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I. DERIVATION OF THE LIGHT-MATTER INTERACTION HAMILTONIAN:

COULOMB GAUGE

In this section we outline how to derive the light-matter Hamiltonian. We base our

discussion on the geometry of Fig. 1 in the main text. Following the approach in Ref. [S1],

we include both the mobile electrons and the positively charged background, whose charge

density centers around and neutralises the 2D plane of the mobile electrons. We assume

that the background atoms move so slowly that their centres of mass are fixed. Since

the atoms from the background material can have electric dipole moments, we model the

total displacement field of the background material alone as Dbg = Dstatic + P , where

∇ ·Dstatic = ρbg(r) =
∑
j∈bg

Qjδ(r − rj) and the bulk polarization, P (r, t) = ε0χbgE(r, t)

where E is the net electric field strength at r and time t, ε0 is the vacuum permittivity.

We have expressed the static background charge distribution as a sum over the collection

of stationary particles {j}, with charge {Qj} at position {rj}. We have also approximated

this polarization by a phenomenological polarizability constant χbg, that is independent of

position and frequency.

To derive the full light-matter Hamiltonian, we start from the usual Lagrangian formu-

lation of charged particles interacting with electromagnetic field with background polariz-

ability incorporated,

L =
N∑
j=1

[1

2
mj ṙ

2
j +Qj ṙ ·A(rj, t)−Qjφ(rj, t)

]
+
ε0
2

∫
d3r

[
εrE

2(r, t)− c2B2(r, t)
]
, (S1)

where mj is the mass of particle j (either a mobile electron or a stationary background

charged atom) with electric charge Qj located at rj, where the net electrical potential is

φ(rj, t) and the vector potential is A. ṙ means the time derivative of r. c is the speed of

light in vacuum, εr = 1 + χbg. The first term of Eq. (S1) describes light-matter interaction

while the second term is the light field in the medium formed by the background atoms.

Following the usual procedures outlined in Ref. [S1], we obtain the Hamiltonian in

Coulomb gauge, where the vector potential A is the transverse field whereas φ is the longi-

tudinal field.

H =
N∑
j=1

[(pj −QjA(rj, t))
2

2mj

+
1

2
Qjφ(rj, t)

]
+
ε0
2

∫
d3r

[
εrȦ

2 −A ·∇2A
]

(S2)

Here pj is the conjugate momentum of rj and we assume the fields decay to zero at the
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boundaries infinitely far away. We also have φ(r) =
∑
j

Qj
4πε0εr|r−rj | .

We note that calculations may also be done in a different gauge and for calculations

involving resonant coupling the dipolar gauge is better suited [S2], but leads to a more

complicated interaction terms. In this work, we keep away from resonance (see Sec. II) so

the Coulomb gauge is appropriate and the resulting interaction particularly simple.

The particle index above runs over both mobile electrons and background particles. Since

the latter are treated as stationary, their kinetic energies are ignored and their positions

are treated as parameters instead of variables. Thus, the Coulomb energy between them

is a constant and the Coulomb energy between electrons and background atoms forms a

static potential Vb(r) for the electrons which confines the mobile electron tightly in the 2D

plane at z = π/2qL, where qL refers to laser photon wavevector that we fix to lie along

z-axis. Thus, the total potential energy of the electron j due to the background charges is

Vbg(rj) = −eVb(rj), where −e is the electron charge. The Hamiltonian [Eq. (S2)] becomes,

H =
∑
j∈e−

[(pj + eA(rj, t))
2

2m
+Vbg(rj)

]
+

1

2

∑
j 6=k

j,k∈e−

e2

4πε0εr|rj − rk|
+
ε0
2

∫
d3r

[
εrȦ

2−A·∇2A
]
.

(S3)

Here m is the bare electron mass.

Following Ref. [S1], the vector potential A satisfies the equation(
∇2 − εr

c2

∂2

∂t2

)
A(r, t) = −µ0

(∑
j

Qjvjδ(r − rj)− ε0εr∇
∂φ

∂t

)
(S4)

Here vj is the velocity of particle j (which is only non-zero for mobile electrons).

Since we are considering a driven cavity system, we write the solution as a mode expansion

of the EM field plus the driving transverse field whose vector potential oscillates with angular

frequency ωL (from the driving laser) and amplitude Ad and which we treat as classical,

A(r, t) =
∑
q

AqCq(t)uq(r) + Ad sin(qLz − ωLt). (S5)

uq(r) are transverse photon mode functions that form a complete and orthonormal basis

and satisfy (
∇2 +

εrω
2
q

c2

)
uq(r) = 0 , (S6)

where ωq is the frequency the cavity mode labelled q oscillate at. We consider that all the

light modes are confined inside a box with periodic boundary conditions whose size V tends

to infinity. We categorise the light modes into the cavity mode and the environment modes.
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a. Cavity modes The split-ring THz cavity covers only a small area. Hence, we model

the cavity to support a single mode (that is the lowest frequency (or fundamental) mode

supported by the cavity) whose electric field points in the xy-plane parallel to the laser

polarization and its strength is modulated by the lowest order standing wave in the perpen-

dicular direction to the electric field with nodes at the boundaries, as shown in Fig. 1 of the

main text. Thus the mode function is real, uc(r) =
√

2
Vc cos(q0x), where q0 = ωc

√
εr/c as

presented in the main text.

b. Environment modes It is clear that the cavity modes are only a small fractions of all

the light modes inside the periodic box we used to define the light modes. Most of the other

modes don’t ‘see’ the mirrors as they are of different frequencies from the cavity modes or

they are travelling at such large angles from cavity axis. We treat them as the environment

modes. We use complex mode functions uqe≡{qe,s} (with u∗qe = u−qe) that describe travelling

plane waves for the environment modes whose indices can be interpreted as momentum (qe)

and polarization labels (s) for the modes.

With this mode decomposition, we can rewrite the free EM field the Hamiltonian as

Hfree EM field =
ε0
2

∑
q∈{c,qe}

A2
q(1 + χbg)

[
πqπ−q + ω2

qCqC−q
]

=
1

2

∑
q

[
πqπ−q + ω2

qCqC−q
]
, (S7)

where πq = Ċ−q is the conjugate momentum for Cq, C−q = Cq when q refers to the cavity

mode and we introduce the normalisation constant Aq = 1√
ε0(1+χbg)

≡ 1√
ε0εr

.

Combine the above discussion with Eq. (S3), we arrive at the full Hamiltonian,

H =
∑
j∈e−

[(pj + e
[

1√
ε0εr

∑
q

Cq(t)uq(rj) + Ad cos(ωLt)
])2

2m
+ Vbg(rj)

]
+

1

2

∑
j 6=k

j,k∈e−

e2

4πε0εr|rj − rk|
+

1

2

∑
q

[
πqπ−q + ω2

qCqC−q
]
. (S8)

We obtain the Hamiltonian for the quantum system through canonical quantisation of

the above classical Hamiltonian.

A. Electron Hamiltonian

The electron field can be quantised by imposing the commutation relation[
(rj)l , (pk)m

]
= i~δj,kδl,m. (S9)

S4



rj and pj are now operators and j and k are particle indices while l and m are spatial

dimensional indices.

We expand out Eq. (S8) to separate out the terms describing the independent electrons,

Hel =
∑
j∈e−

p2
j

2m
+ Vbg(rj) (S10)

We can proceed to second-quantise this single-particle part of the Hamiltonian by choosing

the Bloch states that diagonalises Eq. (S10). We denote the eigenfunctions as Ψk,σ(r) =

eik·rφk,σ(r), where φk,σ(r) has the periodicity of the lattice. We define the field operator for

the electrons, ψ†(r) =
∑
k

Ψ∗k,σ(r)c†k,σ, where c†k,σ is fermionic creation operator for electron

in Bloch state with quasi-momentum k and spin σ. Eq. (S10) is thus diagonal in quasi-

momentum space, Hel =
∑
k,σ

ε(k)c†k,σck,σ, where ε(k) is the electron dispersion. As in the

main text, we assume the dispersion to be

ε(k) =
~2k2

2m∗
, (S11)

where m∗ is the effective mass of the electrons. We also define the Fermi wavevector kf ,

Fermi velocity vf = ~kf/m∗ and the chemical potential µ at the Fermi level εf = ~2k2
f/2m

∗.

The couplings to the transverse light fields do not affect the choice of Bloch state basis.

B. EM field Hamiltonian

The EM field can be quantised by imposing the commutation relation

[Cq1 , πq2 ] = i~δq1,q2 (S12)

We second-quantise this part of the Hamiltonian by defining πq = -i
√

~ωq
2

(
b−q − b†q

)
and

Cq =
√

~
2ωq

(
bq + b†−q

)
. (b−q = bq if q refers to the cavity mode.) Eq. (S12) implies that bq

and b†q are bosonic annihilation and creation operators.

Collecting everything together, we arrive at the quantised Hamiltonian for the 2D mobile
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electrons and the electromagnetic field (which is second quantised) in Coulomb gauge,

H =
∑
j∈e−

[(pj + e
∑
q

√
~

2ε0εrωq
uq(rj)(bq + b†−q) + eAd cos(ωLt)

)2

2m
+ Vbg(rj)

]
+

1

2

∑
j 6=k

j,k∈e−

e2

4πε0εr|rj − rk|
+
∑
q

~ωq(b†qbq +
1

2
). (S13)

This Hamiltonian describes the full light-electron system. If we ignore the environment

modes (we justify this in the next section) we arrive at Eq. (1) in the main text.

II. LIGHT-MATTER INTERACTION

In this section, we discuss the interactions between matter and the cavity and the laser

light modes in Sec. II A and II B. we proceed to consider the light-matter interaction without

the environment modes. We justify this in Sec. II C, where we discuss the inelastic scatterings

of the laser photons into the environment modes. The scatterings heat the electrons but

the effect is insignificant due to the small detuning to cavity frequency ratio and the strong

cavity mode volume compression.

By expanding out Eq. (S13) and limiting q to only the cavity mode, we obtain the different

transverse light field-matter interactions: paramagnetic interactions,

Hpara−c =
∑
j∈e−

e

m
pj · êy

√
~

Vcε0εrωc
2 cos(q0xj)

(
b+ b†

)
(S14)

Hpara−d =
∑
j∈e−

e

m
pj ·Ad cos(ωLt) (S15)

and diamagnetic interactions,

Hdia−c =
∑
j∈e−

e2

2m

~
Vcε0εrωc

4 cos2(q0xj)
(
b+ b†

)2
(S16)

Hdia−d =
∑
j∈e−

e2

2m
Ad cos(ωLt) ·Ad cos(ωLt) (S17)

Hdia−cd =
∑
j∈e−

e2

m

√
~

Vcε0εrωc
2 cos(q0xj)|Ad| cos(ωLt)

(
b+ b†

)
(S18)
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A. Paramagnetic interactions

Hpara−c describes the paramagnetic interactions between the electrons and the cavity

modes. We get the interaction Hamiltonian of the formHpara−c =
∑
k,σ,q

gpara−ck /
√
Sc†k,σck−q,σ(b+

b†), where q = ±q0ex. S ∝ 1/ω2
c is the cavity area in the xy-plane. The proportionality

constant is obtained using values of electron density and number of electrons from Ref. [S3].

The matrix elements evaluate to gpara−ck /
√
S ∼ ~|k|e

m∗

√
~

ΛVcεrε0ωc for |k| � q0.

We’d like to draw attention to the fact that the paramagnetic coupling strength is in-

versely proportional to the effective mass rather than the bare electron mass [S4]. We thus

learn that this interaction is weaker for less mobile electrons.

In the rotating frame of the driving laser these interactions are time-dependent: they ro-

tate at ±ωL. In Ref. [S5], it is shown that the strength of the effective (current-current) inter-

actions between electrons due to the paramagnetic interactions are ∼ gpara−ck gpara−c
k′

/~ωcS.

We compare these paramagnetic interactions to the stimulated diamagnetic scatterings

discussed below and note that the two interaction terms in Eq. (S14) and Eq. (S18) coincide

once one switches p with eAd. Hence, we obtain an expression for the critical intensity for the

driving laser, Ic,1 (corresponding to a critical magnitude for vector potential for the driving

field, |Ad|c,1), beyond which the paramagnetic interactions are weaker than the stimulated

diamagnetic interactions: e|Ad|c,1 ∼ | 〈kF |pe−iq·r|kF + q〉 | ∼ m
m∗

~kF for |q| � kf .

Ic,1 ∼
( m
m∗

)2 ~ω2
L

√
εrne

2α
, (S19)

where α is the fine structure constant and ne is the electron density per unit area.

Hpara−d does not cause electron scatterings for a one-band system since the driving field

carries no momentum in the xy-plane. When there are strongly detuned electronic bands,

Hpara−d gives rise to vertical (interband) virtual transitions and the electronic bands gain

momentum-dependent shifts known as dynamical Stark shifts, whose magnitudes are in-

versely proportional to the detunings between the driving frequency and the electronic band

gap [S6]. We here assume that this detuning is sufficiently large for us to neglect the change

to the electronic band of interest.
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B. Diamagnetic interactions

Hdia−c describes the diamagnetic interactions involving only the cavity modes. These

interactions scatter electrons and also shift the electron dispersions due to the term propor-

tional to (e2/m)(~/Vcε0εrωc)
(
2b†b+ 1

)∑
k

nk. The other terms involves operators like b†b†

and bb, so they are also rapidly rotating (at ±2ωL) in the co-rotating frame of the driving

laser and contribute terms of the order O(1/2ωL).

In order to neglect this diamagnetic interaction term when the cavity is not populated

(as is the case in the main text), the cavity field’s vacuum fluctuations shouldn’t be larger

than the driving field. Thus, we can estimate another critical intensity, Ic,2 (corresponding

to a critical magnitude for vector potential for the driving field, |Ad|c,2) beyond which we

can neglect the diamagnetic scatterings between only cavity photons: |Ad|c,2 ∼
√

~
Λλ3ε0εrωc

=⇒ Ic,2 ∼
~ω2

Lc

Λ
√
εrωcλ3

(S20)

Hdia−d is a sinusoidally oscillating constant and does not alter the electronic or the pho-

tonic states because the laser photons carry no in-plane momentum. We have again assumed

that other electronic bands are so far detuned that we can neglect vertical transitions.

Hdia−cd describes stimulated diamagnetic scatterings described in the main text. In the

rotating frame of the driving field, we ignore the rapidly rotating (at ±2ωL ) terms in this

interaction Hamiltonian (rotating-wave approximation). The time-independent terms are

presented in main text Eq. (2).

We conclude that the stimulated diamagnetic interactions compete with paramagnetic

scatterings with the cavity photons as well as with diamagnetic scatterings involving only

the cavity fields and that they can be estimated to dominate above a critical field intensity

Icr ∼ max
{
Ic,1,Ic,2

}
= max

{( m
m∗

)2 ~ω2
L

√
εrne

2α
,

~ω2
Lc

Λ
√
εrωcλ3

0

}
. (S21)

In low-terahertz frequency range (∼ 0.1THz), the critical intensity is ∼ 50 kWcm−2 (the

parameters used are those used in Fig. 2(b) of the main text). The critical intensity, Icr is

almost always Ic,1, given by the paramagnetic scattering strength with the cavity modes.

For materials with higher electron density and lower effective mass, the critical intensity

increases.
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C. Effect of the environment modes

The main effect of the environment light modes is the heating of the electrons through

inelastic diamagnetic scatterings. We denote the corresponding interaction vertex strength

ηqe (its evaluation is the same as diamagnetic scattering involving the laser field and the

cavity field). In this process a laser photon scatters with an electron which transitions from

quasi-momentum state |k〉 →
∣∣k + q‖

〉
, into the outgoing photon is in the environment mode

whose in-plane momentum is −q‖ and energy is
(
~ωL + ε(k)− ε(k + q‖)

)
. Since the photon

momenta are very small, ε(k) − ε(k + q‖) � ~ωL. Fermi’s golden rule gives us the total

scattering rate of an electron in state |k〉 by this process,

Γk =
2π

~
∑

qe=(q‖,qz)

|ηqe|2δ(ε(k− q‖) + ~ωqe − ε(k)− ~ωL)

≈ 2π

~
∑
qe

(
e2

m
|Ad|

√
~

Vε0εrωL
cos θqe

)2

δ(~ωqe − ~ωL)

=
64π3

3

1

λ2
L

1

ωL

α2~Id
εrm2ω2

L

. (S22)

Here, θqe is the polar angle of qe. In our set up ~Γk

V (0)/S ∼
δc
ωL

Λ, where V (0)/S is as defined

in the main text. Therefore, when the cavity mode volume compression is significant, this

inelastic scattering is much weaker than the coherent electron interactions. We can further

reduce the heating effect from inelastic scattering by increasing ωL while keeping δc constant.

III. ESTIMATES OF LASER INDUCED HEATING

Two potential sources of heating can be distinguished, the direct heating of the two-

dimensional electron gas, which we discuss in the main text, and the indirect heating

through absorption in the underlying substrate structure.

The heating rate due to the former process is negligible. We can estimate this by consider-

ing the inelastic electron scattering rate due to the environmental modes that we considered

above and the maximum energy gain of an intraband scattering event for an electron. At

10THz driving frequency, and 1GW/cm2 intensity, the heating rate is of order pW.

To discuss the importance of the second process, we consider the case of the two-

dimensional electron gas at the LaAlO3/SrTiO3 interface. Currently, no continuous wave
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THz sources are able to offer irradiances of 1GW/cm2 at 10THz central frequency and an

experimental realization of our proposal should consider a driving protocol based on short

pulses where peak intensities exceeding 1GW/cm2 can be easily obtained [S7]. Importantly,

even upon pulsed driving, changes in the transport properties of the two-dimensional electron

gas could be tracked with on-chip time-resolved conductivity measurements [S8].

In the following, we estimate the heating of a bulk SrTiO3 substrate driven with 1ps long

pulses at 10THz central frequency. We omit the absorption in the LaAlO3 layer which is

typically only few unit cells thick and model the energy deposited by the drive as:

E(z) = (1−R)
F

dpump
exp

{
− z

dpump

}
, (S23)

where R = 0.995 is the reflectivity of SrTiO3 at the excitation frequency [S9], dpump =

0.68µm is the intensity penetration depth of the pump, and F is the excitation energy density

chosen to be 0.1 and 1mJ/cm2 to reach peak intensities of 100MW/cm2 and 1GW/cm2

respectively.

The temperature profile Tf (z) inside the sample is related to the deposited energy density

E(z) by the following integral equation:

E(z) =

Tf (z)∫
Ti

Cp(T ) dT (S24)

where Ti = 0.5K is the initial temperature of the sample and Cp(T ) is the specific heat of

SrTiO3 taken from an interpolation of an equilibrium measurement [S10]. As heat diffusion,

happens on much longer time scales [S11] than the few picoseconds time interval in which

an experiment would be performed, it was not included in these calculations.

Fig. 1(a) shows the result of these estimates. We observe that at driving peak intensities

of 1GW/cm2 the final temperature at the surface of the SrTiO3 substrate has increased to

∼ 15K. Reducing the driving strength to 100MW/cm2 helps to contain the heating to no

more than a few Kelvins. The final temperature could be lowered even further if substrates

that offer more transparency at the driving frequency are chosen.

As an example, we repeat the same calculations on a substrate featuring a 50 times

longer penetration depth . The results are shown in Fig. 1(b). In this case the heating for

both driving intensities is negligible. We envision that this setting could be achieved by

exploiting two-dimensional electron gases at the interface with different substrate materials

(as for example diamond or silicon) that offer complete transparency at the driving frequency.
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Supplemental Information, Figure 1. (a) Depth resolved temperature profiles in the SrTiO3 sub-

strate after excitation with 1ps pulses at 10THz central frequency for two different peak intensities

of 1GW/cm2 (red curves) and 100MW/cm2 (blue curves). (b) Same calculations performed for a

substrate offering a 50 times longer light penetration depth at the driving frequency.

IV. SCREENING

Here we provide details of the screening calculations in the random-phase approximation,

which takes into account of all the simple bubble diagrams (See Fig. 2).

Following [S12], the RPA screened cavity-mediated interaction is

V RPA(q, iνn) = |gRPA(q, iνn)|2DRPA(q, iνn) (S25)

gRPA(q, iνn) =
g0

1− Vc(q)χ0(q, iνn)
(S26)

DRPA(q, iνn) =
D(0)(q, iνn)

1− |g0|2D(0)(q, iνn) 2χ0(q,iνn)
1−Vc(q)χ0(q,iνn)

(S27)

Here Vc(q) = e2

2ε0εrq
is the Coulomb interaction in momentum space, and χ0 is the po-

larizability due to the mobility of the two-dimensional electron gas. The fraction in the

denominator of Eq. (S27) is the χRPA in the main text. Note that it differs by a factor

of 2 from the definition in Ref. [S12] because the scatterings with the cavity mode do not

conserve total electron and photon momenta and the simple polarization bubbles connected

by Coulomb interactions (which conserve total electron momentum) can be carrying +/−~q

of momentum.

D(0)(exq0, iνn) is the bare cavity photon Green’s function in the rotating frame for photon

wavevector, exq0, and Matsubara frequency, iνn. It reads

D(0)(exq0, iνn) =
−2δc/~
ν2
n + δ2

c

, (S28)
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Supplemental Information, Figure 2. A simple bubble diagram. The solid lines with triangular

arrows represent the bare electron Green’s functions. They form a closed bubble which physically

means a electron-hole pair is created and then destroyed. The wavy lines are of bosonic nature and

can represent either bosonic Green’s functions or Coulomb interactions. We have used 4-vector

notation: p̃ = {p, ipn}.

We account for the cavity decay rate by including it in the bare photon Green’s function

D(0)(exq0, iνn)→ −2δc/~
ν2
n + δ2

c + 2δcκ sgn[νn]
. (S29)

Here we define the cavity decay rate κ = ωc/2Q, where Q is the cavity quality factor.

With the parabolic electron dispersion [Eq. (S11)] the polarizability due to the two-

dimensional electron gas, χ0, can be found using results in Ref. [S13],

Re{χ0 (q, ~ω)} =
k2
F rω
~ωπ

[−2rq + C−

√
(rq − rω)2 − 1 + C+

√
(rq + rω)2 − 1] (S30)

Im{χ0 (q, ~ω)} =
k2
F rω
~ωπ

[D−

√
1− (rq − rω)2 −D+

√
1− (rq + rω)2], (S31)

where rq = q
2kF

, rω = ω
qvF

, C± = sign(rq ± rω) and D± = 0 for |rq ± rω| > 1, and

C± = 0 and D± = 1 for |rq ± rω| < 1.

For photon-mediated interactions, q is always very small (rq ≈ 0), ie. we are interested

in the region of the phase space to the left of the red line in Fig. 3, where rω � 1 for most

frequencies. Thus, we focus on small rq and large rω limit. In this limit, Im{χ0} = 0 and

Re{χ0} =
k2
F rω
~ωπ

(
−2rq +

√
(rq + rω)2 − 1−

√
(rq − rω)2 − 1

)
(S32)

≈ k2
F rω
~ωπ

rq
r2
ω − r2

q

≈ k2
F rq

~ωπrω
=
kFvF q

2

~ω22π
(S33)

Thus

gRPA(q, ~ω) =
g0

1− ω2
pl(q)

ω2

and (S34)

DRPA (q, ~ω) =
D(0)

1− |g0|2D(0) 2kF vF q2

~ω22π
/
(

1− ω2
pl(q)

ω2

) , (S35)
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Supplemental Information, Figure 3. Phase space plot. The right figure magnifies the small dashed

green box in the left figure. The mobile electron polarizability χ0 is complex inside the shaded

regions. The yellow(grey) region is where one(both) of |rq ± rω| < 1. Inside both shaded regions

energy can be dissipated into the electron systems through single-particle excitations. The part of

phase space most relevant for the dynamics we describe is to the left of the red line. Its position

corresponds to the momentum of a ≈ 1.5THz photon (which is roughly the highest cavity frequency

we consider). The blue line is the 2D plasmon dispersion. Where it’s dotted means the plasmons

are Landau-damped. For the cavity frequencies we consider here, the bare plasmons coupled to

the photons are not Landau-damped. We use the same electron parameters as those in Fig. 2(b)

of the main text.

where ωpl(q) is the plasmon frequency at momentum (q), satisfying

ω2
pl(q) =

e2

2εrε0

kFvF q

2π~
=

e2

4π~ε0c
kFvF qc

εr
=

2α

~√εr
ωcεF . (S36)

We plot the plasmon dispersion in Fig. 3 for a given electron density. Note that for sufficiently

large momenta the plasmons are Landau-damped, but for the parameters considered here we

are not in that regime. We found that we would need cavity frequency greater than ∼ 2THz

in order to couple to Landau-damped plasmons. Yet this does not affect the stimulated

electron interactions we describe in the paper.

In the large rω limit, we include electron damping by modifying the electron response

function such that

1−
ω2

pl(q)

ω2
→ 1−

ω2
pl(q)

ω2 + iωγ
(S37)

just like in Drude model [S14, S15].

We additionally note that in addition to the attractive interaction potential shown in the

S13



main text, a repulsive potential is achieved with blue-detuned driving. We show an example

of it in Fig. 4

Supplemental Information, Figure 4. The real parts of the screened retarded interaction potentials

for red- and blue-detuned driving are shown as red and green solid lines. The corresponding bare

interaction potentials are shown with dashed curves. The vertically dashed line represents the

plasmon resonance. The attractive potential curves are obtained using the same parameters as

those used in Fig. 2(b) of the main text. The repulsive potential curves are obtained with the same

parameters except the detuning has the opposite sign.

V. COOPER INSTABILITY

In this section, we show a calculation of the Cooper instability critical temperature by

solving the Dyson equation Eq. (S38) [it comes from summing an infinite series of ladder

diagrams (see Fig. 5)] [S12, S16] using the RPA screened interaction potential.

Γ(k̃; p̃) = −V RPA(k̃ − p̃) +
1

Sβ
∑
q̃

[−V RPA(k̃ − q̃)]G(0)(q̃)G(0)(−q̃)Γ(q̃; p̃) , (S38)

where β = 1/kBT , G(0) = 1/(iνn~− ξq) is the unperturbed electron Green’s function, where

ξq = ε(q)− µ.

As described in the main text we approximate the interaction potential by a δ-function

S14



  

Supplemental Information, Figure 5. The pair scattering vertex Γ is given by an infinite sum of

ladder diagrams of an electron pair scattering with each other repeatedly. We consider the Cooper

channel, where the electrons have opposite momenta and Matsubara frequencies. The Cooper

instability is signified by the divergence of this infinite sum.

in k-space. Thus, for electron states near the Fermi level the Dyson equation becomes

Γ(ikn, ipn) = −V RPA(exq0 ≈ 0, ikn − ipn)

+
1

Sβ
∑
iνn

[−2V RPA(exq0 ≈ 0, ikn − iνn)]G(0)(iνn)G(0)(−iνn)Γ(iνn, ipn) . (S39)

The factor of 2 in the sum comes from q = ±exq0. We can think of the Matsub-

ara frequencies as indices of matrices for Γ and M(ikn, iνn) ≡ −2
SβV

RPA(exq0 ≈ 0, ikn −

iνn)G(0)(iνn)G(0)(−iνn). Thus, the Dyson equation above is a matrix equation

Γ = −V RPA +M Γ (S40)

and Γ diverges when det
[
1 −M(βc = 1/kBTc)

]
= 0. The determinant tends to 1 at high

temperatures and reduces as the temperature lowers.

In Fig. 6, we plot an example of the determinant as a function of temperature. Note

that we introduced a cut-off for the Matsubara frequencies since high frequencies have little

effect (due to G(0)). We checked that our results do not vary when we alter the cut-off

value. In fact, the factor of G(0)(iνn)G(0)(−iνn) ∝ 1
ν2n

for fermionic Matsubara frequency

νn = (2n + 1)πkBT/~ means that the terms in the sum with n = −1, 0 are almost a

magnitude larger than the terms with n = −2, 1. Hence, a numerically quicker (and still

reasonably accurate) way that we used to compute the critical temperatures in Fig. 3 is to

limit the Matsubara frequencies to just ±πkBT/~, then Eq. (S40) turns into an algebraic

equation to solve:

1 = − 2

Sβc
V RPA(exq0, 2iπ/~βc)

β2
c

π2
. (S41)

This method underestimate Tc only by a few percent compared to more accurate results

using a higher cut-off.

Note that away from the plasmon frequency, the interaction is effectively unscreened so

V RPA(exq0, 2iπ/~βc)→ |g0|2D(0)(exq0, 2iπ/~βc).
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Supplemental Information, Figure 6. Determinant of (1−M) plotted as a function of temperature

using the following parameters: Idr ≈ 6MWcm−2, ωc ≈ 2π × 0.1THz, δc ≈ 0.05 ωc and the same

electron system parameters as in Fig. 2(b) of the main text. The point where it crosses zero is the

Cooper instability critical temperature.

VI. CAVITY PHOTON NUMBER

In the equilibrium Green’s function formalism, the number of bosons Np is given by

Bose-Einstein distribution, nB(ω) = 1
eβ~ω−1

, and the imaginary part of the retarded bosonic

Green’s function, Dret(p, ω) [S17],

2Np + 1 =

∞∫
−∞

dω~
2π

nB(ω)(−2 Im{Dret(p, ω)}) (S42)

In our case, we need to use the green’s function in the rotated frame and an adjusted

Bose-Einstein distribution,

n
′

B(ω) =
1

exp (β~(ω + sgn[ω]ωL))− 1
(S43)

to reflect that we are in the co-rotating frame. Thus, the cavity photon population is given

by

2Np + 1 =

∞∫
−∞

dω~
2π

n
′

B(ω)(−2 Im{DRPA
ret (p, ω)}) (S44)

We compute the cavity photon number by numerical integration. DRPA
ret is obtained from
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the Matsubara frequency formulation [Eq. (S27)] by analytic continuation iνn → ω + iη.
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