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ABSTRACT
Machine Learning is increasingly employed to make consequential
decisions for humans. In response to the ethical issues that may
ensue, an active area of research in ML has been dedicated to the
study of algorithmic unfairness. This tutorial introduces fair-ML
to the web conference community and offers a new perspective on
it through the lens of the long-established economic theories of
distributive justice. Based on our past and ongoing research, we
argue that economic theories of equality of opportunity, inequality
measurement, and social choice have a lot to offer—in terms of
tools and insights—to data scientists and practitioners interested in
understanding the ethical implications of their work. We overview
these theories and discuss their connections to fair-ML.

CCS CONCEPTS
• Computing methodologies → Supervised learning; • Ap-
plied computing→ Economics.
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1 INTRODUCTION
Automated data-driven decision-making tools are increasingly em-
ployed to make consequential decisions for human subjects— ex-
amples include employment [19], credit lending [20], criminal jus-
tice [1], policing [23], and medicine [14]. Decisions made in this
fashion can have a long-lasting impact on society and may affect
certain individuals or groups negatively [25]. This realization has
recently spawned a new active area of research into quantifying
and guaranteeing fairness for machine learning [4, 12, 17].

As concerns over algorithmic unfairness and discrimination con-
tinue to grow in magnitude and depth, it is timely—and critical—for
data scientists and practitioners to be armed with a toolbox of mod-
els andmechanisms to quantify and tackle algorithmic unfairness in
their application domains. This tutorial offers a new perspective on
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fair ML through the lens of the long-established economic theories
of distributive justice. The extensive economic literature on equality
of opportunity, measurement of inequality, social choice theory, and
fair division has a lot to offer—in terms of models and tools—to data
scientists and practitioners, interested in understanding the ethical
implications of their work.

The main objectives of this tutorial are:
• to overview the growing line of work on fairness for ML;
• to survey the economic theories of distributive justice;
• to put Fair ML into economic perspective and terminology;
• to cast the well-established economics of distributive jus-
tice as a blueprint to guide and inform future research into
fairness for Machine Learning.

We begin with an overview of the fair ML literature. We introduce
existing notions of algorithmic (un)fairness and summarize some
of the major themes and findings in Fair ML. We then cast these
notions as special cases of economic models of Equality of Oppor-
tunity (EOP). Through this lens, we offer a better understanding of
the moral assumptions underlying technical definitions of fairness.
Second, we discuss the conception of unfairness as inequality. We
overview the axiomatic characterization of measures of (income)
inequality and present them as a unifying framework for quantify-
ing both individual- and group-level unfairness. Third, we discuss
the “leveling down objection” to equality. We propose the use of
cardinal social welfare functions to address this issue and as an effi-
cient method for bounding inequality. Last but not least, we discuss
how differing (group) preferences can justify unequal outcomes,
drawing on the concepts of envy and equity from fair allocation.

2 SCOPE
This tutorial discusses several seminal papers from economics (e.g.,
[2, 3, 13, 18]) and connects them to the growing body of work on
fairness for ML. We overview of the recent research on algorithmic
fairness. We introduce group-level notions of fairness—which re-
quire that given a classifier, a certain fairness metric is equal across
all protected groups (see e.g. [17, 27, 28])—-as well as individual-
level notions of fairness [9]—which requires that two individuals
who are similar with respect to the task at hand receive similar
classification outcomes.

Fair ML as Equality of Opportunity: Next, we offer a new
moral framework for understanding these notions bymapping them
to economic models of Equality of opportunity (EOP) [16]. EOP is
a widely supported ideal of fairness, and it has been extensively
studied in political philosophy and economics [22]. We show that
through this conceptual mapping, many existing definitions of
algorithmic fairness, such as predictive value parity and equality
odds, can be interpreted as special cases of EOP. This approach
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allows us to explicitly spell out the moral assumptions underlying
each notion of fairness. Moreover, it confers a moral meaning to
the recent fairness impossibility results.

(Un)fairness as (In)equality: The understanding of fairness as
some form of equality is the fundamental basis for many theories of
justice. Given the distribution of individuals’ well-being or benefits,
measures of inequality capture the degree to which the distribution
is unequal and allow for a direct comparison of inequality between
various distributions. We start by noting that parity-based defini-
tions of algorithmic fairness, such as statistical parity [5], disparate
impact [10], and equality of opportunity [12], can be thought of as
seeking to minimize some form of inequality—for different notions
of benefit or well-being. This observation motivates our interest
in inequality measurement. We overview the axiomatic character-
ization of inequality indices, using Gini, Theil, and Generalized
entropy indices as examples [6, 8]. We discuss these axioms—such
as population-invariance and progressive transfer principle—in the
context of fair ML. We argue that inequality indices can be utilized
to extend existing definitions of algorithmic fairness to multiple
groups and settings beyond binary classification. Furthermore, a
particular structural property of these indices, called additive decom-
posability, allows us to interpolate between individual and group-
level (un)fairness and observe the tradeoffs between the two [24].
The main challenges we see in utilizing inequality indices as mea-
sures of algorithmic unfairness are (a) defining the right notion of
well-being/benefit to equalize across groups/individuals, and (b)
finding efficient and precise mechanisms for bounding inequality.

Next, we overview two economic theories of distributive jus-
tice that depart from the idea of fairness as equality: social choice
theory and fair division. Social choice theory is concerned with
aggregating individual preferences to pick a just collective outcome,
where justice is defined through a set of axioms. Fair division is con-
cerned with the division of a limited resource (e.g., a cake) among
individuals with heterogeneous valuations/preferences.

Social Choice Theory:When individual utilities are interper-
sonally comparable, a cardinal social welfare function can be de-
signed to choose a collective outcome [13]. Social welfare functions
can be interpreted as measures of distributive justice behind a
veil of ignorance [21]. This interpretation motivates our interest in
employing them to measure algorithmic fairness. We go over the
axiomatic characterization of cardinal social welfare functions, dis-
cussing such axioms as symmetry and independence of unconcerned
agents in the context of fair ML. We next note that according to
the Debreu-Gorman theorem [7, 11], the family of social welfare
functions satisfying the above axioms is strikingly small. Further-
more and unlike measures of inequality, this class of social welfare
functions enjoys a convex formulation. Therefore, it can be readily
integrated into any convex loss minimization pipeline [15]. Last but
not least, we briefly discuss the connections between welfare and
inequality aversion through a welfare-based interpretation of the
Atkinson’s measure of inequality [3] and show that guaranteeing
high social welfare usually leads to low inequality in practice.

Fair Division: Fair division accounts for the fact that different
entities may have different preferences for different outcomes. We
formally introduce the notions of envy and equity. An allocation

is envy-free if no individual prefers the allocation of another to
their own [18, 26]. We discuss one recent adaptation of no-envy to
capture algorithmic fairness at the group level [29].
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