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Abstract

Three‐domain Cry toxins from the bacterium Bacillus

thuringiensis (Bt) are increasingly used in agriculture to

replace chemical insecticides in pest control. Most che-

mical insecticides kill pest insects swiftly, but are also

toxic to beneficial insects and other species in the

agroecosystem. Cry toxins enjoy the advantages of high

selectivity and the possibility of the application by sprays

or transgenic plants. However, these benefits are offset

by the limited host range and the evolution of resistance

to Bt toxins by insect pests. Understanding how Bt toxins

kill insects will help to understand the nature of both

problems. The recent realization that ABC transporters

play a central role in the killing mechanism will play an

important role in devising solutions.
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1 | INTRODUCTION

The discovery of bacteria in dead insects has led to one of the oldest commercialized insecticides as well as the

newest application in pest‐resistant transgenic plants (Bravo, Likitvivatanavong, Gill, & Soberón, 2011). The same

bacterium, named “Bacillus sotto” by Ishiwata and “Bacillus thuringiensis“ (Bt) by Berliner was developed into a

commercial preparation “Sporéine” in 1938 (Sanchis, 2011). When cultures of Bt sporulate, they produce large
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parasporal proteinaceous crystalline inclusions (Cry toxins) which kill susceptible insects that eat them. Several

other commercial preparations were developed, but these were eventually eclipsed by DDT and other chemical

insecticides. Bt re‐emerged as a significant crop protectant with the development of transgenic cotton, maize, and

soybean. Cotton transformed with the Cry1Ac gene was developed by Monsanto and released in the United States

and Australia in the late 1990s. Bt cotton enabled reduction of the ineffective and environmentally damaging

chemical sprays by 50–80%, while providing good protection against some highly susceptible lepidopteran pests. In

2017, 103 million hectares of transgenic Bt crops were grown worldwide (ISAAA, 2017).

The most widely used Bt toxins are the 3‐domain Cry toxins, so‐called on the basis of their common structure.

Examples include Cry1Ac active against certain Lepidoptera, Cry2Ab targetting some Lepidoptera but also active

on Diptera, and the coleopteran‐active Cry3Aa. Not all members of this structural family are officially designated as

toxins, for example, certain parasporins have no known animal targets, although some are toxic to human cancer

cells (Krishnan et al., 2017). Bt also makes other types of insecticidal proteins; for example, the VIP proteins with

different domain structures and modes of action. The Bt nomenclature committee is currently revising the clas-

sification to apportion different protein folds into differently named families (Crickmore, 2017).

For our purposes, the point is that the 3‐domain Cry toxins are cytotoxic, not to all cells but to certain cells of

certain insect species. They are so potent that they are useful in pest control. How do they work? We could pose

the question at two levels: (a) How do Cry toxins kill insect cells? At least some cell death is required for pest

control, even if the insect is not killed. (b) What eventually kills the pest insect? Effective control need not require

pest mortality, only reduction of feeding damage. But operationally the effectiveness of the toxin is measured by its

killing potency, for example, the median lethal concentration, LC50. We would also want to know why some other

pests, as well as beneficial insects, are not killed.

Are the answers to these questions important? At one level, possibly not. If Bt toxins keep working, and if we

are not interested in expanding their range, answering these questions may satisfy our curiosity but will not have

any practical value. However, Bt toxins will not keep working forever, and expanding their use to other pest targets

would have great benefits in further reducing the use of chemical insecticides. Answering these questions will be

beneficial for the sustainable and increasing use of Cry toxins in agriculture.

The second question deserves more attention than we can give it here, but it is important to point out that there

was a controversy in the past as to whether Cry toxins themselves were sufficient to kill insects. A widely cited study

claimed that infection with other bacteria was necessary, because prior feeding with antibiotics could protect gypsy

moth larvae from Bt (Broderick, Raffa, & Handelsman, 2006). Subsequent studies criticized the experimental design

and provided evidence that toxin with or without Bt spores could kill insects regardless of midgut microbiota, and that

some bacteria were actually protective (Broderick et al., 2009; Johnston & Crickmore, 2009; Raymond et al., 2009).

A comprehensive review drove home the point that Bt itself is a bona fide pathogen, with many evolutionary

adaptations to pathogenesis (Raymond, Johnston, Nielsen‐LeRoux, Lereclus, & Crickmore, 2010). Insects feeding on

crops, whether transgenic or not, have bacteria in their midguts and keeping these bacteria in check with the immune

system undoubtedly improves insect survivorship in the field. Experimentally weakening the immune response by

silencing immune genes can increase bacterial populations, hastening mortality after exposure to Cry toxin (Caccia

et al., 2016). However, an enhanced immune response is unlikely to provide as much protection against Cry‐induced
mortality as resistance‐causing mutations in Cry‐interacting host proteins, to be described below.

The immediate challenge is the evolution of resistance to Cry toxins in target pest insects. The widespread use

of Bt sprays quickly resulted in resistance in the diamondback moth, Plutella xylostella, a species that had already

evolved resistance to most classes of chemical insecticides (Shelton et al., 1993; Tabashnik, Schwartz, Finson, &

Johnson, 1992). The first deployment of Cry toxins in transgenic plants was done more cautiously. A concerted

resistance management plan for Bt cotton was devised and implemented in the United States and Australia. This

“high dose/refuge” strategy (Roush, Fitt, Forrester, & Daly, 1998) was based on generic population models that

predicted conditions that would minimize the selection pressure for resistance. In agroecosystems where as-

sumptions of these models have been satisfied, resistance has been effectively delayed. When more assumptions
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are violated, especially in the developing world where several factors make resistance management difficult to

implement, resistance is accelerating (Tabashnik, Brevault, & Carrière, 2013). The latest data indicate a surge in

insect resistance to transgenic crops (Tabashnik & Carrière, 2017). The biggest threat to Cry toxin sustainability is

yet to emerge, but can be predicted from the toxin mode of action: mutations with no fitness costs in the molecular

targets.

A longer‐term challenge is the rational design of Cry toxins to target a wider range of pest insects, especially

sucking insects such as aphids and whiteflies. Most attempts to do this, such as mutagenesis, domain‐swapping,

directed evolution, or fusion to lectin domains, are not informed by recent advances in the Cry toxin mode of

action. A detailed understanding of how Cry toxins kill susceptible species will be required to modify them to kill

refractory species.

Our thesis is that Cry toxins are ancient weapons, used by Bt to overcome insect hosts to convert their biomass

into more bacteria. Cry toxins are encoded in groups on plasmids, giving them the flexibility and versatility of a

Swiss army knife. This enables them to counter changes in their primary targets in insect cells, which are also very

ancient. There is good reason to believe that Cry toxins and their targets in the midguts of insects have coevolved

for hundreds of millions of years. This is because the primary killing mechanism is fundamentally the same for all

Cry toxins and their insect targets, but with variations on a theme that has unfolded during evolution. Current‐day
examples of the evolution of Bt resistance can inform the coevolutionary interaction, and vice‐versa.

2 | CRY TOXIN MODE OF ACTION

As currently understood, there are several steps in the mode of action of 3‐domain Cry toxins after ingestion by

insect larvae (Bravo, Gill, & Soberón, 2007; Ferré & Van Rie, 2002). The crystalline protein associated with the

spore, or the protein produced by the plant, dissolves in the insect midgut, releasing the protoxin which may be as

large as 135 kDa. The insect's own digestive proteases cleave the protoxin down to a protease‐resistant core, the
active toxin of ~65 kDa. The toxin binds to membrane‐bound proteins on the surface of the midgut epithelial cells.

Eventually monomers of the toxin form oligomers, either in solution or after having inserted into the lipid bilayer.

Membrane‐spanning alpha‐helix hairpins of the oligomers create a small pore (10–20 Å) in the membrane. These

pores enable cations to flow into the cell, and water follows, possibly through aquaporins, causing the cells to swell

and lyse. This is the so‐called “colloid‐osmotic lysis” mechanism (Knowles & Ellar, 1987). Minor damage might be

healed by the insect, but major damage destroys the midgut epithelium, resulting in rapid cessation of feeding and

eventual death of the insect.

The discovery that there were specific “receptors,” that is, sites of specific, competitive Cry toxin binding in

insect midgut membranes was a major advance (Van Rie, Jansens, Höfte, Degheele, & Van Mellaert, 1989). Specific

binding to these receptors was found to be necessary, but not sufficient for toxicity. Analysis of competitive

binding curves could even provide an estimate of the number of different binding sites and their cross‐reaction
with different toxins (Ferré & Van Rie, 2002). Eventually, in 1994 the first Cry‐binding insect proteins were

discovered: aminopeptidase N (APN) and alkaline phosphatase (Sangadala, Walters, English, & Adang, 1994).

Cry1Ab immobilized on an affinity column was used to trap a GPI‐anchored APN from the midgut of the tobacco

hornworm Manduca sexta (Knight, Knowles, & Ellar, 1995). A GPI (glycosylphosphatidylinositol) linkage joins an

amino acid near the C‐terminal of a protein directly to a lipid inserted in the bilayer. Other GPI‐anchored
Cry‐binding APNs were found, but there was little evidence that these were altered in most Bt‐resistant insect
strains. A different approach, using co‐immunoprecipation with antibodies to the toxin, isolated a protein named

BT‐R1 from M. sexta with 12 extracellular cadherin domains (Vadlamudi, Ji, & Bulla, 1993). Instead of being

GPI‐anchored, this protein had a single transmembrane domain and a small intracellular domain. Studies on the

homologous protein BtR175 in the domesticated silkworm showed that when it was expressed in cultured insect

cells (Sf9 cells), it was bound by labeled Cry1Aa toxin (Nagamatsu, Koike, Sasaki, Yoshimoto, & Furukawa, 1999).
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A number of other Cry toxin binding proteins have also been discovered using different techniques, some with an

effect on resistance.

3 | DISCOVERY OF CRY TOXIN RESISTANCE GENES

The first resistance‐conferring mutation found was in the homologous 12‐cadherin‐domain protein HevCaLP of the

tobacco budworm Heliothis virescens (Gahan, Gould, & Heckel, 2001). A transposable element insertion caused a

frameshift truncating the protein before the transmembrane domain, and the absence of this protein from the

epithelial membrane was sufficient to confer high levels of resistance to Cry1Aa, Cry1Ab, and Cry1Ac. Inactivating

mutations in the same protein were soon found in other species with Bt resistance (Morin et al., 2003; Xu, Yu, &

Wu, 2005). A clever modification of the Cry1A toxins was devised to overcome this type of resistance. Binding of a

toxin monomer to the cadherin ectodomain facilitates its N‐terminal α1‐helix being clipped off by an unknown

protease, resulting in monomers that could more efficiently form the “prepore” oligomer in solution (Gómez,

Sánchez, Miranda, Bravo, & Soberón, 2002). The ingenious step was to design a modified toxin lacking the α1‐helix
sequence (Soberón et al., 2007). The so‐called Cry1AMod toxins, therefore, could efficiently form pre‐pores
without the requirement of cadherin binding: a rational antiresistant strategy from detailed studies of the mode of

action. The Cry1AMod toxins are also effective on some other resistance mechanisms as well, for reasons not fully

understood (Tabashnik et al., 2011).

The second gene with resistance‐causing mutations was revealed by positional cloning. In H. virescens, a

mutation was found in ABCC2, member 2 of the C subfamily of ABC transporters (Gahan, Pauchet, Vogel, &

Heckel, 2010). A deletion in the second exon caused a frameshift, preventing the expression of the full‐length
protein. An independent positional cloning effort in the domesticated silkworm showed that a single tyrosine

insertion in an extracellular loop of ABCC2 allowing expression of a full‐length protein (not a frameshift) conferred

resistance to Cry1Ab in that species (Atsumi et al., 2012). This was confirmed by germ‐line transformation: a single

transgenic copy of the susceptible ABCC2 gene expressed in the resistant strain conferred susceptibility to

Cry1Ab. Subsequent studies in Cry1A‐resistant and Cry1F‐resistant strains of other Lepidoptera have also found

inactivating mutations of ABCC2 (Banerjee et al., 2017; Xiao et al., 2014). These mutations typically cause even

greater resistance than inactivation of the cadherin. Expression of wild‐type ABCC2 proteins in Sf9 cells made them

susceptible to pore formation by Cry1A toxins (Bretschneider, Heckel, & Pauchet, 2016; Tanaka et al., 2013).

The discovery that ABC transporters are involved in the Cry toxin mode of action was completely unexpected.

ABC transporters had never been identified in any of the previous binding studies. It is significant that the two

pioneering publications used positional cloning—a genetic approach to identify the gene responsible for a given

phenotype, independent of any assumptions about biochemical or physiological mechanisms. In hindsight, it can be

seen that a protein with very small loops for toxin binding projecting into the lumen, with transmembrane domains

buried in the membrane and large cytosolic nucleotide‐binding domains isolated from the toxin, would not have

been easily detected by affinity column purification, two‐dimensional gel electrophoresis, or coimmunoprecipita-

tion. Also unexpected was the finding that different Cry proteins target different ABC transporters. The deletion of

ABCA2 of the cotton bollworm confers extremely high resistance to Cry2Ab, one of the additional proteins

expressed in transgenic cotton to avoid resistance (Tay et al., 2015). Moreover, a frameshift in the gene encoding

ABCB1, a P‐glycoprotein, confers resistance to the Cry3Aa toxin in a leaf beetle (Pauchet, Bretschneider, Augustin,

& Heckel, 2016). Knocking out the right ABC transporter can make a susceptible species highly resistant to a given

Cry toxin. This implies that instead of using unrelated modes of action, the different three‐domain Cry toxins target

different members of the same superfamily of proteins in a fundamentally similar manner.

To rationalize this common mode of action, it was hypothesized that the three‐domain Cry proteins exploit a

common feature of all ABC transporters, the so‐called ATP‐switch mechanism (Heckel, 2012). ABC transporters

move small molecules across the lipid bilayer of cells. A small cavity surrounded by the transmembrane domains is
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alternatively open to the cytoplasmic side (below) and the lumenal side (above) of the membrane during the

transport cycle, driven by ATP binding, hydrolysis and ADP release (Figure 1). It was hypothesized that when the

cavity is transiently open to the outside facing the lumen, the prepore inserts into it and is pulled into the lipid

bilayer (Figure 2). Evidence for this transient interaction will be challenging to obtain, and there is currently no

alternative model for pore insertion of Cry toxins.

Fitting this hypothesis into the “sequential binding” model (Bravo et al., 2011), the binding steps are presumed

to occur in a specific order. First, toxin monomers bind to APNs (Garczynski & Adang, 1995), alkaline phosphatases

(Perera, Willis, Adang, & Jurat‐Fuentes, 2009), polycalins (Hossain et al., 2004), glycoconjugates (Valaitis, Jenkins,

Lee, Dean, & Garner, 2001), and other proteins, either to amino acid residues or glycosyl groups (Jurat‐Fuentes &
Adang, 2004). This reversible binding increases the toxin concentration at the membrane surface. Then toxin

monomers bind to the cadherin, accelerating the cleavage of the N‐terminal α1‐helix which enables oligomer

“prepore” formation in solution (Gómez et al., 2002). Binding to the cadherin may also be reversible, but each

α1‐helix can only be cleaved once. There is likely some background cleavage of the α1‐helix because Cry toxins can

still kill insects lacking a functional 12‐cadherin domain protein. Moreover, ABCC2 of diamondback moth expressed

in transgenic Drosophila makes them susceptible to Cry1Ac, even though Drosophila lacks the ortholog of the

12‐cadherin domain protein (Stevens, Song, Bruning, Choo, & Baxter, 2017). The last step in the sequence is

the irreversible insertion of the prepore into the membrane, facilitated by possibly reversible interactions with the

transmembrane domains of the ABC transporter.

Recently the specialized water channels called aquaporins have been found to promote colloid‐osmotic lysis.

Knowles and Ellar (1987) were vague about whether water entered through the Cry toxin pore itself, but water

also enters through aquaporins to counter the ionic imbalance caused by cation flux through the pore. In Sf9 cells

expressing ABCC2, chemical inhibitors of aquaporin inhibited swelling, and overexpression of aquaporins in the

same cells promoted swelling (Endo, Azuma, Adegawa, Kikuta, & Sato, 2017).

4 | SYNERGISM IN THE MODE OF ACTION

Studies in which Bombyx ABCC2 and BtR175 are expressed in Sf9 cells have shown strong synergism. Pore formation

by Cry1Ab is weak when the cadherin BtR175 is expressed alone, strong when ABCC2 is expressed alone, and very

strong when both are expressed together (Tanaka et al., 2013). Similar results are obtained with Cry1Ac and the

ABCC2 and cadherin HevCaLP of H. virescens (Bretschneider et al., 2016). Significantly, this strong synergism is also

seen in voltage‐clamp experiments with Xenopus oocytes expressing the Bombyx proteins (Tanaka, Endo, Adegawa,

Kikuta, & Sato, 2016). This method currently offers the only direct assay of pore function in a living system, that is,

cation flow through the open pore. These experiments can explain why larvae of the double knockout strain YHD3 of

H. virescens are so much more resistant than the YFO strain with the cadherin knockout or the YEE strain with the

ABCC2 knockout (Gahan et al., 2010).

A B C D

F IGURE 1 ATP‐switch mechanism of
substrate transport by ABC transporters.

Midgut lumen is above, cytoplasm below.
Black polygon: transport substrate. Red
dots denote ATP and Orange dots

denote ADP. ADP, adenosine
diphosphate; ATP, adenosine
triphosphate
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In opposition to the colloid‐osmotic lysis model, publications from the group that originally discovered the

cadherin BT‐R1 have put forth a different cell death pathway, the “signal transduction” model. This is often

presented as a competing theory in review papers by other authors (Soberón, Gill, & Bravo, 2009). This inter-

pretation needs to be re‐evaluated in light of recent findings. The signal transduction hypothesis results from

experiments in which the 12‐cadherin domain protein from Manduca sexta, Bt‐R1, was expressed in a cell line

derived from Trichoplusia ni (High Five cells, H5 cells) and exposed to Cry1Ab toxin. The first publication (X. Zhang,

Candas, Griko, Rose‐Young, & Bulla, 2005) states “Toxin oligomers integrated into cell membrane do not produce

lytic pores and do not kill the cells whereas monomeric Cry1Ab toxin specifically binds to BT‐R1, activating an

Mg2+‐dependent cellular signaling pathway that leads to necrotic cell death.” The mechanism put forth in the

second paper (X. B. Zhang, Candas, Griko, Taussig, & Bulla, 2006) is that “the Cry1Ab toxin binds specifically to

BT‐R1, stimulating G protein and adenylate cylase, which brings about the accumulation of cyclic AMP and acti-

vation of protein kinase A (PKA) …. Activated PKA alters downstream effectors that, in turn, actually dismantle the

cell by destabilizing both the cytoskeleton and ion channels in the cell membrane.” Although the second publication

stops short of stating that pores are absent, it “argues against the previously postulated lytic‐pore formation model

and explains why the toxin–receptor interaction is prerequisite to cytotoxic action.”

This hypothesis was published 4 years before the discovery that mutations in ABC transporters cause high‐
level Bt resistance (Atsumi et al., 2012; Gahan et al., 2010) and 11 years before the discovery that aquaporins play

a role in colloid‐osmotic lysis in B. mori (Endo et al., 2017). An examination of the transcriptome of H5 cells shows

that they do not naturally express ABCC2 or any of the three homologs of B. mori aquaporins previously in-

vestigated (Endo et al., 2017; Table 1). Sf9 cells do naturally express one of these aquaporins (AQP3), which may

contribute to the Cry1Ac‐induced swelling that is universally observed when Sf9 cells are transfected to express

ABCC2 (Endo et al., 2017). Recently both ABCC2 and cadherins have been experimentally expressed in H5

cells. Cry1Ac toxin induced swelling in H5 cells expressing Helicoverpa armigera ABCC2, which was enhanced by co‐
expression of cadherin from H. armigera but not cadherin from Spodoptera littoralis (Ma et al., 2019). Establishing

how much water enters through aquaporins versus the pore itself would clarify the interpretation of these

experiments.

Therefore the phenomena described in these publications (X. Zhang et al., 2005; X. B. Zhang et al., 2006) should

not be interpreted as arguing against colloid‐osmotic lysis as claimed by the authors, but instead, as a possible

series of events when colloid‐osmotic lysis cannot occur because ABCC2 is absent and aquaporins are scarce.

These proteins are naturally present in the midgut cells of all Lepidoptera targetted by Cry1A toxins, therefore, the

signal transduction mechanism is irrelevant for these species. It might be relevant to ABCC2 knockout mutants of

H. virescens (Gahan et al., 2010) and Spodoptera frugiperda (Banerjee et al., 2017). But because these mutants lacking

ABCC2 are resistant to the Cry1A toxins, the signal transduction death pathway, if it occurs, is much less potent

than colloid‐osmotic lysis. Moreover, an independent effort to test this mechanism in CF1 cells did not provide

+

F IGURE 2 The hypothesized mechanism of Cry pore insertion
following transient interaction with transmembrane domains of ABC

transporter
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support; Cry1Ab induced apoptosis in those cells instead (Portugal, Muñóz‐Garay, Martínez de Castro, Soberón, &

Bravo, 2017). Finally, the signal transduction killing mechanism has not been shown to occur in larvae of any

species to date.

Another aspect of the interaction of the 12‐cadherin domain protein and ABCC2 in vivo was shown in a recent

study (Wang, Kain, & Wang, 2018). A naturally occurring mutation affecting ABCC2 confers 600‐fold resistance to

Cry1Ac in the GLEN‐Cry1Ac strain of the cabbage looper, Trichoplusia ni. The 12‐cadherin domain protein from

T. ni, TnCAD, is not strongly bound by native Cry1Ac, and accordingly knocking out TnCAD with CRISPR/Cas9 does

not confer Cry1Ac resistance on the susceptible Cornell strain (unlike the naturally occurring cadherin mutation in

H. virescens). Nor does the TnCAD knockout significantly affect the potency of Cry1Ac on the resistant GLEN‐
Cry1Ac strain. In an ingenious directed evolution approach, Cry1Ac was experimentally modified to produce

Cry1Ac‐A01s, which bound TnCAD much more strongly than did Cry1Ac (Badran et al., 2016). Cry1Ac‐A01s is

about ten times more toxic to susceptible Cornell strain T. ni than is Cry1Ac. The CRISPR/Cas9 knockout of TnCAD

is about 3.5‐fold resistant to Cry1Ac‐A01s, a small but significant effect, unlike the response of the knockout to

Cry1Ac. Cry1Ac‐A01s is also toxic to the GLEN‐Cry1Ac strain with its naturally mutated ABCC2, which exhibits

only about 8‐fold resistance (compared with its 600‐fold resistance to Cry1Ac). But when the TnCAD knockout is

combined with the ABCC2 mutation, the double mutant strain is more than 3,700‐fold resistant to Cry1Ac‐A01s.
The authors interpreted the results as evidence for two independent pathways of toxicity, one involving TnCAD

and the other involving ABCC2 (Wang et al., 2018).

However, the results are also consistent with the sequential binding and pore insertion model. The pathways

are sequential, not independent, but TnCAD binding makes a greater proportionate contribution to Cry1Ac‐A01s
toxicity than to Cry1Ac toxicity. Cry1Ac, which does not bind strongly to TnCAD, is activated to form oligomers by

the alternate mechanism that occurs in the cadherin‐deficient YFO strain of H. virescens. Therefore, knocking out

TnCAD has little effect on Cry1Ac oligomer formation, but has a larger effect on Cry1Ac‐A01s oligomer formation

due to the latter's affinity for TnCAD. This affinity strengthens the synergistic interaction of TnCAD with ABCC2,

making the relative contribution of the ABCC2 mutant to Cry1Ac‐A01s resistance less than to Cry1Ac resistance.

When both TnCAD and ABCC2 are knocked out, Cry1Ac‐A01s loses most of its potency, just as Cry1Ac does on

TABLE 1 Relative expression of aquaporins, housekeeping genes and Bt targets in Sf9 cells from Spodoptera

frugiperda and H5 cells from Trichoplusia ni

Gene Sf9 RPKM Sf9 reads H5 RPKM H5 reads

AQP1 0.2 398 n.d. 6

AQP2 n.d. 0 n.d. 2

AQP3 35.3 15,743 n.d. 20

LDH 228.2 110,961 163.9 49,767

eIF4A 28.2 15,061 7.1 600

RpL5 1,605.40 342,697 1,837.5 130,759

cadherin n.d. 9 n.d. 8

ABCC2 n.d. 8 n.d. 0

Total reads 23,763,328 23,788,969

Note: Illumina reads were downloaded from GenBank SRA Archives SRR5892097 (Sf9 cells, Shu et al., 2017) and

SRP068276 (H5 cells, Yu et al., 2016). CLC Genomics Workbench was used for assembly, mapping, and RPKM expression

calculations.

Abbreviations: AQP, aquaporin; eIF4A, eukaryotic initiation Factor 4A; LDH, lactate dehydrogenase; n.d., not enough reads

to assemble a contig for RPKM calculations; RPKM, reads per kilobase of transcript per million mapped reads, a normalized

index of transcript expression; RpL5, ribosomal protein L5.
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the double mutant YHD3 strain of H. virescens. More work on Cry1Ac‐like toxins with intermediate affinities to

TnCAD would be useful in testing this interpretation.

Most researchers have ignored the possibility that the protoxin may play a role in Bt toxicity. However, side‐
by‐side comparisons of activated Cry1Ab or Cry1Ac with the corresponding protoxin show that the latter is more

toxic for several insects, including some Bt‐resistant strains (Tabashnik et al., 2015). There is evidence that acti-

vated Cry1Ab and its protoxin make different prepore structures (Gómez et al., 2014). However, since C‐terminal

protoxin domains have been shown to bind to cadherin fragments (Fabrick & Tabashnik, 2007; Gómez et al., 2014)

and to GPI‐anchored APN and ALP (Peña‐Cardeña et al., 2018), more research is needed to determine whether

they merely enhance the sequential‐binding pathway of activated toxins, or kill insects via a different, secondary

toxic pathway as claimed (Tabashnik et al., 2015).

5 | LONG ‐ AND SHORT‐TERM TRENDS IN EVOLUTION

So far there is no known naturally occurring toxin with the same sequence as Cry1Ac‐A01s, or the same high

affinity for TnCAD. Cry1Ac binds to the cadherin of other noctuid moths, why not to T. ni? Did Cry1Ac bind to the

cadherin of the common ancestor of H. virescens and T. ni? If not, then in the course of evolution, the cadherin of H.

virescens must have evolved to bind to Cry1Ac: not an evolutionary progression that would be favored by natural

selection on H. virescens. If Cry1Ac did bind to the common ancestor, then the cadherin of T. nimust have evolved to

avoid binding to Cry1Ac. Could this be a natural example of the gradual evolution of Cry1Ac resistance by changes

in the protein sequence of the TnCAD of T. ni? Although not conferring absolute resistance, these changes do

reduce the susceptibility to Cry1Ac, by reducing TnCAD binding, and would be favored by natural selection. Site‐
directed mutagenesis experiments on the cadherin have shown that certain amino acid substitutions can also

reduce or eliminate Cry1Ac binding to the cadherin of H. virescens (Xie et al., 2005). We must now face the prospect

of such substitutions arising in field populations of H. virescens consuming Bt cotton. Up to now, resistant cadherin

alleles recovered from field populations by the F2 screen have completely knocked out protein expression (Morin

et al., 2003; Xu et al., 2005), a change that comes with a high fitness cost in the absence of toxin selection. Do

mutations that merely reduce Cry1Ac binding to the cadherin incur any fitness cost in the absence of Bt selection?

If not, such mutations threaten the continued use of Cry1A toxins for insect control.

Resistant ABCC2 alleles found in laboratory‐selected strains or field populations are also mostly knockouts of

the protein, due to frameshifts or splicing aberrations. Loss of transporter function is believed to incur a fitness cost

in the absence of toxins. One significant exception is the Cry1Ab‐resistant allele of ABCC2 in B. mori. The allele

found in the resistant strain encoded a full‐length protein differing from the susceptible sequence by amino acid

substitutions and one tyrosine insertion at position 233 in an extracellular loop (Atsumi et al., 2012). Mutagenesis

showed that the tyrosine insertion was necessary and sufficient to make ABCC2‐expressing Sf9 cells resistant to

Cry1Ab (Tanaka et al., 2016). The resistant allele is not rare: it is fixed in predominantly elite Japanese and Chinese

strains, while the susceptible allele is more common in tropical strains. It is unlikely that the tyrosine insertion

affects the transport capability of the ABCC2 since it is far from the membrane‐spanning regions that interact with

the transport substrate. An analogous situation is seen in comparing the ABCC2 proteins of S. frugiperda and

S. litura. Glutamine in position 125 of the S. frugiperda protein conferred greater susceptibility to Cry1Ac than

the glutamate in the same position of the S. litura protein (Liu et al., 2018). Resistance‐causing mutations with

little or no fitness costs are those most likely to increase due to continuous use of Cry toxins in sprays or

transgenic crops.

Another threat to the sustainability of Bt are semidominant mutations, which confer some resistance in the

heterozygote. A key assumption of the high‐dose/refuge resistance management strategy is that resistance alleles

are recessive so that heterozygotes are killed as effectively as homozygous susceptible genotypes. However, a

cadherin mutant with a truncated C‐terminal intracellular domain (H. N. Zhang, Wu, Yang, Tabashnik, & Wu, 2012),
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and an amino acid substitution in a tetraspanin (Jin et al., 2018) both show some degree of dominance in resistance.

The connection with pore formation is not understood and should be a high priority for future study.

6 | CONCLUSIONS

The preponderance of evidence to date points to the formation of membrane pores as the primary cause of

cytotoxicity of the three‐domain Cry toxins in insects. ABC transporters are emerging as the most important

proteins that Cry toxins interact with to form pores. The existence of three different ABC transporters, each

a member of a different ABC subfamily, that specifically interact with three different Cry toxins, each a member

of a different Cry family, suggests that this is an evolutionarily ancient association. A special member of the

cadherin superfamily containing 12‐cadherin domains in Lepidoptera is also significantly involved, with suggestions

that similar cadherins in beetles and mosquitoes might also be important. Mutations in either ABC transporters or

cadherins are the most potent resistance mechanisms discovered so far. Although most such mutations have the

drastic effect of deleting the protein, a few can provide resistance with only minor structural changes. These are the

mutations that have survived over evolutionary time to give rise to differences among insect species in the host

ranges of Cry toxins. And these are the mutations that must be understood if modern agriculture is to adapt to the

inevitable rise of Bt resistance in insect pests.

ACKNOWLEDGMENTS

This study is based on a contribution to the symposium “The multiple layers of host‐pathogen interactions” at the

2019 Society for Invertebrate Pathology meeting in Valencia. I thank the organizers, Umut Toprak and Salvador

Herrero, and many participants for discussions, and two reviewers for useful comments. I thank Heiko Vogel for the

transcriptome assemblies and expression analysis. The Max‐Planck‐Gesellschaft provided financial support.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

ORCID

David G. Heckel http://orcid.org/0000-0001-8991-2150

REFERENCES

Atsumi, S., Miyamoto, K., Yamamoto, K., Narukawa, J., Kawai, S., Sezutsu, H., … Noda, H. (2012). Single amino acid mutation

in an ATP‐binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori.

Proceedings of the National Academy of Sciences of the United States of America, 109, E1591–E1598.

Badran, A. H., Guzov, V. M., Huai, Q., Kemp, M. M., Vishwanath, P., Kain, W., … Liu, D. R. (2016). Continuous evolution of

Bacillus thuringiensis toxins overcomes insect resistance. Nature, 533, 58–63.

Banerjee, R., Hasler, J., Meagher, R., Nagoshi, R., Hietala, L., Huang, F., … Jurat‐Fuentes, J. L. (2017). Mechanism and DNA‐
based detection of field‐evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Scientific

Reports, 7, Article no. 10877.

Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for

insect control. Toxicon, 49, 423–435.

Bravo, A., Likitvivatanavong, S., Gill, S. S., & Soberón, M. (2011). Bacillus thuringiensis: A story of a successful bioinsecticide.

Insect Biochemistry and Molecular Biology, 41, 423–431.

Bretschneider, A., Heckel, D. G., & Pauchet, Y. (2016). Three toxins, two receptors, one mechanism: Mode of action of

Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Insect Biochemistry and Molecular Biology, 76, 109–117.

Broderick, N. A., Raffa, K. F., & Handelsman, J. (2006). Midgut bacteria required for Bacillus thuringiensis insecticidal activity.

Proceedings of the National Academy of Sciences of the United States of America, 103, 15196–15199.

Broderick, N. A., Robinson, C. J., McMahon, M. D., Holt, J., Handelsman, J., & Raffa, K. F. (2009). Contributions of gut

bacteria to Bacillus thuringiensis‐induced mortality vary across a range of Lepidoptera. BMC Biology, 7, 11.

HECKEL | 9 of 12

http://orcid.org/0000-0001-8991-2150


Caccia, S., Di Lelio, I., La Storia, A., Marinelli, A., Varricchio, P., Franzetti, E., … Pennacchio, F. (2016). Midgut microbiota and

host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proceedings of the National Academy of

Sciences of the United States of America, 113, 9486–9491.

Crickmore, N. (2017). Bacillus thuringiensis toxin classification. In L. M. Fiuza, R. A. Polanczyk & N. Crickmore (Eds.), Bacillus

thuringiensis and Lysinibacillus sphaericus: Characterization and use in the field of biocontrol (pp. 41–52). Cham: Springer.

Endo, H., Azuma, M., Adegawa, S., Kikuta, S., & Sato, R. (2017). Water influx via aquaporin directly determines necrotic cell

death induced by the Bacillus thuringiensis Cry toxin. FEBS Letters, 591, 56–64.

Fabrick, J. A., & Tabashnik, B. E. (2007). Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink

bollworm. Insect Biochemistry and Molecular Biology, 37, 97–106.

Ferré, J., & Van Rie, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of

Entomology, 47, 501–533.

Gahan, L. J., Gould, F., & Heckel, D. G. (2001). Identification of a gene associated with Bt resistance in Heliothis virescens.

Science, 293, 857–860.

Gahan, L. J., Pauchet, Y., Vogel, H., & Heckel, D. G. (2010). An ABC transporter mutation is correlated with insect resistance

to Bacillus thuringiensis Cry1Ac toxin. PLOS Genetics, 6, e1001248.

Garczynski, S. F., & Adang, M. J. (1995). Bacillus thuringiensis CryIA(c) delta endotoxin binding aminopeptidase in the

Manduca sexta midgut has a glycosyl‐phosphatidylinositol anchor. Insect Biochemistry and Molecular Biology, 25,

409–415.

Gómez, I., Sánchez, J., Miranda, R., Bravo, A., & Soberón, M. (2002). Cadherin‐like receptor binding facilitates proteolytic

cleavage of helix alpha‐1 in domain I and oligomer pre‐pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS

Letters, 513, 242–246.

Gómez, I., Sánchez, J., Muñoz‐Garay, C., Matus, V., Gill, S. S., Soberón, M., & Bravo, A. (2014). Bacillus thuringiensis Cry1A

toxins are versatile proteins with multiple modes of action: Two distinct pre‐pores are involved in toxicity. Biochemical

Journal, 459, 383–396.

Heckel, D. G. (2012). Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues

to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology, 104, 103–110.

Hossain, D. M., Shitomi, Y., Moriyama, K., Higuchi, M., Hayakawa, T., Mitsui, T., … Hori, H. (2004). Characterization of a

novel plasma membrane protein, expressed in the midgut epithelia of Bombyx mori, that binds to Cry1A toxins. Applied

and Environmental Microbiology, 70, 4604–4612.

ISAAA. (2017). Global status of commercialized of biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits

accumulate in 22 years. Brief 53. Ithaca, NY: International Service for the Aquisition of Agri-biotech Applications.

Jin, L., Wang, J., Guan, F., Zhang, J. P., Yu, S., Liu, S. Y., … Wu, Y. D. (2018). Dominant point mutation in a tetraspanin gene

associated with field‐evolved resistance of cotton bollworm to transgenic Bt cotton. Proceedings of the National Academy

of Sciences of the United States of America, 115, 11760–11765.

Johnston, P. R., & Crickmore, N. (2009). Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis

toward the tobacco hornworm, Manduca sexta. Applied and Environmental Microbiology, 75, 5094–5099.

Jurat‐Fuentes, J. L., & Adang, M. J. (2004). Characterization of a Cry1Ac‐receptor alkaline phosphatase in susceptible and

resistant Heliothis virescens larvae. European Journal of Biochemistry, 271, 3127–3135.

Knight, P. J. K., Knowles, B. H., & Ellar, D. J. (1995). Molecular cloning of an insect aminopeptidase N that serves as a

receptor for Bacillus thuringiensis CryIA(c) toxin. Journal of Biological Chemistry, 270, 17765–17770.

Knowles, B. H., & Ellar, D. J. (1987). Colloid‐osmotic lysis is a general feature of the mechanism of action of Bacillus

thuringiensis delta‐endotoxins with different insect specificity. Biochimica et Biophysica Acta, 924, 509–518.

Krishnan, V., Domanska, B., Elhigazi, A., Afolabi, F., West, M. J., & Crickmore, N. (2017). The human cancer cell active toxin

Cry41Aa from Bacillus thuringiensis acts like its insecticidal counterparts. Biochemical Journal, 474, 1591–1602.

Liu, L. L., Chen, Z. W., Yang, Y. C., Xiao, Y. T., Liu, C. X., Ma, Y. M., … Liu, K. Y. (2018). A single amino acid polymorphism in

ABCC2 loop 1 is responsible for differential toxicity of Bacillus thuringiensis Cry1Ac toxin in different Spodoptera

(Noctuidae) species. Insect Biochemistry and Molecular Biology, 100, 59–65.

Ma, Y. M., Zhang, J. F., Xiao, Y. T., Yang, Y. C., Liu, C. X., Peng, R., … Liu, K. Y. (2019). The Cadherin Cry1Ac Binding‐Region is

Necessary for the Cooperative Effect with ABCC2 Transporter Enhancing Insecticidal Activity of Bacillus thuringiensis

Cry1Ac Toxin. Toxins. Advance online publication. 11, e538. https://doi.org/10.3390/toxins11090538

Morin, S., Biggs, R. W., Sisterson, M. S., Shriver, L., Ellers‐Kirk, C., Higginson, D., … Tabashnik, B. E. (2003). Three cadherin

alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of

Sciences of the United States of America, 100, 5004–5009.

Nagamatsu, Y., Koike, T., Sasaki, K., Yoshimoto, A., & Furukawa, Y. (1999). The cadherin‐like protein is essential to specificity

determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Letters, 460, 385–390.

Pauchet, Y., Bretschneider, A., Augustin, S., & Heckel, D. G. (2016). A P‐glycoprotein is linked to resistance to the Bacillus

thuringiensis Cry3Aa toxin in a leaf beetle. Toxins, 8, 362.

10 of 12 | HECKEL

https://doi.org/10.3390/toxins11090538


Perera, O. P., Willis, J. D., Adang, M. J., & Jurat‐Fuentes, J. L. (2009). Cloning and characterization of the Cry1Ac‐binding
alkaline phosphatase (HvALP) from Heliothis virescens. Insect Biochemistry and Molecular Biology, 39, 294–302.

Peña‐Cardeña, A., Grande, R., Sánchez, J., Tabashnik, B. E., Bravo, A., Soberón, M., & Gómez, I. (2018). The C‐terminal

protoxin region of Bacillus thuringiensis Cry1Ab toxin has a functional role in binding to GPI‐anchored receptors in the

insect midgut. Journal of Biological Chemistry, 293, 20263–20272.

Portugal, L., Muñóz‐Garay, C., Martínez de Castro, D. L., Soberón, M., & Bravo, A. (2017). Toxicity of Cry1A toxins from

Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway. Insect

Biochemistry and Molecular Biology, 80, 21–31.

Raymond, B., Johnston, P. R., Nielsen‐LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: An impotent

pathogen? Trends in Microbiology, 18, 189–194.

Raymond, B., Johnston, P. R., Wright, D. J., Ellis, R. J., Crickmore, N., & Bonsall, M. B. (2009). A mid‐gut microbiota is not

required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environmental Microbiology, 11,

2556–2563.

Roush, R. T., Fitt, G. P., Forrester, N. W., & Daly, J. C. (1998). Resistance management for insecticidal transgenic crops:

Theory and practice. In M. P. Zalucki, R. Drew, & G. G. White (Eds.), Pest management ‐ future challenges, Proceedings

(Vols. 1 and 2, pp. 247–257), Brisbane: University of Queensland Printery.

Sanchis, V. (2011). From microbial sprays to insect‐resistant transgenic plants: History of the biopesticide Bacillus

thuringiensis. A review. Agronomy for Sustainable Development, 31, 217–231.

Sangadala, S., Walters, F. S., English, L. H., & Adang, M. J. (1994). A mixture of Manduca sexta aminopeptidase and

phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and (Rb+‐ K+)‐Rb‐86 efflux in vitro.

Journal of Biological Chemistry, 269, 10088–10092.

Shelton, A. M., Robertson, J. L., Tang, J. D., Perez, C., Eigenbrode, S. D., Preisler, H. K., … Cooley, R. J. (1993). Resistance of

diamondback moth (Lepidoptera, Plutellidae) to Bacillus thuringiensis subspecies in the field. Journal of Economic

Entomology, 86, 697–705.

Shu, B. S., Zhang, J. J., Sethuraman, V., Cui, G. F., Yi, X., & Zhong, G. H. (2017). Transcriptome analysis of Spodoptera

frugiperda Sf9 cells reveals putative apoptosis‐related genes and a preliminary apoptosis mechanism induced by

azadirachtin. Scientific Reports. Advance online publication. 7. https://doi.org/10.1038/s41598-017-12713-9

Soberón, M., Gill, S. S., & Bravo, A. (2009). Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect

midgut cells? Cellular and Molecular Life Sciences, 66, 1337–1349.

Soberón, M., Pardo‐López, L., López, I., Gómez, I., Tabashnik, B. E., & Bravo, A. (2007). Engineering modified Bt toxins to

counter insect resistance. Science, 318, 1640–1642.

Stevens, T., Song, S. S., Bruning, J. B., Choo, A., & Baxter, S. W. (2017). Expressing a moth ABCC2 gene in transgenic

Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin‐like protein receptor. Insect Biochemistry and

Molecular Biology, 80, 61–70.

Tabashnik, B. E., Brevault, T., & Carrière, Y. (2013). Insect resistance to Bt crops: Lessons from the first billion acres. Nature

Biotechnology, 31, 510–521.

Tabashnik, B. E., & Carrière, Y. (2017). Surge in insect resistance to transgenic crops and prospects for sustainability. Nature

Biotechnology, 35, 926–935.

Tabashnik, B. E., Huang, F. N., Ghimire, M. N., Leonard, B. R., Siegfried, B. D., Rangasamy, M., … Soberón, M. (2011). Efficacy

of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nature Biotechnology,

29, 1128–U1198.

Tabashnik, B. E., Schwartz, J. M., Finson, N., & Johnson, M. W. (1992). Inheritance of resistance to Bacillus thuringiensis in

diamondback moth (Lepidoptera, Plutellidae). Journal of Economic Entomology, 85, 1046–1055.

Tabashnik, B. E., Zhang, M., Fabrick, J. A., Wu, Y. D., Gao, M. J., Huang, F. N., … Li, X. C. (2015). Dual mode of action of Bt

proteins: Protoxin efficacy against resistant insects. Scientific Reports, 5, 15107.

Tanaka, S., Endo, H., Adegawa, S., Kikuta, S., & Sato, R. (2016). Functional characterization of Bacillus thuringiensis Cry toxin

receptors explains resistance in insects. FEBS Journal, 283, 4474–4490.

Tanaka, S., Miyamoto, K., Noda, H., Endo, H., Kikuta, S., & Sato, R. (2016). Single amino acid insertions in extracellular loop 2

of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa

toxins. Peptides, 78, 99–108.

Tanaka, S., Miyamoto, K., Noda, H., Jurat‐Fuentes, J. L., Yoshizawa, Y., Endo, H., & Sato, R. (2013). The ATP‐binding cassette

transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for Cry toxins from Bacillus

thuringiensis. FEBS Journal, 280, 1782–1794.

Tay, W. T., Mahon, R. J., Heckel, D. G., Walsh, T. K., Downes, S., James, W. J., … Gordon, K. H. J. (2015). Insect resistance to Bacillus

thuringiensis toxin Cry2Ab is conferred by mutations in an ABC transporter subfamily A protein. PLOS Genetics, 11, e1005534.

Vadlamudi, R. K., Ji, T. H., & Bulla, L. A. (1993). A specific binding protein from Manduca sexta for the insecticidal toxin of

Bacillus thuringiensis subsp Berliner. Journal of Biological Chemistry, 268, 12334–12340.

HECKEL | 11 of 12

https://doi.org/10.1038/s41598-017-12713-9


Valaitis, A. P., Jenkins, J. L., Lee, M. K., Dean, D. H., & Garner, K. J. (2001). Isolation and partial characterization of gypsy

moth BTR‐270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with

high affinity. Archives of Insect Biochemistry and Physiology, 46, 186–200.

Van Rie, J., Jansens, S., Höfte, H., Degheele, D., & Van Mellaert, H. (1989). Specificity of Bacillus thuringiensis delta‐
endotoxins—Importance of specific receptors on the brush‐border membrane of the midgut of target insects. European

Journal of Biochemistry, 186, 239–247.

Wang, S. H., Kain, W., & Wang, P. (2018). Bacillus thuringiensis Cry1A toxins exert toxicity by multiple pathways in insects.

Insect Biochemistry and Molecular Biology, 102, 59–66.

Xiao, Y. T., Zhang, T., Liu, C. X., Heckel, D. G., Li, X. C., Tabashnik, B. E., & Wu, K. M. (2014). Mis‐splicing of the ABCC2 gene

linked with Bt toxin resistance in Helicoverpa armigera. Scientific Reports, 4, 6184.

Xie, R. Y., Zhuang, M. B., Ross, L. S., Gomez, I., Oltean, D. I., Bravo, A., … Gill, S. S. (2005). Single amino acid mutations in the

cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. Journal of Biological Chemistry,

280, 8416–8425.

Xu, X. J., Yu, L. Y., & Wu, Y. D. (2005). Disruption of a cadherin gene associated with resistance to Cry1Ac delta‐endotoxin
of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology, 71, 948–954.

Yu, K., Yu, Y., Tang, X. Y., Chen, H. M., Xiao, J. Y., & Su, X. D. (2016). Transcriptome analyses of insect cells to facilitate

baculovirus‐insect expression. Protein & Cell, 7, 373–382.

Zhang, H. N., Wu, S. W., Yang, Y. H., Tabashnik, B. E., & Wu, Y. D. (2012). Non‐recessive Bt toxin resistance conferred by an

intracellular cadherin mutation in field‐selected populations of cotton bollworm. PLOS One, 7, e53418.

Zhang, X., Candas, M., Griko, N. B., Rose‐Young, L., & Bulla, L. A. (2005). Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin

depends on specific binding of the toxin to the cadherin receptor BT‐R‐1 expressed in insect cells. Cell Death and

Differentiation, 12, 1407–1416.

Zhang, X. B., Candas, M., Griko, N. B., Taussig, R., & Bulla, L. A. (2006). A mechanism of cell death involving an adenylyl

cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceedings of the National

Academy of Sciences of the United States of America, 103, 9897–9902.

How to cite this article: Heckel DG. How do toxins from Bacillus thuringiensis kill insects? An evolutionary

perspective. Arch. Insect Biochem. Physiol. 2020;104:e21673. https://doi.org/10.1002/arch.21673

12 of 12 | HECKEL

https://doi.org/10.1002/arch.21673



