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Abstract: The Hippo pathway has been initially discovered by screening genes that regulate organ size in Drosophila. 
Recent studies have highlighted the role of the Hippo pathway in controlling organ size, tissue homeostasis and 
regeneration, and signaling dysregulation, especially the overactivation of the transcriptional coactivator YAP/TAZ, 
which leads to uncontrolled cell growth and malignant transformation. The core components of the Hippo pathway 
may initiate tumorigenesis by inducing tumor stem cells and proliferation, ultimately leading to metastasis and drug 
resistance, which occurs extensively in gynecological malignancies, including cervical cancer, ovarian cancer, and 
endometrial cancer. In this review, we attempt to systematically summarize recent progress in our understanding of 
the mechanism of Hippo pathway regulation in tumorigenesis and the mechanisms that underlie alterations during 
gynecological malignancies, as well as new therapeutic strategies.
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Background

The Hippo pathway is a highly conserved signal-
ing pathway in Drosophila and mammals that 
controls organ size and tumor growth [1, 2]. All 
the Hippo pathway core components have 
direct homologs in Drosophila compared to 
mammals (Table 1). In addition to the core 
components of the Hippo pathway, many regu-
lators and other signaling pathways have been 
identified to interact with the Hippo pathway. 
Loss of Hippo pathway-encoded proteins leads 
to cell proliferation and tumorigenesis and has 
been observed in multiple types of human can-
cers [3-6]. To date, there are no reviews on the 
role of the Hippo pathway in gynecological 
malignancies. In this review, we outline the 
Hippo pathway and discuss its various roles in 
tumorigenesis. We further discuss the mecha-
nism of Hippo signaling in gynecological malig-
nancies and describe opportunities and chal-
lenges for therapeutic interventions. The Hippo 
pathway has also been identified to be associ-
ated with Loeys-Dietz syndrome [7], Sveinsson 
chorioretinal atrophy (SCRA) [8], Rienhoff syn-
drome [9] and Neurofibromatosis type 2 [10], 
but these are beyond the scope of this review.

The Hippo pathway

The Hippo pathway consists of a set of con-
served kinases that can be divided into three 
interrelated parts: upstream regulatory pro-
teins, intermediary core kinases, and down-
stream transcriptional mechanisms. [11]. More 
than 30 proteins (including those in Drosophila 
and mammals) have been identified in the 
Hippo pathway. Upstream membrane protein 
receptors of the Hippo pathway receive growth 
inhibition signals from the extracellular environ-
ment and then undergo a series of kinase phos-
phorylation reactions, which ultimately act on 
downstream effector factors YAP and TAZ. 
Subsequently, YAP and TAZ interact with cyto-
skeletal proteins and remain in the cytoplasm, 
unable to enter the nucleus to perform tran-
scriptional activation, thereby regulating the 
size and voume of organs. In addition, dysregu-
lation of the Hippo pathway leads to abnormal 
cell growth and tumors, and these processes 
are regulated by intrinsic cell machinery. The 
description of the Hippo pathway in Drosophila 
and mammals is shown in Figures 1 and 2, 
respectively.

http://www.ajcr.us
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The core kinase cassette of the mammalian 
Hippo pathway is composed of macrophage 
stimulating 1 (MST1) and MST2 [12], together 
with the adaptor proteins salvador family WW 
domain containing protein 1 (SAV1) [13, 14] 
and large tumor suppressor kinase 1 (LATS1) 
and LATS2, together with MOB kinase activator 
1A (MOB1A) and MOB1B [15]. These proteins in 
turn phosphorylate and inactivate yes associ-
ated protein (YAP) and transcriptional coactiva-
tor with PDZ-binding motif (TAZ)/WW domain 
containing transcription regulator 1 (WWTR1), 
which are downstream nuclear effectors of the 
Hippo pathway that restrict proliferation and 
promote apoptosis [16-18]. YAP and TAZ and 
their Drosophila homolog Yorkie (YKI) regulate 
the activity of different transcription factors, 
including TEADs and SMADs. The presence of 
TEAD transcription factors is required to pro-
mote tissue growth, cell viability, anchorage-
independent growth, and epithelial-mesenchy-
mal transition (EMT) induction [19]. TEADs 
direct the transactivation of YAP, TAZ, and YKI, 
but their full-length sequences have not been 

experimentally verified [20]. In Drosophila, 
Hippo, Salvador, Warts and Mats (correspond-
ing to MST1/2, SAV1, LATS1/2, and MOB1 in 
mammals, respectively) are important tumor 
suppressors of the Hippo pathway, which regu-
late tissue growth by controlling cell prolifera-
tion and apoptosis [1, 12, 21-24].

The Hippo pathways limit the function of YAP 
and TAZ by regulating their cellular sublocaliza-
tion and protein levels [20]. Multiple upstream 
kinases in the Hippo pathway control the activ-
ity of YAP, TAZ and YKI: First, Kibra, Expanded, 
and Merlin in Drosophila; the mammalian 
orthologs of these proteins are KIBRA, FRMD, 
and NF2 [25]. Second, CRB (Crumbs) and 
SCRIB (Scribble) are polarity complexes that 
can promote the activation of the core kinase 
box, and CRB can bind and isolate YAP and TAZ 
[26-28]. Third, the Hippo pathway is regulated 
by G-protein-coupled receptor (GPCR) signal-
ing, which bypasses MST1 and MST2 to  
activate LATS1/2 kinase activity, thereby inhib-
iting YAP function [29]. Fourth, protocadherin, 

Table 1. The Hippo pathway components in Drosophila and mammals
Drosophila gene Mammal gene Function
Upstream modulators
    four-jointed box protein 1 (Fj) FJX1 Golgi resident Ser/Thr kinase
    Dachsous (Ds) Dchs1, Dchs2 Transmembrane cadherin repeat domain
    FAT(Ft) FAT1-4 Transmembrane cadherin repeat domain
    Discs overgrown (Dco) CSNK1E Casein kinase Ser/Thr kinase
    dRASFF RASSF1-6 Ras association and SARAH domains adaptor
    aPKC PRKCI PKC kinase, PB1, and C1 domains
    dSTRIPAK PP2A STRIPAK PP2A PP2A Ser/Thr phosphatase complex
    Lethal giant larvae (Ljl) LJL1, LJL2 WD40 scaffold protein
    Expanded (Ex) Ex1/FRMD6/Willin FERM domain adaptor protein
    Crumbs (Crb) CRB1-3 Transmembrane receptor
    Merlin (Mer) NF1-2 FERM domain adaptor protein
    Kibra WWC1/WWC2 WW and C2 domain adaptor protein
    dJub AJUBA, LIMD1, WTIP LIM-domain adaptor protein
    Stardust (Sdt) MPP5, PALS1 L27/PDZ/SH3 domain and guanylate kinase-like domain
    Par6 PARD6 PDZ domains
Intermediate core kinase components 
    Hippo (Hpo) MST1, MST2 Ste20 family Ser/Thr kinase
    Salvador (Sav) SAV1/WW45/WWP4 WW domain adaptor protein
    Warts (Wts) LATS1, LATS2 NDR Ser/Thr kinase domain
    Mats MOB1A, MOB1B Cys2-His2 zinc-binding site/Mob1/phocein domain
    Yorkie (Yki) YAP/TAZ WW/PDZ transcriptional coactivator
Downstream mediators
    Scalloped (Sd) TEAD1-4 TEA-domain transcription factor
    Teashirt (Tsh) TSHZ1-3 Zn-finger transcription factor
    Homothorax (Hth) MEIS1 HM (Homothorax-Meis) domain and homeodomain



The HIPPO pathway in gynecological malignancies

612 Am J Cancer Res 2020;10(2):610-629

Dachsous (Ds) and FAT (Ft) are well-defined 
upstream branches in Drosophila that promote 
the abundance of the Kibra-Expanded-Merlin 
complex [30-32]. In Drosophila, the Hpo-Sav 
complex phosphorylates and activates the Wts-
Mats complex [13, 23, 24, 33, 34], which nega-
tively regulates yki-sd interaction and sd-medi-
ated gene expression by sequestering Yki in the 
cytoplasm for phosphorylation and inactivation 
of Yki [35]. In mammals, mitogen-activated pro-
tein kinase family members (MAP4K 1-7, the 
Hppy and the Msn homologs) phosphorylate 
the hydrophobic motifs of LATS1 and LATS2 in 
parallel with MST1 and MST2, resulting in their 

activation [36, 37]. Activated LATS1 and LATS2 
successively phosphorylate YAP and TAZ, 
resulting in 14-3-3 family proteins retaining YAP 
and TAZ in the cytoplasm. Cytoplasmic YAP and 
TAZ can be further phosphorylated and degrad-
ed after ubiquitylation, preventing them from 
interacting with transcriptional enhancer factor 
TEA domain family members (TEAD1-4), which 
are homologous to Sd in Drosophila [16, 38].

Hippo pathway in tumorigenesis

The Hippo pathway regulates YAP/TAZ through 
a series of upstream alteration mechanisms. 

Figure 1. Schematic diagram of the Hippo pathway in Drosophila. Cells are shown with a blue outline, upstream reg-
ulatory proteins are shown in green/gray, intermediate core kinases are shown in yellow and downstream transcrip-
tional proteins are shown in red, with sharp arrows and blunt arrows indicating activation and inhibition interactions, 
respectively. Continuous lines indicate direct communication, while dashed lines indicate indirect communication. 
Abbreviations: AJ, adherens junctions; BJ, basolateral junctions; Fj, four-jointed box protein 1; Ds, Dachsous; Ed, 
echinoid; Ft, FAT; Dco, Discs overgrown; aPKC, atypical protein kinase C; Ljl, Lethal giant larvae; Rassf, Ras-associ-
ated factor; PP2A, protein phosphatase 2A; Ex, Expanded; Crb, Crumbs; Mer, Merlin; dJub, Drosophila Ajuba; Sdt, 
Stardust; Sd, Scalloped; Tsh, Teashirt; Hth, Homothorax.
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YAP and TAZ are homologous genes of the 
Yorkie gene of Drosophila, which are critical 
conduits for the regulation and output of the 
homologous Hippo pathway. Dysregulation of 
the Hippo pathway leads to abnormal activa-
tion of YAP/TAZ, which further leads to tumori-
genesis and confers cancer stem cell chara- 
cteristics.

Cell proliferation and apoptosis

Uncontrolled cell proliferation is a key charac-
teristic of tumorigenesis. Overexpression of 
upstream kinases that lead to YAP or TAZ hy- 
peractivation increases proliferation and tissue 

overgrowth and impairs apoptosis [39, 40]. 
Similarly, overexpression or hyperactivation of 
YAP leads to hyperplasia and tumorigenesis in 
mouse tissues [41-43]. P53 and RB tumor sup-
pressor genes cause oncogene-induced senes-
cence in cancer cells, block cell cycle progres-
sion and promote apoptosis [44]. Homopl- 
astically, the interaction between human E2F1 
and TEADs affects the activity of YAP, and the 
RB tumor suppressor gene modifies these 
effects by inhibiting the E2F1/TEADs interac-
tion [45]. LATS2 stabilizes p53 by altering small 
G protein signaling and inhibits the transcrip-
tional regulators YAP and TAZ, which is an 
important tumor suppression mechanism [46]. 

Figure 2. Schematic diagram of the Hippo pathway in mammals. Cells are shown with a blue outline, upstream regu-
latory proteins are shown in green/gray, intermediate core kinases are shown in yellow and downstream transcrip-
tional proteins are shown in red, with sharp arrows and blunt arrows indicating activation and inhibition interactions, 
respectively. Continuous lines indicate direct communication, while dashed lines indicate indirect communication. 
Abbreviations: AJ, adherens junctions; BJ, basolateral junctions; Ed, echinoid; E-cad, E-cadherin; Ajub, Ajuba LIM 
Protein; FRMD, FERM Domain Containing; Mer, merlin; Rassf, Ras-associated factor; PP2A, protein phosphatase 
2A; Ljl, Lethal giant larvae; Dlg, disks large protein; Scnb, Scribble Planar Cell Polarity Protein; MST1/2, Macrophage 
Stimulating 1/2; SAV1, Salvador Family WW Domain Containing Protein 1; MOB, MOB kinase activator; LAT1/2, 
large tumour suppressor 1/2; YAP, Yes-associated protein; TAZ, Tafazzin; RTK, receptor tyrosine kinase; GPCR, G-
protein coupled receptor; ECM, extracellular matrix.
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In the process of tissue or cell injury, inhibition 
of apoptosis and regeneration of progenitor 
and stem cells may be attributed to optimal 
regulation of upstream kinases in the Hippo 
signaling pathway [47]. In conclusion, unre-
stricted activation of YAP and TAZ can counter-
act classical tumor inhibition pathways.

Cancer stem cells

The Hippo pathway regulates the differentia-
tion of progenitor cells in healthy organ devel-
opment and cancer environments. Activation of 
YAP and TAZ can induce tumor stem cell (CSC) 
properties, including anoikis resistance, EMT, 
drug resistance, and metastasis, in a variety of 
human cancers [48]. In follicle stem cells (FSCs) 
of the Drosophila ovary, YKI maintains the 
integrity of the follicular epithelium, and the 
Hippo pathway is indispensable for FSC mainte-
nance [49, 50]. Concretely, in the reproductive 
system, YAP expression can be used to regu-
late the proliferation and differentiation of ovar-
ian germline stem cells and ovarian function 
[51, 52]. YAP knockdown leads to a loss of plu-
ripotency in embryonic stem (ES) cells, while 
YAP protein levels decrease and phosphoryla-
tion increases, leading to YAP inactivation dur-
ing ES cell differentiation [53]. Therefore, an 
ample amount of evidence suggests that YAP/
TAZ play critical roles in the determination of 
tumorigenic potential by enhancing stem cell 
properties.

Cell-cell junctions and cell polarity

Cell-cell junctions, such as adherens junctions 
and basolateral junctions, serve as platforms 
for Hippo signaling [54]. The components of 
apical-basal polarity proteins (such as Crumbs, 
F-actin, PATJ, α-catenin, Ajub, and E-cadherin) 
can localize and regulate scaffolding proteins 
that interact with YAP/TAZ [55]. In Drosophila, 
the accumulation of F-actin may increase the 
activity of Yki [56]. In addition, epithelial cells 
are mechanically coupled to each other under 
tension, which promotes Yki activity by activat-
ing Ajub and α-catenin [57]. This also occurs in 
mammalian cells-as all three components are 
downregulated to increase Yap activity, it has 
been determined that they are a vital link 
between F-actin and Hippo pathway regulation 
[58, 59]. These cell-cell junction proteins are 
thought to maintain tissue integrity and polari-
ty, and compromised function of these proteins 

results in YAP and TAZ hyperactivation, which 
might drive proliferation in cancer. Some tumor 
suppressor genes in Drosophila, whose muta-
tions disrupt apical-basal polarization, have 
been shown to induce YKI-dependent growth 
[60]. The changes in YAP/TAZ activity in mam-
malian cells are also related to changes in cel-
lular polarization [61]. A recent study showed 
that Dlg5, an evolutionarily conserved scaffold 
and a regulator of cell polarity, interacts with 
YAP/TAZ mechanistically, which inhibits the 
association between MST1/2 and LATS1/2, 
connects MST1/2 to MARK3 using its scaffold-
ing function, and inhibits MST1/2 kinase activ-
ity [62].

Contact inhibition

Contact inhibition is a phenomenon in which 
dispersed cells stop growing once they come 
into contact with neighboring cells. A lack of 
restriction by contact inhibition is a common 
feature of tumor cells [63]. The Hippo pathway 
has been demonstrated to regulate contact 
inhibition; isolated mammalian cells usually 
have higher YAP activity, whereas high-density 
cultured cells have lower YAP activity [64]. The 
Hippo pathway components are integral com-
ponents of the E-cadherin/catenin complex-
dependent contact inhibition of proliferation 
[65]. In addition, CRB3 which activates the 
Hippo pathway, also regulates contact inhibi-
tion by recruiting Kibra and FRMD in mammary 
epithelial cells [66]. In vitro, YAP and TAZ are 
inhibited by intercellular contact through the 
Hippo pathway [67], and the DNA binding tran-
scription factor TEAD is downregulated by high 
cell density in an NF2/Merlin-dependent man-
ner [68].

Extracellular matrix (ECM) attachment

Tumor cells are surrounded by ECM, and the 
remodeling and hardening of ECM are essential 
features of tumors [69]. The ECM plays impor-
tant biological functions by interacting with the 
Hippo pathway and is involved in the develop-
ment of various diseases, especially cancer. 
The detachment of ECM can result in cell death 
by activating the Hippo pathway. Integrin-linked 
kinase (ILK) mediates extracellular matrix 
(ECM) signaling, which can inhibit Merlin activa-
tion either by inhibiting phosphatase MYPT1 or 
through activation of RAC and PAK [70, 71]. 
Integrins that bind to fibronectin can stimulate 
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focal adhesion kinase (FAK), which activates 
PI3K through Src. PDK1, located downstream 
of PI3K, disrupts the core kinase cassette and 
inhibits Hippo signaling [72, 73].

Mechanotransduction 

The behavior of tumor cells is related to the 
mechanical properties of the surrounding envi-
ronment [74]. Tumor microenvironment signals, 
including cell geometry, cell attachment or 
detachment, cytoskeletal tension, and ECM 
stiffness, are active regulators of YAP/TAZ [75, 
76]. Integrin is an important mediator that can 
sense the chemical composition and physical 
properties of ECM. FAK is also involved in integ-
rin-mediated regulation of Hippo signaling [77]. 
Integrin and focal adhesion complexes have 
been shown to modulate YAP/TAZ, and mechan-
ical elasticity or ECM stiffness can strongly 
influence cellular behavior [78]. The interface 
between F-actin and the adhesion junction is a 
vital mechanotransduction hub, and the force 
exerted by the adhesion junctions is essential 
for the morphogenesis of epithelial cells [79]. 
The Hippo pathway receives mechanical sig-
nals, such as stretch and compression signals, 
which to some extent control the size of the 
organ [79].

Metastasis

Recent studies have confirmed that inactiva-
tion of the Hippo pathway plays an important 
role in tumor invasion and metastasis. 
Metastasis is an important feature of malig-
nant tumors and the cause of most cancer-
related deaths. Tumor cells metastasize from 
the primary tumor site to the circulatory or lym-
phatic system and then grow into secondary 
tumor masses. Overexpression of YAP does not 
only promote EMT in cultured cells but also sup-
presses anoikis [80] and promotes migration 
via dynamic changes in F-actin, leading to cyto-
skeletal rearrangement [81]. In addition, the 
YAP domain interacts with the TEAD family of 
transcription factors, which are critical for YAP-
mediated tumor growth and metastasis, and 
TEAD transcriptional activity increases the met-
astatic potential of cancer cells [82]. Hippo 
pathway regulation in the metastasis of breast 
cancer has been proposed: long noncoding 
RNA-dependent methylation leads to inactiva-
tion of MST1 and activation of YAP target genes 
in tumor cells, which in turn leads to osteoclast 
differentiation and bone metastasis [83].

Tumor immune microenvironment

The Hippo pathway also plays critical immune-
regulatory roles. PD-1 is an important immune 
checkpoint that inhibits T cell and cytokine acti-
vation by interacting with its two ligands, PD-L1 
and PD-L2 [84]. YAP/TAZ may directly regulate 
the transcription of PD-L1 in tumor cells there-
by inhibiting T-cell-mediated tumor cell killing 
[85-87]. Activation of YAP/TAZ triggers p53- 
mediated senescence and/or apoptosis pro-
cesses, leading to immune recognition, rejec-
tion and clearance [88-91]. The Hippo pathway 
is thus a crucial bridge between tumor cells and 
the immune system, regulating the inherent 
function of various types of immune cells, as 
well as the interaction between tumor cells and 
T cells. The application of therapies regulating 
tumor immunity will be an essential direction of 
Hippo pathway therapy in the future [92].

The Hippo pathway is continually dysregulated 
in gynecological malignancies

We analyzed genomic data from 308 cervical 
cancer patients, 594 ovarian cancer patients 
and 547 endometrial cancer patients in The 
Cancer Genome Atlas (TCGA) to investigate the 
role of the Hippo pathway in the development of 
gynecologic malignancies (Figure 3) [93]. Data 
were analyzed using cBioPortal online tools 
(http://www.cbioportal.org/) [94] and GEPIA 
online tools (http://gepia.cancer-pku.cn/). The 
results showed that YAP/TAZ and WWTR1, 
oncogenic factors of the Hippo pathway, were 
continually amplified in patients with cervical 
cancer, while upstream tumor suppressors of 
the Hippo pathway (LATS1/2, MST1, and FATs) 
were often deleted, mutated or highly expressed 
at the mRNA level (Figure 3A). YAP/TAZ, 
WWTR1, and STK3 were frequently amplified  
in patients with endometrial cancer (Figure 
3B), and FATs were often displayed missense 
mutations. YAP/TAZ, WWTR1, FATs, and STK3 
were frequently highly expressed at the mRNA 
level in patients with ovarian cancer (Figure 
3C). Moreover, we found that the core compo-
nents of the Hippo pathway were differently 
expressed in gynecological malignancies com-
pared with paired normal tissues. YAP/TAZ was 
highly expressed in tumor tissues, while nega-
tive regulatory components of the Hippo path-
way were underexpressed in tumor tissues 
(Figure 3D). Mutations, copy number changes 
(CNAs) and network analysis of HIPPO pathway-
related genetic alterations in gynecologic 
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Figure 3. Gene-related changes in critical components of the Hippo pathway in patients with gynecological tumors. The genomic profiles examined included the 
upstream tumor suppressive genes (MST1, LATS1/2, and FAT1/2/3/4, etc.), the downstream tumorigenic effectors (YAP/TAZ & WWTR1), and the mRNA and protein 
expression of these genes. Genetic alterations of the Hippo pathway occurred in 79% of examined patients with CESE (308 total, A), 38% with UCEC (547 total, B), 
and 73% with OV (594 total, C). (D) Expression matrix plots of the Hippo pathway in gynecological malignancies and normal tissues deposited in TCGA and GTEx da-
tabases. The density of color in each block represents the median expression value of a gene in a specific tissue. (E) The composition of mutations and copy number 
alterations (CNAs) of gynecologic tumors is presented in the form of stacked histograms. Different colors represent amplification, deletion, mutation, and multiple 
alterations, among which 3 data sets have the most significant proportion of mutations, and 5 data sets have the most significant portion of amplification. (F) Net-
work view of alterations of HIPPO pathway linker genes in gynecologic malignancies. We analyzed the genomic data of 308 cervical cancer patients, 594 ovarian 
cancer patients and 547 endometrial cancer patients, which were deposited in TCGA, and the seed genes are indicated by the thick border. (G) Kaplan-Meier curves 
showed a correlation between overall survival in cervical and ovarian cancer patients and genetic alterations in the Hippo pathway. Patients with TCGA survival 
information were divided into two groups: patients with high gene expression levels (red line) and patients with low gene expression levels (blue line). Abbreviations: 
CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; OV, ovarian serous cystadenocarcinoma; UCEC, uterine corpus endometrial carcinoma.
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malignancies are shown in Figure 3E and 3F. 
We also found that dysregulation of the Hippo 
pathway could be an important factor in the 
poor prognosis of ovarian cancer and cervical 
cancer but not in endometrial cancer. Cervical 
cancer patients with high genetic expression 
levels of TAZ and low genetic expression levels 
of LATS1/2 and WWC2 had poor prognosis. 
Ovarian cancer patients with high genetic 
expression levels of YAP1 and low genetic 
expression levels of LATS2 and WWC2 had also 
poor prognosis (Figure 3G).

The Hippo pathway in cervical cancer

The viewpoint that cervical cancer is caused by 
high-risk human papillomavirus (hr-HPV) infec-
tion has been widely confirmed [95]. HPV infec-
tion is common in healthy women, but only a 
small portion develop cervical cancer [96, 97]. 
In addition to hr-HPV infection, multiple regula-
tory pathways are involved in the malignant 
transformation of cervical epithelial cells. 
Recently, a study showed that YAP oncogenes 
increase putative HPV receptor molecules and 
disrupt host cell innate immunity, and the dif-
ferential activation and expression of YAP onco-
genes determine individual susceptibility to 
HPV infection [98]. Immunohistochemical anal-
ysis showed that YAP expression in cervical 
cancer tissues was significantly higher than 
that in normal control tissues.

Moreover, the expression of YAP is related to 
the tumor stage. YAP protein levels in tissues of 
patients with advanced cervical carcinoma 
were significantly higher than those of early-
stage patients [99, 100]. The TCGA Research 
Network published comprehensive molecular 
characteristics of 228 cases of primary cervical 
cancer. The expanded TCGA dataset shows 
that squamous tumors mainly contained high 
copy number altered gene clusters and amplifi-
cation events involving YAP, BIRC2/3 and EGFR 
[93]. The YAP protein interacts with the HPV16 
E6 oncoprotein to promote the development of 
cervical cancer. Overexpression of YAP can also 
make cervical cancer cells overcome contact 
inhibition and induce cancer cell proliferation. 
In addition, the EGFR pathway interacts with 
the YAP-Hippo pathway to induce cervical can-
cer cell proliferation and migration [100], and 
Ajuba LIM Protein (AJUBA) negatively regulates 
the Hippo signaling pathway and antagonizes 

YAP phosphorylation. High AJUBA levels incre- 
ase the resistance of cervical cancer cells to 
cisplatin, which is also associated with reduced 
survival time [101].

Furthermore, TAZ protein levels in normal tis-
sues are significantly higher than those in cervi-
cal squamous cell carcinoma (SCC) tissues, 
and β1 integrin signaling supports the function 
of the Hippo pathway through Src kinases. TAZ 
expression and cellular localization are inverse-
ly related to SCC development, nuclear TAZ 
accumulation is associated with lymph node 
involvement [102], and TAZ expression is asso-
ciated with a reduced pathological complete 
response rate [103]. Protein tyrosine phospha-
tase 14 (PTPN14) is an evolutionarily conserved 
and important YAP/TAZ upstream regulator 
[104] that binds to HPV18 E7, resists degrada-
tion via the proteasome and negatively regu-
lates the proliferation, migration, and invasion 
of cervical cancer cells by attenuating the activ-
ity of downstream effectors of Hippo signaling 
[105]. The underlying mechanism by which 
Hippo signaling regulates cervical cancer pro-
gression is shown in Figure 4.

The Hippo pathway in ovarian cancer

Ovarian cancer (OC) has the highest mortality 
rate in gynecological malignancies [106]. At 
present, the development of ovarian cancer is 
still poorly understood [107]. The YAP/TAZ 
oncogene plays a role in promoting tumorigen-
esis in human ovarian cancer by promoting cell 
proliferation and apoptosis resistance, reduc-
ing contact inhibition, and improving motility 
and anchorage-independent growth [108-111]. 
Lysophosphatidic acid (LPA) induces YAP/TAZ 
dephosphorylation in ovarian cancer cells, 
which leads to cell migration and proliferation. 
These processes include LPA3-G12/13 cou-
pled signaling, the upstream regulator RhoA-
ROCK, and the major regulator PP1A [112- 
114]. YAP interacts with the EGFR signaling 
pathway to regulate AREG secretion and EGFR-
dependent cell migration [113, 115]. Current 
evidence indicates that ovarian high-grade 
serous carcinoma (HGSC) may originate from 
fallopian tube umbilical epithelial cells (mainly 
the secretory epithelial cells of fallopian tubes) 
[116]. YAP is overexpressed in inflammatory 
and cancerous fallopian tube tissues, and the 
YAP-Hippo pathway interacts with the FGF-
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FGFR pathway, which regulates fallopian tube 
umbilical epithelial cell activity, suggesting that 
the Hippo pathway may be involved in the 
occurrence and development of HGSC [115]. 
Neuron-restrictive silencer factor (NRSF) can 
activate the transcription of the Hippo pathway 
to enhance the proliferation of ovarian cancer 
cells, which promotes the dephosphorylation of 
MST1, LATS1, and YAP [117]. MicroRNAs (miR-
NAs) are noncoding RNAs encoded by endoge-
nous genes with a length of approximately 22 
nucleotides and are involved in the regulation 
of posttranscriptional gene expression [126]. 
The function of miRNAs and their exosomes in 
ovarian cancer cells has recently been revealed 
with the discovery that miRNA-129-5p and miR-
NA-149-5p are tumor suppressor miRNAs that 
inhibit the expression of YAP/TAZ, leading to 
the inactivation of TEAD transcription, which in 
turn has suppressive effects on the prolifera-
tion and tumorigenicity of ovarian cancer cells 
[118-120].

essential to identify new molecular mecha-
nisms for the development of endometrial can-
cer therapies. As mentioned above, the Hippo 
pathway transcriptional regulators YAP and TAZ 
are reported to be overexpressed in various 
cancers, and overexpression of TAZ/YAP has 
been also shown to increase proliferation, 
migration, and invasion in endometrial cancer 
cell lines [122-124]. Furthermore, TAZ/YAP 
interacts with the PI3K/AKT pathway at multi-
ple pathophysiological levels in endometrial 
cancer. In endometrial cancer cell lines, the 
synergistic downregulation of YAP/TAZ acti-
vates the Hippo pathway, which reduces the 
activation of the PI3K/AKT pathway by reducing 
the level of GAB2 linker molecules [122, 125]. 
In addition, the YAP gene in the nucleus can 
directly bind to the promoter of interleukin-6 (IL-
6) and induce its transcription. IL-6 and IL-11 
are essential for YAP-induced tumorigenesis of 
endometrial cancer cell lines [123]. MIR31 
overexpression and FAT4 silencing reduce the  

Figure 4. A schematic diagram shows the proposed mechanism by which the 
Hippo pathway regulates cervical cancer. In cervical cancer cells, nuclear 
accumulation of YAP protein stimulates the expression of EGF-like ligands, 
such as TGF-α and AREG, which in turn activates EGFR and inhibits LATS 
1/2 and MOB1 binding and further phosphorylation. Activated YAP activates 
transcription factors and induces the expression of growth factors, such as 
TGF-α and AREG, thereby promoting the growth of cervical cancer. HPV E6/
E7 oncoproteins maintain YAP protein levels in cervical cancer cells by pre-
venting the degradation of proteasome-dependent YAP. Accordingly, the high 
expression of YAP further promotes persistent HPV infection by upregulating 
putative HPV membrane receptor molecules and suppressing innate immu-
nity in host cells.

Moreover, the upregulation  
of miRNA-149-5p increases 
ovarian cancer cell resistance 
to cisplatin [118]. A type of 
long noncoding RNA (lncRNA), 
urothelial cancer associated 
1 (UCA1), is a driving factor of 
ovarian cancer carcinogene-
sis. AMOT, the HIPPO pathway 
upstream regulator, enhanc-
es the interaction between 
AMOT and YAP through UCA1, 
which mediates YAP activa-
tion and promotes the de- 
phosphorylation and nuclear 
translocation of YAP [121]. 
The underlying mechanism by 
which Hippo signals regulate 
the progression of ovarian 
cancer is shown in Figure 5.

The Hippo pathway in endo-
metrial cancer

Endometrial cancer (EC) is a 
malignant epithelial tumor 
that occurs in the endometri-
um, with an estimated annual 
incidence of 3-11/100,000 
women [106]. In addition to 
traditional clinical and patho-
logical classification, it is also 
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Figure 5. A schematic diagram showing the proposed mechanism by which 
the Hippo signaling pathway regulates ovarian cancer. In normal ovarian tis-
sues, deactivated FGF ligands, such as FGFRs, are insufficient to activate 
YAP, leading to ubiquitin-dependent degradation of YAP proteins. In ovarian 
cancer tissues, the nuclear accumulation of YAP protein stimulates the ex-
pression of FGFs, FGFRs and AREG, thereby activating FGF receptors and 
EGFR, which in turn interact with downstream signaling pathways, such as 
the PI3K and MAPK pathways, inhibiting the Hippo pathway and activating 
the YAP protein. Moreover, the NRSF, UCA1, and LPA-G12/13-RhoA-ROCK-
PP1A-YAP signaling pathways can stimulate the expression of YAP, miRNA-
129-5p, and miRNA-149-5p and inhibit the expression of YAP, which affects 
the occurrence and development of ovarian cancer.

protein levels of LATS1/2  
by inhibiting phosphorylation 
[127, 128], and downregula-
tion of LSR results in AREG 
upregulation [129], which pro-
motes YAP/TAZ translocation 
into the nucleus; an important 
link in promoting endometrial 
cancer tumorigenesis. In en- 
dometrial cancer cell lines, 
the TEAD family and the AP1 
transcription factors act clo- 
sely in the active enhancer or 
promoter regions and bind to 
the SRC1-3 coactivator to pro-
mote downstream transcrip-
tion, thereby promoting cell 
migration and invasion [130]. 
The underlying mechanism by wh- 
ich Hippo signals regulate the 
progression of endometrial 
cancer is shown in Figure 6.

Therapeutic strategies target-
ing the Hippo pathway

As mentioned above, YAP/TAZ 
may play an oncogenic role in 
gynecological malignancies. 
Therefore, current therapeutic 

Figure 6. A schematic diagram showing the proposed mechanism by which 
the Hippo signaling pathway regulates endometrial cancer. The Hippo path-
way activates the PI3K/AKT pathway via growth factors, including 1-oleoyl-
2-hydroxy-sn-glycerol-3-phosphate (LPA), EGF, insulin, and IGF1, resulting in 

YAP and TAZ dephosphorylation, 
leading to nuclear translocation 
and TEAD transcriptional activa-
tion. MIR31 significantly inhibits 
the luciferase activity of mRNA 
binding to the LATS2 3’-UTR, and 
the downregulation of LATS2 
leads to the dephosphorylation 
of YAP, promotes the transloca-
tion of YAP into the nucleus, and 
increases the transcription of 
CCND1. Inactivation of deubiq-
uitinating enzyme USP51 inhib-
its FAT4, resulting in decreased 
phosphorylation of LATS1/2 and 
YAP, while increased YAP nuclear 
translocation and loss of LSR up-
regulate TEAD/AREG in EC cells, 
which promote proliferation and 
invasion. YAP/TEAD-AP1 coop-
eration engages SRC1-3 coacti-
vators and drives downstream 
gene expression to regulate en-
dometrial cancer cell migration 
and invasion. Verteporfin induces 
YAP retention in the cytoplasm 
through increasing levels of 14-3-
3 and blocks the transcriptional 
activation of targets downstream 
of YAP.
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strategies primarily target the carcinogenic 
activity of YAP/TAZ. In addition, activating the 
negative regulatory components of the Hippo 
pathway can also play a role in tumor inhibition. 
Here, we introduce some small molecules or 
drugs that target the Hippo pathway core com-
ponents (Figure 7).

Targeting YAP/TAZ-TEAD interactions 

Recent research demonstrateds that blocking 
YAP/TAZ-TEAD complex formation could be a 
potential anticancer therapy. Further, vertepor-
fin, an inhibitor of YAP-TEAD interactions [131], 
significantly inhibits the proliferation of endo-
metrial cancer cells in a concentration-depen-
dent manner and decreases tumor size and 
weight in vivo, suggesting that verteporfin can 
be used as a new treatment for endometrial 
cancer [122, 123, 132].

Vestigial-like family member 4 (VGLL4) has two 
tondu (TDU) motifs in its carboxyl-terminal 
domain, which modulate the activity of TEAD-1. 
VGLL4 was first reported to have counteracted 
α1-adrenergic activation of TEAD-1-dependent 
gene expression in cardiac myocytes [133]. 
Recent reports indicate that VGLL4 directly 
interacts with TEAD through its TDU domain 
and inhibits YAP/TAZ-TEAD transcriptional activ-

YAP/TAZ is widely regulated by upstream sig-
nals of the Hippo pathway. Therefore, the main 
goals for small therapeutic molecules are to 
regulate YAP/TAZ activity and subcellular local-
ization. Metabolic pathways, such as the meva-
lonate pathway and energy stress, can regulate 
YAP/TAZ activity [139]. Inhibitors of the rate-
limiting enzymes of these pathways, such as 
HMG-CoA reductase inhibitors (statins), facili-
tate YAP/TAZ cytoplasm localization and inhibit 
transcriptional responses [139]. Recent stud-
ies have confirmed that statins have antitumor 
effects on cervical, endometrial, and ovarian 
cancer [140]. Energy stress induces YAP ph- 
osphorylation through AMPK. On the one hand, 
it depends on LATS1/2 activation to promote 
YAP cytoplasmic retention; on the other hand,  
it directly phosphorylates YAP at Ser 94, thus 
disrupting the YAP-TEAD interaction. AMPK-
induced YAP phosphorylation can inhibit YAP-
mediated carcinogenesis [141, 142]. Specifi- 
cally, 5-aminoimidazole-4-carboxamide ribonu-
cleotide (AICAR) inhibits YAP activity by activat-
ing AMPK [143]. Metabolic pathways play an 
important role in the tumorigenesis of gyneco-
logical malignancies, and small molecules that 
target metabolic pathways can exert partial 
antitumor effects by inhibiting YAP/TAZ [144, 
145].

Figure 7. A schematic diagram showing putative targets and small molecules 
specific to the Hippo pathway. Cells are shown with a blue outline, upstream 
regulatory proteins are shown in green, and core kinases are shown in yel-
low, with sharp arrows and blunt arrows indicating activation and inhibition 
interactions, respectively. Continuous lines indicate direct communication, 
while dashed lines indicate indirect communication.

ity [134]. In addition, VGLL4  
is downregulated in endome-
trial cancer [135]. VGLL4 defi-
ciency reduces the expres-
sion of PD-L1 in tumor cells, 
and VGLL4 and YAP play a 
central role in regulating tu- 
mor immunity [136]. There- 
fore, VGLL4 is considered a 
therapeutic and tumor sup-
pressor marker. YAP-like pep-
tides (17mers) target TEAD to 
disrupt the YAP-TEAD interac-
tion, which is an effective 
strategy for combating YAP-
induced tumorigenesis [137]. 
Flufenamic acid binds to a 
central pocket in the YAP-
binding domain of TEAD, and 
inhibits TEAD-YAP-dependent 
malignant biological proper-
ties [138].

Targeting upstream compo-
nents of the Hippo pathway 
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As mentioned above, the Hippo pathway is a 
downstream branch of GPCR signaling. The 
GPCR-G-protein-cytoskeleton axis can regulate 
the phosphorylation status of LATS1/2, thereby 
regulating YAP/TAZ activity. Specifically, YAP/
TAZ is regulated through G12/13, Gi/o, Gq/11 
or Gs-coupled GPCR ligands via actin dynam-
ics, Rho GTPases and their downstream effec-
tor ROCK [29, 146]. Recent reports have veri-
fied that G12/13-ROCK signaling promotes 
ovarian and cervical cancer invasion. Therefore, 
ROCK inhibitors, such as ripasudil and Y27632, 
may inhibit YAP/TAZ activity [147, 148]. The 
ECM is considered a potential therapeutic tar-
get; specifically, FAK-AKT signaling regulates 
the malignant biological properties of gyneco-
logical malignancies [149-151]. Thus, some 
FAK inhibitors, such as compound 2 (CEP-
37440) and imidazo[1,2-a][1,3,5]triazines, may 
suppress YAP by promoting nuclear transloca-
tion [152-154]. In addition, tankyrase inhibitors 
stabilize AMOT family proteins, thereby sup-
pressing YAP activity [155].

Conclusion

The Hippo pathway is a critical regulatory path-
way in mammalian tissue growth and develop-
ment. Recent advances have supported the 
role of Hippo pathway deregulation in tumori-
genesis, especially in gynecologic oncology. 
Increasing evidence shows that the distur-
bance of YAP/TAZ activity has a profound effect 
on malignancies. In addition, the interaction of 
the Hippo pathway with other oncogenic signal-
ing pathways may provide valuable therapeutic 
targets. Notably, the core components of the 
Hippo pathway are continually dysregulated in 
multiple human cancers, and it is essential that 
we identify multiple upstream regulators and 
downstream targets of the Hippo pathway. 
Therefore, the development of anticancer ther-
apies targeting the Hippo pathway is critical, 
and we expect many new insights into this path-
way in the near future.
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