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Engineering fast high-fidelity quantum operations with
constrained interactions
T. Figueiredo Roque1, Aashish A. Clerk2 and Hugo Ribeiro 1✉

Understanding how to tailor quantum dynamics to achieve the desired evolution is a crucial problem in almost all quantum
technologies. Oftentimes an otherwise ideal quantum dynamics is corrupted by unavoidable interactions, and finding ways to
mitigate the unwanted effects of such interactions on the dynamics is a very active field of research. Here, we present a very
general method for designing high-efficiency control sequences that are fully compatible with experimental constraints on
available interactions and their tunability. Our approach relies on the Magnus expansion to find order by order the necessary
corrections that result in a high-fidelity operation. In the end finding, the control fields are reduced to solve a set of linear equations.
We illustrate our method by applying it to a number of physically relevant problems: the strong-driving limit of a two-level system,
fast squeezing in a parametrically driven cavity, the leakage problem in transmon qubit gates, and the acceleration of SNAP gates in
a qubit-cavity system.
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INTRODUCTION
The success of any nascent quantum technology will ultimately be
limited by our ability to manipulate relevant quantum states.
Finding the required time-dependent control fields that generate
with high accuracy a desired unitary evolution is in general not a
trivial task: it is sufficient to consider a simple driven two-level
system in the strong-driving limit1–3 to find an example of a
complex control problem. This generic problem becomes even
more complicated when including realistic constraints: unavailable
control fields, bandwidth, and amplitude limitations, etc. Finding
widely applicable methods to attack such problems is thus highly
desirable.
There are of course many existing approaches to quantum

control. Of these, the most ubiquitous is to exploit numerical
algorithms (see refs. 4–9) based on optimal quantum control
theory10. The methods ultimately rely on the numerical optimiza-
tion of an objective function, for example, the fidelity of a desired
target state with the actual time-evolved state. For many
problems, the effective landscape of the objective function has
many local minima, which can make it challenging to find the truly
optimal protocol. While methods to overcome these limitations
exist11–14, they become difficult to implement as the dimension of
the control space increases. An alternative approach is to use an
analytical method to design effective protocols; control pulses
designed in this way could then be further improved by using
them to seed a numerical optimal control algorithm. Analytic
methods are, however, often system-specific (see refs. 15,16), or
only work with a specific restricted class of dynamics (e.g.,
methods based on shortcuts to adiabaticity, which are specific to
protocols based on adiabatic evolution17–23). These approaches
are also generally impractical in systems with many degrees of
freedom or sufficiently complex interactions.
In this work, we present a general framework for constructing

control fields that realize the desired evolution, in a manner that is
explicitly consistent with experimental constraints. At its heart, it
allows one to use the analytic solution of a simple control problem

to then find a high-fidelity pulse sequence for a more complex
problem where a closed-form analytic solution is not possible. Our
method has many potential virtues: it is applicable to an extremely
wide class of systems and protocols, produces smooth control
fields, and only requires one to numerically solve a finite set of
linear equations. It builds on the recently proposed Magnus-based
control method introduced in ref. 24 but greatly extends its power
and applicability.
Our generic goal is to use a specific time-dependent

Hamiltonian ĤðtÞ (whose form and tunability are constrained) to
produce (at time tf) a desired unitary operation. We start by
splitting the Hamiltonian into two parts as ĤðtÞ ¼ Ĥ0ðtÞ þ V̂ðtÞ,
where H0(t) is simple enough to be analytically tractable, and V̂ðtÞ
represents all the additional interactions that make the problem
unsolvable. The basic strategy then has two parts:

(1) First, choose control fields in the "simple" Hamiltonian Ĥ0ðtÞ
so that in the absence of V̂ðtÞ, one realizes the desired
operation. This can be done analytically.

(2) Adding back V̂ðtÞ will then destroy the ideal evolution. We
address this by modifying available control fields so as to
average out the impact of V̂ðtÞ. This amounts to adding a
control correction to the full Hamiltonian: ĤðtÞ ! ĤðtÞ þ
ŴðtÞ (see Fig. 1a).

The question is of course how to find the desired control
correction ŴðtÞ. We address this using the strategy described
recently in ref. 24, where ŴðtÞ is found perturbatively using a
Magnus expansion25,26. A major limitation of this approach is that
it often requires terms in ŴðtÞ that are incompatible with the
physical system at hand (e.g., interaction terms that do not exist,
or that cannot be made time-dependent in the given experi-
mental platform). This is where this work makes a substantial
contribution. We introduce a way to find terms in the series
expansion of ŴðtÞ that are always compatible with all constraints.
We achieve this by expanding ŴðtÞ at each order as a finite sum of
time-dependent basis functions multiplied by free weights.

1Max Planck Institute for the Science of Light, Erlangen, Germany. 2Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA. ✉email: hugo.ribeiro@mpl.
mpg.de

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-020-00349-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-020-00349-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-020-00349-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-020-00349-z&domain=pdf
http://orcid.org/0000-0002-1508-0096
http://orcid.org/0000-0002-1508-0096
http://orcid.org/0000-0002-1508-0096
http://orcid.org/0000-0002-1508-0096
http://orcid.org/0000-0002-1508-0096
https://doi.org/10.1038/s41534-020-00349-z
mailto:hugo.ribeiro@mpl.mpg.de
mailto:hugo.ribeiro@mpl.mpg.de
www.nature.com/npjqi


Finding the required control corrections then amounts in most
cases to solving time-independent linear equations for these
weights.
As we demonstrate through several examples, this methodol-

ogy is both extremely flexible and effective; it can also work in
systems with many degrees of freedom. The examples we
consider in “Results” include the strong non-RWA driving of a
qubit, leakage errors in a superconducting qubit, rapid squeezing
generation in a parametrically driven bosonic mode, and
accelerated SNAP gates27,28 in a coupled transmon-cavity system.
Note that the general idea of looking for control fields

represented as a finite combination of basis functions was
previously used in refs. 29,30 to design two-qubit superconducting
qubit gates that minimize leakage errors. In contrast to those
works, our work is both more general and more systematic. Our
approach is also complementary to a variational approach for
approximately finding shortcuts-to-adiabaticity protocols in com-
plex systems that are compatible with experimental
constraints31,32.

RESULTS
Imperfect unitary evolution
We consider the generic Hamiltonian:

ĤðtÞ ¼ Ĥ0ðtÞ þ ϵV̂ðtÞ: (1)

The Hamiltonian Ĥ0ðtÞ generates the desired time evolution,
while V̂ðtÞ is the spurious “error” Hamiltonian that disrupts the
ideal dynamics and which can be treated as a perturbation. The
perturbative character of V̂ðtÞ can originate, e.g., from V̂ðtÞ
being proportional to a parameter ϵ≪ 1, or because V̂ðtÞ is a
fast oscillating function. In Supplementary Note 1, we show why
nonresonant error-Hamiltonians can also be corrected with the
method presented below. In this section, however, we consider
the situation where V̂ðtÞ is proportional to a parameter ϵ≪
1 simply because this allows one to count the orders of the
perturbative series in a straightforward way. We stress,
however, that one can apply the method that we are about
to introduce independently of the reason that makes V̂ðtÞ a
perturbation.
The time evolution operator generated by ĤðtÞ is given by

ÛðtÞ ¼ Û0ðtÞÛIðtÞ: (2)

Here, Û0ðtÞ represents the ideal time evolution generated by Ĥ0ðtÞ
(ℏ= 1),

Û0ðtÞ ¼ T̂ exp �i
Z t

0
dt1Ĥ0ðt1Þ

� �
; (3)

where T̂ is the time-ordering operator, and we assume that the
time evolution starts at t= 0. The effect of the error Hamiltonian
V̂ðtÞ on the dynamics is given by ÛIðtÞ, which is defined as

ÛIðtÞ ¼ T̂ exp �iϵ
Z t

0
dt1V̂ Iðt1Þ

� �
: (4)

Here, an operator ÔðtÞ in the interaction picture is given by
ÔIðtÞ ¼ Û

y
0ðtÞÔðtÞÛ0ðtÞ.

Our goal is to have the time evolution operator at t= tf match a
specific desired unitary operator ÛG; the form of the time
evolution operator at earlier times is not relevant for us. This is
the case in many problems, the most prominent example being
the engineering of quantum gates. We also assume that Ĥ0ðtÞ
provides us the desired time evolution at t= tf, i.e., Û0ðtfÞ ¼ ÛG.
Consequently, the presence of a nonzero error Hamiltonian V̂ðtÞ
disrupts the evolution and prevents us to generate the desired
evolution, since in general ÛIðtfÞ≠1 (see Eq. (2)).

General strategy to correct unitary evolution
To obtain the ideal unitary evolution at t= tf, we wish to modify the
time dependence of ĤðtÞ to cancel the deleterious effects of V̂ðtÞ.
This is formally accomplished by introducing the modified Hamilto-
nian

ĤmodðtÞ ¼ Ĥ0ðtÞ þ ϵV̂ðtÞ þ ŴðtÞ: (5)

Here, ŴðtÞ is an unknown control Hamiltonian that cancels, or at
least mitigates, the effects of V̂ðtÞ on the dynamics, bringing us closer
to the desired time evolution (see Fig. 1a). The unitary evolution
generated by ĤmodðtÞ is given by ÛmodðtÞ ¼ Û0ðtÞÛmod;IðtÞ, where

Ûmod;IðtÞ ¼ T̂ exp �i
Z t

0
dt1Ĥmod;Iðt1Þ

� �
(6)

is the unitary evolution operator generated by

Ĥmod;IðtÞ ¼ ϵV̂ IðtÞ þ Ŵ IðtÞ; (7)

the modified Hamiltonian in the interaction picture with respect to
Ĥ0ðtÞ. The desired unitary operator at t= tf is achieved if
Ûmod;IðtfÞ ¼ 1, i.e., ÛmodðtfÞ ¼ Û0ðtfÞ ¼ ÛG.
A trivial solution to this problem is to take ŴðtÞ ¼ �ϵV̂ðtÞ. This

solution is almost always infeasible, as the general form of ŴðtÞ
will be constrained by the kinds of interactions available in the
system and their tunability. Furthermore, we are only interested in
generating the correct unitary at t= tf and consequently canceling
the spurious Hamiltonian at all times is in some sense demanding
more than it is required. A better solution consists of canceling the
spurious Hamiltonian on average, where one makes use of the fact
that the time evolution at intermediate times is not important.
This idea has been used early on to address the problem of
population inversion in magnetic nuclear resonance33,34. Here, we
choose to exploit this idea by following the procedure introduced
in ref. 24. This leads to relatively lax conditions that the control
Hamiltonian ŴðtÞmust satisfy. Nevertheless, finding an exact ŴðtÞ
is a complex task and generally one needs to resort to
perturbation theory to find approximated solutions.
Let us start by writing ŴðtÞ as a series in ϵ,

ŴðtÞ ¼
X1
n¼1

ϵnŴ
ðnÞðtÞ: (8)

In order to find ŴðtÞ, one could work with the series expansion of
the time-ordered exponential of Eq. (6), but a more convenient

final 
pulse

DFT basis functions

initial 
pulse

Fig. 1 Generic quantum control problem. a An idealized unitary
evolution (Û0) maps an initial quantum state into a desired final
state. The real evolution (Û) does not allow one to reach the desired
final state because it gets spoil by unwanted interactions neglected
when deriving Û0. The effects of these interactions can be made
arbitrary small by modifying the idealized control fields (Ûmod). b The
idealized control fields are modified by adding a finite number of
basis functions, e.g., discrete Fourier transform (DFT) basis functions,
multiplied by free weights. The free weights are chosen such that
the final pulse averages away the effects of the unwanted
interactions.
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approach is to use the Magnus expansion25,26. With the Magnus
expansion we can convert the complicated time-ordered expo-
nential to a simple exponential of an operator that can be
expanded in a series:

Ûmod;IðtÞ ¼ exp
X1
l¼1

Ω̂lðtÞ
" #

: (9)

The terms of the Magnus expansion, Ω̂lðtÞ, are recursively defined
by differential equations25,26, with the first two terms being given
by

∂tΩ̂1ðtÞ ¼ �iĤmod;IðtÞ; (10)

∂tΩ̂2ðtÞ ¼ 1
2
½∂tΩ̂1ðtÞ; Ω̂1ðtÞ�: (11)

In order to correct the dynamics up to order OðϵmÞ, one needs to
find a control Hamiltonian ŴðtÞ such that Ω̂lðtfÞ ¼ 0 for l= 1,…,
m. As shown in ref. 24, this is accomplished if one firstly truncates
the series representing ŴðtÞ (see Eq. (8)) up to order m and then

requires the operators Ŵ
ðnÞ
I ðtÞ, for n= 1,…,m, to satisfy the

following equation:

ϵn
Z tf

0
dt Ŵ

ðnÞ
I ðtÞ ¼ �i

Xn
l¼1

Ω̂
ðn�1Þ
l ðtfÞ: (12)

Here, Ω̂
ðnÞ
l ðtÞ is the lth term of the Magnus expansion associated

with the partially corrected Hamiltonian

Ĥ
ðnÞ
mod;IðtÞ ¼ ϵV̂ IðtÞ þ

Xn
l¼1

ϵlŴ
ðlÞ
I ðtÞ: (13)

Note that in Eq. (13), the series representing the correction ŴðtÞ
has been truncated at order n. To first order (m= 1), Eq. (12)
reduces toZ tf

0
dt Ŵ

ð1Þ
I ðtÞ ¼ �

Z tf

0
dt V̂ IðtÞ: (14)

Equation (12) is the only restriction on the terms of the control
Hamiltonian ŴðtÞ. This implies we have considerable latitude in
how we make our specific choice of ŴðtÞ. In what follows, we fully
exploit this freedom to systematically find control Hamiltonians
that are completely compatible with experimental constraints on
kinds and tunability of available interactions.

Constrained control Hamiltonians
To proceed, we introduce a set of Nop time-independent
Hermitian operators fÂjg that form a basis for Ĥ0ðtÞ, V̂ðtÞ, and
ŴðtÞ. By this, we mean that these operators allow for a unique
decomposition of the different Hamiltonian operators at each
instant of time:

Ĥ0ðtÞ ¼
X
j

hjðtÞÂj ; (15)

V̂ðtÞ ¼
X
j

vjðtÞÂj ; (16)

Ŵ
ðnÞðtÞ ¼

X
j

wðnÞ
j ðtÞÂj : (17)

Here, hj(t), vj(t), and wðnÞ
j ðtÞ are the real control fields (expansion

coefficients) associated with the decomposition of Ĥ0ðtÞ, V̂ðtÞ, and
Ŵ

ðnÞðtÞ, respectively. For instance, the elements of the set fÂjg for
a two-level system are the Pauli operators σ̂j with j∈ {1, 3}. We also
introduce the Lie algebra g generated by the set of operators
f�iÂjg with the Lie bracket given by the commutation operation.

Having a Lie algebra ensures that one can use the basis formed by
the set fÂjg to decompose the operators generated by the
Magnus expansion. Finally, we stress that Nop can be finite even if
the dimension of the Hilbert space is infinite. This is the case for
quadratic bosonic forms that can be characterized by the special
unitary groups SU(2) or SU(1, 1), which are associated with the Lie
algebras su(2) or su(1, 1)35.
Transforming Eqs. (16) and (17) to the interaction picture

defined by Ĥ0ðtÞ, we have

V̂ IðtÞ ¼
X
j

vjðtÞÂj;IðtÞ: (18)

Using the fact that fÂjg forms a basis, we can write

Âj;IðtÞ ¼
X
l

ajlðtÞÂl: (19)

Here, the functions ajl(t) fully encode the action of the interaction
picture transformation on our basis operators.
Substituting Eq. (19) in Eq. (18), we obtain

V̂ IðtÞ ¼
X
j

~vjðtÞÂj ; (20)

where we use tildes to denote control fields in the interaction
picture, and we have

~vjðtÞ ¼
X
l

aljðtÞvlðtÞ: (21)

Proceeding analogously for Ŵ
ðnÞðtÞ we get

Ŵ
ðnÞ
I ðtÞ ¼

X
j

~wðnÞ
j ðtÞÂj ; (22)

with

~wðnÞ
j ðtÞ ¼

X
l

aljðtÞwðnÞ
l ðtÞ: (23)

We now return to the fundamental equations of our approach,
Eqs. (12), which need to be satisfied to cancel the effects of V̂ðtÞ to
the desired order. As written, these equations do not reflect any
information about relevant experimental constraints. Typical
examples of constraints are the inability to control the fields that
couple to certain Âj , i.e., that particular field has to obey

wðnÞ
j ðtÞ ¼ 0. Note that in general, it is possible to have hj(t) ≠ 0

while one must work with the condition wðnÞ
j ðtÞ ¼ 0. Moreover,

even if wðnÞ
j ðtÞ can be controlled, it might have restrictions, e.g.,

wðnÞ
j ðtÞ must be time-independent or it has bandwidth limitations.

In the following, we show how to derive equations for wðnÞ
j ðtÞ that

obey Eq. (12) and simultaneously fulfill the previously mentioned
constraints. This then enables the design of high-fidelity control
pulses that are fully compatible with experimental constraints. As
we discuss below, it is enough to show how one derives equations
for the first-order control fields wð1Þ

j ðtÞ, which must obey Eq. (14),

since the procedure for wðnÞ
j ðtÞ is similar.

We proceed by substituting Eqs. (20) and (22) into Eq. (14),
which determines the first-order correction Hamiltonian. We
obtain an operator equation which can be split into Nop equations,
one for each operator Âj :Z tf

0
dt~wð1Þ

j ðtÞ ¼ �
Z tf

0
dt~vjðtÞ: (24)

We stress that it is possible to have ~wð1Þ
j ðtÞ ¼ 0 while ~vjðtÞ≠ 0 for

certain values of j. We call a correction Hamiltonian with such
limitations singular since Eq. (24) cannot be solved for every j. We
show in the subsection “The Magnus Correction for Singular or Ill-
conditioned Correction Hamiltonians” of “Results” that one can still
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use a singular correction Hamiltonian to cancel all unwanted
interactions generated by V̂ðtÞ, but for now we focus on the simpler
case of non-singular correction Hamiltonians.
The problem still remains of how to solve for wð1Þ

j ðtÞ; this is still
a complex task since one is dealing with a system of Nop coupled
integral equations. This problem can be overcome by choosing an

appropriate parametrization for the functions wð1Þ
j ðtÞ. Here, since

wð1Þ
j ðtÞ must only have support on the interval [0, tf], we use a

finite Fourier series decomposition,

wð1Þ
j ðtÞ ¼

Xkmax;j

k¼0

cð1Þjk cos ωktð Þ þ dð1Þjk sin ωktð Þ; (25)

with ωk= 2πk/tf and dð1Þj0 ¼ 0. This parametrization allows us to
carry out the time integration over the duration of the protocol
and use the Fourier coefficients as the free parameters to satisfy
the system of equations given by Eq. (24). We stress that at this
stage finding the first-order correction that fulfills Eq. (14) has
been reduced to determining a set of Ncoeffs ¼

PNop

j¼1ð2kmax;j þ 1Þ
coefficients. Note that one could use other basis functions for the
decomposition, e.g., Slepian functions36–38. We remind the reader
that we performed three series expansions up to now: the
perturbative expansion, for which we use the super-index (n) (in
Eq. (25) n= 1), the operator expansion in the fÂjg basis, for which
we have the sub-index j in Eq. (25), and finally, the Fourier expansion
of the control fields, for which we have the sub-index k in Eq. (25).
The sum in Eq. (25) runs from 0 to kmax;j , which allows us to limit

the bandwidth of the field associated to Âj . We stress that kmax;j
can take different values for different values of j, reflecting the fact
that different controls could have different bandwidth limitations.
All experimental constraints should be imposed in Eq. (25). If

one does not have control over a particular operator Âj0 , then
cj0k ¼ dj0k ¼ 0 for all possible values of k. If a particular field wj0 ðtÞ
must be time-independent, we set all the coefficients in Eq. (25) to
zero with the exception of cj00. If one requires

wð1Þ
j0 ð0Þ ¼ wð1Þ

j0 ðtfÞ ¼ 0, then one finds using Eq. (25) that the

coefficients cð1Þj0k must obey
Pkmax;j0

k¼0 cð1Þj0k ¼ 0, and the truncated

series for wð1Þ
j0 ðtÞ becomes

wð1Þ
j0 ðtÞ ¼

Xkmax;j0

k¼1

cð1Þj0k ½1� cos ωktð Þ� þ dð1Þj0k sin ωktð Þ: (26)

For simplicity, the summation in Eq. (25) runs from 0 to kmax;j , but
the more general case where the summation runs from kmin;j to
kmax;j is also allowed.
We now can formulate the final basic equations of our

approach. We substitute Eqs. (23) and (25) in the system of
equations defined by Eq. (24). Since we know the explicit time

dependence of ~wð1Þ
j ðtÞ, we can perform the time integration. This

leads to a system of time-independent Nop linear equations than
can be written in matrix form:

M xð1Þ ¼ yð1Þ: (27)

Here, x(1) is a vector of coefficients (length Ncoeffs) determining the
first-order control correction that we are trying to find. In contrast,
the matrix M and the vector y(1) are known quantities: y(1)

parameterizes the error Hamiltonian V̂ðtÞ, whereas M encodes the
dynamics of the ideal evolution generated by Ĥ0ðtÞ.
To be more explicit, the y(1) is a vector of length Nop whose

components are the spurious error Hamiltonian elements we wish
to average out,

yð1Þj ¼ �
Z tf

0
dt~vjðtÞ: (28)

x(1) is the vector of the Ncoeffs unknown Fourier coefficients cð1Þlk
and dð1Þlk that determines our control corrections, c.f. Eq. (25). For
simplicity, here we choose kmax;j ¼ kmax for all values of j. We order
these coefficients as follows

xð1Þj ¼ cð1Þlk if j � j0;

dð1Þlk if j> j0;

(
(29)

where j0 ¼ Nopðkmax þ 1Þ, and the indices l and k in Eq. (29) are
functions of j. We have

l ¼ ðj � 1Þ==ðkmax þ 1Þ þ 1 if j � j0;

ðj � j0 � 1Þ==kmax þ 1 if j> j0;

�
(30)

and

k ¼ ðj � 1Þ%ðkmax þ 1Þ if j � j0;

ðj � j0 � 1Þ%kmax þ 1 if j> j0:

�
(31)

Here, a//b denotes the integer division of a by b, and a%b denotes
the remainder of the integer division of a by b.
Finally, M is a (Nop × Ncoeffs) matrix that characterizes the

evolution under the ideal Hamiltonian Ĥ0ðtÞ. Recall that the
interaction picture transformation generated by this Hamiltonian
is described by the functions ajl(t). The matrix elements of M
involve the Fourier series of these functions (see Eq. (19)):

Mij ¼
R tf
0 dt aliðtÞ cosðωktÞ if j � j0;R tf
0 dt aliðtÞ sinðωktÞ if j> j0;

(
(32)

where l and k are given by Eqs. (30) and (31), respectively. We stress
that Eqs. (28) to (32) are valid when the summation in Eq. (25) runs
from 0 to kmax for all values of j, but they can be modified to describe
the more general case where the sum runs form kmin;j to kmax;j .
Higher-order controls are found with an identical procedure.

Ultimately, each order is found by solving a system of time-
independent Nop linear equations similar to Eq. (27) (see “Methods”
for more details).
For a given problem, there are typically many different choices

one can make for Ŵ
ðnÞðtÞ, which originates from the freedom one

has in choosing the finite Fourier decomposition of wðnÞ
j ðtÞ (see Eq.

(25) for n= 1); one could choose many different values for each
kmax;j and even start the summation in Eq. (25) at kmin;j ≠ 0, which
by its turn could also have many different values. Rather than a
flaw, this is a an important feature of our method, since it allows
one to select a correction Hamiltonian that is always compatible
with the experimental limitations at hand.
Some choices of Ŵ

ðnÞðtÞ are what we call ill-conditioned, i.e., the
correction Hamiltonian obtained from the solution of the linear
system has an overall effect on the dynamics that is non-
perturbative. By contrast, we refer to correction Hamiltonians
whose effect on the dynamics is perturbative as well-conditioned.
Ill-conditioned correction Hamiltonians are easily recognizable
because despite finding a solution for the linear system, and
consequently a correction Hamiltonian, the average fidelity39

decreases. For such cases, typically the correction Hamiltonian
series expansion (see Eq. (8)) does not converge.
While it is generally hard to tell beforehand, i.e., before solving

the linear system and calculating the average fidelity, whether a
given correction Hamiltonian is ill-conditioned, physical intuition

usually helps one to find good candidates for Ŵ
ðnÞðtÞ. Further-

more, our method is simple enough and numerically fast to allow
one to quickly try different possible correction Hamiltonians, i.e.,
different values for kmax;j and kmin;j , and to select the one that
performs best. We strongly emphasize that the situation is not
fundamentally different with optimal control algorithms, since
there are usually hyperparameters that need to be tuned, e.g.,
bandwidth control in optimal control algorithms can be achieved
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by adding a term to the cost function, which otherwise would
simply be the final state fidelity, that penalizes large band-
widths40,41. We also note that any well-conditioned nth order
correction Hamiltonian ensures that the remaining fidelity error
scales like Oðϵ2ðnþ1ÞÞ24. The actual value of the error, however,
depends on the specific choice of the correction Hamiltonian.
Nevertheless, the freedom in the choice of Ŵ

ðnÞðtÞ might lead
one to think that the method is impractical: finding the

appropriate decomposition for each wðnÞ
j ðtÞ seems an insurmoun-

table task. Fortunately, the system of linear equations (see Eq. (27)
for n= 1) can be solved for Ncoeffs > Nop using the Moore–Penrose
pseudo-inverse42–44, which finds a solution vector x(n) whose norm
is minimal. Thus, if one is unsure about the choices for kmin;j and
kmax;j , one can simply choose to give as much freedom as possible

to the correction Hamiltonian Ŵ
ðnÞðtÞ by choosing large (small)

but experimentally feasible values for kmax;j (kmin;j); one allows as
many coefficients as possible experimentally, but taking in

account that wðnÞ
j ðtÞ have different bandwidth limitations.

Furthermore, the solution given by the Moore–Penrose pseudo-
inverse also provides a way of detecting which free coefficients
are not “useful”. Frequently, the Moore–Penrose pseudo-inverse
solution has elements whose absolute value is orders of
magnitude smaller than other elements. These relatively small
free parameters can usually be safely neglected.
Finally, we note that it might happen that a particular correction

Hamiltonian is well-conditioned up to order n but becomes ill-
conditioned or singular at order n+ 1. In such cases, one should
choose a different correction Hamiltonian. If this is, however, not
possible, then one cannot rely on the approach presented above.
However, as we discuss below, there is an alternative strategy one
can opt to deal with singular and ill-conditioned correction
Hamiltonians.

Singular or ill-conditioned correction Hamiltonians
In some situations, experimental constraints restrict the correction
Hamiltonian to a degree that one has to work with singular or ill-
conditioned correction Hamiltonians. This is the case for the SNAP
gate problem discussed in “Results”. Here, we show an alternative
strategy that allows one to use singular or ill-conditioned
correction Hamiltonians to correct all unwanted terms generated
by V̂ðtÞ.
To understand the main idea behind the alternative strategy, let

us first consider the situation in which the basis fÂjg has
dimension Nop= 3, and the set of operators f�iÂjg forms a Lie
algebra. We also assume that V̂ IðtÞ is such that we have ~vjðtÞ≠ 0
for all values of j (see Eq. (20)) and, due to experimental
limitations, we have Ŵ IðtÞ with ~w3ðtÞ ¼ 0 (see Eq. (22)). This
characterizes a situation for which the correction Hamiltonian is
singular. Thus, the standard linear strategy cannot be applied,
unless one gives up on correcting the errors associated to Â3. If
one chooses this option, the linear equation associated to Â3 is
simply neglected, and we proceed with a truncated linear system
of equations. There is, however, no guarantee that such an
approach will prove helpful in correcting the dynamics. A much
more promising method is to rely on the Lie algebra formed by
the operators fÂjg to dynamically generate a correction term
proportional to Â3, i.e., we want to make use of the fact that
½Â1; Â2� / iÂ3.
To make use of this property, and restricting ourselves to the

first order in ŴðtÞ, we need to look for Ŵ
ð1Þ
I ðtÞ such that

Ω̂
ð1Þ
1 ðtfÞ þ Ω̂

ð1Þ
2 ðtfÞ ¼ 0: (33)

By substituting Eqs. (10) and Eq. (11) into Eq. (33), we get

�i
R tf
0 dt1Ĥ

ð1Þ
mod;Iðt1Þ

� 1
2

R tf
0 dt1

R t1
0 dt2 Ĥ

ð1Þ
mod;Iðt1Þ; Ĥ

ð1Þ
mod;Iðt2Þ

h i
¼ 0:

(34)

The commutator in the double integral in Eq. (34) necessarily

produces terms proportional to Â3 that depend on Ŵ
ð1Þ
I ðtÞ. It is

important to contrast Eq. (33) with Eq. (12) for n= 1. While previously

Ŵ
ð1Þ
I ðtÞ was fully determined by Ω̂

ð0Þ
1 ðtfÞ, it is now determined by the

first two terms of the Magnus expansion of Ĥ
ð1Þ
mod;IðtÞ ¼

ϵV̂ IðtÞ þ Ŵ
ð1Þ
I ðtÞ. In other words, the price to pay to generate the

missing correction term is having to solve a nonlinear equation in

Ŵ
ð1Þ
I ðtÞ. Another important difference with the linear strategy is that

the Ŵ
ð1Þ
I ðtÞ that fulfills Eq. (33) corrects errors up to second order.

Let us now generalize the strategy we sketched above by
considering a Lie algebra with arbitrary dimension Nop. We assume
for simplicity that the Lie algebra associated to f�iÂjg does not have
a sub-algebra (the case in which there are sub-algebras can be
accommodated with minor changes). We also assume that, due to

experimental constraints, ~wðnÞ
j ðtÞ ¼ 0 for j > jc in Eq. (22). The Magnus

operators Ω̂
ðn�1Þ
l ðtfÞ (see Eq. (12)), however, do not follow this rule

and can have components proportional to Âj > jc . Thus, the correction
Hamiltonian is singular, and the linear system of equations that one
obtains does not have a solution. As for the simple case with Nop= 3,
we want to use the fact f�iÂjg forms a Lie algebra to dynamically
generate the missing terms. First, we write the Magnus expansion

associated to Ĥ
ð1Þ
modðtÞ ¼ ϵV̂ IðtÞ þ Ŵ

ð1Þ
I ðtÞ as

X1
l¼1

Ω̂
ð1Þ
l ðtfÞ ¼

X1
l¼1

Ω̂
ð0Þ
l ðtfÞ þ δΩ̂

ð1Þ
l ðtfÞ

h i
; (35)

where Ω̂
ð0Þ
l ðtfÞ are the Magnus operators associated to the

uncorrected Hamiltonian Ĥ
ð0Þ
mod;IðtÞ ¼ ϵV̂ IðtÞ, and δΩ̂

ð1Þ
l ðtfÞ has all

the terms with contributions from Ŵ
ð1Þ
I ðtÞ. The operator δΩ̂

ð1Þ
l ðtfÞ

contains higher-order commutators involving Ŵ
ð1Þ
I ðtÞ26; these are the

commutators that generate the missing operators from Ŵ
ð1Þ
I ðtÞ.

Assuming that by truncating the summation in Eq. (35) at l= lc we

have generated, with
Plc

l¼1 δΩ̂
ð1Þ
l ðtfÞ, terms with all the missing

operators Âj in Ŵ
ð1Þ
I ðtÞ, we impose

Xlc
l¼1

Ω̂
ð1Þ
l ðtfÞ ¼ 0: (36)

To solve this equation, we proceed as for the standard linear strategy:

we decompose the coefficients of Ŵ
ð1ÞðtÞ in a finite Fourier series

(see Eq. (25)), transform Ŵ
ð1ÞðtÞ to the interaction picture, and insert

it in Eq. (36). As before, we obtain a system of equations to solve, one
for each operator Âj , but since Eq. (36) is intrinsically nonlinear; we
obtain a system of polynomial equations in the coefficients cjk and djk
instead of a linear system. In contrast to the linear strategy, the
modified strategy for singular Hamiltonians corrects errors up to
order lc in a single shot. In “Methods”, we show how to apply this
strategy to iteratively correct higher-order errors.

A practical guide to find a Magnus-based correction
Hamiltonians
In this section, we provide a simple guide to find a well-
conditioned correction Hamiltonian, when one is unable to make
a physically motivated choice for the decomposition of wðnÞ

j ðtÞ. For
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convenience, we list in Table 1 the definition of the most
important symbols.

(1) Write the correction Hamiltonian Ŵ
ðnÞðtÞ, with wðnÞ

j ðtÞ given
by the truncated Fourier series in Eq. (25).

(2) All experimental constraints in Ŵ
ðnÞðtÞ should be imposed

on Eq. (25).

(a) If one does not have access to the control associated to
Âj , one must set cjk= djk= 0.

(b) If the control j is static, all coefficients with exception of
cj0 are zero.

(c) If the control j has to be zero at t= 0 and t= tf, the
truncated Fourier expansion for wðnÞ

j ðtÞ is given by Eq.
(26).

(d) For the remaining controls, choose kmax;j and kmin;j such

that Ŵ
ðnÞðtÞ has as many free coefficients as possible but

within the bandwidth limitations of each control.

(3) Follow the procedure detailed in “Results” to obtain the
linear system of equations to be solved.

(4) Solve the linear system using the Moore–Penrose pseudo-
inverse.

(a) The solution is well-conditioned: look for higher-order
corrections or stop.

(b) The solution is ill-conditioned: go back to (2) and try to
relax, if possible, the restrictions on the wðnÞ

j ðtÞ such that
we have a larger Ncoeffs and repeat steps (3) and (4). If this
is not possible, try the modified strategy explained in
“Singular or ill-conditioned correction Hamiltonians”.

In the following, we apply our general strategy to several
experimentally relevant problems. These examples highlight the
fact that our method is broadly applicable (without modification)
to a wide range of very diverse problems.

Strong driving of a two-level system
As a first example, we consider the problem of a two-level system
(qubit) in the strong-driving limit. As we discuss below, this regime
generates complex dynamics that renders precise control of the
qubit hard to achieve. Several techniques were used to predict
control schemes that generate high-fidelity gates. Optimal control
methods have been used, but since no penalties were imposed to

limit the bandwidth of the control pulses, the resulting pulses
could not be accurately reproduced by an arbitrary waveform
generator45. While there are optimal control algorithms able to
produce control sequences compatible with bandwidth limita-
tions (see for example ref. 46), they have not been used to address
this problem to the best of our knowledge. An ad hoc method
based on time-optimal control of a two-level system47,48 was also
proposed: it consists in realizing Bang–Bang control with
imperfect square control fields49. However, to achieve a gate with
a reasonably low error the imperfect square pulse must still have a
relatively large bandwidth. A method based on analyzing the
dynamics of the system using Floquet theory has also been put
forward50,51, but this transforms a low-dimensional control
problem into a high-dimensional one.
The Hamiltonian of a driven two-level system is given by

ĤqubitðtÞ ¼ ωq

2
σ̂z þ f qðtÞ cosðωdtÞσ̂x ; (37)

where ωq is the qubit splitting frequency, ωd is the driving
frequency, fq(t) is the driving envelope, and we introduce the Pauli
operators:

σ̂x ¼ 0j i 1h j þ 1j i 0h j;
σ̂y ¼ i 0j i 1h j � i 1j i 0h j;
σ̂z ¼ 1j i 1h j � 0j i 0h j:

(38)

We label by 0j i and 1j i the ground and excited states of the
system, respectively. We note that the Pauli operators (multiplied
by the imaginary number −i) define a Lie algebra with respect to
the commutation operation.
In the weak-driving limit, i.e., fq(t)≪ωd ∀ t, Eq. (37) allows one to

generate rotations around the x axis if one sets ωd=ωq. This is
best understood in the frame rotating at the drive frequency, i.e.,

ĤqubitðtÞ ! ĤRðtÞ ¼ Ŝ
y
dðtÞĤqubitŜdðtÞ � iŜ

y
dðtÞ∂t ŜdðtÞ with

ŜdðtÞ ¼ exp½�iωdtσ̂z=2�. In this frame, the Hamiltonian is given
by ĤRðtÞ ¼ Ĥq;0ðtÞ þ V̂qðtÞ with

Ĥq;0ðtÞ ¼ f qðtÞ
2

σ̂x ; (39)

and

V̂qðtÞ ¼ vq;xðtÞσ̂x þ vq;yðtÞσ̂y : (40)

The coefficients vq,j(t) are given by

vq;xðtÞ ¼ fqðtÞ
2 cosð2ωdtÞ;

vq;yðtÞ ¼ � f qðtÞ
2 sinð2ωdtÞ:

(41)

Here, the driving is set on resonance with the qubit frequency, i.e.,
ωq=ωd. If the system is in the weak driving limit, the fast
oscillating terms (also known as counter-rotating terms) in V̂qðtÞ
can be neglected as they average themselves out over the long-
evolution time set by the slow varying envelope function fq(t). As a
consequence, one can approximate ĤRðtÞ by Ĥq;0ðtÞ. This is known
as the rotating wave approximation (RWA). The resulting
Hamiltonian generates a rotation of angle θ(tf) around the x axis,
where we have introduced

θðtÞ ¼
Z t

0
dt1 f qðt1Þ: (42)

However, when one deviates from the weak driving limit, the
counter-rotating terms cannot be neglected anymore since they
do not average themselves out on short evolution times. As a
result, the dynamics generated by ĤRðtÞ describes a complex
rotation around a time-dependent axis evolving in the xy plane of
an angle which is no more accurately described by Eq. (42)1 (see
Fig. 2e). To this day, there is no known exact analytical solution to
this problem. Therefore, finding control sequences leading to
high-fidelity operations is not as straightforward in the strong-

Table 1. Definition of the most important symbols.

Symbol Meaning Equations

Ĥ0ðtÞ Ideal Hamiltonian Eq. (1)

V̂ðtÞ Spurious “error” Hamiltonian Eq. (1)

Ŵ
ðnÞðtÞ nth order correction Hamiltonian Eq. (8)

ÔI Operator in the interaction picture with
respect to Ĥ0ðtÞ

–

Ω̂lðtÞ lth Magnus operator associated with V̂ IðtÞ Eq. (9)

Ω̂
ðnÞ
l ðtÞ lth Magnus operator associated with the

modified Hamiltonian
Eq. (13)

Âj Basis operator of the Hilbert space –

vj(t) Decomposition coefficients of V̂ðtÞ Eq. (16)

wðnÞ
j ðtÞ Decomposition coefficients of Ŵ

ðnÞðtÞ Eq. (17)

al,j(t) Decomposition coefficients of Âl;IðtÞ Eq. (19)

~vjðtÞ Decomposition coefficients of V̂ IðtÞ Eq. (20)

~wjðtÞ Decomposition coefficients of Ŵ IðtÞ Eq. (22)

cjk, djk Fourier coefficients of wj(t) Eq. (25)
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driving limit as it would be within the RWA approximation.
However, using the general framework laid out in previously, we
can mitigate the effects of V̂qðtÞ in situations where the RWA
breaks down. This allows us to generate any high-fidelity single-
qubit gate beyond the RWA regime.
Given the constraints of the original problem, i.e., we only have

temporal control over a field coupling to σ̂x (see Eq. (37)), we look
for a correction of the form

ŴqubitðtÞ ¼
X
n

gðnÞðtÞσ̂x ; (43)

where

gðnÞðtÞ ¼ gðnÞx ðtÞ cosðωdtÞ þ gðnÞy ðtÞ sinðωdtÞ: (44)

Here, gðnÞx ðtÞ and gðnÞy ðtÞ are unknown envelope functions. In
addition to the driving field, we also have the liberty to choose the
driving frequency; nothing tells us that having ωd= ωq is the best
thing to do in terms of control beyond the RWA. In the rotating
frame, this is equivalent to have a nonzero detuning Δ=ωq−ωd.
Therefore, we consider the following modified Hamiltonian in the
rotating frame

ĤR;modðtÞ ¼ Ĥq;0ðtÞ þ V̂qðtÞ þ
X
n

Ŵ
ðnÞ
q ðtÞ: (45)

In terms of the Pauli operators, Ŵ
ðnÞ
q ðtÞ is given by

Ŵ
ðnÞ
q ðtÞ ¼ wðnÞ

q;xðtÞσ̂x þ wðnÞ
q;yðtÞσ̂y þ wðnÞ

q;zðtÞσ̂z ; (46)

with

wðnÞ
q;xðtÞ ¼ gðnÞðtÞ cosðωdtÞ;

wðnÞ
q;yðtÞ ¼ �gðnÞðtÞ sinðωdtÞ;

wðnÞ
q;zðtÞ ¼ ΔðnÞ:

(47)

In practice, having a control field with two-quadratures driving (see
Eq. (43)) and introducing a detuning has given us the ability to
implement three-axis control. We stress that there are other possible
choices for ŴðtÞ, but they all require more resources to be
implemented experimentally (see Supplementary Note 2). Note that
the modified detuning is given by Δ= ∑nΔ

(n) in complete analogy to
having the control fields represented by a series (see Eq. (8)).
Following our general strategy, we first move to the interaction

picture with respect to Ĥq;0ðtÞ (see Eq. (39)). In the interaction

picture, V̂qðtÞ (see Eq. (40)) and the control Hamiltonian Ŵ
ðnÞ
q ðtÞ

(see Eq. (46)) are, respectively, given by

V̂q;IðtÞ ¼ ~vq;xðtÞσ̂x þ ~vq;yðtÞσ̂y þ ~vq;zðtÞσ̂z; (48)

with

~vq;xðtÞ ¼ fqðtÞ
2 cosð2ωdtÞ;

~vq;yðtÞ ¼ � f qðtÞ
2 sinð2ωdtÞ cos θ;

~vq;zðtÞ ¼ f qðtÞ
2 sinð2ωdtÞ sin θ;

(49)

and

Ŵ
ðnÞ
q;I ðtÞ ¼ ~wðnÞ

q;xðtÞσ̂x þ ~wðnÞ
q;yðtÞσ̂y þ ~wðnÞ

q;zðtÞσ̂z (50)

with

~wðnÞ
q;xðtÞ ¼ gðnÞðtÞ cosðωdtÞ;

~wðnÞ
q;yðtÞ ¼ �gðnÞðtÞ sinðωdtÞ cos θþ ΔðnÞ sin θ;

~wðnÞ
q;zðtÞ ¼ gðnÞðtÞ sinðωdtÞ sin θþ ΔðnÞ cos θ:

(51)

In Eqs. (49) and (51), we have omitted the explicit time
dependence of θ for simplicity, i.e., θ= θ(t) (see Eq. (42)). The

next step consists of expanding the control fields wðnÞ
q;ρðtÞ (ρ∈ {x, y,

z}) ((see Eq. (47)) into a Fourier series. However, before proceeding

it is useful to notice the special form of the functions wðnÞ
q;ρðtÞ: an

unknown function that multiplies a known fast oscillating
function. It is, therefore, more suitable to just expand the

unknown functions gðnÞx ðtÞ, gðnÞy ðtÞ (see Eq. (44)), and Δ(n) in a
Fourier series and use the corresponding Fourier coefficients as
the free parameters to satisfy the system of equations generated
by the Magnus-based approach. We stress, however, that one

obtains exactly the same results by expanding wðnÞ
q;ρðtÞ and

imposing the necessary constraints on the Fourier series.
If we constrain gðnÞρ¼x;yðtÞ to be zero at t= 0 and t= tf, which is

often the case experimentally, we obtain the following Fourier
expansions

gðnÞρ ðtÞ ¼
Xkmax;ρ

k¼1

cðnÞρ;k 1� cosðωktÞ½ � þ dðnÞρ;k sinðωktÞ; (52)

Fig. 2 Modified dynamics of a qubit in the strong-driving limit. a Average fidelity error for a Hadamard gate as a function of gate time. The
blue trace is calculated using the uncorrected Hamiltonian (see Eq. (37)). The green trace is obtained for the modified Hamiltonian (up to
second order). b Coefficient of the of original pulse fq(t) and the coefficients of the correction Hamiltonian as a function of the gate time. Here,
cα;1 ¼ cð1Þα;1 þ cð2Þα;2 and Δ=Δ(1)+Δ(2). c, d Original pulse and corrected pulse for ωdtf ≈ 5. In (c), we plot f ðnÞq;xðtÞ while in (d) we plot f ðnÞq;yðtÞ; see Eq.
(58). e Trajectory on the Bloch sphere of the ideal dynamics (gray), of the uncorrected dynamics (blue), and of the corrected dynamics
(orange).
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and

ΔðnÞ ¼ cðnÞz;0 þ
Xkmax;z

k¼1

cðnÞz;k cosðωktÞ þ dðnÞz;k sinðωktÞ; (53)

where ωk= 2πk/tf. Since we have a total of three equations of the
form of Eq. (24) to solve (one for each Pauli operator), we need at
least three free parameters. Consequently, we can set kmax;x ¼
kmax;y ¼ 1 and kmax;z ¼ 0. This gives us a total of five coefficients. To
simplify even more the correction Hamiltonian, we set

dðnÞx;1 ¼ dðnÞy;1 ¼ 0; this leaves us only with the coefficients cðnÞx;1 , c
ðnÞ
y;1 ,

and cðnÞz;0 . We have chosen this set of coefficients for simplicity. In
principle, one could choose another set of three coefficients (see
Supplementary Note 3). With this choice, Eqs. (52) and (53) reduce to

gðnÞρ¼x;yðtÞ ¼ cðnÞρ;1 1� cosðω1tÞ½ �; (54)

and

ΔðnÞ ¼ cðnÞz;0 : (55)

The final step is to find the value of the free parameters cðnÞx;1 , c
ðnÞ
y;1 ,

and Δ(n). The system of equations defining the first-order
coefficients (n= 1, see Eq. (27)), is given by

Pqxð1Þq ¼ yð1Þq ; (56)

where xð1Þq ¼ fcð1Þx;1; c
ð1Þ
y;1;Δ

ð1ÞgT is the vector of unknown coeffi-

cients (see Eq. (29)), yð1Þq ¼ � R tf
0 dtf~vq;xðtÞ; ~vq;yðtÞ; ~vq;zðtÞgT is the

vector of the spurious error Hamiltonian elements with ~vq;ρðtÞ
(ρ∈ {x, y, z}) defined in Eq. (49), and Pq is the matrix that
characterizes the evolution under the ideal Hamiltonian Ĥq;0ðtÞ
(see Eq. (39)). The matrices Pq and M (see Eq. (32)), although they
fulfill the same purpose, have different matrix elements. The
difference arises because we are expanding in a Fourier series the
unknown envelope functions gðnÞρ ðtÞ (ρ= x, y) and the detuning
Δ(n) (see Eqs. (52) and (53)) instead of the functions ~wq;jðtÞ (j∈ {x,
y, z}) (see Eq. (51)). The explicit matrix elements of Pq can be found
in Supplementary Note 4. Higher-order correction Hamiltonians
can be found in a similar way.
In Fig. 2a, we plot the average fidelity error ε39 for a Hadamard

gate generated with an initial envelope

f qðtÞ ¼ θ0
tf

1� cos
2πt
tf

� �� �
; (57)

with θ0= π/2. Other gates can be realized by choosing θ0∈ [0, 2π].
The blue trace shows the error for the uncorrected evolution,
while the green trace shows the error of the corrected evolution
up to the second order. The latter, as one can observe in Fig. 2a,
globally increases when ωqtf decreases, but around ωqtf≃ 1 the
error of the corrected evolution starts decreasing again. This can
be understood by considering the limit tf→ 0 (ωqtf→ 0). In this
limit, we have ~vq;xðtÞ ! f qðtÞ=2 and ~vq;yðtÞ ¼ ~vq;zðtÞ ! 0 (see Eq.
(49)), which implies that V̂ IðtÞ commutes with itself at all times. As
a consequence, one can find exact modifications to the control
fields since only the first order of the Magnus expansion is
nonzero. However, as one can see in Fig. 2b, where we plot the
coefficients of the correction versus the gate time tf, the modified
control sequences require control fields with diverging ampli-
tudes. Restricting ourselves to gate times close to unity (ωqtf≃ 1),
where the modified control sequences can be experimentally
realized, our strategy improves the error ε by more than two
orders of magnitude. In Fig. 2c and d, we compare the original and
corrected pulses for ωqtf ≈ 5. One can observe that the changes to
the original pulse are small. For convenience, we write the nth
order modified pulse as

f q;modðtÞ ¼ f ðnÞq;xðtÞ cosðωqtÞ þ f ðnÞq;yðtÞ sinðωqtÞ; (58)

where f ðnÞq;xðtÞ ¼ f qðtÞ þ
Pn

l¼1 g
ðlÞ
x ðtÞ and f ðnÞq;yðtÞ ¼

Pn
l¼1 g

ðlÞ
y ðtÞ.

When n= 0, we have simply the original pulse, thus f ð0Þq;xðtÞ ¼
f qðtÞ and f ð0Þq;yðtÞ ¼ 0.

Strong driving of a parametrically driven cavity
As a second example, we consider the problem of fast generation
of squeezed states using a parametrically driven cavity (PDC). The
ability to generate squeezed states with quantum oscillators is of
particular interest since it allows one, among others, to enhance
sensing capabilities52 or to reach the single-photon strong
coupling regime with optomechanical systems using only linear
resources53. Recently, optimal control techniques have been used
to achieve squeezing of an optomechanical oscillator at finite
temperature54.
Here, we are interested in generating squeezing on a relatively

short time scale by using a pulsed drive. As for the qubit problem
discussed previously, this turns out to be a complex task due to
fast counter-rotating terms that prevent the preparation of the
desired squeezed state.
The Hamiltonian of a PDC corresponds to having a harmonic

oscillator with a modulated spring constant. This can be achieved,
e.g., in the microwave regime by modulating the magnetic flux
through a SQUID loop (flux-pumped Josephson parametric
amplifier)55,56. We have

ĤPDCðtÞ ¼ ωaâ
yâþ f CðtÞ sinðωdtÞðâþ âyÞ2; (59)

with â (ây) the bosonic annihilation (creation) operator. The
frequency of the mode â is ωa and the drive has frequency ωd.
It is convenient to introduce the operators35

μ̂x ¼ 1
2 ðâ2 þ ây2Þ;

μ̂y ¼ � i
2 ðâ2 � ây2Þ;

μ̂z ¼ 1
2 ðâyâþ ââyÞ;

(60)

which define (multiplied by the imaginary number −i) a Lie
algebra with respect to the commutation operation (see
“Methods”). As mentioned earlier, since the Hamiltonian is
quadratic, the three operators defined in Eq. (60) are enough to
completely describe the full dynamics in spite of having an infinite
Hilbert space. The action of these operators is best understood in
the phase space defined by x̂ ¼ ðâþ âyÞ= ffiffiffi

2
p

and
ŷ ¼ �iðâ� âyÞ= ffiffiffi

2
p

: μ̂x generates squeezing along the x axis, μ̂y
generates squeezing along the y axis, and μ̂z generates a rotation
around the origin of the phase space.
In a frame rotating at a frequency ωd/2=ωa, the Hamiltonian

becomes ĤC;RðtÞ ¼ ĤC;0ðtÞ þ V̂CðtÞ with
ĤC;0ðtÞ ¼ f CðtÞμ̂y ; (61)

and

V̂CðtÞ ¼ f CðtÞ½sinð2ωdtÞμ̂x � cosð2ωdtÞμ̂y þ 2 sinðωdtÞμ̂z�: (62)

In analogy with the qubit problem, one can neglect the fast
oscillating Hamiltonian V̂CðtÞ (see Eq. (62)) in the weak driving
limit (RWA), i.e., when fC(t)≪ωd ∀ t. This results in ĤC;RðtÞ � ĤC;0ðtÞ
and the generated dynamics correspond to squeezing along the y
axis with a degree of squeezing depending on r(tf), with

rðtÞ ¼
Z t

0
dt1 f Cðt1Þ: (63)

As one deviates from the weak driving limit, V̂CðtÞ cannot be
neglected anymore. The generated dynamics becomes then more
complex with the counter-rotating terms changing the direction
along which the squeezing is generated as well as degrading the
final degree of squeezing (see Fig. 3d).
To mitigate the effects of V̂CðtÞ (see Eq. (62)), we consider a

control Hamiltonian that corresponds to just changing the initial
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form of the parametric modulation. This leads to the correction
Hamiltonian

ŴPDCðtÞ ¼
X
n

gðnÞðtÞðâþ âyÞ2; (64)

where

gðnÞðtÞ ¼ gðnÞx ðtÞ cosðωdtÞ þ gðnÞy ðtÞ sinðωdtÞ: (65)

Furthermore, we are at liberty to drive the PDC at a frequency that
is detuned from that of mode â,
ωa

2
� ωd ¼ Δ; (66)

with Δ= ∑nΔ
(n) a static detuning. In the frame rotating at the drive

frequency, the detuning term can be incorporated to the
correction Hamiltonian similarly to what was done for the qubit
problem.
Following the general procedure (see also “Methods”) and

parametrizing Δ(n), gðnÞx ðtÞ and gðnÞy ðtÞ like we did for the qubit
problem (Eqs. (54) and (55)), we can easily find the correction
Hamiltonian (64). We stress that in this example we correct the
unitary evolution generated by Eq. (59), which allows us to
generate the ideal squeezing dynamics for any initial state. This is
in contrast to optimizing the dynamics to get optimal squeezing
of the vacuum state only.
In Fig. 3a, we plot the degree of squeezing S as a function of the

total evolution time tf for the RWA (red trace), the uncorrected
(blue trace), and the corrected (green trace) evolutions. The
degree of squeezing is given by

S ¼ �10log hŷ2if � hŷi2f
� 	

= hŷ2ii � hŷi2i
� 	h i

(67)

where ŷ ¼ �iðâ� âyÞ= ffiffiffi
2

p
, and hŷii;f ¼ ψi;f


 ��ŷ ψi;f

�� �
is the quantum

average of the operator ŷ with respect to the initial and final
states, respectively. Here, the initial state is the vacuum state 0j i.
The initial pulse envelope is given by

f CðtÞ ¼ 1
tf

1� cos
2πt
tf

� �� �
: (68)

Within the RWA the degree of squeezing is independent of the
pulse width tf, since the squeezing depends just on r(tf), which is
constant. In the regime where the fast oscillating terms cannot be
neglected, it is clear that the corrected evolution gives substan-
tially better results (closer to the RWA evolution), specially for
small values of tf. In Fig. 3c, we compute the deviation angle φ in
the phase space (with respect to the y axis) where the maximum
squeezing is obtained. Ideally, the maximum squeezing should be
in the direction of the y axis and φ should be zero. With the
correction, Hamiltonian φ is much closer to the ideal value. In Fig.
3b, we plot the coefficients of the correction Hamiltonian as a
function of the total evolution time tf. As for the qubit case, we
observe that the modified control fields can be seen as adding a
small correction to the original control fields.

Transmon qubit
As a next example, we consider the problem of realizing single-
qubit gates with a transmon qubit57, where the logical qubit states
are encoded in the two lowest energy states of an anharmonic
oscillator with eigenstates nj i (see Fig. 4c). Since the oscillator is
only weakly anharmonic, driving the 0j i $ 1j i transition unavoid-
ably leads to transitions to higher energy states outside of the
computational subspace (leakage). Several strategies have been
put forward to suppress leakage while implementing a gate, with
perhaps the most well-known approach being DRAG (Derivative
Removal by Adiabatic Gate)15,58,59. However, the correction
predicted by DRAG cannot be fully implemented experimentally
as it also requires one to drive the 0j i $ 2j i transition. There is no
charge matrix element connecting these states, hence it cannot
be driven by an extra tone at the transition frequency. While
neglecting this unrealizable control field is the simplest thing to
do, this is a somewhat uncontrolled approximation; further, it has
been demonstrated experimentally60 and theoretically24 that this
is indeed not the optimal approach, although it still allows one to
mitigate leakage errors. In the rest of this section, we demonstrate
how our general strategy allows one to systematically find control
sequences that are fully compatible with the constraints of the
problem (i.e., no direct 0j i $ 2j i drive, no time-dependent
detuning), and also are highly efficient in suppressing both
leakage and phase errors.
As in the original DRAG paper, we consider the three-level

Hamiltonian

ĤTLSðtÞ ¼ ωT

2
σ̂z þ 3ωT

2
þ α

� �
2j i 2h j þ f TðtÞ cosðωdtÞðσ̂x þ ην̂x;12Þ

(69)

as an approximation of the weakly anharmonic oscillator. Here, ωT

is the frequency splitting between the energy levels 0j i and 1j i
while the frequency splitting between 1j i and 2j i is given by ωT+
α, where α is the anharmonicity. In a transmon, the anharmonicity
α is always negative. We have also defined the operators

ν̂x;12 ¼ 1j i 2h j þ 2j i 1h j; ν̂y;12 ¼ i 2j i 1h j � i 1j i 2h j;
ν̂x;02 ¼ 0j i 2h j þ 2j i 0h j; ν̂y;02 ¼ i 2j i 0h j � i 0j i 2h j; (70)

which describe transitions between the logical qubit states and the
leakage state 2j i. These operators together with the Pauli operators
(see Eq. (38)) and the operator 2j i 2h j form the operator basis for
this problem [i.e., the operators Âj in Eqs. (15)–(17)]. This set of
eight operators (multiplied by the imaginary number −i) also form
a Lie algebra with respect to the commutation operation, thus this

Fig. 3 Fast generation of squeezing with a parametrically driven
cavity. a Squeezing as a function of the total evolution time. The red
trace corresponds to the ideal case where the fast oscillating terms
have been neglected. The blue trace shows the squeezing when the
fast oscillating terms are present and no correction is used. The
green trace shows the squeezing with the modified Hamiltonian (up
to sixth order). b Coefficients of the correction Hamiltonian as a
function the total evolution time: fcx;1; cy;1; Δg ¼P6

n¼1fcðnÞx;1 ; c
ðnÞ
y;1 ; Δ

ðnÞg. c Angle in phase space where the squeezing
is maximal as a function of gate time. In the ideal case, Δφ= 0. d The
squeezed states generated by the ideal Hamiltonian ĤC;0ðtÞ (blue)
and the total Hamiltonian ĤC;RðtÞ (red) in the phase space. The state
generated by the total Hamiltonian is usually less squeezed and
displays maximum squeezing along a different axis.
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set of eight operators can also be used to uniquely decompose the
operators generated by the Magnus expansion.
The control pulse consists of a drive at frequency ωd and an

envelope function fT(t). As one can see from Eq. (69), driving the
0j i $ 1j i transition also results in the 1j i $ 2j i being driven with
a relative strength given by η, which unavoidably generates
leakage out the qubit subspace.
In a frame rotating with frequency ωd, the Hamiltonian is given

by ĤTðtÞ ¼ ĤT;0ðtÞ þ V̂TðtÞ, where

ĤT;0ðtÞ ¼ α 2j i 2h j þ f TðtÞ
2

σ̂x; (71)

and

V̂TðtÞ ¼ η
f TðtÞ
2

ν̂x;12: (72)

Here, we assume that the driving is on resonance with the 0j i $
1j i transition, i.e., ωT=ωd. The Hamiltonian ĤT;0ðtÞ gives us the
desired interaction: it couples the levels 0j i and 1j i, allowing one
to perform unitary operations in the computational space, while
leaving the level 2j i isolated. The Hamiltonian V̂TðtÞ couples levels
1j i and 2j i leading to leakage out of the computational subspace.
Note that we have neglected the terms oscillating at frequencies
close to 2ωd in Eqs. (71) and (72) (RWA). In contrast to the
examples of strong driving of a two-level system and a
parametrically driven cavity, counter-rotating terms are not a
main source of error since there is a relatively large separation
between the driving frequency and the anharmonicity, i.e.,
f TðtÞ= αj j � f TðtÞ=ð2ωdÞ. As a result, the error due to leakage out
of the computational space is much larger than the error due to
counter-rotating terms. We stress that our framework would allow
us to simultaneously deal with leakage and the counter-rotating
terms, but neglecting the latter allows us to work with simpler
expressions.
Given the constraints of the problem (see Eq. (71)), we want to

find a correction that only involves modifying the driving
envelope we use, and possibly changing the detuning in a static
manner. We thus write the control Hamiltonian as

ŴTLSðtÞ ¼
X
n

gðnÞx ðtÞ cosðωdtÞ þ gðnÞy ðtÞ sinðωdtÞ
h i

ðσ̂x þ ην̂x;1Þ;

(73)

with gðnÞx ðtÞ and gðnÞy ðtÞ the unknown envelope functions.
Furthermore, we allow the drive frequency to be detuned with
respect to the base frequency of the transmon,

ωT � ωd ¼ Δ: (74)

As for the envelope functions, the detuning is parametrized as a
series: Δ= ∑nΔ

(n), where the index n, as in Eq. (73), refers to the
order of the perturbative series (see Eqs. (106) and (107)). In the
frame rotating at the drive frequency, the detuning term can be

incorporated to the correction Hamiltonian similarly to what was
done for the qubit problem.
Within our framework, we would in principle need a total of

eight free parameters to satisfy Eqs. (24), which determine the
first-order correction; this is because there are eight operators in
the basis. Taking into account that 2j i, which is outside the
computational space, is of no interest to us, the equation
associated with the operator 2j i 2h j can be neglected. More
generally, the equations originating from operators Âj that act
strictly outside of the computational space do not need to be
fulfilled, and one can simply neglect them to arrive at the relevant
system of equations for a given order.
We are therefore left with seven equations to fulfill, and we

need at least seven coefficients. However, as we show in
“Methods”, it is equally important that the pulse envelopes

gðnÞρ¼x;yðtÞ have a bandwidth comparable to αj j, otherwise the
correction Hamiltonian ŴTLSðtÞ is ill-conditioned. This fact was also
identified in an earlier work by Schutjens et al.61, which also aims
at finding modified pulses to mitigate leakage errors in a
transmon. Their strategy consists in suppressing the spectral
weight associated to leakage transitions from the control fields.
We can avoid that by choosing large enough values for kmax;ρ (ρ=
x, y) (see Eq. (52)). As a rule of thumb, kmax;ρ should be close to
maxð2; jαjtf=2πÞ or larger (see “Methods”). This choice leads to an
underdetermined linear system of equations which can be solved
using the Moore–Penrose pseudo-inverse42–44.
To show the performance of our strategy, we considered the

situation where one wants to perform a Hadamard gate in the
computational subspace. In Fig. 4a, we plot the average fidelity
error as a function of the gate time tf. We compare the results
obtained in the absence of any correction (blue trace) with the
results for a 2nd order Magnus-based correction (green trace), a
6th order Magnus-based correction (red trace), and the DRAG
correction (purple trace)15. To show that our method does not
depend on a particular choice of pulse envelope, here we use the
Gaussian pulse

f TðtÞ ¼ θ0

erfð3= ffiffiffi
2

p Þ ffiffiffiffiffiffi
2π

p
σ
exp ðx � μÞ2=2σ2; (75)

where μ= tf/2, σ= tf/6, θ0= π/2, and erfðxÞ are the error function.
The results show that the 6th order Magnus correction reduces
the average fidelity error by more than four orders of magnitude
for small αtfj j, greatly outperforming the DRAG correction. In Fig.
4b, we compare the original and modified pulses for ∣α∣tf= 5. For
convenience, we write the nth order modified pulse as

f T;modðtÞ ¼ f ðnÞT;x ðtÞ cosðωqtÞ þ f ðnÞT;y ðtÞ sinðωqtÞ; (76)

where f ðnÞT;x ðtÞ ¼ f TðtÞ þ
Pn

l¼1 g
ðlÞ
x ðtÞ, f ðnÞT;y ðtÞ ¼

Pn
l¼1 g

ðlÞ
y ðtÞ, and

ΣΔðnÞðtÞ ¼ Pn
l¼1 Δ

ðlÞ . The case n= 0 corresponds to the original

Fig. 4 Fast and high-fidelity single-qubit gates with a transmon. a Average fidelity error for a Hadamard gate as a function of the gate time.
The blue trace is calculated using the uncorrected Hamiltonian (see Eq. (69)). The green trace is obtained for the 2nd order corrected
Hamiltonian. The red trace is obtained for the 6th order corrected Hamiltonian. The purple dashed line is obtained using the DRAG correction.
b Initial envelope functions (solid lines) and 6th order corrected envelope functions (dashed lines) for αj jtf ¼ 5 (see Eq. (76)). c Schematic
energy level diagram of a transmon.
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pulse, i.e., f ð0ÞT;xðtÞ ¼ f TðtÞ, f ð0ÞT;y ðtÞ ¼ 0, and ΣΔ(0)(t)= 0. When
generating Fig. 4a, our code took on average 0.011 and 0.045 s
to find the 2nd and the 6th order Magnus corrections for a single
value of tf, respectively. We used a computer with an Intel® CoreTM

i7-6567U CPU and 16 GB of memory.
In Fig. 5, we show the average fidelity error in the presence of

decoherence62 (see “Methods”). Considering state-of-the-art
values for the relaxation time, T1= 49 μs, and dephasing time,
Tφ= 700 μs63, our strategy allows one to achieve fidelity errors
close to ε= 10−5 for short gate times. This illustrates the real
benefit of our method: by cancelling errors generated by
unwanted interactions, one can design gates with tf≪ T1, Tφ. We
also note that for ∣α∣tf⪆ 15 the 2nd and the 6th order corrections
have similar performance, but for ∣α∣tf⪅ 11 it is clear that higher-
order corrections perform substantially better. In Figs. 4 and 5, we
used kmax;x ¼ kmax;y ¼ 2 for simplicity. For a more detailed
discussion about the choice of kmax, we refer the reader to
“Methods”.
A legitimate concern at this point is related to the possibility of

realizing the pulses obtained with the Magnus formalism since
arbitrary waveform generators (AWG) have bandwidth limitations.
We remind the reader, however, that our method allows direct
control over the bandwidth of the pulse through truncation of the
Fourier series. If a stricter limitation over the bandwidth of the
correction pulse is needed, one can make use of Lagrange
multipliers to look for more suitable solutions for the linear
system. As a rule of thumb, the minimum requirement of our
method is that the AWG bandwidth should be comparable to or
larger than the anharmonicity ∣α∣.
Optimal control results obtained with GRAPE for the same

problem can be found in refs. 15 and46. If enough time slots are
provided and if no bandwidth constraint is imposed, GRAPE can
find pulses for which the fidelity error ε can be as low as 10−12.
However, the pulses found by GRAPE are stepwise constant. This
can be a serious problem if one does not have an AWG that can
approximate well enough the pulse predicted by GRAPE, which is
typically the case for short gate times. In ref. 46, the authors try to
address this problem by modifying the GRAPE algorithm to include
the filtering process carried out by the AWG. The fidelity errors
achieved by this modified version of GRAPE are typically between
10−6 and 10−9, depending on how many time slots are available.
These values are comparable to the values found using our method.

SNAP gates
We now turn to an example that combines both qubit and
bosonic degrees of freedom. The general problem is to use a qubit

coupled dispersively to a cavity to achieve control over the
bosonic cavity mode. A method for doing this was recently
proposed and implemented experimentally in a superconducting
circuit QED architecture: the so-called SNAP gates (selective
number-dependent arbitrary phase gates) combined with cavity
displacements27,28,64. Our goal will be to use our general method
to accelerate SNAP gates without degrading their overall fidelity.
An optimal control approach based on GRAPE has been used to

accelerate the manipulation of the bosonic cavity mode41. There
is, however, a major advantage in using SNAP gates in
combination with cavity displacements: the SNAP gate can be
made robust against qubit errors65, i.e., noise acting on the qubit
will not affect the quantum state of the cavity.
As we will see, this problem involves an interesting technical

subtlety. When introducing the general method, we stressed that
it is crucial for the Hamiltonian Ŵ IðtÞ describing the modification
of the control fields to have terms involving all of the basis
operators Âj appearing in the Magnus expansion of the unitary
evolution generated by the error Hamiltonian V̂ IðtÞ. If this was not
true, it would seemingly be impossible to correct errors
proportional to these basis operators within the standard linear
strategy. The correction Hamiltonian is singular in this case. The
alternative consists in using the modified strategy for singular or
ill-conditioned correction Hamiltonians to correct all errors. As we
show below, correcting SNAP gates is an example of this kind of
situation. The general price we pay is that now, to find an
appropriate set of control corrections, we need to solve a
nonlinear set of equations (instead of the linear equations in Eq.
(27) that we used in all the previous examples).
The basic setup for SNAP gates involves a driven qubit that is

dispersively coupled to a cavity mode. The Hamiltonian is
ĤSNAPðtÞ ¼ Ĥqc þ ĤDðtÞ, with
Ĥqc ¼ 1

2
ðωq þ χâyâÞσ̂z þ ωcâ

yâ; (77)

and

ĤDðtÞ ¼ ½f xðtÞ cosðωdtÞ þ f yðtÞ sinðωdtÞ�σ̂x : (78)

Here, ωq (ωc) is the qubit (cavity) resonant frequency, and χ is the
dispersive coupling constant between the qubit and the cavity,
which we assume negative. The Pauli operators σ̂α act on the
Hilbert space of the qubit and have been defined in Eq. (38). We
also introduce the annihilation (creation) operator â (ây) destroy-
ing (creating) excitation of the oscillator. The qubit is driven by
two independent pulses, fx(t) and fy(t), which couple both to σ̂x
with the same frequency ωd but with different phases.
In the interaction picture with respect to Ĥqc, the Hamiltonian

becomes

ĤSðtÞ ¼ 1
2

P
n
ðf xðtÞ cosðδωntÞσ̂x � sinðδωntÞσ̂y


 �
�f yðtÞ sinðδωntÞσ̂x þ cosðδωntÞσ̂y


 �Þ nj i nh j;
(79)

where δωn=ωq+ χn−ωd, nj i is a bosonic number state, and we
have neglected fast oscillating terms. If the drive is now chosen to
fulfil ωd=ωq+ χn0, so that the drive is resonant for a particular
number-selected qubit transition, the Hamiltonian defined in Eq.
(79) can be written as ĤSðtÞ ¼ ĤS;0ðtÞ þ V̂SðtÞ. Here
ĤS;0ðtÞ ¼ 1

2
½f xðtÞσ̂x � f yðtÞσ̂y � n0j i n0h j; (80)

is the resonant part of the Hamiltonian defined in Eq. (79) and
allows one to generate a unitary operation in the subspace
spanned by f g; n0j i; e; n0j ig. In contrast

V̂SðtÞ ¼ 1
2

P
n≠n0

ðf xðtÞ cosðδωntÞσ̂x � sinðδωntÞσ̂y

 �

�f yðtÞ sinðδωntÞσ̂x þ cosðδωntÞσ̂y

 �Þ nj i nh j

(81)

is the nonresonant part of Eq. (79). This error Hamiltonian is

Fig. 5 Influence of decoherence on corrected single-qubit gates
with a transmon. Average fidelity error for a Hadamard gate as a
function of gate time in the presence of decoherence. Here, we used
the experimental values found in ref. 63 for the relaxation time, T1=
49 μs, and dephasing time, Tφ= 700 μs. The qubit frequency is ωq/
2π= 5.5 GHz and α=− 0.05 ωq. The blue trace is calculated using
the uncorrected Hamiltonian (see Eq. (69)). The green trace is
obtained for the 2nd order corrected Hamiltonian. The red trace is
obtained for the 6th order corrected Hamiltonian.
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responsible for the unwanted dynamics in the subspace spanned
by f g; nj i; e; nj ig, for n ≠ n0. While in principle, the effects of V̂SðtÞ
on the dynamics cannot be avoided, they are minimal in the
weak-driving regime where fx(t), fy(t)≪ χ. In this limit, we can use
ĤS;0ðtÞ to generate a dynamics that imprints a phase on n0j i while
leaving all other states nj i (n ≠ n0) unchanged. Our general goal
will be to relax this weak-driving constraint, allowing for a faster
overall gate.
For concreteness, we assume that the qubit is initially in the

state gj i and the driving pulses fx(t) and fy(t) are chosen such that
the qubit undergoes a cyclic evolution, i.e., the trajectory on the
Bloch sphere encloses a finite solid angle, and at t= tf the state of
the qubit is back to gj i. This leads to the accumulation of a Berry
phase γ at t= tf for the qubit which is conditioned on the state of
the cavity being n0j i. In other words,

ÛS;0ðtfÞ g; nj i ¼ eiγ g; nj i if n ¼ n0;

g; nj i if n≠ n0;

�
(82)

where ÛS;0ðtfÞ ¼ T̂ exp½�i
R tf
0 dt ĤS;0ðtÞ� is the unitary evolution

generated by the ideal Hamiltonian in Eq. (80). This approach can
be generalized so that the ideal evolution yields different qubit
phase shifts for a set of different cavity photon numbers. One
simply replaces the driving Hamiltonian (see Eq. (78)) by

ĤdðtÞ ¼
XN�1

n¼0

½f x;nðtÞ cosðωd;ntÞ þ f y;nðtÞ sinðωd;ntÞ�σ̂x ; (83)

where ωd,n=ωq+ χn. The pulse envelopes fx,n(t) and fy,n(t) are
chosen such that one gets the desired phase in the nth
energy level.
Of course, the above ideal evolution requires that fx,n(t), fy,n(t)≪

χ, constraining the overall speed of the gate. Without this
assumption, the effects of the off-resonant error interaction given
by the generalization of V̂SðtÞ (c.f. Eq. (81)) cannot be neglected
and will compromise the ideal SNAP gate evolution. Again, our
goal is to mitigate these errors, allowing for faster gates.
In the following, we consider for simplicity the situation where

one wants to imprint a phase on a single energy level of the
oscillator. The extension to the more general situation where one
imprints arbitrary phases in different levels is straightforward. We
truncate the bosonic Hilbert space and work only within the
subspace formed by the Ntrunc first number states. This procedure
is justified by the fact that SNAP gates are typically used to
manipulate “kitten” states27,28, which are themselves restricted to
a truncated subspace of the original bosonic Hilbert space.
As we did for the previous examples, we start by choosing a

correction Hamiltonian ŴSNAPðtÞ that one can realize experimen-
tally. Here, this corresponds to a modification of the qubit drive
amplitudes:

ŴSNAPðtÞ ¼
XNtrunc�1

n¼0

gx;nðtÞ cosðωd;ntÞ þ gy;nðtÞ sinðωd;ntÞ
h i

σ̂x; (84)

where ωd,n=ωq+ χn. Moving to the interaction picture with
respect to Ĥqc (see Eq. (77)) and neglecting nonresonant terms, we
obtain

ŴSðtÞ ¼ 1
2

XNtrunc�1

n¼0

½gx;nðtÞσ̂x � gy;nðtÞσ̂y � nj i nh j: (85)

In the interaction picture defined by ĤS;0ðtÞ (see Eq. (80)), we
find that the form of the nonresonant error Hamiltonian is
unchanged:

V̂S;IðtÞ ¼ V̂SðtÞ; (86)

since ĤS;0ðtÞ commutes with V̂SðtÞ; ĤS;0ðtÞ and V̂SðtÞ act on
orthogonal subspaces. On the other hand, ŴSðtÞ acts on the
whole Hilbert space, and is transformed when moving to the

interaction picture. We find:

ŴS;IðtÞ ¼ Û
y
S;0ðtÞ 12 ½gx;n0ðtÞσ̂x � gy;n0ðtÞσ̂y � n0j i n0h jÛS;0ðtÞ

þ PNtrunc�1

n¼0

1�δn;n0
2 ½gx;nðtÞσ̂x � gy;nðtÞσ̂y � nj i nh j:

(87)

The first term of Eq. (87) acts on the f g; n0j i; e; n0j ig subspace only
and has terms proportional to all three Pauli matrices. While the
explicit expression is too lengthy to be displayed here, it can be
readily found using the group properties of the Pauli operators.
The second term, which acts on the orthogonal subspace, has only
terms proportional to σ̂x nj i nh j and σ̂y nj i nh j. This means that the
correction Hamiltonian in Eq. (84) cannot correct errors propor-
tional to σ̂z nj i nh j (in the interaction picture) and which appear at
2nd order in the Magnus expansion of V̂S;IðtÞ (see Eq. (86)).
Unfortunately, an analysis of the Magnus expansion generated by
Eq. (86) shows that these terms are by far the dominant source of
errors that corrupt the ideal dynamics. It is, therefore, imperative
that we correct errors associated to σ̂z nj i nh j if we want to increase
the fidelity of SNAP gates.
The naive thing to do would be to find an alternative correction

Hamiltonian that directly provides terms proportional to σ̂z nj i nh j in
the interaction picture. However, in the lab frame, this translates into
a Hamiltonian with a dispersive coupling constant dependent on
photon number n, i.e., we would need a term

P
nχn nj i nh j in Eq. (77).

This is extremely difficult to achieve experimentally, hence we do
not pursue this approach further. We are left with no choice but to
abandon the standard linear strategy, which we have used
successfully in all of the previous examples, and to use the modified
strategy for singular and ill-conditioned correction Hamiltonians.
Within the framework of the modified strategy we use, the fact

that even though our original (constrained) correction Hamilto-
nian ŴS;IðtÞ is missing important terms, these can nonetheless be
dynamically generated. In the same way that V̂S;IðtÞ generates
problematic terms proportional to σ̂z nj i nh j at second order in the
Magnus expansion, so can ŴS;IðtÞ. Thus, we look for a correction
Hamiltonian Ŵ

ð1ÞðtÞ such that Eq. (36) is satisfied for lc= 2:

Ω̂
ð1Þ
1 ðtfÞ þ Ω̂

ð1Þ
2 ðtfÞ ¼ 0: (88)

We can use Eqs. (10) and (11) to write Eq. (88) in terms of
integrals involving V̂S;IðtÞ (see Eq. (86)) and Ŵ

ð1Þ
S;I ðtÞ (see Eq. (87)

with n= 1). The explicit equation can be found in “Methods”. Once
this is done, we proceed as usual: we expand the pulse envelopes
gx,n(t) and gy,n(t) in a Fourier series, and we truncate the series
keeping a sufficiently large number of free parameters. The
number of free parameters has a lower limit corresponding to the
number of equations, but it is typically useful to have more free
parameters than equations. In such a case, one can use Lagrange
multipliers to find solutions that minimize the sum of the modulus
squared of the free parameters. Using the strategy for singular and
ill-conditioned correction Hamiltonians, we derive a system of
second-order polynomial equations for the free parameters, since
Eq. (88) is quadratic in Ŵ

ð1Þ
S;I ðtÞ. This system of equations can be

solved numerically (see “Methods” for more details).
In the situation where one wishes to imprint nonzero phases to

all energy levels of the truncated Hilbert space, one can actually
solve the problem following the standard linear strategy. In this
case, since one is driving all frequencies resonantly, the ideal
unitary ÛS;0ðtÞ acts on the whole truncated Hilbert space of the
cavity. As a consequence, transforming the correction Hamiltonian
ŴSðtÞ (see Eq. (85)) to the interaction picture will generate terms
proportional to σ̂z nj i nh j for all values of n (see Supplementary
Note 5). We stress, however, that SNAP gates are most often used
to manipulate logical qubit states encoded in a finite super-
position of same parity bosonic number states66, e.g., 0j iL ¼ð 0j i þ 4j iÞ= ffiffiffi

2
p

and 1j iL ¼ 2j i. Accelerating SNAP gates that act on
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such logical qubit states requires one to use the strategy that
cancels the sum of the first terms of the Magnus expansion (see
Eq. (88)).
In Fig. 6a, we show the fidelity error when one tries to

implement a fast SNAP gate that imprints a π/2 phase in the cavity
energy levels 0j i and 4j i simultaneously. This is similar to
implement a Z-gate for a logical qubit encoded in the states
0j iL ¼ ð 0j i þ 4j iÞ= ffiffiffi

2
p

and 1j iL ¼ 2j i. The envelope functions for
n= 0 and n= 4 are given by

f x;nðtÞ ¼
π
2tf

1� cos 4π t
tf

� 	h i
; t < tf

2 ;

0; t � tf
2 ;

8<
: (89)

and

f y;nðtÞ ¼
0; t < tf

2 ;

π
2tf

1� cos 4π t
tf

� 	h i
; t � tf

2 :

8<
: (90)

For any other values of n, we have fx,n(t)= fy,n(t)= 0. Here, we kept
only ten energy levels for the cavity, i.e., the highest bosonic number
state is 9j i, and the fidelity error was calculated using only the states
within the truncated Hilbert space. We have plotted the fidelity as a
function of gate time for the unmodified Hamiltonian (blue trace), for
the second-order (green trace), and for the fourth-order (red trace)
modified Hamiltonians. Since we are only manipulating the cavity
energy levels 0j i and 4j i, we need to use the modified strategy and
solve Eq. (88). The fourth-order modified Hamiltonian achieves
fidelity errors that are at least one order of magnitude smaller than
the fidelity error of the original Hamiltonian. For larger values of tf the
difference can reach almost four orders of magnitude.
In Fig. 6b and c, we show the spectrum of the original and

modified pulses for a gate time of ∣χ∣tf= 50. The original pulse has
only peaks located at ω= 0 and ω= 4∣χ∣, since these are the
frequencies of the levels being driven. The modified pulse, however,
has peaks located at frequencies ω= 0, ∣χ∣, 2∣χ∣,…, 9∣χ∣. This shows
that the corrected pulse undoes residual rotations caused by the
nonresonant interaction in the different bosonic number state
subspaces in order to bring the final state close to the target state. It
is important to note that the modified pulse corrects the dynamics
only within the truncated Hilbert space. If the initial state of the
cavity, i.e., the state before the SNAP operation is performed, is not
confined to the truncated Hilbert space, the corrected pulse will not
bring any improvement in terms of fidelity error, since the states
lying outside the truncated Hilbert space will still be affected by the
correction pulse. We also draw the reader’s attention to the fact that
in a real experiment, there are usually contributions from high-order
terms (e.g., χ 0σ̂zâ

y2â2, χ00σ̂zâ
y3â3)27 that were neglected in Eq. (77).

These terms, nevertheless, can be easily accommodated in the

theory, and the Magnus correction can be used in essentially the
same way.

DISCUSSION
We have developed a method that allows one to design high-
fidelity control protocols that are always fully compatible with
experimental constraints (available interactions and their tun-
ability, bandwidth, etc.). At its core, our method uses the analytic
solution of a simple control problem as a starting point to solve
perturbatively a more complex problem, for which it is impossible
to find closed-form analytic solutions. At the end of the day, the
complex control problem is converted into solving a simple linear
system of equations. We have applied our method to a range of
problems, including the leakage problem in a transmon qubit and
SNAP gates. We have shown how the control sequences predicted
by our strategy allow one to substantially decrease the error of
unitary operations while simultaneously speeding up the time
required to complete the protocols. Finally, we note that the
protocols generated by our method could be further improved by
using them to seed a numerical optimal control algorithm.

METHODS
The Magnus expansion
We have given in Eqs. (10) and (11), only the expression for the first two
terms of the Magnus expansion. For the bosonic system, however, we have
obtained a sixth-order correction. Even though the differential equations
defining the first two terms are simple, the differential equations defining
the high-order terms become increasingly complex. It turns out to be more
convenient to obtain the equations for the higher-order terms of the
Magnus expansion using a generator. This generator can be found in
subsection 2.3 of ref. 26.
When trying to calculate the Magnus expansion, one might be tempted

to proceed iteratively, i.e., first integrate Eq. (10) to obtain Ω̂1ðtÞ, then use
this result to integrate Eq. (11) to obtain Ω̂2ðtÞ, and so on. Since the
differential equations defining Ω̂nðtÞ always depends on Ω̂lðtÞ (l < n), one
could in principle follow this strategy. It is nonetheless numerically more
efficient to treat all the terms that one intends to calculate as a system of
differential equations and solve them simultaneously. In this work, we
solved the differential equations using the DifferentialEquations.jl pack-
age67 from the Julia programming language68.

Arbitrary-order corrections for the linear strategy
The nth order correction that generalizes Eq. (27) must satisfy Eq. (12) (see
also ref. 24). Since the set of operators fÂjg forms a basis and f�iÂjg
generates a Lie algebra, we can write Ω̂

ðnÞ
l as a linear combination of the

operators fÂjg,

Ω̂
ðnÞ
l ðtÞ ¼

X
j

Ω
ðnÞ
l;j ðtÞÂj : (91)

Fig. 6 Accelerated SNAP gates. a Average fidelity error for a snap operation. A π/2 phase is imprinted in the cavity energy levels 0j i and 4j i
simultaneously. The blue trace is calculated with the uncorrected Hamiltonian. The green trace is obtained with the 2nd order corrected
Hamiltonian. The red trace is obtained with the 4th order corrected Hamiltonian. b, c Spectrum of the x and y components of the original
pulse envelope and of the 4th order corrected pulse envelope for ∣χ∣tf= 50. The uncorrected envelope has peaks at ω= 0 and ω= 4∣χ∣. The
corrected pulse has peaks close to ω= 0, ∣χ∣,…, 9∣χ∣. This means that the corrected pulse simply undoes residual rotations caused by the
nonresonant interaction in the different bosonic number-state subspaces in order to bring the final state close to the target state.
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Substituting Eqs. (22) and (91) in Eq. (12), we obtain

ϵn
Z tf

0
dt ~wðnÞ

j ðtÞ ¼ �i
Xn
l¼1

Ω
ðn�1Þ
l;j ðtfÞ: (92)

The next steps are very similar to what was done for the first-order

correction. First, we expand wðnÞ
j ðtÞ in a Fourier series (see Eq. (25)). Since

~wðnÞ
j ðtÞ ¼ P

lw
ðnÞ
j ðtÞal;jðtÞ, we can substitute Eq. (25) in Eq. (92), and we

obtain

M xðnÞ ¼ yðnÞ; (93)

where M is the same known (Nop × Ncoeffs) matrix obtained for n= 1 (see
Eq. (27)) and which encodes the dynamics of the ideal evolution generated

by Ĥ0ðtÞ, x(n) is the vector of the Ncoeffs unknown Fourier coefficients cðnÞlk

and dðnÞlk (see Eq. (25)), and y(n) is the known vector of spurious elements we
wish to average out. In the case where the summation in Eq. (25) runs from
0 to kmax for all values of j, the explicit expressions for the elements of the
matrix M are given by Eq. (32). The elements of the vector x(n) are

xðnÞj ¼
cðnÞl;k if j � j0;

dðnÞl;k if j> j0:

8<
: (94)

Here j0 ¼ Nopðkmax þ 1Þ, and l and k are given by the Eqs. (30) and (31).
The elements of y(n) are given by

yðnÞj ¼ �i
Xn
l¼1

Ω
ðn�1Þ
l;j ðtfÞ: (95)

Arbitrary-order correction for singular and ill-conditioned
correction Hamiltonians
To correct higher-order errors, one could in principle simply truncate Eq.
(35) at larger values of lc. This would, however, yield a higher-order
polynomial system, and such systems can quickly become numerically
intractable. Fortunately, we can proceed iteratively to correct higher-order

errors. Let us assume that we found a Ŵ
ð1ÞðtÞ that corrects errors up to

order lc,1. We want to find Ŵ
ð2ÞðtÞ such that

Xlc;2
l¼1

Ω̂
ð2Þ
l ðtfÞ ¼

Xlc;2
l¼1

Ω̂
ð1Þ
l ðtfÞ þ δΩ̂

ð2Þ
l ðtfÞ

h i
¼ 0; (96)

given that Ŵ
ð1ÞðtÞ already satisfies Eq. (36). Here, we make an

approximation:

δΩ̂
ð2Þ
l ðtfÞ � 0 for l> lc;1: (97)

This approximation is reasonable if Ŵ
ð2ÞðtÞ is a weak perturbation to the

system, since the effect of Ŵ
ð2ÞðtÞ on higher-order terms in the Magnus

expansion, here designated by δΩ̂
ð2Þ
l ðtfÞ, is also higher-order in Ŵ

ð2ÞðtÞ.
Therefore, Eq. (96) can be rewritten as

Xlc;1
l¼1

Ω̂
ð2Þ
l ðtfÞ ¼ �

Xlc;2
l¼lc;1þ1

Ω̂
ð1Þ
l ðtfÞ: (98)

We can then solve Eq. (98) the same way we solved Eq. (36). Note that the
above equations actually does not guarantee that we can indeed correct

errors up to order lc,2 just by finding a Ŵ
ð2ÞðtÞ that satisfies Eq. (98). If this

was the case, we could simply set lc,2 to a very large value and we would
have quasi-ideal dynamics.
The reason is that the approximation made in Eq. (97) is not entirely true.

Indeed we expect δΩ̂
ð2Þ
l > lc;1 ðtfÞ to be small relative to Ω̂

ð1Þ
l > lc;1 ðtfÞ, but it would

be more accurate to state that δΩ̂
ð2Þ
l > lc;1 ðtfÞ ¼ 0þOðϵl0 Þ, and hopefully

l0 > lc;1 (otherwise Eq. (98) is not valid). Therefore, after finding Ŵ
ð2ÞðtÞ we

end up with errors of order ϵl
0
.

In practice, it is not easy to know l0 beforehand, so the easiest approach

is to first find a Ŵ
ð1ÞðtÞ that satisfies Eq. (36), then choose lc,2 > lc,1, and try

to find Ŵ
ð2ÞðtÞ that satisfies Eq. (98). If the resulting fidelity error is still

above the desirable limit, we repeat the last step by trying to find Ŵ
ð3ÞðtÞ

that satisfies Eq. (98) with Ω̂
ðnÞ
l ðtfÞ replaced by Ω̂

ðnþ1Þ
l ðtfÞ, and so on, until

the fidelity error has reached acceptable values.

The operators μ̂x , μ̂y , and μ̂z
When discussing the strong driving of a parametrically driven cavity, we
have introduced the operators μ̂x , μ̂y , and μ̂z (see Eq. (60)). These operators
behave as generators of the group SU(1, 1) and consequently generate the
su(1, 1) Lie algebra, which one can readily verify by computing the
commutation relations. We have

μ̂x ; μ̂y

h i
¼ 2iμ̂z;

μ̂x ; μ̂z½ � ¼ 2iμ̂y ;

μ̂z ; μ̂y

h i
¼ 2iμ̂x :

(99)

Therefore these three operators are enough to fully characterize the
dynamics of the parametrically driven cavity in spite of having an infinite
Hilbert space.

Correction Hamiltonian for the parametrically driven cavity
In this section, we give some more details about the steps of the general
method applied to the problem of strong driving of a parametrically driven
cavity.
Following the general procedure, we start by writing the full modified

Hamiltonian in the frame rotating at the drive frequency ωd:

ĤC;modðtÞ ¼ ĤC;0ðtÞ þ V̂CðtÞ þ
X
n

Ŵ
ðnÞ
C ðtÞ; (100)

where ĤC;0ðtÞ and V̂CðtÞ are, respectively, given by Eqs. (61) and Eq. (62),
and

Ŵ
ðnÞ
C ðtÞ ¼ 2gðnÞðtÞ cosðωdtÞμ̂x þ 2gðnÞðtÞ sinðωdtÞμ̂y þ ½ΔðnÞ þ 2gðnÞðtÞ�μ̂z :

(101)

Once more, we stress that the final detuning is given by Δ= ∑nΔ
(n).

Following our recipe, we now move to the interaction picture with
respect to ĤC;0ðtÞ. The Hamiltonian V̂CðtÞ is then given by

V̂C;IðtÞ ¼ ~vC;xðtÞμ̂x þ ~vC;yðtÞμ̂y þ ~vC;zðtÞμ̂z; (102)

where

~vC;xðtÞ ¼ f CðtÞ½sinð2ωdtÞ coshð2rÞ þ 2 sinðωdtÞ sinhð2rÞ�;
~vC;yðtÞ ¼ �f CðtÞ cosð2ωdtÞ;
~vC;yðtÞ ¼ f CðtÞ½sinð2ωdtÞ sinhð2rÞ þ 2 sinðωdtÞ coshð2rÞ�:

(103)

Similarly, we find that the correction Hamiltonian in the interaction picture
is given by

Ŵ
ðnÞ
C;I ðtÞ ¼ ~wðnÞ

C;xðtÞμ̂x þ ~wðnÞ
C;yðtÞμ̂y þ ~wðnÞ

C;zðtÞμ̂z; (104)

where

~wðnÞ
C;xðtÞ ¼ 2gðnÞðtÞ cosðωdtÞ coshð2rÞ þ ½ΔðnÞ þ 2gðnÞðtÞ� sinhð2rÞ;

~wðnÞ
C;yðtÞ ¼ 2gðnÞðtÞ sinðωdtÞ;

~wðnÞ
C;zðtÞ ¼ 2gðnÞðtÞ cosðωdtÞ sinhð2rÞ þ ½ΔðnÞ þ 2gðnÞðtÞ� coshð2rÞ:

(105)

For simplicity, we have omitted the explicit time dependence of r, i.e., r= r
(t) (see Eq. (63)), in Eqs. (103) and (105). For completeness we give in
Supplementary Note 6, the explicit system of linear equations that allows
one to determine the coefficients defining the nth order control correction.

Interaction picture representation for the transmon qubit
problem
In this section, we show some steps of the general method applied to the
transmon qubit that was omitted in “Results” for brevity.
We first write the full modified Hamiltonian in a frame rotating with the

drive frequency:

ĤT;modðtÞ ¼ ĤT;0ðtÞ þ V̂TðtÞ þ
X
n

Ŵ
ðnÞ
T ðtÞ; (106)
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where ĤT;0ðtÞ is given by Eq. (71), V̂TðtÞ is given by Eq. (72), and

Ŵ
ðnÞ
T ðtÞ ¼ 1

2Δ
ðnÞ σ̂z þ 3 2j i 2h jð Þ

þ 1
2 g

ðnÞ
x ðtÞ σ̂x þ ην̂x;12

� �
þ 1

2 g
ðnÞ
y ðtÞ �σ̂y þ ην̂y;12

� �
:

(107)

As we previously did for the two-level system and the PDC, we use the
detuning as yet another free parameter in the control Hamiltonian.
Before we move to the interaction picture with respect to ĤT;0ðtÞ, let us

adopt, for convenience, the following notation:

λ̂1; λ̂2; λ̂3 ¼ σ̂x ; σ̂y ; σ̂z;

λ̂4; λ̂5; λ̂6; λ̂7 ¼ ν̂x;12; ν̂y;12; ν̂x;02; ν̂y;02;

λ̂8 ¼ 2j i 2h j:
(108)

Moving to the interaction picture with respect to ĤT;0ðtÞ, the Hamiltonian
V̂TðtÞ is given by

V̂T;IðtÞ ¼
X8
j¼1

~vT;jðtÞλ̂j ; (109)

where

~vT;1ðtÞ ¼ ~vT;2ðtÞ ¼ ~vT;3ðtÞ ¼ 0;

~vT;4ðtÞ ¼ η
2 f TðtÞ cosðθ=2Þ cosðαtÞ;

~vT;5ðtÞ ¼ η
2 f TðtÞ cosðθ=2Þ sinðαtÞ;

~vT;6ðtÞ ¼ η
2 f TðtÞ sinðθ=2Þ sinðαtÞ;

~vT;7ðtÞ ¼ � η
2 f TðtÞ sinðθ=2Þ cosðαtÞ;

~vT;8ðtÞ ¼ 0;

(110)

and for simplicity, we have omitted the explicit time dependence of θ, i.e.,

θðtÞ ¼
Z t

0
dt1f Tðt1Þ: (111)

Proceeding similarly we find

Ŵ
ðnÞ
T;I ðtÞ ¼

X8
j¼1

~wðnÞ
T;j ðtÞλ̂j (112)

where

~wðnÞ
T;1ðtÞ ¼ 1

2 g
ðnÞ
x ðtÞ;

~wðnÞ
T;2ðtÞ ¼ 1

2 g
ðnÞ
y ðtÞ cos θþ 1

2Δ
ðnÞ sin θ;

~wðnÞ
T;3ðtÞ ¼ � 1

2 g
ðnÞ
y ðtÞ sin θþ 1

2Δ
ðnÞ cos θ;

~wðnÞ
T;4ðtÞ ¼ η

2 gðnÞx ðtÞ cosðαtÞ � gðnÞy ðtÞ sinðαtÞ
h i

cosðθ=2Þ;
~wðnÞ
T;5ðtÞ ¼ η

2 gðnÞx ðtÞ sinðαtÞ þ gðnÞy ðtÞ cosðαtÞ
h i

cosðθ=2Þ;
~wðnÞ
T;6ðtÞ ¼ η

2 gðnÞx ðtÞ sinðαtÞ þ gðnÞy ðtÞ cosðαtÞ
h i

sinðθ=2Þ;
~wðnÞ
T;7ðtÞ ¼ η

2 �gðnÞx ðtÞ cosðαtÞ þ gðnÞy ðtÞ sinðαtÞ
h i

sinðθ=2Þ;
~wðnÞ
T;8ðtÞ ¼ 3

2Δ
ðnÞ:

(113)

It is convenient to use the Gell–Mann λ̂GM operators to calculate
commutators. The Gell–Mann λ̂GM operators are given by λ̂GM;i ¼ λ̂i i∈ {1, 7}
(see Eq. (108)), and λ̂GM;8 is given by

λ̂GM;8 ¼ ð 0j i 0h j þ 1j i 1h j � 2 2j i 2h jÞ=
ffiffiffi
3

p
: (114)

The Gell–Mann operators satisfy the following commutation relations:

½λ̂GM;a; λ̂GM;b� ¼ 2i
X
c

f abc λ̂GM;c; (115)

where the structure constants fabc are completely antisymmetric in the
three indices and are given by

f 123 ¼ 1;

f 147 ¼ f 165 ¼ f 246 ¼ f 257 ¼ f 345 ¼ f 376 ¼ 1
2 ;

f 458 ¼ f 678 ¼
ffiffi
3

p
2 :

(116)

The commutation relations of the Gell–Mann matrices are very convenient,
specially when evaluating the Magnus expansion for this problem.

Master equation and average fidelity map for the transmon
qubit problem
To obtain the average fidelity error in the presence of relaxation and
dephasing, we use the results of ref. 62 for the average fidelity of single-
qubit maps:

F ¼ 1
6

X
j¼± x;± y;± z

Tr Ûqρ̂j Û
y
qρ̂jðtÞ

h i
; (117)

where ρ̂j with j∈ { ± x, ± y, ± z} is an axial pure state on the Bloch sphere of
the qubit, e.g., ρ̂x ¼ 1=2ð 0j i þ 1j iÞð 0h j þ 1h jÞ. The unitary operator Ûq ¼
P̂qÛT;0ðtfÞP̂q is the ideal evolution operator generated by Eq. (71) evaluated
at t= tf and projected onto the qubit subspace (with the projection
operator P̂q ¼ 0j i 0h j þ 1j i 1h j). Finally, ρ̂jðtÞ is a solution of the Lindblad
master equation,

∂t ρ̂jðtÞ ¼ �i Ĥ
ðnÞ
modðtÞ; ρ̂jðtÞ

h i
þ D̂R ρ̂jðtÞ


 �þ D̂φ ρ̂jðtÞ

 �

; (118)

where D̂R and D̂φ account for relaxation and pure dephasing, respectively.
We have

D̂k ρ̂½ � ¼ Γk L̂k ρ̂L̂
y
k �

1
2

L̂
y
k L̂k ; ρ̂

n o
þ

� �
; (119)

with fÂ; B̂gþ ¼ ÂB̂þ B̂Â the anti-commutation relation. The relaxation (k=
R) and dephasing (k= φ) rates are given, respectively, by the correspond-
ing inverse characteristic times, i.e., ΓR= 1/T1 and Γφ= 1/Tφ. Furthermore,
we have L̂R ¼ 0j i 1h j þ ffiffiffi

2
p

1j i 2h j and L̂φ ¼ 1j i 1h j þ 2 2j i 2h j.

Choice of free parameters for the transmon qubit problem
We showed that one has seven equations to fulfill for the transmon qubit
problem, and this requires at least seven free parameters. We also
commented that it is important that the envelope functions gðnÞx ðtÞ and
gðnÞy ðtÞ of the correction Hamiltonian (see Eq. (73)) have a bandwidth
comparable to αj j, so that one can access transitions between the levels 1j i
and 2j i. This becomes more clear if one considers the expressions of
~wðnÞ
T;j ðtÞ in Eq. (113). One can see that ~wðnÞ

T;j ðtÞ oscillates with frequency αj j
for j= 4,…, 7, while ~wðnÞ

T;j ðtÞ is a slowly varying function for other values of j.
Since the effect of the correction Hamiltonian on the dynamics at t= tf is
given by the integral of ŴT;IðtÞ, the terms proportional to λ̂4; ¼ ; λ̂7
average out unless g(n)(t) has a bandwidth comparable to αj j. As a
consequence, gðnÞx ðtÞ and gðnÞy ðtÞmust have a bandwidth comparable to αj j.
Practically, this means that the envelope functions gðnÞx ðtÞ and gðnÞy ðtÞ

associated with the correction Hamiltonian (see Eq. (73)) need to have a
certain number of nonzero coefficients such that the condition on the
bandwidth can be satisfied. A systematic way of determining which
coefficients are nonzero is to choose the coefficients of the harmonics
between k= 1 and kmax ’ αj jtf=2π in the Fourier expansion of the
envelopes to be nonzero and set all the other coefficients to zero.
Furthermore, assuming that the detuning is time-independent, all
coefficients of its Fourier series except cz,0 are zero. This typically gives
us more than seven free coefficients in total, and we end up with an
underdetermined system of linear equations.
As mentioned before, we can use the Moore–Penrose pseudo-inverse42–44

to solve this underdetermined system of linear equations. Importantly, the
pseudo-inverse always exists, which guarantees that the linear system always
has a solution, and the pseudo-inverse also enforces that the solution has the
smallest possible norm.
In order to obtain Figs. 4a and 5, we set kmax ¼ 2 for simplicity. Note

however that larger values of αj jtf will require a larger kmax. In a real
application, the best strategy is probably to try a couple of values of kmax
close to αj jtf=2π and see which one performs best.

Correction Hamiltonian for SNAP gates
The correction Hamiltonian for SNAP gates (see Eq. (84)) does not allow
one to correct terms proportional to σ̂z nj i nh j using the general standard
linear strategy. As we argue in “Results”, the most important source of
errors are precisely those originating from terms in the error Hamiltonian
proportional to σ̂z nj i nh j. A correction Hamiltonian with terms proportional
to σ̂z nj i nh j in the interaction picture, however, is out of the question, since
it would require a dispersive coupling constant dependent on n. This
makes it necessary to use the modified strategy for singular and ill-
conditioned correction Hamiltonians to correct those errors.
Let us write explicitly the Magnus expansion, up to the second order, of

the evolution operator associated with the modified Hamiltonian
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Ĥ
ð1Þ
mod;IðtÞ ¼ V̂S;IðtÞ þ Ŵ

ð1Þ
S;I ðtÞ, i.e., we truncate Eq. (35) at lc= 2. We have

Ω̂
ð1Þ
1 ðtfÞ þ Ω̂

ð1Þ
2 ðtfÞ ¼ Ω̂

ð0Þ
1 ðtfÞ þ Ω̂

ð0Þ
2 ðtfÞ � i

R tf
0 dt1Ŵ

ð1Þ
S;I ðt1Þ

� 1
2

R tf
0 dt1

R t1
0 dt2 V̂S;Iðt1Þ; Ŵð1Þ

S;I ðt2Þ
h in

þ Ŵ
ð1Þ
S;I ðt1Þ; V̂S;Iðt2Þ

h i
þ Ŵ

ð1Þ
S;I ðt1Þ; Ŵ

ð1Þ
S;I ðt2Þ

h io (120)

In the standard linear strategy, we neglect the term originating from the
double integral with the argument that it is a high-order term in the
perturbative series. However, if one calculates the commutators

½Ĥð0Þ
mod;Iðt1Þ; Ŵ

ð1Þ
S;I ðt2Þ� and ½Ŵð1Þ

S;I ðt1Þ; Ŵ
ð1Þ
S;I ðt2Þ� (cf. Eqs. (86) and (87) of the

main text), one finds terms proportional to σ̂z nj i nh j. Therefore, we look for

a correction Hamiltonian Ŵ
ð1Þ
S;I ðtÞ such that Eq. (36) for lc= 2 is satisfied, i.e.,

Ω̂
ð1Þ
1 ðtfÞ þ Ω̂

ð1Þ
2 ðtfÞ ¼ 0.

Substituting the expression for the correction Hamiltonian in the
interaction picture (see Eq. (87)) in Eq. (120) and expanding the envelope
functions gx,n(t) and gy,n(t) in a Fourier series that we truncate at k ¼ kmax,
we get a quadratic system of equations in the free parameters that allows

us to satisfy the condition Ω̂
ð1Þ
1 ðtfÞ þ Ω̂

ð1Þ
2 ðtfÞ ¼ 0.

Solving such a system of equations is still a difficult thing to do, since we
have a system of 3Ntrunc quadratic equations depending on 4kmaxNtrunc

free parameters. Here, Ntrunc is the dimensionality of the truncated cavity
Hilbert space. There is, however, a convenient approximation one can do
to simplify the problem: one can assume that the effect of gx,n(t) and gy,n(t)
on cavity levels other than nj i is small and can be neglected. This allows us
to break the initial system of 3Ntrunc equations in Ntrunc-independent
systems of three equations each, depending on 4kmax free parameters
only. These systems of equations have, however, several solutions since
they are nonlinear. To choose the “best” solution, it is convenient to work
with more free variables than equations and use Lagrange multipliers to
find solutions that minimize the norm of the vector of free parameters. This
means that one should minimize the function f ðcðnÞ;dðnÞÞ ¼P

j;kðc2j;k þ d2j;kÞ, where cj,k and dj,k are constrained to satisfy the quadratic
equations obtained with the Magnus approach described above, and the
sum runs over all values of j and k for which cj,k and dj,k are nonzero. This
problem can be easily formulated in terms of Lagrange multipliers, and the
resulting system of equations can be solved numerically. In this work, we
have solved the system of quadratic equations using the package
HomotopyContinuation.jl69 available for the Julia programming language68.
Note that even in the case where solutions for Eq. (120) exist, it is not

guaranteed that we will be able to mitigate the effects of the unwanted
Hamiltonian V̂SðtÞ. As for the linear systems obtained with the standard
strategy, the resulting system of polynomial equations can be ill-
conditioned. In such cases increasing kmax can help, at the expense of
making the polynomial system harder to solve.
As shown before, we can use the modified strategy to correct higher-

order errors. Assuming that for the SNAP problem Eq. (97) is valid for lc,1=
2, we can rewrite Eq. (98) as

P
l Ω̂

ðn�1Þ
l ðtfÞ ¼ i

R tf
0 dt1Ŵ

ðnÞ
I ðt1Þ

þ 1
2

R tf
0 dt1

R t1
0 dt2 Ĥ

ðn�1Þ
mod;I ðt1Þ; Ŵ

ðnÞ
I ðt2Þ

h in
þ Ŵ

ðnÞ
I ðt1Þ; Ĥðn�1Þ

mod;I ðt2Þ
h i

þ Ŵ
ðnÞ
I ðt1Þ; ŴðnÞ

I ðt2Þ
h io

:

(121)

The sum on the left-hand side runs over the Magnus terms whose leading
order is ϵnS . Here, it is useful to simply replace the left-hand side sum with a
sum running from l= 1 to l= 2n (see Supplementary Note 1). We can then

find Ŵ
ðnÞ
I ðtÞ using the methods discussed previously. We used this method

to find fourth-order corrections for the SNAP problem shown in Fig. 6.

DATA AVAILABILITY
The numerical data presented in this work can be generated using the public code
available at https://github.com/thalesfr/MagnusCorrection.

CODE AVAILABILITY
The code used to calculate the Magnus-based correction for the different examples
treated in this paper is available at https://github.com/thalesfr/MagnusCorrection.

Received: 16 April 2020; Accepted: 17 December 2020;

REFERENCES
1. Bloch, F. & Siegert, A. Magnetic resonance for nonrotating fields. Phys. Rev. 57,

522–527 (1940).
2. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D.

Gigahertz dynamics of a strongly driven single quantum spin. Science 326,
1520–1522 (2009).

3. Zeuch, D., Hassler, F., Slim, J. & Di Vincenzo, D. P. Exact rotating wave approx-
imation. Ann. Phys. (NY) 423, 168327 (2020).

4. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal
control of coupled spin dynamics: design of nmr pulse sequences by gradient
ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

5. Krotov, V. F. & Feldman, I. N. An iterative method for solving problems of optimal
control. Engineering Cybernetics 21, 123–130 (1983).

6. Somlói, J., Kazakov, V. A. & Tannor, D. J. Controlled dissociation of I2 via optical
transitions between the X and B electronic states. Chem. Phys. 172, 85–98 (1993).

7. Doria, P., Calarco, T. & Montangero, S. Optimal control technique for many-body
quantum dynamics. Phys. Rev. Lett. 106, 190501 (2011).

8. Glaser, S. J. et al. Training schrödinger’s cat: quantum optimal control. Eur. Phys. J.
D 69, 279 (2015).

9. Machnes, S., Assémat, E., Tannor, D. & Wilhelm, F. K. Tunable, flexible, and efficient
optimization of control pulses for practical qubits. Phys. Rev. Lett. 120, 150401 (2018).

10. Werschnik, J. & Gross, E. K. U. Quantum optimal control theory. J. Phys. B: At. Mol.
Opt. Phys. 40, R175–R211 (2007).

11. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing.
Science 220, 671–680 (1983).

12. Swendsen, R. H. & Wang, J.-S. Replica Monte Carlo simulation of spin-glasses.
Phys. Rev. Lett. 57, 2607–2609 (1986).

13. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994).
14. Wenzel, W. & Hamacher, K. Stochastic tunneling approach for global minimization of

complex potential energy landscapes. Phys. Rev. Lett. 82, 3003–3007 (1999).
15. Motzoi, F., Gambetta, J. M., Rebentrost, P. & Wilhelm, F. K. Simple pulses for elim-

ination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009).
16. Economou, S. E. & Barnes, E. Analytical approach to swift nonleaky entangling

gates in superconducting qubits. Phys. Rev. B 91, 161405 (2015).
17. Demirplak, M. & Rice, S. A. Adiabatic population transfer with control fields. J.

Phys. Chem. A 107, 9937–9945 (2003).
18. Demirplak, M. & Rice, S. A. On the consistency, extremal, and global properties of

counterdiabatic fields. J. Chem. Phys. 129, 154111 (2008).
19. Berry, M. V. Transitionless quantum driving. J. Phys. A: Math. Theor. 42, 365303

(2009).
20. Ibáñez, S., Chen, X., Torrontegui, E., Muga, J. G. & Ruschhaupt, A. Multiple

Schrödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett.
109, 100403 (2012).

21. Chen, X. & Muga, J. G. Engineering of fast population transfer in three-level
systems. Phys. Rev. A 86, 033405 (2012).

22. Baksic, A., Ribeiro, H. & Clerk, A. A. Speeding up adiabatic quantum state transfer
by using dressed states. Phys. Rev. Lett. 116, 230503 (2016).

23. Ribeiro, H. & Clerk, A. A. Accelerated adiabatic quantum gates: optimizing speed
versus robustness. Phys. Rev. A 100, 032323 (2019).

24. Ribeiro, H., Baksic, A. & Clerk, A. A. Systematic magnus-based approach for sup-
pressing leakage and nonadiabatic errors in quantum dynamics. Phys. Rev. X 7,
011021 (2017).

25. Magnus, W. On the exponential solution of differential equations for a linear
operator. Commun. Pure Appl. Math. 7, 649–673 (1954).

26. Blanes, S., Casas, F., Oteo, J. A. & Ros, J. The magnus expansion and some of its
applications. Phys. Rep. 470, 151–238 (2009).

27. Heeres, R. W. et al. Cavity state manipulation using photon-number selective
phase gates. Phys. Rev. Lett. 115, 137002 (2015).

28. Krastanov, S. et al. Universal control of an oscillator with dispersive coupling to a
qubit. Phys. Rev. A 92, 040303 (2015).

29. Barends, R. et al. Superconducting quantum circuits at the surface code threshold
for fault tolerance. Nature 508, 500–503 (2014).

30. Martinis, J. M. & Geller, M. R. Fast adiabatic qubit gates using only σz control. Phys.
Rev. A 90, 022307 (2014).

31. Sels, D. & Polkovnikov, A. Minimizing irreversible losses in quantum systems by
local counterdiabatic driving. Proc. Natl Acad. Sci. USA 114, E3909–E3916 (2017).

32. Claeys, P. W., Pandey, M., Sels, D. & Polkovnikov, A. Floquet-engineering coun-
terdiabatic protocols in quantum many-body systems. Phys. Rev. Lett. 123,
090602 (2019).

33. Tycko, R. Broadband population inversion. Phys. Rev. Lett. 51, 775–777 (1983).

T. Figueiredo Roque et al.

16

npj Quantum Information (2021)    28 Published in partnership with The University of New South Wales

https://github.com/thalesfr/MagnusCorrection
https://github.com/thalesfr/MagnusCorrection


34. Warren, W. S. Effects of arbitrary laser or nmr pulse shapes on population
inversion and coherence. J. Chem. Phys. 81, 5437–5448 (1984).

35. Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev.
A 33, 4033–4054 (1986).

36. Slepian, D. & Pollak, H. O. Prolate spheroidal wave functions, fourier analysis and
uncertainty—I. Bell Labs Tech. J. 40, 43–63 (1961).

37. Lucarelli, D. Quantum optimal control via gradient ascent in function space and
the time-bandwidth quantum speed limit. Phys. Rev. A 97, 062346 (2018).

38. Norris, L. M. et al. Optimally band-limited spectroscopy of control noise using a
qubit sensor. Phys. Rev. A 98, 032315 (2018).

39. Pedersen, L. H., Møller, N. M. & Mølmer, K. Fidelity of quantum operations. Phys.
Lett. A 367, 47–51 (2007).

40. Pawela, Ł. & Puchała, Z. Quantum control with spectral constraints. Quantum Inf.
Process. 13, 227–237 (2014).

41. Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded
in an oscillator. Nat. Commun. 8, 94 (2017).

42. Moore, E. H. On the reciprocal of the general algebraic matrix. Bull. Amer. Math.
Soc. 26, 395–396 (1920).

43. Bjerhammar, A. Application of calculus of matrices to method of least squares;
with Special References to Geodetic Calculations, Vol. 49 (Trans. Roy. Inst. Tech.
Stockholm, 1951).

44. Penrose, R. A generalized inverse for matrices. Math. Proc. Cambridge Philos. Soc.
51, 406–413 (1955).

45. Scheuer, J. et al. Precise qubit control beyond the rotating wave approximation.
New J. Phys. 16, 093022 (2014).

46. Motzoi, F., Gambetta, J. M., Merkel, S. T. & Wilhelm, F. K. Optimal control methods
for rapidly time-varying hamiltonians. Phys. Rev. A 84, 022307 (2011).

47. Boscain, U. & Mason, P. Time minimal trajectories for a spin 1/2 particle in a
magnetic field. J. Math. Phys. 47, 062101 (2006).

48. Garon, A., Glaser, S. J. & Sugny, D. Time-optimal control of su(2) quantum
operations. Phys. Rev. A 88, 043422 (2013).

49. Hirose, M. & Cappellaro, P. Time-optimal control with finite bandwidth. Quantum
Inf. Process. 17, 88 (2018).

50. Deng, C., Orgiazzi, J.-L., Shen, F., Ashhab, S. & Lupascu, A. Observation of floquet
states in a strongly driven artificial atom. Phys. Rev. Lett. 115, 133601 (2015).

51. Deng, C., Shen, F., Ashhab, S. & Lupascu, A. Dynamics of a two-level system under
strong driving: quantum-gate optimization based on floquet theory. Phys. Rev. A
94, 032323 (2016).

52. Burd, S. C. et al. Quantum amplification of mechanical oscillator motion. Science
364, 1163–1165 (2019).

53. Lemonde, M.-A., Didier, N. & Clerk, A. A. Enhanced nonlinear interactions in quantum
optomechanics via mechanical amplification. Nat. Commun. 7, 11338 (2016).

54. Basilewitsch, D., Koch, C. P. & Reich, D. M. Quantum optimal control for mixed
state squeezing in cavity optomechanics. Adv. Quantum Technol. 2, 1800110
(2019).

55. Ojanen, T. & Salo, J. Possible scheme for on-chip element for squeezed micro-
wave generation. Phys. Rev. B 75, 184508 (2007).

56. Yamamoto, T. et al. Flux-driven josephson parametric amplifier. Appl. Phys. Lett.
93, 042510 (2008).

57. Koch, J. et al. Charge-insensitive qubit design derived from the cooper pair box.
Phys. Rev. A 76, 042319 (2007).

58. Gambetta, J. M., Motzoi, F., Merkel, S. T. & Wilhelm, F. K. Analytic control methods
for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A
83, 012308 (2011).

59. Theis, L. S., Motzoi, F., Wilhelm, F. K. & Saffman, M. High-fidelity Rydberg-blockade
entangling gate using shaped, analytic pulses. Phys. Rev. A 94, 032306 (2016).

60. Chen, Z. et al. Measuring and suppressing quantum state leakage in a super-
conducting qubit. Phys. Rev. Lett. 116, 020501 (2016).

61. Schutjens, R., Dagga, F. A., Egger, D. J. & Wilhelm, F. K. Single-qubit gates in
frequency-crowded transmon systems. Phys. Rev. A 88, 052330 (2013).

62. Bowdrey, M. D., Oi, D. K., Short, A., Banaszek, K. & Jones, J. Fidelity of single qubit
maps. Phys. Lett. A 294, 258–260 (2002).

63. Burnett, J. J. et al. Decoherence benchmarking of superconducting qubits. npj
Quantum Inf. 5, 54 (2019).

64. Fösel, T., Krastanov, S., Marquardt, F. & Jiang, L. Efficient cavity control with SNAP
gates. Preprint at https://arxiv.org/abs/2004.14256 (2020).

65. Reinhold, P. et al. Error-corrected gates on an encoded qubit. Nat. Phys. 16,
822–826 (2020).

66. Michael, M. H. et al. New class of quantum error-correcting codes for a bosonic
mode. Phys. Rev. X 6, 031006 (2016).

67. Rackauckas, C. & Nie, Q. Differentialequations.jl—a performant and feature-rich
ecosystem for solving differential equations in julia. J. Open Res. Softw. 5, 15
(2010).

68. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to
numerical computing. SIAM Rev. 59, 65–98 (2017).

69. Breiding, P. & Timme, S. Homotopycontinuation.jl: a package for homotopy
continuation in julia. In: Davenport J., Kauers M., Labahn G., Urban J. (eds)
Mathematical Software – ICMS 2018. ICMS 2018. Lecture Notes in Computer Science,
vol 10931, 458–465 (Springer, 2018).

ACKNOWLEDGEMENTS
A.C. acknowledges partial support from the Center for Novel Pathways to Quantum
Coherence in Materials, an Energy Frontier Research Center funded by the
Department of Energy, Office of Science, Basic Energy Sciences.

AUTHOR CONTRIBUTIONS
T.F.R. and H.R. participated in the conception and planning of the project. All authors
were involved in the analysis and interpretation of the results. T.F.R. led the derivation
of theoretical results with assistance from H.R. and performed all numerical
simulations. All authors contributed to the writing of the paper.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information Supplementary information is available for this paper
at https://doi.org/10.1038/s41534-020-00349-z.

Correspondence and requests for materials should be addressed to H.R.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

T. Figueiredo Roque et al.

17

Published in partnership with The University of New South Wales npj Quantum Information (2021)    28 

https://arxiv.org/abs/2004.14256
https://doi.org/10.1038/s41534-020-00349-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Engineering fast high-fidelity quantum operations with constrained interactions
	Introduction
	Results
	Imperfect unitary evolution
	General strategy to correct unitary evolution
	Constrained control Hamiltonians
	Singular or ill-conditioned correction Hamiltonians
	A practical guide to find a Magnus-based correction Hamiltonians
	Strong driving of a two-level system
	Strong driving of a parametrically driven cavity
	Transmon qubit
	SNAP gates

	Discussion
	Methods
	The Magnus expansion
	Arbitrary-order corrections for the linear strategy
	Arbitrary-order correction for singular and ill-conditioned correction Hamiltonians
	The operators  x&#x003BC;&#x00302;x,  y&#x003BC;&#x00302;y, and  z&#x003BC;&#x00302;z
	Correction Hamiltonian for the parametrically driven cavity
	Interaction picture representation for the transmon qubit problem
	Master equation and average fidelity map for the transmon qubit problem
	Choice of free parameters for the transmon qubit problem
	Correction Hamiltonian for SNAP gates

	References
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




