Molecular & Biochemical Parasitology 235 (2020) 111247

journal homepage: www.elsevier.com/locate/molbiopara

Contents lists available at ScienceDirect

Molecular & Biochemical Parasitology

Polarization of MTIP is a signature of gliding locomotion in Plasmodium

ookinetes and sporozoites

Check for
updates

Inga Siden-Kiamos®, Christian Goosmann”, Carlos A. Buscaglia“, Volker Brinkmann”,

b,c,e, *

Kai Matuschewski™“, Georgina N. Montagna

# Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, 700 13 Heraklion, Crete, Greece

" Max Planck Institute for Infection Biology, 10117 Berlin, Germany

¢ Instituto de Investigaciones Biotecnolégicas ‘Dr Rodolfo Ugalde’ (IIBio), UNSAM-CONICET, 1650 San Martin, Buenos Aires, Argentina
9 Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10117 Berlin, Germany
€ Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sdo Paulo, 049032, SP, Brazil.

ARTICLE INFO ABSTRACT

Keywords: Gliding motility and cell invasion are essential for the successful transmission of Plasmodium parasites. These

Plasmodium processes rely on an acto-myosin motor located underneath the parasite plasma membrane. The Myosin A-tail

MTIP interacting protein (MTIP) connects the class XIV myosin A (MyoA) to the gliding-associated proteins and is

;Sopnzl?t essential for assembly of the motor at the inner membrane complex. Here, we assessed the subcellular locali-
y

Cell polarity

zation of MTIP in Plasmodium berghei motile stages from wild-type parasites and mutants that lack MyoA or the
small heat shock protein 20 (HSP20). We demonstrate that MTIP is recruited to the apical end of motile ooki-

netes independently of the presence of MyoA. We also show that infective sporozoites displayed a polarized
MTIP distribution during gliding, and that this distribution was abrogated in mutant parasites with an aberrant

locomotion.

Apicomplexan parasites have complex life cycles consisting of ex-
tensive intracellular replication, sexual recombination, and brief, ex-
tracellular motile stages that permit parasite dispersal and host switch.
For instance, in order to successfully colonize the mammalian host,
Plasmodium sporozoites need to migrate, traverse several tissues, and
eventually invade the final host cell, a hepatocyte [1]. The proteins
which constitute the molecular motor that propels the extracellular
motile stages, are highly conserved across the phylum and are shared
between the diverse motile and invasive stages, e.g. Plasmodium ooki-
netes, sporozoites and merozoites, and Toxoplasma tachyzoites [2]. The
motor complex is located between the parasite plasma membrane (PM)
and a unique structure of flattened Golgi-derived cisternae, termed
inner membrane complex (IMC). Previous work established that the
motion force is generated by a small class XIV myosin, MyoA, which in
turn is indirectly anchored to the IMC. The power strokes along short
filamentous actin, which is positioned underneath the PM and anchored
to adhesion receptors, generate parasite locomotion along the substrate
or host cell surfaces [1].

A central protein in the motor complex is the MyoA-anchoring
protein, Myosin-tail interacting protein (MTIP). This protein was in-
itially identified using the yeast two-hybrid system and by in vitro

protein-binding assays [3]. The interaction domain to MTIP is confined
to the carboxy-terminal 15 amino acids of MyoA [3]. This high-affinity
interaction occurs independent of calcium binding, and MyoA-an-
choring by MTIP likely permits the fast velocity which is comparable to
muscle myosins [4]. The crystal structure of the heterodimeric MyoA-
MTIP complex uncovered major conformational changes in the car-
boxy-terminal region of MTIP upon binding to MyoA [5]. Although the
structural basis for MyoA-MTIP complex has been revealed, its as-
sembly and cellular distribution in motile parasites remain largely un-
known.

Here, we analyzed the distribution of MTIP in different stages of
Plasmodium berghei. For this reason, we generated a specific antiserum
against MTIP. Initially, we analyzed the localization of MTIP in late
schizonts of P. berghei. MTIP is present in the periphery of individual
merozoites in mature schizonts, where it co-localizes with actin I
(Fig. 1A). This staining is in good agreement with previous findings
showing that MTIP co-localizes with components of the IMC [6].

In order to analyze the MTIP localization in motile stages of
Plasmodium, we first studied ookinetes. For ookinete cultures, gameto-
cyte-positive blood from mice infected with P. berghei ANKA was seeded
and cultured for 24 h. We observed that in motile ookinetes MTIP
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Fig. 1. MTIP polarization in motile Plasmodium stages. (A) MTIP is detected in P. berghei mature schizonts. Indirect immunofluorescence of cells fixed with 4 %
paraformaldehyde (PFA) in PBS and permeabilized with 0.1 % Triton X-100 in PBS. Samples were incubated with an anti-P. berghei actin antibody [17] (red) and a
mouse anti-MTIP antiserum (green) raised against P. berghei MTIP obtained after injection of the plasmid pSecTag2a-MTIP, encoding the entire open reading frame of
MTIP, into BALB/C mice [18]. DNA was stained with TO-PRO (Invitrogen) (blue). Scale bar: 2 pm (B) MTIP and Myo A are located at the apical tip of ookinetes.
Indirect immunofluorescence assays of P. berghei ookinetes using mouse anti-MTIP antibody (green) and rabbit anti-MyoA antibody (red). Scale bar 2 um. (C) Co-
localization of GAP50 (red) and MTIP (green) in P. berghei ookinetes. Note that GAP50 signal is absent at the tip of the parasite. (D) MTIP is localized at the tip of
ookinete independently of MyoA. Indirect immunofluorescence assays of P. berghei mao ookinetes. (E) Expression of MTIP in different stages of P. berghei. Western
blots were performed as described previously [11]. As a loading control the blot was incubated with the antibody against actin I [17].

accumulates at the apical tip of the parasite and co-localized with MyoA
(Fig. 1B). In contrast, GAP50 is distributed along the periphery of the
whole ookinete body, with the notable exception of the tip, where MTIP
is localized (Fig. 1C). This finding is in line with previous data, showing
that the myosin light chain 1 (MLC1), the MTIP orthologue in Tox-
oplasma tachyzoites anchors MyoA to the glideosome-associated protein
45 (GAP45), which is integral to the IMC [7].

To investigate the localization of MTIP in MyoA-depleted P. berghei
ookinetes we used a promoter-swap mutant parasite, called mao, in
which myoA gene expression is turned off in ookinetes [8]. We observed
that MTIP was localized at the tip of mao ookinetes (Fig. 1D) and,

hence, localization was independent of the presence of MyoA protein,
consistent with previous observations in T. gondii [7]. MTIP expression
was also analyzed by Western blot (Fig. 1E). We observed that this
protein is readily detectable in mixed gametocytes and schizonts. Re-
markably, zygotes collected 3 h after seeding an ookinete culture
showed a severe reduction in MTIP expression, whereas ookinetes ex-
hibited the highest amount of MTIP protein (Fig. 1E). These results
indicate that MTIP expression is tightly controlled during mammalian
host-to-mosquito vector switch.

The polarized localization in ookinetes prompted us to revise the
MTIP localization in sporozoites, the infective forms of malaria
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Fig. 2. Loss of MTIP polarization in hsp20(-) sporozoites.

(A) Indirect immunofluorescence imaging of sporozoites under gliding conditions. For gliding conditions we collected freshly dissected salivary gland sporozoites in
RPMI/ 3 % BSA and deposited them onto glass slides, which were pre-coated with RPMI/ 3 % BSA as described [15]. Incubation for 30 min at 37 °C, followed by
fixation with 4 % PFA in PBS resulted in ~70 % of sporozoites displaying continuous gliding locomotion [15]. Fixed and saponin-permeabilized HSP70-mCherry
sporozoites were labeled with mouse anti-MTIP antiserum (green). Shown are representative images of MTIP localization observed in sporozoites. Scale bar: 2 pm.
(B) Indirect immunofluorescence imaging of resting sporozoites. Freshly dissected salivary gland sporozoites were fixed with 4 % PFA in PBS, settle down onto a glass
slide followed by permeabilization with PBS supplemented with Triton 0.1 % and staining with anti-MTIP antibody (red). Scale bar: 2 um. (C) Shown are indirect
immunofluorescence micrographs of gliding sporozoites stained with anti-MTIP (red) and anti-HSP20 (green) anti-sera. Scale bar: 2 pm. (D) Indirect immuno-
fluorescence microscopy of HSP70-mCherry (WT) and hsp20(-) sporozoites under gliding conditions. The hsp20(-) parasite line expresses GFP under the control of the
CSP promotor [15]. Accordingly, GFP is expressed as a soluble protein in the sporozoite cytoplasm. Fixed and saponin-permeabilized sporozoites were labeled with
anti-MTIP antiserum (red). Scale bar, 2 pm. (left). In the left panel, a quantification of MTIP localization patterns in micrographs of gliding HSP70-mCherry (n = 85)
and hsp20(-) (n = 75) sporozoites from three independent experiments is shown. Polarized distribution and MTIP polarization is defined as accumulation of MTIP at
the tip or both tips of gliding sporozoites. Scattering of MTIP signal along the parasite body was defined as not polarized distribution. (E) Representative immunogold
transmission electron micrographs of gliding HSP70-mCherry and hsp20(-) sporozoites. Sporozoites were fixed after gliding, permeabilized with saponin and in-
cubated with mouse anti-MTIP and rabbit anti-MyoA antisera, followed by labeling with 12 and 6 nm gold particles, respectively. Sporozoite longitudinal ultra thin
sections were analyzed by transmission electron microscopy. The insets represent the population of nano-gold particles coupled to anti-MTIP (yellow dots) and anti-
MyoA (white dots) antibodies, respectively. Scale bar: 1 um. Immunoscanning and immunoelectron microscopy techniques were performed according to published
protocols [15].

parasites. Sporozoite fast gliding motility is characterized by a high
turnover of small and transient adhesion sites [9]. It has been postu-
lated that immobilized MyoA generates the force driving parasite
movement, but actin dynamics also appear to regulate parasite adhe-
sion to substrates before and during gliding [9,10]. Previous results
demonstrated that several Plasmodium proteins, for instance TRAP and
MyoA, are polarized and/or re-localized during gliding locomotion
[11-14]. Moreover, cytoplasmic factors, e.g HSP20, are re-localized
and exposed to the sporozoite surface [14,15]. We have previously
shown that HSP20, a small chaperone that regulates parasite motility, is
polarized at the apical tip of gliding sporozoites [15]. To study if this is
also the case for MTIP, we performed immunofluorescence assays and
analyzed MTIP distribution in gliding transgenic sporozoites that ex-
press an HSP70-mCherry fusion protein [16]. Sporozoites were allowed
to glide on a glass slide and then fixed and permeabilized with saponin.
We observed that MTIP is located at the tip of gliding sporozoites

(Fig. 2A). In contrast to this observation, previous studies described a
strong peripheral staining of P. yoelii sporozoites using a different an-
tibody against MTIP [3]. We decided to repeat the assays in the same
conditions used in the previous report. After isolation from the salivary
glands, non-gliding sporozoites were fixed, permeabilized with 0.1 %
Triton X-100, and then stained with the MTIP antibody (Fig. 2B). As
expected, we observed that under these conditions, ie. in resting
sporozoites, MTIP is distributed along the periphery of and not polar-
ized as in gliding sporozoites [3].

To investigate if MTIP co-localizes with HSP20 in gliding spor-
ozoites we performed immunofluorescence assays using wild-type P.
berghei ANKA sporozoites. After fixation and saponin-permeabilization,
samples were stained with mouse anti-MTIP and rabbit anti-PhHSP20
antibodies. We observed that the signals for these two proteins were
mutually excluded and localized to the opposite ends of the parasites
(Fig. 20).
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We also examined the distribution of MTIP in parasites lacking
HSP20. Hsp20(-) sporozoites showed abnormally large adhesion sites
that correlate with a reduced speed and aberrant trajectories leading to
a substantial delay in sporozoite transmission [15]. The aberrant mo-
tility phenotype displayed by hsp20(-) parasites led us to hypothesize
that MTIP might have a distorted distribution as compared to wild-type
(WT) sporozoites. Therefore, we performed IFA assays during gliding
locomotion (Fig. 2D). We observed that in 90 % of WT sporozoites MTIP
was localized at one end, while this pattern was reduced to only 36 % in
hsp20(-) sporozoites (Fig. 2D). The majority of mutant sporozoites
showed a uniform distribution of MTIP along the entire parasite body.
To analyze this differential pattern in more detail, we carried out im-
munogold transmission electron microscopy of gliding WT and hsp20(-)
sporozoites (Fig. 2E). We observed an accumulation of MTIP signal at
the tip, and to a lesser extent, at the curvatures of gliding WT spor-
ozoites, while this molecule followed a patchy distribution along the
entire periphery in gliding hsp20(-) sporozoites. Together, these ob-
servations indicate that HSP20 might be necessary to maintain Plas-
modium cell polarity, which is particularly important in mature ooki-
netes and sporozoites during the processes of gliding locomotion and
cell invasion.

In conclusion, we observed a polarization of MTIP localization in
Plasmodium ookinetes and sporozoites during gliding. Both HSP20 and
MTIP were found at the parasite periphery but the signals for these two
proteins were mutually excluded. Strikingly, loss of HSP20 resulted in
mislocalization of MTIP during gliding, in good correlation with the
aberrant motility observed in hsp20(-) parasites [15]. While MTIP/
MLC1 localization is dependent on its interaction with glideosome
proteins [7], it is still unknown how HSP20 is recruited to the IMC. An
attractive hypothesis is that variable spatial location of HSP20 is linked
to the state of actin treadmilling or a related dynamic molecular me-
chanism leading to cell polarity during gliding locomotion.
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