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We develop a first-principles approach for the treatment of vibronic interactions in solids that
overcomes the main limitations of state-of-the-art electron-phonon coupling formalisms. In partic-
ular, anharmonic effects in the nuclear dynamics are accounted to all orders via ab initio molecular
dynamics simulations. This non-perturbative, self-consistent approach evaluates the response of
the wave functions along the computed anharmonic trajectory; thus it fully considers the coupling
between nuclear and electronic degrees of freedom. We validate and demonstrate the merits of the
concept by calculating temperature-dependent spectral functions and band gaps for silicon and the
cubic perovskite SrTiO3, a strongly anharmonic material featuring soft modes. In the latter case, our
approach reveals that anharmonicity and higher-order vibronic couplings can contribute substan-
tially to the electronic-structure at finite-temperatures, noticeably affecting macroscopic properties,
such as absorption coefficients as well as thermal and electrical conductivities.

Electronic band structures are a fundamental concept
in material science used to qualitatively understand and
quantitatively assess optical and electronic properties of
materials, e.g., charge carrier mobilities and absorption
spectra of semiconductors. Over the last decade, two
pivotal advancements have paved the way towards pre-
dictive, quantitative ab initio calculations of electronic
band structures: improvements in the treatment of elec-
tronic exchange and correlation [1, 2] and the inclusion
of electron-phonon interactions via perturbative many-
body formalisms based on the Allen-Heine theory [3].
The latter approach has been widely used to calculate
temperature-dependent effects on the electronic struc-
ture stemming from the nuclear motion [4–18]. How-
ever, such perturbative calculations rely on two approx-
imations. a) The nuclear motion is approximated in a
harmonic model which is equivalent to the concept of
phonons and b) the vibronic interaction between elec-
tronic and nuclear degrees of freedom is treated by per-
turbation theory in terms of electron-phonon coupling.
In both approximations, interactions at finite tempera-
tures T are thus described via truncated Taylor expan-
sions, using derivatives computed at the static equilib-
rium geometry, i.e., for the total energy minimum cor-
responding to the atomic geometry Req obtained in the
classical T = 0 K limit. Clearly, both these approxima-
tions are problematic whenever large deviations from Req

occur, e.g., at elevated temperatures and for soft bonded
atoms. Despite several efforts to mitigate either one of
these approximations [19–27], a consistent computational
approach that accounts on equal footing for both anhar-
monic effects in the nuclear motion and the full vibronic
coupling is still lacking.

In this work, we fill this gap by deriving a fully an-
harmonic, non-perturbative first-principles theory of vi-
bronic coupling. We demonstrate the validity of the
approach and of its implementation in the all-electron,
numeric atomic orbitals code FHI-aims [28] by comput-

ing temperature-dependent spectral functions and band
gaps for silicon and cubic SrTiO3. In the former, largely
harmonic case, our approach reproduces perturbation-
theory data, thus confirming that anharmonic effects
and higher-order vibronic couplings are negligible in sil-
icon. However, this is not the case for the perovskite
SrTiO3. Besides confirming the role of strong anhar-
monic effects in SrTiO3 [29, 30], we also show that the
anharmonic motion results in a breakdown of the per-
turbative electron-phonon coupling model. Accounting
for anharmonic, higher-order vibronic coupling (AViC)
is thus essential to obtain the correct temperature de-
pendence of the electronic-structure in this material.

In the following, the energy εRl of the electronic state
|ψR

l 〉 is obtained by solving the Schrödinger equation
HR

el |ψR
l 〉 = εRl |ψR

l 〉, where HR
el is the electronic Hamilto-

nian of the system at the atomic geometry R. This may
be a Kohn-Sham Hamiltonian with a certain exchange-
correlation functional. For readability, we use the gen-
eralized index l to indicate both the band index n and
the wave vector k. The temperature dependence of εRl is
evaluated within the Born-Oppenheimer approximation
via the canonical ensemble average at temperature T :

〈εRl 〉T =
1

Z

∫
dRdP exp

[
−E(R,P )

kBT

]
εRl . (1)

Here, kB is the Boltzmann constant, Z the canonical
partition function, P the momenta of the nuclei, and
E(R,P ) the total energy of the combined electronic and
nuclear system. For the evaluation of Eq. (1), the state-
of-the-art formalism [31] resorts to the two perturbative
approximations mentioned above. When the harmonic
approximation to the potential energy surface (PES) is
employed, the classical equations of motions for R,P
can be solved analytically, and so can the quantum-
mechanical Schrödinger equation. Hence, Eq. (1) is ap-
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proximated via 〈εRl 〉T ≈ 〈εRl 〉haT as

〈εRl 〉haT =
1

Zha

∫
dRhadP ha exp

[
−Eha(Rha,P ha)

kBT

]
εRl ,

(2)
which allows for a straightforward evaluation of the
phase-space integral [23–25, 32, 33]. When the depen-
dence of the electronic states on the nuclear motion is
truncated up to second order in the atomic displace-
ments εRl ≈ εpt,Rl , then the ensemble average in Eq. (2)

yields the perturbative Allen-Heine energies 〈εpt,Rl 〉haT .
In this work, we rely on neither of the two approxima-

tions. First, ab initio molecular dynamics (aiMD) trajec-
tories with length t0 are used to evaluate the canonical
ensemble average in Eq. (1) as time (t) average

〈εRl 〉T = 〈εRl 〉MD
T = lim

t0→∞

1

t0

∫ t0

0

ε
R(t)
l dt . (3)

This accounts for the full anharmonicity of the PES. Sec-

ond, the dependence of the electronic eigenenergies ε
R(t)
l

on the nuclear positions is explicitly evaluated by solving

H
R(t)
el |ψR(t)

l 〉 = ε
R(t)
l |ψR(t)

l 〉 at each aiMD step R(t). All
orders of coupling between electronic and nuclear degrees
of freedom are included by these means. This involves re-
expanding

|ψR(t)
l 〉 =

∑
m

p
R(t)
ml |ψ

eq
m 〉 with p

R(t)
ml = 〈ψeq

m |ψ
R(t)
l 〉 (4)

in terms of the wave functions at equilibrium |ψeq
m 〉. With

that, one obtains:

ε
R(t)
l = 〈ψR(t)

l |HR(t)
el |ψR(t)

l 〉 = εeql + (5)∑
m,n

[p
R(t)
nl ]∗p

R(t)
ml 〈ψ

eq
n |H

R(t)
el −Heq

el |ψ
eq
m 〉 .

In this form, it is evident that Eq. (5) not only incorpo-

rates the first non-vanishing derivatives of H
R(t)
el − Heq

el

as perturbative formalisms, but all orders. Similarly, all
orders of couplings with the nuclear motion – not just

quadratic terms – are captured via the coefficients p
R(t)
ml ,

which describe the intricate R(t)-dependence of the wave
functions along the aiMD. Accordingly, all orders of AViC
are statistically captured by these means. Our approach,
named stAViC in the following, is thus valid even when
the (harmonic) phonon ansatz is inappropriate.

Note that the practical evaluation of Eq. (3) with aiMD
corresponds to the classical, high-temperature limit. For
the purpose of this work, this is a justified approximation,
as substantiated below. Furthermore, aiMD simulations
have to be performed in rather large supercells in order to
capture the full vibrational spectrum. The electronic en-
ergies εl = εNK and wave functions ψl = ψNK obtained
in the aiMD are associated to band indices N and wave
vectors K spanning a reduced Brillouin zone (BZ), where
capital letters are chosen to indicate supercell quantities.
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FIG. 1. Vibronic renormalization of the band gap ∆〈εg〉T =
〈εg〉T − 〈εg〉ha-cl0K of silicon as function of temperature ob-
tained via the stAViC ∆〈εg〉MD

T (orange) and via the
non-perturbative harmonic approach: ∆〈εg〉ha-clT (grey) and

∆〈εg〉ha-qmT (red). All calculations were performed using DFT-
LDA and 6×6×6 supercells containing 432 atoms. Pertur-
bative harmonic calculations (blue, [12]) and experimental
data (black, [34]) are shown as well.

This “BZ folding” hinders a direct comparison with the
energy levels computed in the static limit at Req, for
which the wave vectors k of εeql = εeqnk and ψeq

l = ψeq
nk

span the full fundamental BZ. To obtain a meaningful
band structure in the fundamental BZ also for the aiMD
case, the expansion coefficients introduced in Eq. (4) are
used to “unfold” the states ψNK . To this aim, we con-
sider the spectral function expressed in the Lehman rep-
resentation [38]:

A
R(t)
nk (E) =

∑
NK

|pR(t)
NK,nk|

2δ(E − εR(t)
NK ). (6)

Compared to Eqs. (4)-(5), in which the perturbed eigen-

value ε
R(t)
NK is obtained by expressing its wave function

as superposition of equilibrium states ψeq
nk, Eq. (6) re-

flects the inverse relationship: Each perturbed eigen-

value ε
R(t)
NK contributes to all states nk in the fundamen-

tal BZ, whereby p
R(t)
NK,nk = 〈ψeq

nk|ψ
R(t)
NK 〉 determines the

strength of this contribution.
For a given aiMD configuration R(t), we obtain

the momentum-resolved spectral function A
R(t)
k (E) =∑

nA
R(t)
nk (E) by summing over n in Eq. (6):

A
R(t)
k (E) =

∑
NK

P
R(t)
k,NKδ(E − ε

R(t)
NK ) . (7)

The spectral weight P
R(t)
k,NK =

∑
n |p

R(t)
NK,nk|2 describes

the overlap between the supercell state |ψR(t)
NK 〉 and all
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FIG. 2. (a) Energy of the valence band maximum (red) and PES (orange) of SrTiO3 as function of the displacement of
oxygens (white spheres) along the soft phonon mode at the R-point. Parabolic fits at the tilted minimum are shown in
blue and black. (b) Band gap renormalization of cubic SrTiO3 as function of temperature calculated using DFT-PBE and

5 × 5 × 5 supercells (625 atoms). Perturbative harmonic calculations ∆〈εptg 〉ha-qmT using finite differences [35] are shown in

blue; non-perturbative harmonic calculations ∆〈εg〉ha-clT and ∆〈εg〉ha-qmT in red and grey; non-perturbative anharmonic stAViC
calculations ∆〈εg〉MD

T in orange. Long-range polar interactions are accounted for in all cases, see Suppl. Material. Triangles
represent experimental data [36]; the respective band gap in the static limit (3.568 eV) was determined via linear regression [37]
from the high T > 800 K data.

equilibrium states with wave vector k [39, 40]. The
momentum resolved spectral function in thermodynamic

equilibrium 〈AR(t)
k (E)〉T is eventually obtained by com-

puting the thermodynamic average of the A
R(t)
k (E)

along R(t) using Eq. (3). Quasi-particle peaks and thus

band gaps 〈εg〉T are extracted from 〈AR(t)
k (E)〉T by scan-

ning over the energy axis. Details of the implementation
can be found in the Suppl. Material.

As a validation of our approach, Fig. 1 shows the
temperature-dependence of the band gap renormalization
∆〈εg〉T = 〈εg〉T − 〈εg〉ha-cl0K of bulk silicon (DFT-LDA).
Our stAViC calculations ∆〈εg〉MD

T are in excellent agree-

ment with reference data ∆〈εptg 〉
ha−qm
T obtained with the

perturbative, harmonic formalism [12] for T � 400 K.
The discrepancies between the two approaches at lower
temperatures are exclusively caused by quantum-nuclear
effects not captured in aiMD. In Fig. 1, this is demon-
strated by comparing non-perturbative, harmonic data
obtained by evaluating Eq. (2) with Monte Carlo sam-
pling [23, 41] using classical ∆〈εg〉ha-clT and quantum-

mechanical ∆〈εg〉ha-qmT statistics. In both cases, anhar-
monic effects are thus neglected, while higher-order vi-
bronic couplings are included via Eq. (5). The fact that
the anharmonic ∆〈εg〉MD

T and the harmonic approach
∆〈εg〉ha-clT almost coincide in the classical limit proves
that anharmonic effects are indeed negligible for silicon.
Similarly, higher-order vibronic couplings are negligible
here, given that the non-perturbative 〈∆εg〉 ha-qmT and the

perturbative data 〈∆εptg 〉
ha-qm
T follow closely each other.

Quantitatively, this is substantiated by the fact that
our ∆〈εg〉ha-qmT calculations yield a quantum zero-point
renormalization of 62 meV in line with previous harmonic
approaches (56-62 meV) [22–25] and with experimental
values (62-64 meV) [37, 42].

For other materials, however, AViCs are often not neg-
ligible, as we demonstrate for the perovskite SrTiO3.
At T = 0 K, this material exhibits a tetragonal struc-
ture (c/a = 0.998, space group I4/mcm), in which the in-
dividual tetrahedra are slightly tilted with respect to each
other [43]. Above 105 K [44] and up to its melting point
at 2300 K [36], SrTiO3 exhibits a cubic high-symmetry
structure (space group Pm3m), in which all tetrahedra
appear to be aligned as shown in Fig. 2(a). This cu-
bic structure does not correspond to a minimum, but to
a saddle point of the PES and thus features imaginary
phonon frequencies. Even in the cubic lattice (c/a = 1),
the tetrahedra favor a tilted arrangement in the static
limit, corresponding to the minima in Fig. 2(a). Ther-
modynamic hopping between these wells results, on aver-
age, in an apparent alignment of the tetrahedra, in close
analogy to other vibrationally-stabilized materials [45–
48]. Perturbative approaches cannot capture this com-
plex dynamics: If the saddle point with aligned tetra-
hedra is chosen as the static equilibrium Req, phonon
modes with imaginary frequencies have to be “frozen
in” [49] and their coupling to the electronic-structure is
neglected. If one of the minima with tilted tetrahedra
is chosen as Req, both the harmonic approximation for
the PES and the parabolic electron-phonon model be-
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FIG. 3. Thermodynamically averaged spectral functions

〈AR(t)
k (E)〉T of cubic SrTiO3 along Γ-R (128 k-points) for

T = 300 and 1200 K calculated non-perturbatively on the
harmonic (left) and anharmonic PES (right) using DFT-PBE
and 30 uncorrelated geometries in a 5 × 5 × 5 supercell con-
taining 625 atoms. The band structure in static equilibrium is
shown as white lines. The respective densities of states (DOS)
at high symmetry point R is shown on the right as magenta
(harmonic) and black (aiMD).

come not only inaccurate, but even qualitatively wrong
at elevated temperatures, at which multiple minima are
explored, as exemplified by the parabolic fits shown in
Fig. 2(a). This breakdown of the harmonic model and
of the perturbative electron-phonon coupling model has
a direct impact on the calculated thermodynamic prop-
erties of SrTiO3.

The temperature-dependence of the band gap renor-
malization of SrTiO3 is shown in Fig. 2(b). All calcula-
tions were performed at the PBE level and van-der-Waals
interactions were included using the Tkatchenko-Scheffler
method [50]. Corrections [51] for long-range polar ef-
fects [52] that are not fully captured within the finite
aiMD supercells are included. Thermal lattice expan-
sion and the associated, non-negligible band-gap open-
ing of, e.g., 154 meV at 1000 K, are also accounted
for non-perturbatively. All these aspects are detailed
in the Suppl. Material. As discussed for Fig. 1, the
fact that ∆〈εg〉ha-clT and ∆〈εg〉ha-qmT become comparable
for T > 500 K, implies that the use of classical aiMD
is justified in this regime. In contrast to silicon, dis-
tinct deviations between harmonic ∆〈εg〉ha-clT and anhar-

monic ∆〈εg〉MD
T data are observed for SrTiO3, leading

to an additional renormalization in stAViC as large as
147 meV at 600 K and 260 meV at 1200 K. With re-
spect to the perturbative, harmonic data, this corre-
sponds to a remarkable increase of 18 % and 27 %, re-
spectively. With respect to experiment [36], stAViC im-
proves the agreement significantly and quantitatively re-
produces the measured high-temperature slope.

More insights can be obtained by comparing the spec-
tral functions calculated by sampling the harmonic and
anharmonic PES, as done in Fig. 3 for two different tem-
peratures. At 300 K, the two approaches yield very sim-
ilar results. At 1200 K, however, the spectral functions
exhibit a strikingly different behaviour, in particular at
the R-point. Qualitatively, this can rationalized from
the fact that the most anharmonic, imaginary phonon
frequencies also occur at R. Note that the valence band
maximum (VBM) lies at the R-point as well; its differ-
ent upshift in the two approaches is thus the root for the
different temperature-dependence of the band gaps ob-
served in Fig. 2 (b). Furthermore, the spectral functions
in Fig. 3 reveal that not only the quasi-particle peaks,
but also the curvatures (effective masses) and linewidths
are substantially altered by AViCs. Clearly, this calls for
more systematic investigations along these lines.

In this work, we have derived and validated a fully
anharmonic, non-perturbative theory of the vibronic in-
teractions in solids that overcomes the two main approxi-
mations (harmonic and electron-phonon coupling model)
used in perturbative state-of-the-art formalisms. The
presented stAViC methodology lays the founding for fur-
ther developments, e.g., for elucidating the influence of
many-body effects [53] on AViCs and for studying the
role of AViCs on absorption coefficients, Auger recom-
bination rates, and transport coefficients [31]. For the
latter case, our work suggest that AViCs can play a sub-
stantial role, given that they significantly influence effec-
tive masses, linewidths (lifetimes), and band-gaps, hence
also altering free carrier densities nc(T ). For instance,
the simple model nc(T ) ∝ exp [−〈εg〉T /(2kBT )] reveals
that the intrinsic nc in SrTiO3 increases by two orders of
magnitude at 1000 K due to the band-gap’s temperature
dependence. Since a large fraction of this effect is driven
by AViCs, correctly capturing this physics, as done in the
stAViC formalism, is pivotal to obtain a correct descrip-
tion of refractory materials.
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