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Highlights
Novel MHC alleles have been demon-
strated to confer better resistance to
local parasites.

MHC alleles may differ by orders of mag-
nitude in the range of antigens they bind.

Promiscuous alleles and species with
more MHC genes appear to be more
common in pathogen-rich populations.

The number of MHC class I alleles corre-
lates negatively with the size of the T cell
receptor repertoire, supporting the role
Proteins encoded by the classical major histocompatibility complex (MHC) genes
incite the vertebrate adaptive immune response by presenting peptide antigens
on the cell surface. Here, we review mechanisms explaining landmark features
of these genes: extreme polymorphism, excess of nonsynonymous changes in
peptide-binding domains, and long gene genealogies. Recent studies provide ev-
idence that these featuresmay arise due to pathogens evolving ways to evade im-
mune response guided by the locally common MHC alleles. However,
complexities of selection on MHC genes are simultaneously being revealed that
need to be incorporated into existing theory. These include pathogen-driven se-
lection for antigen-binding breadth and expansion of theMHC gene family, asso-
ciated autoimmunity trade-offs, hitchhiking of deleterious mutations linked to the
MHC, geographic subdivision, and adaptive introgression.
of constraints associated with increasing
ranges of bound antigens.

Deleterious mutations accumulate
around MHC genes and likely affect
the evolutionary dynamics of MHC
haplotypes.
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MHC: The Enigma Continues
The MHC is a gene-dense region in jawed vertebrate genomes enriched for immunity genes. The
classicalMHC genes, which will be the subject of this review, encode glycoproteins that bind pep-
tides, both self and non-self, inside the cell and deliver them to the surface for inspection by T cells
and natural killer (NK) cells [1,2] (Boxes 1 and 2). This antigen presentation is a crucial step in the
adaptive immune response as it allows self/non-self discrimination by T cells, ultimately facilitating
the recognition of infecting pathogens. The feature that distinguishes classical MHC genes (MHC
genes hereafter) from other genes in the MHC region is their extreme polymorphism, with dozens
to hundreds of allelic variants segregating in natural populations [3–5]. The polymorphism is most
pronounced in the peptide-binding domain (PBD; see Glossary), in particular at peptide-
binding sites (PBSs), amino-acid residues interacting directly with antigens [6]. Consequently,
molecules coded by different MHC alleles differ in their antigen-binding profiles [7,8], which in
turn affect susceptibility to disease [9–11]. Polymorphism apparently evolves adaptively, as evi-
denced by the high relative nonsynonymous substitution rate within the PBD [12], particularly at
PBSs [6,13,14], as well as by large short-term selection coefficients (Figure 1). High polymor-
phism coupled with evidence for positive selection has made MHC genes an attractive model
for studying how selection can promote and maintain genetic variation in natural populations.

Evidence is accumulating, as has long been suspected based on the function of MHC proteins,
that pathogens impose significant selection onMHC (Figure 1) and, importantly, driveMHC allele
frequency changes in natural populations [3,15]. However, the specific selection mechanisms
that shape the extraordinary diversity of MHC genes are still controversial (Figure 2, Key Figure).
An associated question is whether these mechanisms can explain the evolutionary persistence of
MHC allelic lineages for a much longer time than expected under neutrality, leading to trans-
species polymorphism (TSP) [16,17], and an excess of nonsynonymous changes in MHC
sequences. Yet another enigma is whyMHC diversity at the individual level is limited, constraining
an individual’s ability to raise an effective response to parasites, even though expressing more
MHC molecules or molecular variants capable of binding a broader spectrum of antigens
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Box 1. The Major Histocompatibility Complex

The MHC was discovered as the genetic locus leading to rapid graft rejection, which is due to highly polymorphic cell surface molecules encoded by classical class I
(MHC-I) and class II (MHC-II) genes [95]. For most jawed vertebrates, classical MHC genes are scattered throughout a large genomic region with variable levels of re-
combination (Figure I) along with many other genes, including some involved in classical MHC function (such as TAP and tapasin genes). However, classical MHC
genes are found on several chromosomes in teleost (bony) fish, and theMHC-I gene family is highly expanded with loss ofMHC-II genes in Gadiform fish like the Atlantic
cod [1,2].

Classical MHC molecules bind pieces of proteins (peptides) from inside cells and allow them to be recognized on the cell surface by T lymphocytes. The peptides are
bound by pockets (PBSs) in a groove (part of the PBD) exhibiting extensitve sequence variation. Normally, these peptides are derived from self (host) proteins, but upon
infection (or transformation in cancer), MHCmolecules present non-self (pathogen or mutated) peptides to the T cells, leading to appropriate immune responses. Class I
molecules bind peptides largely from the cytoplasm and contiguous structures like the nucleus, and are recognized by CD8 cytotoxic T lymphocytes. Class II molecules
bind peptides largely from intracellular vesicles which are in contact with the outside of the cell, and are recognized by CD4 helper (and regulatory) lymphocytes [96].
MHC-I molecules are also recognized by polymorphic receptors on NK cells (see Box 2).

To achieve discrimination between self and non-self, T cells are ‘educated’ in the thymus: T cells, which were first positively selected based on reaction with self-peptides
on the MHC molecules, are then negatively selected against strong recognition with self-peptides [97].

Nonclassical genes are related to classicalMHC genes (and often difficult to distinguish from them on the basis of sequence alone) but lack one or more of their salient
features – high polymorphism, wide and high expression, and presentation of peptides to T cells. Their functions vary from immune functions of many different kinds to
non-immune physiology [98,99].
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Figure I. Genomic Map of Classical Human MHC (HLA) Region with Associated Recombination Rate. (Top) The classical MHC region is approximately
3.5 Mb, comprising more than (middle) 280 genes, including those of the classical and nonclassical class I, II, and III genes. The mean recombination rate (bottom) in
the class I region (0.443 cM/Mb) is lower, and in the class II region (1.712 cM/Mb) higher than the genomic average (1.2 cM/Mb); the recombination rate varies
widely throughout the region (range 0.001–67 cM/Mb), which includes hotspots of extreme recombination [126,127].
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Glossary
Adaptive evolution: evolutionary
change driven by natural selection that
increases frequencies of beneficial alleles
and decreases frequencies of
deleterious alleles.
Balancing selection: any form of
natural selection that maintains genetic
variation within populations.
Coevolution: the process in which two
or more species (or genes) evolve
nonindependently by exerting selection
pressures on each other.
Disassortative mating: preferential
mating between individuals with
dissimilar trait values (e.g., MHC
genotypes).
Gene genealogy: relationships
between DNA sequences in a sample
taken from a population; properties of
gene genealogy depend on both
demographic history of the population
and action of selection.
Haplotype: a genomic segment that is
usually inherited as a single unit, without
recombination.
Hitchhiking: process in which a neutral
or deleterious variant increases in
frequency due to the linkage with a
positively selected variant.
Introgression: transfer of gene(s) from
one species into the gene pool of
another species, mediated by
hybridization and repeated
backcrossing.
Negative selection: (i) evolution:
natural selection removing deleterious
alleles; (ii) immunology: deletion of T cells
with TCR that bind too strongly self-
peptides presented by MHC molecules.
Overdominance: fitness of
heterozygote genotype exceeds that of
each homozygote carrying its
constituent alleles.
Peptide-binding domain (PBD): also
peptide-binding region (PBR); protein
domain(s) within the MHC molecule (α1
and α2 in MHC-I; α1 and β1 in MHC-II)
that forms the peptide-binding cleft.
Peptide-binding sites (PBSs): amino
acid residueswithin the PBD that directly
contact the peptide bound by the MHC
molecule.
Positive selection: (i) evolution: natural
selection increasing frequencies of
beneficial mutations; if novel protein
variants are favored, the rate of
nonsynonymous changes will be
elevated; (2) immunology: retention of T
cells with TCRs that interact properly
with MHC–peptide complexes.

Box 2. Interactions between MHC, T Cell, and Natural Killer Cell Receptors

TCRs interact with peptides bound by MHC molecule, as well as parts of PBD (formed by α1 and α2 chains in case of
MHC-I, Figure I). Some classical (and nonclassical) MHC-I molecules can be ligands for NK and myeloid cells, resulting
in another level of selection beyond T cells. Some NK receptors (NKRs), notably the killer inhibitor receptors (KIRs) found
in humans, also recognize portions of bound peptide, potentially influencing the PBSs [100,101].

NK cells can kill cells that lose cell surface expression of MHC-I molecules due to viral infection, cancer, or even stress.
However, some NKRs evolved to recognize decoy MHC-I molecules (co-opted by viruses to prevent killing) and they ac-
tivate killing. Moreover, NKRs found on T cells are involved in driving cell proliferation, as are the leukocyte immunoglobulin-
like receptor (LILR, synonym LIR) molecules of myeloid cells and lymphocytes. In addition, some NK cells in humans and
mice bind certain MHC-I molecules to affect proliferation of invasive trophoblasts in the placenta [102,103].

NKR systems typically evolve very rapidly, with both copy number variation and high allelic polymorphism. Some species
have predominantly lectin-like NKRs (like Ly49 in mice), others have predominantly immunoglobulin (Ig)-like NKRs (like
KIRs in humans), and still others have both (like cattle) or neither (like marine mammals). In humans, the LILR genes are
located next to the KIR genes, to which they are related [102–104]. The various receptors recognize (and thus put selective
pressure on) different parts of theMHC-I molecules (Figure I): lectin-like receptors bind under the PBD, KIRs bind the top of
the PBD including the C-terminal end of the bound peptide, and LILRs typically bind theMHC α3 domain and small subunit
β2-microglobulin [101].

Given that both the NKR and MHC genetic systems are highly polymorphic but located on different chromosomes, there
can be epistasis strongly affecting traits like resistance to infectious disease, susceptibility to autoimmunity, and aspects of
reproduction. For instance, HLA-C expressed in human fetal trophoblasts are recognized by KIRs on maternal NK cells,
with the strength of interaction between particular paternal HLA-C alleles and particular maternal KIR alleles eventually
determining the blood supply to the developing embryo and pregnancy success (see Box 4) [103].
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Figure I. Schematic Illustration of Interactions between the MHC-I, Bound Peptide, and T Cell and NK Cell
Receptors. The MHC-I molecules and their interactions with various receptors are shown from their side and top views.
The nine amino acids (aa) of the peptide (in blue) interact with the MHC-I PBD formed by the α1 and α2 chains. From left to
right: the T cell receptor interacts with the MHC–peptide complex, generally binding with positions 4, 5, and 6 of the
peptide. The lectin-like NK receptors generally bind in two sites: site 1 is off the N-terminal end of the α1 chain, avoiding
the peptide, and site 2 (receptor with broken line) is underneath the α1–α2 domain in contact with α3 and β2m. The
KIRs bind the top of the α1–α2 domain including the C-terminal end of the bound peptide. The LILRs bind the MHC α3
domain and β2-microglobulin.
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Red Queen dynamics: a process in
which organisms must constantly adapt
to challenges imposed by adaptation
occurring in other, coevolving
organisms.
Selection coefficient: a difference in
fitness between genotypes, typically
measured as the difference between the
fittest genotype and the genotype in
question.
Supertype: a group of putatively
functionally similar MHC protein variants,
due to similarity of physicochemical
properties of amino acids in positions
key to specificity of antigen binding.
T cell receptor (TCR): receptor
interacting with the MHC–peptide
complex, coded by V, D, and J genes
which in the process of somatic
recombination produce a vast number
of different variants expressed by an
individual.
Trans-species polymorphism (TSP):
presence of alleles in different species
that are more similar to each other than
some alleles within species; TSP results
from retention of allelic lineages that
were already distinct in the most recent
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Figure 1. Distribution of Empirically DerivedMHC Selection Coefficients from the Literature. Selection coefficients
(i.e., differences in relative fitness between genotypes) were identified from 19 studies (see Table S1 in the supplementa
information online). Broken vertical lines are mean values by relative timescale captured by the form of selection. Asterisks
denote estimates for which selection could be ascribed to pathogens. Counts are the number of selection coefficients
Heterozygote advantage, single-allele effects, and ancestral variation retention are considered to capture more recen
selection events, while PBD and phylogeny-based values are considered to capture more long-term historic selection (see
Table S1 in the supplemental information online for more detail on how selection coefficients were estimated). Highe
estimates in some recent selection events are likely to reflect the dynamic nature of host–parasite coevolution, resulting in
bouts of strong selection acting on MHC.
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common ancestor of the species; under
neutral evolution TSP is transient and
relatively-short lived, but it may persist
for tens of millions of years under
balancing selection.
[18,19] could alleviate this constraint. Recent years have brought significant progress in address-
ing these questions, which we review in the following sections. New studies provided clear
evidence that several previously proposed evolutionary mechanisms indeed act on MHC in
nature. In addition to addressing these long-standing enigmas, they also identified complexities
of selection acting on MHC that have not been considered previously. These recent findings
have also allowed formulation of new research questions. Here we review this recent progress
and highlight outstanding and emerging questions.

How Parasites Select for MHC Polymorphism
The number of alleles segregating atMHC loci is hardly matched by any other gene, and it is thus
natural that the maintenance of this polymorphism has been a focus of evolutionarily oriented
MHC research. Because of the functions of MHC molecules in immune response, selection by
pathogens has generally been assumed themain underlying force, and has indeed been reported
in multiple studies [20,21] (Figure 1). Two mechanistic explanations have been considered ever
since MHC gene discovery: heterozygote advantage (HA) and rare-allele advantage or negative
frequency-dependent selection (NFDS) [22–24]. Another mechanism, based on fluctuating selec-
tion (FS) over time and/or space, was proposed later on and is conceptually related to HA [25]
(Box 3).

HA can arise from some degree of dominance of resistance, which allows heterozygotes to
respond to a wider range of pathogens or pathogen strains compared with homozygotes
(Box 3), or from overdominance, whereby heterozygotes have intrinsically higher fitness than
homozygotes [26]. HA has been extensively tested in many studies, and MHC heterozygosity
was indeed sometimes reported to be associated with greater resistance to infection (Figure 1;
reviewed in [20]). However, it may be difficult to distinguish selection favoring heterozygotes
from selection favoring particular alleles, which, depending on their frequency, may be present
mainly in homozygotes or heterozygotes [27,28]. HA also received some support from
ds in Genetics, April 2020, Vol. 36, No. 4 301
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Key Figure

Key Processes ShapingMHC Polymorphism in Populations and Within-
Individual Antigen-Binding Range
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Figure 2. Upper panel: MHC polymorphism. (A) Fast adaptation of pathogens reduces fitness of common alleles, favoring
rare MHC alleles, as well as functionally novel alleles (carrying nonsynonymous mutations, incoming arrow; outcoming
arrows denote alleles lost due to selection or drift; adapted from [125]). (B) Exposure of host genotypes to multiple
pathogens can lead to heterozygote advantage (HA) when exposure takes place in a single generation, or help maintain

(Figure legend continued at the bottom of the next page.
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polymorphism via fluctuating selection (FS) if exposure to different pathogens takes place in different generations. This is
particularly likely if resistance is dominant and different alleles confer resistance to different pathogens, such that fitness (a
product of resistance to pathogens encountered) can be highest in heterozygotes (within or across generations for HA
and FS, respectively). Lower panel: Individual binding range – a composite of MHC gene number and allele-binding
properties. (C) By extension of the HA mechanism, MHC duplication and divergence should increase the spectrum o
antigens an individual can present, increasing the probability of immune response. However, as the number of self-
peptides presented would also increase, costs may outweigh the benefits, for example, via processes that deal with
autoimmunity, such as negative selection in thymus against self-reactive T cells. The same processes are likely to shape
the evolution of the binding range of particular alleles. In either case, antigen-binding range should be optimized
narrowing the distribution of within-individual binding range. (D) However, beneficial alleles [subject to continuous turnover
upper panel (A)] can occur on haplotypes carrying suboptimal number of genes, widening the distribution of MHC diversity
via hitchhiking (dark gray area) compared with purely optimizing selection (light gray area). In addition, deleterious
mutations (red stars) linked to MHC genes can hitchhike with beneficial alleles (green circles). The blue double-headed
arrow indicates that processes shaping population and individual diversity are inter-related (see the main text for details)
Abbreviation: TCR, T cell receptor.

Box 3. Mechanisms Proposed to Maintain MHC Polymorphism

Parasite-Driven Mechanisms (Not Mutually Exclusive)

Heterozygote advantage (HA) Because each MHCmolecular variant is able to present only a limited repertoire of antigens
to T cells, being heterozygote and thus expressing two different MHC proteins should increase the probability of present-
ing a given antigen and thus raising an adaptive immune response [23]. For HA to be able to maintain polymorphism, re-
sistance to a single pathogen should be overdominant, or more plausibly, dominant with different alleles conferring
resistance to different pathogen species or strains, resulting in fitness over multiple infections that is overdominant (see Fig-
ure 2 in main text) [105]. However, dominance of resistance appears not to be a universal feature of MHC [30]. Further-
more, the existing theory predicts that unless fitness contributions of different alleles to resistance are similar, HA alone
can maintain much fewer alleles than observed in natural populations [106].

Negative frequency‐dependent selection (NFDS) arises from the fact that pathogens will tend to adapt by evading presen-
tation by the most common MHC types [22]. Simulations of host–parasite coevolution suggest that this mechanism is ca-
pable of maintaining high levels of MHC polymorphism [39].

Fluctuating selection (FS) arises when there is variation in the presence of pathogens over time. The process can maintain
MHC polymorphism under restrictions shared with HA model (dominance, similar fitness contributions of alleles), plus bal-
anced occurrence of pathogen species in time [25]. Selection on MHC alleles can also vary in space, for which there is
some evidence from the field (see main text) but which has been little explored theoretically.

Other Mechanisms

Mate choice for dissimilar mates can in theory maintain MHC polymorphism even in the absence of selection from para-
sites [107,108]. It should be stressed, however, that the evolution of such preferences requires pre-existingMHC polymor-
phism [109]. Nevertheless, mate choice for advantageous and compatible MHC genotypes can substantially affect the
speed of MHC evolution [110].

Sheltered load would accumulate if recessive deleterious mutations linked toMHCwere hidden from selection due to high
MHC heterozygosity [80], analogous to a mechanism earlier postulated for plant self-incompatibility genes [111]. Similar to
mate choice, this mechanism requires pre-existing balancing selection, but once at work it could potentially help maintain
polymorphism in periods when selection from parasites is weak [80].
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experimental infection studies with inbred mice and with frogs [26,29], but a study on outbred
mice did not find support for HA in resistance to infection [30]. Even if, on average, heterozygotes
are fitter than homozygotes, existing theory suggests that, similar to classical overdominance
models [31], HA resulting from dominant resistance can maintain only a limited number of alleles,
calling into question a major role of HA in the maintenance of MHC polymorphism (Box 3). This
constraint is somewhat alleviated by the divergent allele advantage (DAA) version of HA [32,33].
DAA assumes that MHC heterozygotes carrying alleles with more divergent binding properties
should present a larger overall repertoire of antigens, an assumption supported by correlational
studies [34–36] as well as through computational analyses [37,38].
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NFDS can in theory readily maintain observed levels ofMHC polymorphism [39]. Furthermore, the
dynamic nature of host–parasite coevolution underlying NFDS [40] is easy to reconcile with high
selection coefficients sometimes reported to act on MHC in the short term (Figure 1). Yet, NFDS
has been harder to demonstrate than HA. Associations of infection with MHC alleles, reported
multiple times (Figure 1; reviewed in [20]), are consistent not only with NFDS, but also with FS,
HA (if resistance alleles are rare, they occur almost exclusively in heterozygotes), and even with
directional selection depletingMHC polymorphism. Relating parasite load to snapshots of current
allele frequencies may not be very informative either, because host–parasite coevolution may su-
perimpose time lags on allele frequency changes. Therefore, a currently rareMHC allele that was
common in the recent past can still be susceptible to pathogens and conversely, pathogens
might not have adapted to a currently common, beneficial MHC allele if it increased in frequency
only recently. That is probably why frequency dependencemay be observed for some, but not for
other snapshots of populations within the same system [41,42]. This shortcoming of snapshot
studies has recently been overcome by using a system of allopatric guppy populations in which
introduction ofMHC alleles to which pathogens have not had a chance to adapt for many gener-
ations indeed increases resistance to a parasite [43]. Also consistent with fast local adaptation,
experimental evolution in the laboratory showed that viruses passaged for a dozen generations
on a mouse strain of a given MHC haplotype evolved improved infection success on that haplo-
type, but not on alternative haplotypes to which they have not been exposed [44]. These findings
are consistent with the proposedmechanism of NFDSwhereby rareMHC alleles may ‘regain’ ad-
vantage after pathogens are forced to adapt to more common MHC alleles [45]. Still, a cycle
where a commonMHC allele is evaded by pathogens becomes rare and then regains resistance
has not yet been demonstrated in full.

By contrast, there is some evidence that at least sometimes strong selection from pathogens may
in fact reduceMHC polymorphism, as exemplified by the chimpanzeeMHC-I A locus (see Box 2 for
functions of Class I and II loci), which shows an order of magnitude lower diversity compared with
the orthologous human leukocyte antigen (HLA)-A locus in humans, even though wewould expect
the reverse based on larger effective population size in chimpanzees [46]. This is likely an effect of
simian immunodeficiency virus epidemics some 3 million years ago (mya), strongly favoring MHC
alleles functionally related to those slowing AIDS progression in humans [47]. Conversely, a recent
ancient DNA study showed that the same MHC-II DRB1*15:01 allele that confers susceptibility
to the leprosy-causing Mycobacterium leprae in contemporary populations was already positively
associated with leprosy infection in medieval Europe [48]. Still, the allele shows only a minor reduc-
tion in frequency and remains common in contemporary Europe, suggesting that selection against
it was not effective, perhaps due to pleiotropic effects and resulting fitness trade-offs, such as its
protective effect against type 1 diabetes [49]. Coupled with little evidence for adaptive evolution
in M. leprae to evade presentation by MHC-II proteins, these data provide no support for NFDS,
at least over the ~24 generations covered by this study. Overall, the role of NFDS in maintaining
MHC polymorphism, while supported by recent evidence demonstrating preconditions necessary
for it to work [15,43,44], remains to be more firmly established.

In comparison to HA and NFDS, the role of FS on the maintenance of MHC polymorphism has
received relatively less attention. A number of studies reported associations between MHC vari-
ation and spatial differences in parasite communities, leading to increased MHC variation at the
meta-population level (reviewed in [20,50]). Even less evidence is available for temporal variation,
but a recent study reported temporal differences in pathogen species composition, where differ-
ent MHC alleles were associated with different pathogens [35]. The advent of ancient DNA
technology might help provide a better picture of the contribution of past temporal fluctuations
to MHC polymorphism in present-day populations [51]. Theory shows that such temporal
304 Trends in Genetics, April 2020, Vol. 36, No. 4
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fluctuations canmaintain polymorphism under constraints similar to those applying to HA (Box 3).
By contrast, spatial variation in selection pressures on MHC has not yet received a comprehen-
sive theoretical treatment, even though models of host–pathogen coevolution show that geo-
graphic subdivision can have important implications for polymorphism in hosts and parasites
[52,53]. Population structure may interact with NFDS acting on MHC when neighboring popula-
tions are ‘out of phase’. An example of this is provided by a study on bank voles, where an allele
conferring resistance to a nematode species in one population increased susceptibility to
the same parasite in another population [54]. Given that population structure at the MHC is
often pronounced [55–57], its role in maintaining MHC diversity clearly deserves more attention.

Darwinian Demons Do Not Exist in the MHC World Either
Darwinian demons, hypothetical organisms that are able to maximize all elements of their fitness
simultaneously, do not exist because of trade-offs between fitness components [58]. What trade-
offs prevent MHC molecules from inciting immune response to any pathogen? Interestingly,
recent evidence suggests that the probability of binding at least one immunoreactive antigen by
a given MHC molecule should not constrain immune response to large viruses [7]. Differences
in protection conferred by different MHC molecules can still stem from differences in binding
properties (e.g., binding affinity) [59], or, in the case of fast-evolving pathogens, the ability to target
antigens conserved by functional constraints [9]. This might explain why the ability to raise an
immune response sometimes cannot be equated with resistance [60]. Nevertheless, the level
of resistance to pathogens may in part depend on the range of different antigens bound by a
given MHC molecule, which in a recent analysis was shown to be positively associated with pro-
tective effect against HIV [61]. This raises the question of whyMHC variants differ in the number of
different peptides they can present by nearly two orders of magnitude, as indicated by recent dis-
coveries in chicken and humans [18,19]. Should not promiscuous binders (generalists) replace
fastidious binders (specialists)? A related question was raised much earlier in the MHC literature
[62,63]: why the number of MHC loci in the genome is not larger, providing protection against
any possible pathogen that the host can encounter? Such a multilocus genotype would consti-
tute a Darwinian demon of immunogenetics.

In the context of the MHC, it has been proposed that expansion of theMHC gene family is limited
by the associated risk of autoimmunity, as it was recently shown for MHC heterozygosity in
humans [64]. To avoid self-aggression, T cells with a T cell receptor (TCR) binding self-
peptides too strongly are deleted in the process of negative selection. The resulting ‘holes’ in
the TCR repertoire would increase with an increased range of MHC-presented epitopes associ-
ated with expressing moreMHC variation across duplicated loci [63]. Consequently, the number
of expressedMHC loci should be optimized, rather than maximized by selection [62,65]. Indirect
support for this T cell depletion hypothesis was provided by studies showing that individuals with
intermediate number of allelic variants across duplicated MHC-II genes carry the fewest parasite
species [54,66]. However, the TCR depletion explanation was challenged based on the argument
that expressing a wide range of MHC molecules might also enhance positive selection [67],
whereby T cells, prior to negative selection, are tested for their functionality against self-
peptide–MHC complexes. Technological advances now allow predictions of the T cell depletion
hypothesis to be tested directly, and a recent study in a rodent [68] demonstrated that the TCR
repertoire was indeed negatively associated with the number of expressed MHC-I (but not
MHC-II) alleles. Whether specialist and generalist MHC alleles are associated with similar trade-
offs [18] remains to be seen. Computational work suggests that generalists might be favored in
pathogen-rich environments [69], in line with indirect evidence that pathogen richness might
shift the optimum toward a higher number of MHC genes [70,71]. Alternatively, it has been sug-
gested that promiscuous binders are ancestral, with particular specialists favored by specific
Trends in Genetics, April 2020, Vol. 36, No. 4 305
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selection pressures from pathogens with strong fitness effects [19]. Associations of MHC haplo-
types or specialist/generalist alleles with important diseases might increase the observed ranges
compared with those predicted under purely optimizing selection (Figure 2). Optimizing selection
might further be complicated by sex-specific selection on individual MHC diversity reported in
recent studies [68,72]. Clearly, more work in this area is needed to understand evolution of
antigen-binding ranges at the individual level.

The Role of Genomic Architecture
Selection on particular MHC types may sometimes be constrained by their genomic context, in
particular, within theMHC genomic region, as exemplified by long-term conservation of multigene
haplotypes within the MHC-I region of zebrafish [73]. Presentation of antigens on the cell surface
does not only depend on MHC-binding properties, but also depend on the efficiency of the mo-
lecular apparatus assembling MHC and antigens [2], the blocking of which is basis for numerous
pathogen evasion mutations [74]. In rat and in several non-mammalian vertebrates,MHC-I genes
are located in proximity to genes coding for transporters associated with antigen presentation
(TAPs) and tapasins, which can be highly polymorphic and, as evidence from chicken and rat
indicates, co-evolve their specificities to work optimally with MHC-I alleles present on the same
haplotype [75]. In most mammals, these genes are located at some distance from MHC-I region
and are not polymorphic [75]. More work is needed to resolve whether differences in genomic
structure represent alternative solutions to constraints imposed on MHC evolution, at least in
part, by their linkage with genes coding for MHC peptide loading complex [2].

Selection on polymorphic MHC genes can also be affected by their linkage with deleterious
mutations. Indeed, the MHC region of the human genome is particularly strongly associated
with genetic disease risk, including various common diseases [11]. Many of them are associated
with classical MHC genes themselves (reviewed in [76]), but multiple associations with diseases
also map to genes other than classical MHC [77] and to intergenic polymorphisms [78,79]. This
could indicate an accumulation of deleterious mutations within the MHC region, raising the ques-
tion of how these are maintained despite their fitness costs. In this context, it has been proposed
that recessive deleterious variants can reach high frequency in the MHC region and even fix within
particular MHC allelic lineages because of physical linkage and excessive heterozygosity in this
region. Such deleterious variants would largely be hidden from selection through the high hetero-
zygosity that prevents their phenotypic expression, forming a sheltered load [80] (Box 3). How-
ever, although the accumulation of deleterious mutations around classical MHC genes has
been demonstrated in humans [81], those variants are not necessarily recessive. Indeed, explicit
modeling of polymorphism around targets of balancing selection also showed an increased
frequency for ‘additive’ deleterious mutations. A negative correlation was observed between
the frequency of these deleterious variants and their distance from classical MHC genes,
supporting the notion that the effect is due to hitchhiking through linkage with targets of
balancing selection [81]. Whether such accumulation of deleterious mutations in certain haplo-
types can affect dynamics of MHC polymorphism would be worth investigating.

Furthermore, the organization of MHC gene copies in multilocus haplotypes leads to additional
complexity for MHC evolution, such as epistatic interactions between loci [82,83]. A recent sim-
ulation study aimed to explore the evolutionary dynamics that govern MHC haplotype evolution in
human populations, fitting their models to MHC haplotype data from 6.59 million individuals of a
bone marrow donor program [84]. Their best-fitting models combined, unexpectedly, positive
frequency-dependent selection, rapid fitness decline of haplotypes, and a very high haplotype
recruitment rate (a composite measure of mutation, recombination, and gene flow). These simu-
lations have been criticized for making a number of biologically implausible assumptions and for
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not addressing outstanding features of MHC evolution, such as TSP and high nonsynonymous
variation [85]. Overall, while the significance of this study thus remains unclear, the role of the ge-
nomic context in shaping evolution of polymorphicMHC genes and haplotypes is certainly an im-
portant field for future research.

Reconciling Landmark Features of MHC
Can the landmarkMHC features – signatures of both balancing (high polymorphism and long-term
maintenance of allelic linages) and positive (excess of nonsynonymous variation) selection – be
explained by the set of mechanisms described earlier, or should the current paradigm be
extended? Takahata and Nei [24] concluded from a simulation model that HA, and some versions
of NFDS, can both cause positive selection, maintain polymorphism of MHC genes, and produce
long gene genealogies. In the case of NFDS, the same mechanism of pathogens adapting to
common MHC alleles would favor the rise of new functional MHC variants, generating the signal
of positive selection, and prevent loss of alleles that become rare, as these would regain resistance
due to trade-offs associated with pathogen adaptation [44] (Figure 2). ‘Good genes’ sexual selec-
tion might enhance selection from pathogens (Box 4), possibly accelerating the rate of
nonsynonymous substitutions observed in species with higher inferred sexual selection intensity
[86]. In the case of HA, although new alleles will be found initially in heterozygotes, their selective
advantage will be very weak in already polymorphic populations, characterized by high heterozy-
gosity [87]. If species inherit much polymorphism (and thus high expected heterozygosity) from
ancestor species, as suggested by wide occurrence of TSP [17], contribution of HA to positive
selection may be negligible, unless FS, NFDS, or nonequilibrium demography skew allele
frequencies. As for FS, it is not clear how it contributes to positive selection, and we know of no
theoretical treatment of this topic.

The role of selection from pathogens in maintaining TSP is more controversial. It has been argued
that positive selection on theMHC does not necessarily reflect balancing selection, but may be a
Box 4. MHC-Based Mating Preferences, Maternal–Fetal Interactions, and MHC Polymorphism

While the potential of mating preferences for MHC-dissimilar mates to maintain MHC polymorphism has long been
discussed [105,112] (Box 3), recent meta-analyses question the paradigm of MHC-disassortative mating [113,114].
A systematic collection of the literature across vertebrates, including humans, corroborated the prediction that females
choose more MHC diverse mates (i.e., more heterozygous or having more classical MHC loci), while support for prefer-
ences for MHC-dissimilar mates appears to depend on particular taxa and number of genes investigated [113], and
was not found for human and non-human primates [114]. In addition to mate choice, postcopulatory selection has also
been proposed as a process that can promote MHC diversity, if mate preferences fail to do the job. This can take shape
of sperm–egg/maternal interactions [45,115,116] or maternal–fetal interactions. As for the latter, evidence also suggests
that MHC similarity between mates is linked to recurrent spontaneous abortion, low birth weight, and other pregnancy-
associated problems [117–120]. However, the most polymorphic MHC-I and MHC-II genes are not expressed by the
fertilized embryo [121], except for slightly less polymorphic HLA-C, and there is conflicting evidence whether classical
MHC molecules are expressed on the unfertilized egg and sperm at all [122]. Thus, any effect of MHC on pregnancy suc-
cessmay not be amanifestation of evolutionary optimization of classical MHC diversity in progeny, but rather arise from the
need to stimulate maternal immunity that allows successful implantation and improves blood supply to the developing fe-
tus [121]. Indeed, across eutherian (so-called placental) mammals, low polymorphism MHC-I expression has been ob-
served on the embryo cell wall (trophoblast), and human, monkey, and mouse studies support that allogenic parental
MHC-I combinations may influence likelihood of implantation, fetal growth, and successful pregnancy, but not necessarily
levels ofMHC heterozygous and homozygous offspring [118,120,123]. Thus, while MHC-dependent sexual selection has
been experimentally shown in several species, precopulatory and postcopulatory mechanisms do not generally seem to
favor maximizingMHC diversity, so that their role in maintainingMHC polymorphism, relative to pathogen-mediated selec-
tion, remains debated. The effects of preferences for MHC-diverse mates which emerged significant in meta-analyses are
consistent with mating advantage of individuals in high phenotypic condition [110], given that heterozygotes may often
show improved resistance to pathogens. The effect of such preferences remain to be explored theoretically, but intuitively
they could reinforce HA (or selection on particular MHC alleles) [124]. Furthermore, preference for optimally dissimilar
mates as an explanation for the conflicting results from meta-analyses remains to be more fully explored [110,113].
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Outstanding Questions
How does pathogen evolution rate and
peptidome size modulate selection on
the MHC? Do selective sweeps, such
as those inferred for MHC-I in chim-
panzee and characteristic of patho-
gens particularly effective in immune
evasion (such as HIV), strongly favor
MHC molecules capable of presenting
highly conserved pathogen peptides?

Are trade-offs between disease pro-
tection conferred by MHC alleles and
other fitness components, for exam-
ple, increased risk of autoimmunity
(see the leprosy case discussed in the
main text) common and if so, how do
such trade-offs interact with other pro-
cesses shaping MHC polymorphism?

Are fastidious and promiscuous MHC
alleles co-maintained because of such
evolutionary trade-offs?

How important is the genomic
architecture of the MHC region and
interactions with other genes, encoded
both within (e.g., TAPs) and outside
(e.g., killer inhibitor receptors; see
Box 2) this region in shaping MHC
polymorphism?

Can accumulation of deleterious
mutations (recessive or not) within the
MHC region determine the evolutionary
dynamics of MHC haplotypes and
shape of MHC gene genealogies? Do
deleterious alleles accumulate in MHC
of species other than human? Is the ac-
cumulation affected by the landscape of
recombination within the MHC region?

Can divergent allele advantage prevent
the extinction of divergent allele lineages
and lead to trans-species polymor-
phism? Does divergent allele advantage
favor introgression at MHC?

How important is geographic subdivision
and interspecific introgression for the
long-termmaintenance ofMHC variation?

Do differences between species in the
number of MHC genes in the genome
translate into differences in the number
of classical MHC genes expressed on
the cells? If so, what selective forces
shape this variation?

How does sex-specific selection on
the MHC affect MHC diversity within
individuals and populations?
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result of a series of selective sweeps, which would erase TSP [88]. In contrast to ‘minority
advantage’ modeled by Takahata and Nei [24], which assumed entirely deterministic NFDS,
host–pathogen coevolution may be more dynamic and unpredictable, and loss ofMHC variation
can occur [89], as exemplified by the chimpanzee MHC-I example [46] discussed earlier. Simula-
tion studies have shown that while Red Queen dynamics strongly favor novel MHC variants,
they can make gene genealogies longer or shorter compared with drift, depending on parameter
combinations which are mostly unknown for natural populations [87]. The TSP phenomenon, that
is, the maintenance of multiple ancient allelic lineages, thus remains a puzzling observation. Con-
vergent evolution of MHC alleles due to shared parasites between species could yield patterns
resembling TSP, but this explanation is not supported by recent research [90,91]. The presence
of sheltered load within MHC (Box 3) could in principle contribute to TSP [80], but as discussed
earlier, evidence for this hypothesis is also lacking. Long-term persistence of allelic lineages can
also be facilitated by geographic subdivision and/or MHC introgression between species. In
geographically structured models of host–pathogen coevolution (which do not consider MHC
explicitly), polymorphism is maintained over longer periods than in unstructuredmodels, probably
due to asynchrony of coevolutionary interactions [52,53]. Introduction of MHC alleles from other
species via adaptive introgression [4,55,92] could also lead to patterns consistent with TSP.
Instead of being an indirect result of other dynamics, long-term coexistence of divergent allelic lin-
eages could also be selected for directly, for example, due to their functional distinctness [33].
Lighten et al. [88] proposed that TSP may arise due to long-term maintenance of functional
MHC groups (supertypes), with allelic replacement occurring mostly within these groups, but
empirical support and theoretical foundations for this proposition have been questioned [93].
Still, it seems appealing that DAA could help prevent extinction of most divergent lineages
[33,37], a possibility that requires an in-depth theoretical exploration. Overall, current evidence
suggests that TSP can arise directly from host–pathogen coevolution under panmixia, but popu-
lation subdivision and/or interspecific introgression may contribute to the long-term maintenance
of MHC allelic lineages. The relative roles of these mechanisms deserve further investigation.

Concluding Remarks
Well-understood function and extreme polymorphism of MHC genes have made them a leading
model for investigation of positive and balancing selection [94], but at the same time the complex
nature of selective pressures acting on these genes has hampered full understanding of underly-
ing mechanisms. Two classical mechanisms of balancing selection, HA and NFDS, have now
been demonstrated to be able to operate on MHC in principle, and likely both contribute to
MHC polymorphism. Existing theory questions a major role of HA in explaining the existing levels
of polymorphism and nonsynonymous variation all by itself. Yet, the leading role of NFDS remains
to be more firmly established given that some long-term data appear to contradict it [46,48]. The
role of temporal and spatial fluctuations in pathogen composition for selection of MHC polymor-
phism also deserves more theoretical and empirical attention. While mate choice for dissimilar
mates appears to lack the generality necessary to significantly impact evolution ofMHC polymor-
phism, the modifying role of preferences based on partners’ MHC diversity or complementarity
deserves to be more thoroughly explored (Box 4). Selection shaping MHC polymorphism can
also be modified by evolution of binding promiscuity of MHC molecules or MHC gene number,
both affecting antigen-binding ranges of individuals. Conversely, selection favoring particular
MHC alleles may result in indirect selection for haplotypes with suboptimal number of genes
(or alleles with suboptimal binding range), which can explain between-individual variance in
MHC gene number in natural populations (Figure 2). Additional selection pressures on the MHC
that are likely to affect evolution of MHC polymorphism include genomic context, accumulation
of deleterious mutations in MHC haplotypes, interactions with NK receptors (Box 2), or sex-
specific selection (see Outstanding Questions). Future theory could also benefit from incorporating
308 Trends in Genetics, April 2020, Vol. 36, No. 4
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spatial structure in models of balancing selection on MHC polymorphism. Introgression of MHC
alleles from different populations, and even species, appears to be an important and perhaps
widespread process with likely consequences for the level of polymorphism and genealogies of
MHC genes. Overall, recent years have brought considerable progress in our understanding of
processes shaping polymorphism of the MHC genes. Major mechanisms postulated by classical
theory have been confirmed to operate in nature. However, recent research has also shown the
need to extend the existing theory beyond classical models of balancing selection, to include addi-
tional selective pressures listed earlier. Further empirical work is needed to assess the generality
and importance of these pressures.
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