈H2N= N+2ð Þ
loc R3N

� �
vanishes on a set of positive measure

then it is identically zero.

Remark 2 See also Theorem 1.1 in Regbaoui[26] for the strong UCP and Wolff[23] for the weak UCP.

If one employs Theorem 2 with N = 1, since there is no two-particle interaction it suffices to assume that v,|A|2 and r� A are elements of

L3=2loc R3
� �

to obtain the UCP from sets of positive measure. With increasing particle number, however, the assumptions on the potentials v, u, and

A are such that they rule out most types of singularities. On the other hand, the particle-number dependence that enters in H2N= N+2ð Þ
loc fulfills the

inequality 2 N/(N+2)≤2 for all N. Following Kurata[25] the Lploc constraints, with p proportional to N, can be avoided.
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Definition 3 A function f ∈ L1loc Rnð Þ belongs to the Kato class Kn
loc, n 6¼2, if for every R >0, lim

r!0+
ηK r; fð Þ=0, where

ηK r; fð Þ= sup
jxj≤R

ð
Br xð Þ

j f yð Þ j
x−yj jn−2

dy:

Furthermore, f ∈Kn,δ
loc �Kn

loc, δ>0, if for every R >0

lim
r!0+

sup
jxj ≤R

ð
Br xð Þ

j f yð Þ j
x−yj jn−2+ δ

dy =0:

We write f = f+ − f−, where f− (f+) is the negative (positive) part of f given by f−(x) = max(−f(x), 0) (f+(x) = max(f(x), 0)). Let y ∈ R3N be fixed and

for x = (x1, …, xN) ∈ R3N (cf. the notation in Kurata[25])

a xð Þ= A xð Þj j2,

by xð Þ= x−yj j2
XN
j=1

B xj
� ��� ��2,

Qy xð Þ= 2W + x−yð Þ�rWð Þ− :

With the notation above, we formulate.

Assumption 1 Suppose

r�A∈ L2loc R3
� �

,

Aj ∈ L4loc R3
� �

Ajcomponent ofA
� �

,

a,by ,W,Qy ∈K3N
loc for fixed y∈R3N
� �

,

and that for some r0 > 0 ðr0
0

θy rð Þ
r

dr <∞ ð5Þ

holds, where θy(r) = ηK(r; Qy) + ηK(r; by)
1/2.

Remark 3 Remark 1.2 in Kurata[25] gives by ,Qy ∈K3N,δ
loc , for some δ>0, as a sufficient condition for Equation (5) to hold.

Remark 4 The main condition in Assumption 1 is with respect to the Kato class Kn
loc , n = 3 N being the dimensionality of the underlying configuration

space. This condition is optimal in the sense that the class cannot be enlarged to smaller orders than n = 3 N, or the UCP will be lost. This follows from

the inclusion Lploc �Kn
loc for all p > n/2 and a sharp counterexample provided in Reference [32] for a potential in Lp, p < n/2. So if the order of the Kato

class would be any m<n then it also includes Lploc with m/2< p < n/2 and that is ruled out by the given counterexample.

The following is obtained by adapting Corollary 1.1 in Kurata[25] (denoted Lemma 5 below). For the sake of simplicity, and since it is enough

for our purposes here, we make the restrictions to real-valued V and U. In the sequel we use the notation |F| for the Frobenius norm (also called

the Hilbert-Schmidt norm) of a matrix (Fj,l)j,l.

Theorem 4 Suppose Assumption 1. If ψ ∈H2
loc R3N
� �

is a solution of (3) and vanishes to infinite order at x0∈R3N, then ψ is identically zero. Thus

the Schrödinger equation has the strong UCP.

Lemma 5 (Corollary 1.1 in Kurata[25]). Let n ≥ 3, x0 ∈ Rn be fixed, x= x1,…,xn
� �

∈Rn, eA= eA1
,…,eAn

� �
:Rn !Rn, eW :Rn !R , F = Fj,l

� �n
j,l=1 with

Fj,l = ∂eAj
=∂xl−∂eAl

=∂xj, and suppose that
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eAj
∈ L4loc Rnð Þ, r�eA∈ L2loc Rnð Þ, jeAj2 ∈Kn

loc,

x−x0j j Fj jð Þ2 ∈Kn
loc,

ð6Þ

and

eW∈Kn
loc, 2 eW + x−x0ð Þ�r eW� �

−
∈Kn

loc: ð7Þ

Furthermore assume, for some r0 > 0,Ð r0
0 ηK r; 2 eW + x−x0ð Þ�r eW� �

−

� �
+ ηK r;ðjx−x0j jFjÞ2

� �1=2	 

dr
r
<∞ ð8Þ

holds. Then if ψ ∈H2
loc Rnð Þ satisfies

Xn
j=1

i
∂

∂xj
+ eAj

xð Þ
� �2

+ eW xð Þ
 !

ψ =0 ð9Þ

and vanishes to infinite order at x0, it follows that ψ is identically zero.

Proof of Theorem 4 We will show that Assumption 1 directly fulfills all the conditions of Lemma 5 that thus becomes applicable. Let n = 3 N andeW = W − e. By Assumption 1, (7) is then fulfilled. The choice Ã = A implies TA = ir+ eA� �2
and Equation (3) can be written as Equation (9).

Each component of A∈ L4loc R3
� �

yields eAj
∈ L4loc R3N

� �
for j = 1, …, 3 N. From r�eA=

PN
k =1rk�A xkð Þ and r�A∈ L2loc R3

� �
, we obtain r�eA∈ L2loc R3N

� �
.

Since a = |Ã|2, it holds that jeAj2 ∈K3N
loc . Moreover, the matrix F satisfies

x−x0j j Fj jð Þ2 = x−x0j j2
X3N
j, l=1

Fj,l
�� ��2 = 2bx0 xð Þ, ð10Þ

since F contains N repeated blocks of sub matrices of the form

0 −B3 xj
� �

B2 xj
� �

B3 xj
� �

0 −B1 xj
� �

−B2 xj
� �

B1 xj
� �

0

264
375:

This establishes Equation (6).

From Equation (5), eW = W− e and Equation (10), we conclude that Equation (8) holds. Lemma 5 gives the strong UCP for Equation (3) and the

proof is complete. □

Remark 5 As stated in Remark 1.1 in Kurata,[25] Lemma 5 and thus Theorem 4 also holds if in Assumption 1, K3N
loc is replaced by K3N

loc + F
p
loc R3N
� �

,

1 < p≤3 N/2. Here Fploc R3N
� �

is the Fefferman-Phong class and in this case a solution must be an element of H2
loc R3N
� �\L∞loc R3N

� �
, and there is an addi-

tional condition on V −.

4 | MAIN RESULTS

Theorem 4 above establishes the strong UCP under Assumption 1. If in addition the negative part of v is locally L3/2(R3) summable we obtain the

UCP from sets of positive measure:

Theorem 6 Suppose Assumption 1. If in addition v− ∈ L3=2loc R3
� �

and ψ ∈H2
loc R3N
� �

solves (3) and vanishes on a set of positive measure, then ψ is

identically zero. Consequently, the Schrödinger equation has the UCP from sets of positive measure.
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Remark 6 The requirement u ≥ 0 can be relaxed if one assumes that u(x1, x2) = u
0
(x1 − x2) (see Lemma A.2 in Lammert[30]).

If the strong UCP can be obtained under other assumptions than Assumption 1, the following corollary can be used to obtain the UCP from

sets of positive measure.

Corollary 7 Suppose the strong UCP for the Schrödinger equation (not necessarily by means of Assumption 1), then the constraint

v− + Aj j2 + i r�Að Þ∈ L3=2loc R3
� �

gives the UCP from sets of positive measure.

Due to the particular form of the potentials, we can write

W xð Þ=
X
j

v xj
� �

+
1
2

X
j 6¼l

u xj ,xl
� �

:

Because Qy is defined as the negative part of the function 2W + (x − y)�rW, we have with the choice x0 = x0,…,x0ð Þ∈R3N, for fixed x0∈R3,

0≤Qx0 xð Þ=Qx0
xð Þ≤

X
j

q1;x0 xj
� �

+
X
j 6¼l

q2;x0 xj,xl
� � ð11Þ

for some functions q1;x0 and q2;x0 . (See below the proof of Corollary 9, where this decomposition is done for the choice of W corresponding to the

molecular case.) Furthermore,

bx0 xð Þ= bx0 xð Þ=
XN
j, l=1

xj−x0
�� ��2 B xlð Þj j2

can be split as

bx0 xð Þ=
X
j

b1;x0 xj
� �

+
X
j6¼l

b2;x0 xj,xl
� �

:

We can now formulate our main result that includes HN modeling atoms and molecules, and where the exponents in the integrability con-

straints are independent of the particle number N.

Corollary 8 For N ≥ 2 and x0 ∈ R3 fixed, suppose

r�A∈ L2loc R3
� �

, Aj ∈ L4loc R3
� �

, Aj j2 ∈K3
loc,

b1;x0 ∈K3,δ
loc, b2;x0 ∈K6,δ

loc:
ð12Þ

Further, let v− ∈ L3=2loc R3
� �

, v∈K3
loc, and u∈K6

loc, as well as Qx0 satisfying (11) with q1;x0 ∈K3,δ
loc and q2;x0 ∈K6,δ

loc. Then the Schrödinger equation (3) has

the UCP from sets of positive measure.

In particular, the magnetic Schrödinger equation has the UCP from sets of positive measure for HN modeling atoms and molecules in magnetic

fields if just Equation (12) is fulfilled.

Corollary 9 For N ≥ 2, suppose the magnetic field is such that Equation (12) holds. Then with

v x1ð Þ= −
XMnuc

j=1

Zj

j xnuc; j−x1 j , u x1,x2ð Þ= 1
j x1−x2 j ,

where xnuc;j ∈ R3 and Zj > 0 are the positions and charges of the Mnuc nuclei, respectively, the UCP from sets of positive measure holds for the

Schrödinger equation.
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5 | APPLICATION TO CDFT

In the presence of a magnetic field, no equivalence of a (general) Hohenberg-Kohn result exists at present.[9,11] However, we shall now address

how the UCP from sets of positive measure for the magnetic Schrödinger equation plays an important role in the argument for restricted

Hohenberg-Kohn theorems in CDFT and the nonuniversal variant magnetic-field density-functional theory (BDFT) of Grayce and Harris.[33] Given

a wave function ψ , define the particle density and the paramagnetic current density according to

ρψ xð Þ=N
ð
R3 N−1ð Þ

ψðx,x2,…,xNÞj j2dx2…dxN,

jpψ xð Þ=N Im
ð
R3 N−1ð Þ

�ψ x,x2,…,xNð Þ rxψ x,x2,…,xNð Þdx2…dxN:

For a vector potential A we may compute the total current density by the sum j= jpψ + ρψA. Now, fix the particle number N as well as the two-

particle interaction u (eg, u(x1, x2) = |x1− x2|
−1) and write HN = H(v,A). If ψ is a ground state for some v and A, that is, H(v,A)ψ = eψ , where e is the

ground-state energy, then ρψ, j
p
ψ , and j = jpψ + ρψA are called ground-state densities of H(v,A). Whether the ground-state particle density ρ and the

total current density j determine v and A (up to a gauge transformation) is still an open question in the general case.[9,11] (For the ground-state

density pair (ρ,jp) it is well-known that this density pair does not determine the potentials v and A.[8])

Now, assume that two systems with Hamiltonians H(v1,A1) and H(v2,A2) have the same ground-state particle density (i.e., ρ1 = ρ2 = ρ) and

r × A1 = r × A2 = B. Suppose that vk, Ak for k = 1,2, and B fulfill Assumption 1 and the requirements given in Theorem 6. Since there exists a

function f such that A1 = A2 − rf, the variational principle yields

e1 ≤ ψ2,H v1,A1ð Þψ2h i≤ e2 +
ð
R2

v1−v2ð Þρdx,

where ψ2 is the ground state of H(v2, A2 − rf ). Switching the indices, we find that

e1−e2 =
ð
R2

v1−v2ð Þρdx:

Consequently, ψ2 is a ground state of both H(v1, A1) and H(v2, A2 − rf ), which leads to

H v1,A1ð Þ−Hðv2,A2−rfÞ½ �ψ2 =
XN
j=1

v1 xj
� �

−v2 xj
� �� �

ψ2 = V1−V2ð Þψ2 = e1−e2ð Þψ2:

However, Theorem 6 allows us to conclude ψ2 6¼ 0 and it follows v1 = v2 + constant.

Theorem 10 Assume r × A1 = r × A2 = B and that vk, Ak for k = 1,2, and B fulfill Assumption 1 and take the requirements of Theorem 6 for

H(v1,A1) and H(v2,A2) to hold. If the ground-state particle densities satisfy ρ1 = ρ2, then v1 = v2 + C almost everywhere for some constant C.

Remark 7 Theorem 10 is the Hohenberg-Kohn theorem for BDFT, first established by Grayce and Harris[33] but missing the UCP argument (see also

Reference [9]).

Theorem 10 can be used to obtain

Corollary 11 Assume Assumption 1 and the requirements of Theorem 6 for H(v1,A1) and H(v2,A2) and that the ground-state densities fulfill

ρ = ρ1 = ρ2, j = j1 = j2. For systems with jp = 0, it follows B1 = B2 (even A1 = A2 holds) and v1 = v2 + C for some constant C.

Proof. For systems with jp = 0, j1 = j2 implies

ρA1 = ρA2,
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since ρ1 = ρ2 = ρ. Theorem 6 gives ρ > 0 almost everywhere and we may conclude A1 = A2. Theorem 10 now gives the equality v1 = v2 + C for

some constant C. □

6 | PROOFS OF THE MAIN RESULTS

Proof of Theorem 6 In the sequel let D = 3 N. By Assumption 1, the strong UCP holds for Equation (3) by Theorem 4. Next, we follow the proof of

Theorem 1.2 given after Lemma 3.3 in Regbaoui[26] and Lemma A.2 in Lammert.[30] (Lemma A.2 corresponds to setting A = 0 here, and moreover

we exploit u ≥ 0 instead of the assumption u(x1,x2) = u
0
(x1 − x2).) We start by showing the following inverse Poincaré inequality for solutions of

the Schrödinger equation:

For an arbitrary point x0 = x0; j
� �N

j=1 ∈RD and r≤ r0

ð
Br x0ð Þ

rψ xð Þj j2dx≤ C
r2

ð
B2r x0ð Þ

ψ xð Þj j2dx: ð13Þ

Here C is a positive constant that depends on r0 > 0, v, and A (but is independent of u ≥ 0).

Choose h∈C∞
0 B2r x0ð Þð Þ that satisfies h(x) = 1 if |x− x0|≤ r, h≤1 for |x− x0|≤2r, and |rh(x)|≤2r−1. In the Schrödinger equation (4), we choose

φ = h2ψ and move all terms except one to the right hand side so that

ð
RD

hrψj j2dx= −2
ð
RD
h rψð Þ��ψrh dx −2i

ð
RD
A� rψð Þh2 �ψ dx+

ð
RD

e−WAð Þ hψj j2dx: ð14Þ

We now bound each of the terms of the right hand side in Equation (14).

It is immediate that the first term is less or equal to 2khrψk2kψrhk2. Using the inequality 2ab ≤ a2/6 + 6b2, we obtain an upper bound

1
6

ð
RD

hrψj j2dx+6 ψrhk k22: ð15Þ

To continue, let I1 = −2i
Ð
RDA� rψð Þh2 �ψ dx. The Cauchy-Schwarz inequality together with 2ab≤ a2/6 +6b2 yield

I1 ≤
1
6

ð
RD

hrψj j2dx+6
ð
RD

Aj j2 hψj j2dx: ð16Þ

For the last term of the right hand side in Equation (14), we use the definition of WA and write e−WA = e−W− Aj j2− i r�Að Þ. Thusð
RD

e−WAð Þ hψj j2dx=
ð
RD

e−W− Aj j2
� �

hψj j2dx − i
ð
RD

r�Að Þ hψj j2dx

and it follows from W = V+ + U+ − V− ≥ −V− thatð
RD

e−WAð Þ hψj j2dx≤
ð
RD

V− + jejð Þ hψj j2dx +
ð
RD

r�Að Þkhψj j2dx: ð17Þ

Define Θ=V− + j e j +6 Aj j2 + j r�A j , from Equations (15), (16), and (17) we obtain an upper bound for the right hand side of Equation (14)

given by

1
3

ð
RD

hrψj j2dx+6 ψrhk k22 +
ð
RD
Θ hψj j2dx: ð18Þ

With the notation Θ1 = v− + N−1 j e j + 6|A|2 + jr � Aj, the inequality Θ xð Þ≤PN
j=1Θ1 xj

� �
holds. Furthermore, we have

ð
RD
Θ xð Þ hψj j2dx≤

XN
j=1

ð
RD
Θ1 xj
� �

hψj j2dx= I2,
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where the last equality defines I2.

By assumption v− ∈ L3=2loc R3
� �

, Aj j2 ∈ L2loc R3
� �

, and r�A∈ L2loc R3
� �

, and it follows that Θ1 ∈ L3=2loc R3
� �

. To bound the term I2 from above, we

closely follow Lammert[30] and define eρ x1ð Þ=NÐR3 N−1ð Þ hψj j2dx2� � �dxN . For M>0 we let M0 = kΘ1χB2rðx0;1ÞχfΘ1 ≥Mgk3=2 , where the characteristic func-

tion of a set X is denoted χX. Hölder's inequality gives

I2 =
ð

Θ1 <Mf g
Θ1eρ dx1 +

ð
Θ1 ≥Mf g

Θ1eρ dx1 ≤M hψk k22 +M0 eρk k3,

and by a Sobolev inequality eρk k3 ≤C r eρ1=2� ���� ���2
2
. A direct computation of rð~ρ1=2Þ, using the definition of ~ρ, shows that

r eρ1=2� ���� ���2
2
≤
Ð
RD r hψð Þj j2dx (see also the original argument of Lieb,[31] Theorem 1.1). From |a+ b|2≤2|a|2 + 2|b|2, we get

r eρ1=2� ���� ���2
2
≤2
ð
RD

hrψj j2dx+2 ψrhk k22:

We chooseM > 0 such that 2CM
0
≤ 1/6 and then one has

I2 ≤
1
6

ð
RD

hrψj j2dx+ 1
6

ψrhk k22 +M hψk k22: ð19Þ

Returning to Equation (18), we set C = 74+3Mr20

h i
=3 and use Equation (19) and |rh|≤2/r to conclude for r≤ r0

1
2

ð
RD

hrψj j2dx≤ 37
6

ψrhk k22 +M hψk k22 ≤
C
r2

ð
B2r x0ð Þ

ψj j2dx:

Hence Equation (13) holds.

Suppose ψ ∈H2
loc vanishes on a set E of positive measure. Almost every point of E is a density point. Let x0 be such a density point and let

Br = Br(x0). Given ε> 0 there is an r0 = r0(ε) so that (cf. (3.11) in Regbaoui[26])

j E\Br j
jBr j ≥1−ε,

j Ec \Br j
jBr j ≤ ε, for r ≤ r0: ð20Þ

Lemma 3.3 in Regbaoui[26] (or Lemma 3.4 in Ladyzenskaya-Ural'tzeva[34]) gives

ð
Br\Ec

ψj j2dx≤C rD

j E j Br \Ecj j1=D
ð
Br

j r ψ2
� � jdx ð21Þ

for some constant C. Applying the Cauchy-Schwarz inequality to the right hand side of Equation (21), we obtain

ð
Br

ψj j2dx≤C r2D

Ej j2
Br \Ecj j2=D

ð
Br

rψj j2dx

for some new constant C. Since |E| ≥ |E \ Br|, Equation (20), and the inverse Poincaré inequality (13) allow us to conclude that

ð
Br

ψj j2dx≤C ε2=D

1−εð Þ2
r2
ð
Br

rψj j2dx≤C0 ε2=D

1−εð Þ2
ð
B2r

ψj j2dx: ð22Þ

Introduce the function f rð Þ= ÐBr
ψj j2dx, fix an integer n and choose ε>0 so that C

0
ε2/D/(1− ε)2 = 2−n. Then Equation (22) can be written

f(r) ≤2−nf(2r). By iteration

f r0ð Þ≤2−knf 2kr0
� �

, r0 ≤21−kr0
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holds. For fixed r and k chosen such that 2−kr0 ≤ r ≤ 21 − kr0, it follows that

f rð Þ≤2−knf 2r0ð Þ≤ r
r0

� �n

f 2r0ð Þ,

where r0 depends on n. Consequently f vanishes to infinite order, that is, for all m there is an r0(m) such that

f rð Þ=
ð
Br

ψj j2dx≤Cmr
m, r ≤ r0 mð Þ:

That ψ = 0 follows now by the strong UCP given by Theorem 4. □

Proof of Corollary 7 This is a consequence of the proof of Theorem 6, since Θ1, by assumption, is an element of L3=2loc R3
� �

. □

Proof of Corollary 8 We first demonstrate that the conditions of Corollary 8 fulfills Assumption 1. Due to the particular form of the potentials, we

make use of the following: Let f1 ∈K3,δ
loc and f2 ∈K6,δ

loc . Then both
PN

k =1f1 xkð Þ andPk 6¼ lf2(xk, xl) are elements of K3N,δ
loc . Similar statements for Kn can

be found in Simon[35] (Example F) and Aizenman-Simon[36] (Theorem 1.4). We prove our claim by direct computations. Define Iδ1 and Iδ2
according to

Iδ1 xð Þ=
XN
j=1

ð
Br 0ð Þ

j f1 yj + xj
� � j

y21 + � � �+ y2N
� �3N−2+ δ

2

dy1� � �dyN,

Iδ2 xð Þ=
X
j 6¼l

ð
Br 0ð Þ

j f2 yj + xj,yl + xl
� � j

y21 + � � �+ y2N
� �3N−2+ δ

2

dy1� � �dyN:

We next demonstrate that

Iδ1 xð Þ≤CN

ð
Br;3 xð Þ

j f1 y1ð Þ j
y1−x1j j3−2+ δ

dy1, ð23Þ

Iδ2 xð Þ≤CN

ð
Br;6 xð Þ

j f2 y1,y2ð Þ j
y1,y2ð Þ−ðx1,x2Þj j6−2+ δ

dy1dy2, ð24Þ

where the second index in the given ball-sets Br; 3(x) � R3 and Br; 6(x) � R6 refers to the respective dimensionality.

To show Equation (23), set q = (y2, …, yN) and note that

Iδ1 xð Þ≤N
ð
Br;3 ×Br;3 N−1ð Þ

j f1 y1 + x1ð Þ j
y21 + q

2
� �3N−2+ δ

2

dy1dq=CN

ð
Br;3

j f1 y1 + x1ð Þ j
ðr
0

q3 N−1ð Þ−1dq

y21 + q
2

� �3N−2+ δ
2

0@ 1Ady1

=CN

ð
Br;3

j f1 y1 + x1ð Þ j
y1j j3N−2+ δ

ðr
0

q3N−4dq

1+ q=jy1jð Þ2
� �3N−2+ δ

2

0BB@
1CCAdy1

≤CN Jδ1

ð
Br;3 x1ð Þ

j f1 y1ð Þ j
y1−x1j j3−2+ δ

dy1,

where we have defined the integral

Jδ1 =
ð∞
0

s3N−4

1 + s2ð Þ3N−2+ δ
2

ds:

Now, Jδ1 is finite since

Jδ1 ≤
ð1
0
s3N−4ds+

ð∞
1
s−2−δds< +∞:

This establishes Equation (23). The proof of Equation (24) is similar and included for the sake of completeness. Set q = (y3,…,yN), then
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I1 ≤N
ð
Br;6 ×Br;3 N−2ð Þ

j u y1 + x1,y2 + x2ð Þ j
y21 + y

2
2 + q

2
� �3N−2+ δ

2

dy1dy2dq=CN

ð
Br;6

j u y1 + x1,y2 + x2ð Þ j
ðr
0

q3 N−2ð Þ−1dq

y21 + y
2
2 + q

2
� �3N−2 + δ

2

0@ 1Ady1dy2

=CN

ð
Br;6

j u y1 + x1,y2 + x2ð Þ j
y1,y2ð Þj j3N−2+ δ

ðr
0

q3N−7dq

1+ q=j y1,y2ð Þjð Þ2
� �3N−2+ δ

2

0BB@
1CCAdy1dy2

≤CN

ð
Br;6 x1,x2ð Þ

j u y1,y2ð Þ j
y1,y2ð Þ−ðx1,x2Þj j6−2+ δ

dy1dy2

ð∞
0

s3N−7

1 + s2ð Þ3N−2+ δ
2

ds:

Corollary 8 now follows from Theorem 6 (Equation (5) in Assumption 1 is fulfilled by Remark 3). □

Proof of Corollary 9 We first reduce the molecular case to the atomic one. Since the UCP from sets of positive measure is local, it can be applied

to any open set in the domain individually. So instead of one singularity (the y of Assumption 1), we can treat an arbitrary (yet countable) number

of singularities if they do not have an accumulation point. For this just choose an open cover {Uj} of R3 where each Uj contains not more than one

nucleus xnuc; j. It remains to show that all qxnuc; j , bxnuc; j belong to the respective local Kato classes and we are done if we prove the results for

atoms.

In the sequel we let v(x1) = −Z|x1− xnuc|
−1, xnuc∈R3, Z>0, and u(x1, x2) = |x1− x2|

−1. In this case v− ∈ L3=2loc R3
� �

and with the choice

xnuc = xnuc,…,xnucð Þ∈RD, we have with Qxnuc xð Þ=Qxnuc
xð Þ the equality

Qxnuc xð Þ=
X
j

−2Z
j xj−xnuc j +

X
j 6¼l

1
j xj−xl j +

X
j

xj−xnuc
� ��rj

−Z
j xj−xnuc j
� �

+
1
2

X
j6¼l

xj−xnuc
� ��rj + xl−xnucð Þ�rl

� 
 1

j xj−xnuc
� �

− xl−xnucð Þ j

 !
−

= V xð Þ+U xð Þð Þ− ≤2V− xð Þ :

Thus, in this case we can choose q1,xnuc = v− and q2,xnuc = 0.

Furthermore, for 0 < δ < 1, we claim that V,U∈KD,δ
loc . By the first part it suffices to show v∈K3,δ

loc and u∈K6,δ
loc . For v∈K3,δ

loc , we introduce polar

coordinates with radius s and polar angle t. Then it holds that dy = 2πs2sint dtds and y � x = −s|x|cost. For f1(x) = |x|−1 it follows that

ηK r; f1ð Þ= sup
jxj≤R

ðr
0

ðπ
0

2πs1−δsin t dt

s2−2sjxjcos t+ xj j2
� �1=2

0B@
1CAds:

We integrate over t, use |s + |x| − |s − |x|||≤2|x|, and the conclusion is obtained for v. In a similar fashion, for u we establish that with

f2(x) = |x1 − x2|
−1

ηK r; f2ð Þ≤C
ðr
0

ðr
s1

s2 ds2

s21 + s
2
2

� �2+ 2
δ

0@ 1As21ds1 ≤Cr
1−δ

such that it follows u∈K6,δ
loc, since

ð
Br 0ð Þ

1
j y1−y2 j

1

yj j6−2+ δ
dy1dy2 ≤C

ðr
0

ðr
0

ðπ
0

2πs21s
2
2 sin t dt

s21−2s1s2 cos t+ s22
� �1=2

 !
ds1ds2

s21 + s
2
2

� �2+ 2
δ

≤C
ðr
0

ðr
0

s1 + s2− js1−s2jð Þ
s21 + s

2
2

� �2+ 2
δ

s1s2ds1ds2

≤C
ðr
0

ðs1
0

s1s22ds2

s21 + s
2
2

� �2+ 2
δ

+
ðr
s1

s21s2ds2

s21 + s
2
2

� �2+ 2
δ

24 35ds1
≤C
ðr
0

ðr
s1

s2ds2

s21 + s
2
2

� �2+ 2
δ

s21ds1 ≤Cr
1−δ:

The atomic case is now a consequence of Corollary 8. □

LAESTADIUS ET AL. 11 of 12



7 | CONCLUSION

In this work we were able to show the unique-continuation property from sets of positive measures for the important case of the many-body

magnetic Schrödinger equation for classes of potentials that are independent of the particle number. This is crucial in order to not artificially

restrict the permitted potentials in large systems. We further specifically addressed molecular Hamiltonians, thus covering most cases that usually

arise in physics.
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