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Abstract

Let K be an unramified extension of Q,, and p: Gk — GL, (Z ») acrystalline repre-
sentation. If the Hodge—Tate weights of p differ by at most p then we show that these
weights are contained in a natural collection of weights depending only on the restric-
tion to inertia of p = p ®Z,, Fp. Our methods involve the study of a full subcategory
of p-torsion Breuil-Kisin modules which we view as extending Fontaine—Laffaille
theory to filtrations of length p.
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1 Introduction

Let K /Q),, be a finite unramified extension with residue field . In this paper we show
that if the Hodge—Tate weights of a crystalline representation p of G g are sufficiently
small then these weights are encoded in an explicit way by the reduction of p modulo p.
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646 R. Bartlett

Using Fontaine—Laffaille theory this is known for Hodge—Tate weights differing by at
most p — 1; we will treat weights differing by at most p. Our techniques are local and
involve the study of a full subcategory of p-torsion Breuil-Kisin modules, which we
view as extending (p-torsion) Fontaine—Laffaille theory to filtrations of length p.

To state our result let Z'} denote the set of (A1, ..., 4,) € Z" with A1 < -+ < A,.
In Sect. 2 we show how to attach to any continuous p: Gx — GL, (F,,) a subset

Inert(p) C (Z:‘L)HO"”FP (k.Fp)

This subset depends only on the restriction to inertia of the semi-simplification of
p, and does so in an explicit fashion. We typically write an element of Inert(p) as
()‘T)reHomJFp(k,Fp) withAr = (A0 < -0 < Ayo).

Throughout Hodge—Tate weights are normalised so that the cyclotomic character
has weight — 1.

Theorem 1.0.1 Letp: Gg — GL, (Zp) be a crystalline representation. For each T €
Homﬂrp (k,Fp) let A; € Zi denote the t-Hodge—Tate weights of p. If .y — A1, < p
for all T then

(Ar)r € Inert(p)

When n = 2 and p > 2 the result is a theorem of Gee-Liu—Savitt [9]. Whenn = 2
and p = 2 the result is due to Wang [14]. In this paper we extend their methods to
higher dimensions.

As already mentioned, when A, ; —A1 < p—1, Theorem 1.0.1 is a straightforward
consequence of Fontaine—Laffaille theory, so the main content of our result is that it
applies to Hodge-Tate weights differing by p. On the other hand Theorem 1.0.1
does not hold if the condition A, ; — A1, < p is relaxed. For example, there exist

irreducible two dimensional crystalline representations p of Gq,,, with Hodge-Tate

weights (—p — 1, 0), whose reduction modulo p have the form p = (Xf)yc X:;C ), see

[3, Théoreme 3.2.1]. Here xcyc denotes the cyclotomic character. It is easy to check
that (—p — 1, 0) is not an element of Inert(p).

Our motivation comes from the weight part of (generalisations of) Serre’s modu-
larity conjecture. As a corollary of our result we can prove some new cases of weight
elimination for mod p representations associated to automorphic representations on
unitary groups of rank n. To be more precise let F' be an imaginary CM field in which
p is unramified and fix an isomorphism ¢: @p = C. Attached to any RACSDC (reg-
ular, algebraic, conjugate self dual, and cuspidal) automorphic representation /7 of
GL, (AF) there is a continuous irreducible r, ,(IT): Gr — GL, (@p), cf. the main
result of [5]. If [T is unramified above p then r, ,,(IT) is crystalline above p, and if
A= () € (Z1)Hom(F.O) is the weight of IT then the x-Hodge-Tate weights' of
1., p(IT) equal

1 Using ¢ we can identify x € Hom(F, C) with pairs (v, T) where v is a place of F above p and T €
Hom(Fy, Qp). Since p is unramified in F, T can be identified with t € Horn]Fp (ky, Fp) where ky denotes
the residue field of Fy. The «-th Hodge-Tate weights of r, 7 are then the r-th Hodge-Tate weights of
ry,p(IT) at v.
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Inertial and Hodge-Tate weights of crystalline representations 647

M40, 1,...,n—1)

Therefore, if W (7)Pert (Zi)Hom(F ‘©) denotes the subset containing those (A, ) with
M +(0,1,...,n—1) € Inert(r,) then Theorem 1.0.1 implies

Corollary 1.0.2 Let7: Gr — GL, (F,,) be irreducible and continuous. Let W (7)**
denote the set of weights A € (Z’l)Hom(F ‘O such that there exists an RACSDC auto-
morphic representation IT of GL,,(Afr) which is unramified at p, has weight A, and
is such that v, ,(IT) = 7. Then

W ?}—nﬂ CW( i;;n—nﬂ
where for x € {aut, inert}, W(F)’;p_,H_l is the subset containing (A,) € W(r)* with
A —AMe<p—n+1

We point out that, while Corollary 1.0.2 involves only distinct Hodge—Tate weights,
due to the regularity assumptions on our automorphic representations, Theorem 1.0.1
does not require such distinctness.

If 7 is assumed to arise from some potentially diagonalisable RACSDC automorphic
representation (a notion introduced in [2]) and if we assume 7, is semi-simple for each
v | p then, under a Taylor—Wiles hypothesis, the inclusion in the Corollary 1.0.2 is an
equality. This follows from [1, Theorem 3.1.3].

To conclude this introduction we briefly explain our proof of the theorem; let us
do this by sketching the content of the various sections in this paper. In the first two
sections we recall some basic notions; in Sect. 2 we define the set Inert(p) and in
Sect. 3 we give some elementary results on filtered modules. In Sect. 4 we recall the
notion of a Breuil-Kisin module, and recall how to associate to them Galois repre-
sentations. Breuil-Kisin modules killed by p admit a natural set of weights and in
Sect. 5 we define what it means for a p-torsion Breuil-Kisin module to be strongly
divisible; it’s weights must be contained in [0, p] and a certain explicit condition on its
¢ must be satisfied. We view the category of strongly divisible Breuil-Kisin modules
Mod,§D as an extension of p-torsion Fontaine-Laffaille theory to filtrations of length
p. We establish two important properties of Mod?D. The first main property (Propo-
sition 5.4.7) is shown in Sect. 5 and states that Mod,§D is stable under subquotients,
and that weights behave well along short exact sequences. The second main property
(Proposition 6.7.1) is proved in Sect. 6 and concerns the structure of simple objects
inM e Mod,fD. We show that for such M the weights of M coincide with the iner-
tial weights of the associated Galois representation. These two properties mirror the
situation for Fontaine-Laffaille theory. However, unlike in Fontaine-Laffaille theory,
it is not the case that simple M € Mod,ffD are determined by their weights together
with their associated Galois representation. This complicates the proofs considerably.
Thus, while there are similarities between Mod,fD and Fontaine-Laffaille theory in
some respects, the former category is more complicated, reflecting the fact that the
reduction of crystalline representations with Hodge—Tate weights in [0, p]is genuinely
more subtle than for weights in the Fontaine—Laffaille range. In the final section we
recall a theorem of Gee—Liu—Savitt [9] which relates Mod,fD with the reduction mod-
ulo p of those crystalline representations with Hodge—Tate weights contained in [0, p].
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648 R. Bartlett

Using this, and the two properties of Mod,f’D described above, it is straightforward to
deduce Theorem 1.0.1.

This work was supported by the Engineering and Physical Sciences Research Coun-
cil [EP/L015234/1] and the EPSRC Centre for Doctoral Training in Geometry and
Number Theory (The London School of Geometry and Number Theory), University
College London, and the Max Planck Institute for Mathematics, Bonn.

1.1 Notation

Throughout we let k denote a finite field of characteristic p > 0 and write Ko =
W(k)[l]. In the introduction we took K = Kj; however some of our constructions
are valid for arbitrary finite extensions so now allow K to denote a totally ramified
extension of K of degree e, with ring of integers Ok . At certain points it will be
necessary to assume K = Kj.

Let C denote the completion of an algebraic closure K of K and let O¢ be its ring
of integers, with residue field k. We write Gx = Gal(K /K) and v p for the valuation
on C normalised so that v, (p) = 1.

We fix a uniformiser 7 € K and a compatible system 771/?" € K of p”th roots of
7. Many constructions in this paper depend upon these choices. Set Koo = K (/7 ™)
and Gk, = Gal(K/Kwo).

Let p1,n (K) denote the group of p”th roots of unity in K and write Z, (1) for the
free rank one Z,-module

l(ir_nlj«p”(K)

Let xcye: Gk — Z; denote the character though which G acts on Z,(1).

Let E/Q, denote a finite extension with ring of integers O and residue field F.
We assume throughout that Ko C E. This will be our coefficient field in which the
representations we consider will be valued.

If A is any ring of characteristic p we let ¢: A — A denote the homomorphism
x +— xP.If A is perfect (i.e. ¢ is an automorphism) we let W(A) denote the ring of
Witt vectors of A and write ¢ : W(A) — W(A) for the automorphism lifting ¢ on A.

2 Inertial weights

In this section we recall the structure of irreducible torsion representations of G ¢ and
G k.- We then define the set Inert(p) from the introduction.
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Inertial and Hodge-Tate weights of crystalline representations 649

2.1 Tame ramification

Let K% and K denote the maximal unramified and maximal tamely ramified exten-
sion of K respectively. Set I' = Gal(K'/K"). As in [12, Proposition 2] there is an
isomorphism

s I' = lim[*
<«

where, in the limit, / runs over finite extensions of k with transition maps given by the
norm maps. This isomorphism sends o +— (s(o);); where s(o); is the image in the
residue field of K of the Card(/*)th root of unity

U(n1/Ca.rd(lx))/j_[l/Card(lX) c K

Here 7 1/ Card™) jg any Card(/*)th root of 7r; s (0'); does not depend upon any of these
choices. Via s we define the fundamental character

wp: IV — 1%
For 6 € Hom]Fp (, F,,) define wy = 0 o w;. Note this is a power of w; and wgop = a)g.

Lemma 2.1.1 Any continuous x: I' — F; extends to a continuous character of
Gal(K'/K) ifand only if there exist integers (rf)teHome *F,) suchthat x =[], Wy

Proof Since 1 — I' — Gal(K'/K) — Gy — 1is split, x extends to Gal(K'/K) if

and only if x is stable under the conjugation action of G, on I*. Via s this action is

given by the natural action of G onlim /*, and so x extends if and only if y P -

After [12, Proposition 5] this is equivalent to asking that x be a power of wy, thus a
product as in the lemma. O

In particular we see each w; extends to a character of G where L/K is the unram-
ified extension with residue field /. Such an extension is well defined only up to
twisting by an unramified character. Our fixed choice of uniformiser r € K allows us
to define a canonical choice of extension by sending ¢ € G onto the image in the
residue field of the element o(nl/card(lx))/rrI/Card(lx) € K' where 71/ Card(™) jg 4
Card(/™)th root of 7. We shall denote this character again by w;: G — F;. Also,
for 6 e Hom]Fp a, Fp), we write wg = 0 o wy as characters of G .

Gal(K/K) \,

For an extension L/K write Ind; V in place of Ind Gal(K /L)

Lemma 2.1.2 If'V is a continuous irreducible representation of G k on a finite dimen-
sional IF ,-vector space then V. = Indf X, where L/K is an unramified extension of

. =X . .
degreedimp V and x: Gy — F p IS a continuous character.

Proof As V is irreducible the G g-action factors through G = Gal(K'/K) by [12,
Proposition 4]. Since I' is abelian of order prime to p, V| is a sum of F; -valued
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650 R. Bartlett

characters. If y € Gy and x: I' — F; is a character define a new character by
x"(0) = x(y~loy). If I'actson v € V|, by x then I' acts on y (v) by x *); thus
Gy acts on the set of x appearing in V1. Fix x appearing in V|;« and let H C G be
the normal subgroup containing /* and corresponding to the stabiliser of x in G¢. By
the orbit-stabiliser theorem [G : H] < dime V.

Frobenius reciprocity gives a non-zeromap V|g — Indﬁ x.If L/K is the unram-
ified extension corresponding to H then, since the image of H in Gy stabilises y, this
character can be extended to H as in Lemma 2.1.1. Thus Indﬁ X=X Indﬁ 1. Since
Indﬁ 1 is a discrete H-module we can find a finite dimensional sub-representation
R C Indf{ 1 so that V |y is mapped into x ® R. As Gal(L" /L) is abelian R admits
a composition series 0 = R, C --- C Ry = R such that each R;/R;4| is one-
dimensional. If i is the largest integer such that V|g — Indf{ V factors through
X ® R; then V|g — x ® R;/R;41 is non-zero. Frobenius reciprocity gives a non-
zero map V — Indf (x ® R;/Ri+1) which, V being irreducible, is injective. Thus
[G : H] = dimg Indf (x ® Ri/Ri+1) is > dimg V. The inequality of the first
paragraph implies [G : H] = dimﬁp V and so this map is an isomorphism. O

Definition 2.1.3 Let p be a continuous representation of Gg on an n-dimensional

F p-vector space. After Lemma 2.1.2 there exist continuous characters ¢ : G, — F; ,
with L /K finite unramified, such that

e~ @Indfg c (2.1.4)
¢

with each summand irreducible. Let I, /k denote the residue field of L.. After
Lemma 2.1.1 there are integers (rg,¢ ), eHom, (¢ F,) such that
U

¢l = H“’eﬁrm

Any such collection of ry ; defines a weight A = ()L,)TeHom]F *F,) viadr = {rg¢ |
Py

0|x = t}. Define Inert(p) to be the set of A obtained in this way.
We remark that for a given ¢ there always exists a unique tuple (rg,¢), eHoms,, (¢ F,)
P ’ p

as above such that each rg ; € [0, p — 1] withnot all rg ; equal to p — 1. However if
we drop the restriction that rg ; € [0, p — 1] then there will be many different such
tuples.

It is easy to check that Inert(p) depends only on p**|:.

2.2 G -representations
Lemma2.2.1 Let K\, = KooK'. Then restriction defines an isomorphism Gal

(K. /Kso) = Gal(K'/K). If L/K is a tamely ramified extension this isomorphism
identifies Gal(Loo/ K oo) with Gal(L/K) where Loo = LK .
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Proof Since K /K is totally wildly ramified we have Koo N K' = K. The lemma
then follows from Galois theory. O

Corollary 2.2.2 [f'V is as in Lemma 2.1.2 then V|G, = Indf;O x|G,.,, where Log =
LK.

3 Filtrations

This section contains some elementary results on filtered modules; they will be useful
later. Consider a commutative ring A and a collection of ideals (F' A);¢7 satisfying

FIT'AC F'A, (FTAYF/A) Cc FIY7A, FlA=Afori <<0

Then the category Fil(A) of filtered A-modules consists of A-modules M equipped
with a collection of A-sub-modules (F'M);cz satisfying

FH'M c FiM, (FTAF/M)c FI'iM, F'M = Mfori <<0

Morphisms are maps f: M — N of A-modules such that f(F' M) c F'N foralli.If
M is an object of Fil(A) we set gr(M) = ; gr! (M) where gr' (M) = FIM/F'*'M.
The module gr(A) admits an obvious structure of a ring and each gr(M) admits the
structure of a module over gr(A).

3.1 Strict maps

If M is an object of Fil(A) and N C M is an A-sub-module the induced filtration
on N is that given by F'N = NN F'M.If f: M — N is a surjective A-module
homomorphism the quotient filtration on N is that given by F'N = f(F'M).

Remark 3.1.1 For any morphism f : M — N in Fil(A) there is a sequence
ker(f) - M — coim(f) — im(f) - N — coker(f)

in Fil(A). The modules ker(f) € M and im(f) C N are each equipped with the
induced filtration. The modules coker( /) and coim( f) are equipped with the quotient
filtration, coming from N and M respectively.

Deﬁnition 3.1.2 A morphism f : M — N in Fil(A) is strict if FIN N f(M) =
f(F'M) foralli € Z. Equivalently f is strict if coim(f) — im f is an isomorphism
in Fil(A).

Notation 3.1.3 The filtration on A induces the structure of a topological ring on A;
the F' A form a basis of open neighbourhoods of zero. Similarly the filtration on an
object M of Fil(A) gives M the structure of a topological A-module. Then

e M is discrete if and only if F'M = 0 fori >> 0;
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652 R. Bartlett

e M is Hausdorff if and only if N\F' M = 0; 4
e M iscomplete if and only if the natural map M — h(_m M /F'M is an isomorphism.

Lemma3.1.4 Let f : M — N be a morphism in Fil(A) which is an isomorphism of
A-modules.

1. Then f is an isomorphism in Fil(A) if and only if gr' (M) — gr'(N) is injective
foralli.

2. If M is complete and N Hausdorff then f is an isomorphism in Fil(A) if and only
if gr' (M) — gr' (N) is surjective for all i.

Proof The following diagram commutes and has exact rows.

0 — F*'M — FIM — grf (M) — 0
Ja $o Je
0 — FIYIN — FIN — gri(N) = 0

Since M — N is an isomorphism of A-modules the leftmost and central vertical
arrows are injective. For (1) use the snake lemma to obtain an exact sequence 0 —
ker ¢ — coker(a) — coker(b) — coker(c). One proves F!M — F!N is surjective
by increasing induction on i; using as the base case the fact that F'M — F'N
is surjective for i << 0, since FiM = M fori << 0. For (2) argue as in [13,
Proposition 6]. O

Lemma3.15 Let f : M — N be a morphism in Fil(A). Then the following are
equivalent.

1. f is strict;
2. grker(f)) — gr(M) — gr(N) is exact;
3. 0 — gr(ker(f)) — gr(M) — gr(N) — gr(coker(f)) — 0 is exact.

If M is complete and N is Hausdorff then the same is true with (2) replaced by
(2) gr(M) — gr(N) — gr(coker(f)) is exact for all i;

Proof 1t is straightforward to check (without any conditions on M and N) that (2) is
equivalent to gr’ coim( f) — gr! im(f) being injective for all i, that (2') is equivalent
to this map being surjective for all 7, and that (3) is equivalent to this map being an
isomorphism for alli. Thus (1) < (2) < (3) follows from (1) of Lemma 3.1.4 applied
to the morphism coim(f) — im(f). Similarly (1) <& (2') < (3) follows from (2)
of Lemma 3.1.4, noting that M being complete implies coim( f) is complete and N
being Hausdorff implies im( f) is Hausdorff. O

Corollary 3.1.6 Let M be a Hausdorff object of Fil(A) with A complete. Suppose (m ;)
is a finite collection of elements of M and suppose that there are integers r; such that
mj € F'iM. Let m; denote the image of m; in gr'i (M). If the m ; generate gr(M)
over gr(A) then M is complete and the m j generate M. Further

FIM =Y (F" Am,
j
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Inertial and Hodge-Tate weights of crystalline representations 653

If the m j form a gr(A)-basis of gr(M) then the m ; are an A-basis of M.

Proof Argue as in [13, Corollary 1] using the second part of Lemma 3.1.5. O

3.2 Adapted bases

We now put ourselves in the following situation. Let a € A be a nonzerodivisor and
equip A with the g-adic filtration (so F'A = a’ A). Let M be a finite free A-module
andlet N C M [%] be a finitely generated A-sub-module with N [J—Z] =M [417]' Make
N into an object of Fil(A) by setting FIN = a'M N N.

Lemma 3.2.1 Suppose that A is complete. Give N /a the quotient filtration and suppose
that a finite collection (g;) of elements of N is given, along with integers (r;), such that
gi € F''N. If the images of g; in gt' (N /a) form a gr(A/a) = A/a-basis of gr(N /a)
then the (g;) form a basis of N and the (a™" g;) form a basis of M.

Proof The induced filtration on the kernel aN of N — N/a is given by F i(aN) =
aNNF!N = aF =N (because a is not a zerodivisor). Lemma 3.1.5 implies there is
an exact sequence

0— gr' '(N) S grf (N) > gr' (N/a) —> 0 (3.2.2)

Thus gr(N)/a = gr(N/a) where a € gr(A) denotes the homogeneous element of
degree 1 represented by a € A. It is then easy to see (e.g. using the graded version
of Nakayama’s lemma) that the images of the g; in gr(N) generate this module over
gr(A). Since N;a’ gr(A) = 0 they are also gr(A)-linearly independent. As N is finitely
generated N is Hausdorf and so we may apply Corollary 3.1.6 to deduce that the (g;)
form an A-basis of N and that

F'"N = Z(F"_"'A)gi
As the g; are A-linearly independent the (a " g;) are A-linearly independent. To show
they generate M take m € M and n large enough that a"m € N. Then a"m € F"N

and so a"m = ) a;g; with a; € F"7"i A. It follows that m = ) (a"""a;)(a "I g;)
and so, since (a"i ") F"7" A C A, we are done. O

3.3 Filtered vector spaces

Finally we give criteria to determine when two filtrations on a vector space are the
same.

Lemma 3.3.1 Suppose A =k is a field and let V be an k-vector space equipped with
two discrete filtrations G'V C F'V. Then

Z i dimy, griG(V) < Z i dimy, gr’f(V)
with equality if and only if G = F.
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Proof Since dimy gri (V) = dimy F'V — dimy F'™'V we have

> idimy gl (V) =Y dimy F'V
Likewise when F is replaced by the filtration G. As G'V c F'V,dim; G'V <
dimy F'V. The desired inequality follows. This inequality is an equality if and only
if dimy G'V = dimy F'V for all i, i.e. if and only if G = F. m]

Notation 3.3.2 Say that a sequence of morphisms M — N — P in Fil(A) is exact if
it is exact as a sequence of A-modules and if M — N is strict. Lemma 3.1.5 implies
that a sequence 0 - M — N — P — 0 in Fil(A) which is exact in the category of
A-modules is exact in Fil(A) if and only if 0 — gr(M) — gr(N) — gr(P) — Ois
an exact sequence of A-modules.

Corollary 3.3.3 Suppose A = k is a field and let 0 — M l) NP> o0bea

sequence of finite dimensional discrete objects in Fil(k) which is exact in the category
of k-vector spaces. If f (respectively g) is strict then

Z i dimy gri(N) < Z i dimy gri (M) + Z i dimy, gri(P) (respectively >)

Conversely if one of f or g is strict then equality implies the sequence is exact in
Fil (k).

Proof As P is discrete we can apply Lemma 3.3.1 to deduce that
Z i dimy gri (coker(f)) < Z i dimy, gri(P)

with equality if and only if g is strict. If f is strict Lemma 3.1.5 tells us that 0 —
gr(M) — gr(N) — gr(coker(f)) — 0 is exact, and so

Z i dimy gr' (N) = Zi dimy gr' (M) + Z i dimy gr' (coker(f))

The lemma follows when we assume f is strict. If g is strict one argues similarly,
applying Lemma 3.3.1 to the map M — ker(g). O

4 Breuil-Kisin modules
4.1 Etale @-modules

First we recall the description of G g -representations given by etale ¢-modules.

Definition 4.1.1 Let O» be the inverse limit of the system
Oc/p < Oc/p < Oc/p < ---
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Inertial and Hodge-Tate weights of crystalline representations 655

with transition maps x — x?. This is a perfect integrally closed ring of characteristic
p. There is a multiplicative identification O = h(_m Oc (the limit again taken with
respect to the transition maps x — x”) given by

_ . )
X — ( lim x
( n)n (m—)oo m+n n

where x,, € Oc is any lift of X,,. We write x — x* for the projection onto the first
coordinate O¢» — Oc. Let C” denote the field of fractions of O». The formula
wWx)=v p (x%) defines a valuation on C” for which it is complete. The field C > is also
algebraically closed. Further, the action of Gk on Oc¢ induces a continuous action of
Gk on O¢» and C°.

Notation4.1.2 Let § = W(k)[[u]] and At = W(O»). Both rings are equipped
with a Z-linear endomorphism ¢; on Ajps this is the usual Witt vector Frobenius and
on & it is given by Y a;u’ +— Y @(a;)u’?. The system 7'/?", fixed in Sect. 1.1,
defines an element 7° = (7, 7!/, .. ) € Oc» and we embed & — Ajpr by mapping
u > [7°] (where [-] denotes the Teichmuller lifting). This embedding is compatible
with ¢. Let O¢ denote the p-adic completion of 6[%]. Then ¢ on & extends to Og
and the embedding & — Aj,s extends to a g-equivariant embedding Og — W (CP).

By functoriality there are p-equivariant G g -actions on Ajpr = W(O¢») and W(C )
lifting those modulo p.

Definition 4.1.3 An etale p-module is a finitely generated O¢-module M equipped
with an isomorphism

Opgpet - 1‘4et ®O&¢ OS :) Met

We may interpret ¢ e as a @-semilinear map M® — M viam — @pe(m @ 1).
When there is no risk of confusion we shall write ¢ in place of @y et. Let Mod% denote
the abelian category of etale ¢-modules.

Construction 4.1.4 Since the action of Gg_, on C” fixes " the Z,-module
T(M®) = (M ®0; W(C")*~!

admits a Zp-linear action of G g, [given by the trivial action on M* and the natural
G k., -action on W (C")]. This describes a functor from Mod$ to the category of finitely
generated Z,-modules equipped with a continuous Z,-linear G g__-action.

Proposition 4.1.5 (Fontaine) The functor M — T (M®) is an exact equivalence
of categories. The representation T (M) is determined up to isomorphism by the
existence of a ¢, G g -equivariant identification

M ®p, W(C") = T(M®) ®z, W(C")
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Proof The embedding Og — W(C") reduces modulo p to an inclusion of k((x))
in C". The completion of Ko is a perfectoid field in the sense of [11], whose tilt is
the completed perfection of k((u)) C C". Tt follows from [11, Theorem 3.7] that the
action of Gk, on C > identifies Gx = Gr(w))- Let Ogn be the p-adic completion of
the Cohen ring (i.e. the discrete valuation ring of characteristic zero with uniformizer
p) with residue field k((u))**P. Then Oz may be identified as a subring of W (C )
stable under the action of Gg_, and ¢. The proposition with T (M) replaced by
T' (M) := (M® ®0; (’)gﬁ)‘/’Zl follows from [8, Proposition 1.2.6] applied with
E = k((u)). It therefore suffices to show the inclusion T7'(M®) C T(M®) is an
equality. Since we know there are ¢-equivariant identifications

M ®o, W(C") = T' (M%) @7, W(C")

the equality follows by taking ¢-invariants. O

4.2 Breuil-Kisin modules

Breuil-Kisin modules appear as special G-lattices inside etale p-modules.

Definition 4.2.1 A Breuil-Kisin module is a finitely generated G-module M equipped
with an isomorphism

oM M ®s,y 6[%] 5 M[%]

Here E(u) € G denotes the minimal polynomial of w over K. We may interpret ¢
as a g-semilinear map M — M[%] viam +— @y (m ® 1). When there is no risk
of confusion we write ¢ in place of ¢ys. Let Mod%K denote the abelian category of
Breuil-Kisin modules.

Notation 4.2.2 If M € Mod5X we write M C M[+] for the image of
M®s.,6 —> MQs., 6[%} o, M[%]

Construction 4.2.3 Note E () is a unit in Og. Thus, if M € Mod‘,s(K then M ®g O¢
is an etale ¢-module and

T(M):=T(M ®g Og) = (M ®@g W(C")*~!

defines a functor from Mod%K to the category of continuous G g, -representations
on finitely generated Z,-modules. Since & — Og is flat Proposition 4.1.5 implies
M +— T (M) is exact on Modlf(K.

Remark 4.2.4 Kisin [10, Proposition 2.1.12] has shown M + T (M) is fully faithful
when restricted to Breuil-Kisin modules which are free over &. However if one does
not restrict to Breuil-Kisin modules which are free over G then this is not true.
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Construction 4.2.5 For M, N € ModX the &-module
Hom(M, N) := Homg (M, N)

of &-linear homomorphisms M — N is made into an object of Mod%K as fol-
lows. Since ¢: & — & is flat the natural map Homg(M, N) ®, 6[%] —
HomG[%](M Qg 6[%], N ®y 6[%]) is an isomorphism. Similarly, the natural map

Homg (M, N)[%] — HomG[i](M[%], N[%]) is an isomorphism. As such, the iso-
E
morphism

E E

HomG[L] (M ® 6[£]. N ®, 6[%]) - HomG[L] (M[%], N[%})

givenby f — ¢y o f o <p;,11 makes Hom(M, N) into a Breuil-Kisin module. Note
that

T'(Hom(M, N)) = Homgz, (T (M), T(N))
as G g -representations, where the G g__-action on therightis viao (f) = oo f oo~ L.

4.3 Coefficients

In practice we are interested in representations valued in extensions of Z,. For this
reason we introduce a variant of Mod%K.

Definition 4.3.1 Recall the Z,-algebra O defined in Sect. 1.1. A Breuil-Kisin module
with O-actionis a pair (M, ) where M € Mod%K and tis a Zp-algebrahomomorphism
t: O — Endgk (M). Equivalently a Breuil-Kisin module with O-action is an Sp =
S ®z, O-module M equipped with an isomorphism

M ®y.s, 60[%] = Ml:%]

Here ¢ on & denotes the O-linear extension of ¢ on &. Let Mod%K (O) denote the
category of Breuil-Kisin modules with O-action.

Remark 4.3.2 By functoriality M +— T (M) induces an exact functor from Mod?}K (O)
into the category of continuous representations of Gk, on finitely generated O-

modules.

Construction 4.3.3 Let M, N € Mod®¥(0). Then
Hom(M, N)© := Homee,, o(M, N)
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is made into an object of Mod%K((’)) as in Construction 4.2.5. Again we have
T (Hom(M, N)®) = Homo(T (M), T (N))

as G g, -representations.

Construction 4.3.4 The embedding O[u] — &®z, O given by Saiut v Y u' Qa;
extends by continuity to an embedding O[[u]] — & ®z, O. Recall that Ky C E by
assumption so that the map

(Za,-u") Qb > <Zr(a,-)bui>

describes an isomorphism of O[[u]]-algebras & ®z, O — [1]; OIlu]], the product
running over T € Homp, (k, F) (we abusively write 7 also for its extension to an
embedding 7: W(k) — O). Lete; € G ®z, O be the idempotent corresponding to
7. As ¢; is determined by the property (@ ® 1)e; = (1 ® t(a))e; fora € W(k), the
map ¢ ® 1 sends

T

€rop F> €r

IfM e Mod?}K (O) we set M, = e M which we view as an O[[u]]-algebra. By the
above @y restricts to a map

Mroy B0t Ollull > Me| 755 (43.5)

which becomes an isomorphism after inverting T(E). Her(; @ on O[[u]] is that induced
by g ® lon G ®z, O, i.e.is givenby Y aju' = } au'?.

Corollary4.3.6 1. If M € Mod?}K(O) is free as an G-module then it is free as an
S Qz, O-module.

2. Let w € O be a uniformiser and suppose M € Modlla(K(O) is w-torsion. If M is
free as an &/ p = k[[u]]-module then it is free as a module over k[[u]] ®F, F.

Proof If M is free over G then each M is free over O[[u]]. By (4.3.5) the rank of M,
over O[[u]] does not depend on t so M = [], M; is free over & ®z, O. (2) follows
similarly. O
5 Strongly divisibility

5.1 Torsion Breuil-Kisin modules

Definition 5.1.1 Denote by ModfK C Mod?}K the full subcategory whose objects are
modules which are free over &/p = k[[u]].
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Remark 5.1.2 An M ¢ ModfK is the same thing as a k[[«]]-lattice inside an etale
@-module over Og/p = k((u)) because E (#) = u® modulo p. In particular, there are
many p-torsion Breuil-Kisin modules giving rise to the same etale ¢-module. This is
in contrast to the integral situation described in Remark 4.2.4.

Lemma 5.1.3 The functor M +— T (M) restricts to an essentially surjective functor
from ModfK to the category of continuous representations of Gk, on finite dimen-
sional ¥ ,-vector spaces. If M € Mod?K and

0— T]—)T(M)—>T2—>0
is an exact sequence of G k. -representations then there exists a unique exact sequence
O—-> M — M—> M, — 0

in MOdEK recovering 0 - T) — T — T» — 0 after applying M — T (M).

Proof If T is an F ,-representation of G ¢, then there exists a p-torsion M € Mod‘}}
such that T(M®') = T. Remark 5.1.2 shows that any k[[u]]-lattice M C M*® is an
object of ModEK withT(M) =T.

For the second part, the functor from Proposition 4.1.5 is an exact equivalence
and so there exists an exact sequence 0 — M — M — MS' — 0 recovering
0— T} — T — T, — 0 after applying T (—). Then M is a k[[u]]-lattice inside M
and we must have M> = Im(M) C M5' and M} = M N M. O

Construction5.1.4 Let M € ModEK. A composition series of M is a filtration
O0=M,C---CMy=M

by sub-Breuil-Kisin modules such that each M;/M;, is an irreducible object (i.e.
admits no non-zero proper sub-objects N € ModfK such that the cokernel of
N — M;/M;+1 is k[[u]]-torsion-free) of ModEK. Lemma 5.1.3 implies being irre-
ducible is equivalent to asking that 7 (M; / M; 1 1) is anirreducible G g _-representation.
Lemma 5.1.3 also implies that composition series for M are in bijection with compo-
sition series for T (M).

Warning 5.1.5 The following example shows that the set of irreducible factors of
a composition series is not independent of the choice of composition series. Make
M = @?:1 k[[u]]e; into an object of Mod?K by setting

pler, e, e3,e4) = (e1, €2, €3, e4) ., 1#aelF,

co ¥ o
cocoR
— o oo
o< O =
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It is easy to see that 0 C M| = k[[u]le; €D k[[ullex C M is a composition series of
M. On the other hand if x + 1 = « then

0O 1 0 1
u? 0 0 O
p(er — xues, ex — xey, €3, e4) = (e] — xues, ex — xe4, €3, e4) 0 0 0 ou
0 01 0

This gives rise to a second composition series

0 C M; = kl[ull(er — xuz) @ kllull(ez — xex) € M

which evidently has different irreducible factors as the composition series above. This
phenomenon is related to the fact that 0 - My - M — M/M; — 0, while not
itself p-equivariantly split, becomes so after inverting u.

5.2 Strong divisibility

In this subsection we define a full-subcategory Mod,fD C ModEK which we view as
an extension of p-torsion Fontaine—Laffaille theory to filtrations of length p.

Construction 5.2.1 Let M be an object of ModPX. Recall M is the k[[u]]-sub-module
of M[%] generated by ¢(M). Equip M¥ with the filtration F' M% = M? Nu' M. Let
M,‘f = M?/u. We equip this k-vector space with the quotient filtration.

Definition 5.2.2 If M € Mod,‘(3K let Weight(M) be the multiset of integers containing
i with multiplicity

dimy gri (Mk(p)

Construction 5.2.3 Similarly to Construction 5.2.1, we equip M with a filtration by
setting F'M = {m € M | ¢(m) € u' M}. The semilinear injection

¢: M~ M?

is then a morphism of filtered modules. Let M = M /u. We equip this k-vector space
with the quotient filtration.

Lemma 5.2.4 The injection ¢ : M — M? induces a functorial k-semilinear bijection
of vector spaces

My — MY

which is compatible with filtrations (but not necessarily an isomorphism of filtered
modules).
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Proof All that needs to be checked is that ¢: M — M? induces a k-semilinear
bijection My — M,‘f . As M} and M,‘f have the same dimension over k we only
need to check surjectivity. As M? is the k[[u]]-module generated by p(M) C M [%]
surjectivity follows because ¢ is an automorphism on k = k[[u]]/u. O

Lemma 5.2.5 Let M be an object OfMOdEK. The following are equivalent:

1. The map My — M;f is an isomorphism of filtered modules.
2. There exists a k[[u]]-basis (f;) of M and integers (r;) such that (u' f;) isa k[[u?]]-
basis of p(M).

Proof Suppose M — M,‘f is an isomorphism of filtered modules. We can find integers
r; and elements g; € F'i M whose images in gr(My) form a k-basis. As the induced
map gr(My) — gr(M;f) is an isomorphism it follows that the images of the ¢(g;) €
¢(M) in gr(M;f) form a k-basis. Applying Lemma 3.2.1 with M = M, N = M? and
a € Aequal tou € k[[u]] proves that (1) implies (2) with f; = u™"1¢(g;).

To prove (2) implies (1) we use the f; to give explicit descriptions of the filtration
on M,‘f . Since ¢(M) generates M? over k[[u]] every m € M? can be written as
m =Y a;(u"f;) with o; € k[[u]]. f m € F/M? then o; € u™>U~":-0k[[u]] =
FJ=Tik[[u]] since the fi form a basis of M. Hence

FIMY =Y (F/ kD @' f;)

and so F/M{ =Y, . kf; where f; denotes the image of u" f; in M{.1f g; € M
is such that ¢(g;) = u"" f; we have g; € FiMifr; > j. If g; denotes the image
of g; in My then since the map My — M;f sends g; — ?i, it induces surjections
FiM, — FjM,‘f. Thus M, — Mk(p is an isomorphism in Fil (k). O

Remark 5.2.6 N ote thatif we haVE abasis asin (2) of Lemma5.2.5 then the above proof
shows that gr/ (Mkw) = Zr,-:/' k f;. Thus the multiset {r;} is equal to Weight(M).

Remark 5.2.7 Isomorphism classes of objects in ModfK can be described explicitly.

Choosing a basis and considering the matrix of ¢p: M — M [%] with respect to that
basis describes a bijection

isomorphism classes of rank n
{ objects of ModPX < GLy (k(()))/ (5.2.8)

Here A ~ B if there exists C € GL,, (k[[u]]) such that A = C_lng(C). Recall that
any invertible matrix over k(()) can be written as C{ AC, where A = diag(u’?) and
Ci € GL, (k[[u]D).

e If M is an object of Mod,lc3K corresponding under (5.2.8) to a ¢-conjugacy class
represented by C1 AC> then the (r;) = Weight(M).

e The isomorphism classes of Breuil-Kisin modules satisfying the equivalent con-
ditions of Lemma 5.2.5 identify, via (5.2.8), with ¢-conjugacy classes represented
by matrices C; A with C; € GL, (k[[u]]) and A = diag(u’?). Indeed, if (f;)
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is a k[[u]]-basis as in Lemma 5.2.5(2) then there exists C € GL, (k[[u]]) so
that (u™ f1, ..., u™ fu) = (@(f1), ..., (fu))e(C) and so ¢((fi, ..., fn)C) =
(fi,..., fCC~ diag(u').

Definition 5.2.9 Let Mod,fD C Mod,ﬂ3K denote the full subcategory whose objects
satisfy the equivalent conditions of Lemma 5.2.5 and have Weight(M) C [0, p]. We
say such M are strongly divisible.

5.3 Strong divisibility with coefficients

We reproduce the previous subsection allowing O-coefficients.

Definition 5.3.1 Let ModEK(O) denote the full subcategory of Mod%K(O) whose
objects are finite free over k[[u]] ®F, IF. This is equivalent to being free over k[[u]]
and killed by @ by Corollary 4.3.6.

Remark 5.3.2 As in Construction 4.3.4, each M € ModEK(O) decomposes as

M:]_[M,

T eHome (k,IF)

with each M; afinite free module over F[[u]]. Since the filtration on M is by k[[u]] QF,
F-sub-modules this is a decomposition of filtered modules. Thus M; = ]_[r Mj - as
filtered modules (each Mj . being a filtered F-vector space). Analogous statements
hold for M¥ and M.

Definition 5.3.3 For t € Homg , (k, ) let Weight, (M) be the multiset of integers
which contains i with multiplicity equal to

dimp gri(M,jr)
Since M{ =[] M,‘f’r we have that Weight (M) equals the union over all T of [F : k]
copies of Weight_ (M).

The following is a version of Lemma 5.2.5 for objects of Mod,‘(3K (O) and is proved
in exactly the same fashion.

Lemma 5.3.4 Let M be an object of ModEK (O). Then the following are equivalent:

1. The semilinear map My — M ,‘f is an isomorphism of filtered modules.
2. Fort € Homp, (k, ) there exists an F[[u]]-basis (f;) of M, and integers (r;)
such that (u"" f;) is an F[[u?]]-basis of ¢(M)-.

Remark 5.3.5 As in Remark 5.2.6, if bases as in (2) of Lemma 5.3.4 exist then the
multiset {r; ;} equals Weight, (M).
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Remark 5.3.6 There is the following analogue of Remark 5.2.7 for Mod,]f’K (O). Choos-
ing F[[u]]-bases for each M, and taking the matrices representing ¢ with respect to
these bases describes a bijection

isomorphism classes of rank n f
{ objects of ModPX (0) < GL, (F(@)))"/

where [ = [K : Qp] and where two f-tuples of matrices satisfy (A;) ~ (By) if there
exist C; € GL,, (IF[[u]]) such that A, = CI_IB,w(C,O(/,) for all . Each A; can be
written as C; A, C,. with C;, C, € GL,(F[[u«]]) and A; = diag(u’i7).

e The multiset {r; .} is the multiset Weight_(M).

e The M which satisfy Lemma 5.3.4 correspond to classes represented by an f-tuple
of matrices (A;) such that each A; = C; A-.

Definition 5.3.7 Let Mod,fD((’)) - ModEK(O) denote the full subcategory whose
objects are strongly divisible when viewed as objects of ModEK.

5.4 Subquotients

We now show Mod,f’D and Mod,fD((’)) are closed under subquotients.

Remark 5.4.1 If M € Mod?K then there are exact sequences

0 — gr' (M%) = gri (M?) — gri(M,(f) -0
0— gr' P(M) S g (M) > gr' (My) - 0

The first is just the exact sequence (3.2.2) in the case M = M and N = M? with
A = k[[u]] and a=u. The second exact sequence is obtained similarly (using that
F'(uM) = u(F'~PM)).

Lemma5.4.2 Let0 - M — N — P — 0 be an exact sequence in ModEK.

1. The map N — P is strict when viewed as a map of filtered modules if and only
if0 > My — Ny — Py — 0 is an exact sequence in Fil(k) in the sense of
Notation 3.3.2.

2. The map N¥ — P? is strict if and only if 0 — M;f — N]ip — P]ép — 0 is exact
in Fil(k)

3. Statement (2) is equivalent to M,‘f — Nk(p being strict, which is equivalent to
N;f — P,;p being strict.

Proof Note that M — N is strict as a map of filtered modules. To see this suppose
m € M N F'N. Then o(m) € o(M) Nu'N C M[L]Nu’N. Since M — N has
u-torsion-free cokernel M[%] Nu'N =u'M.Thusm € FIM. Similarly M¥ — N¥
is strict. Hence, Lemma 3.1.5 implies N — P is strict if and only if 0 — grl (M) —
gr' (N) — gr'(P) — 0 is exact for each i. Likewise, N¥ — P¥ is strict if and only
if 0 — gr' (M%) — gr'(N¥) — gr' (P¥) — 0 is exact.
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Using the second exact sequence of Remark 5.4.1 we obtain the following commu-
tative diagram with exact rows.

0 0 0
+ + +

0 — gri=P(M) & arf (M) — gr' (M) — 0
+ + +

0 — gri P(N) & gr'(N) — gr'(Ny) — 0
+ + +

0 — gr'P(P) 4 grf(P) — gr'(P) — 0
+ + +
0 0 0

The previous paragraph shows thatif N — P is strict then the left and middle columns
are exact, and so the right column is exact also. Conversely, if the right column is exact
then one proves the middle column is exact by increasing induction on i (for small
enough i the left column will be zero). This proves (1). The same argument, but with
the diagram replaced with the diagram obtained by considering the first exact sequence
of Remark 5.4.1, proves (2) also.

It remains to show that if M;f — N,f or N,f — P,f is strict then 0 — M;f —
N{ — P{ — 0is exact. It suffices to show that >, cweigniary | + D icweight(p) i =
> icWeight(n) i after Corollary 3.3.3. Remark 5.2.7 says that 3, cweighi (s ¢ €quals the

u-adic valuation of the determinantof ¢: M — M [%] (in any choice of basis). Since
this is clearly additive on exact sequences the lemma follows. O

Lemma5.4.3 Let0 > M — N — P — 0be an exact sequence in ModEK. Suppose
M and P satisfy the equivalent conditions of Lemma 5.2.5. If N — P is strict then
N satisfies the equivalent conditions of Lemma 5.2.5 also.

Proof Consider the following commutative diagram.

0 — gr'(M{) — g’ (N{) = gr'(Pf) = 0
qN ™~ qN
0 — gr' (M) — gr'(Ny) — gr' (P) — 0

The left and right vertical arrows are isomorphisms by assumption. Since N — P is
strict, part (1) of Lemma 5.4.2 implies the bottom row is exact. Thus gr’ (N,f ) —
gri(P,ép) is surjective and so N,f — P,f is strict by Lemma 3.1.5. Part (3) of
Lemma 5.4.2 then implies the top row is exact. We conclude that Ny — N,f is
an isomorphism in Fil(k). O

Lemma5.4.4 Let0 > M — N — P — 0be an exact sequence in ModEK. Suppose
that N satisfies the equivalent conditions of Lemma 5.2.5 and that M — Ny is
strict. Then N — P is strict and M and P also satisfy the equivalent conditions of
Lemma 5.2.5.
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Proof The following diagram of objects in Fil(k) commutes.

M — N
1 4
My — N

As maps of k-vector spaces the horizontal arrows are injective and the vertical arrows
are isomorphisms. By assumption the maps My — Ny and Ny — Nk(p are strict. It
follows that M{ — N and My — M} are strict also.

The following is also a commutative diagram in Fil(k).

N — P!
™ T
Ny — Py

As maps of k-vector spaces the vertical maps are isomorphisms and the horizontal
arrows are surjections. By assumption the leftmost vertical arrow is strict. Using part
(3) of Lemma 5.4.2, M;f — Nk(p being strict implies N,f — P,;p is strict. It follows
that P, — P,f and N — Py are strict. Thus M and P are as in Lemma 5.2.5 and,
after (1) of Lemma 5.4.2, we know N — P is strict. O

Lemma 5.4.5 Suppose N is strongly divisible. If0 — M — N — P — 0is an exact
sequence in ModfK then My — Ny is strict.

Proof Remark 5.4.1 gives the following commutative diagram with exact rows.

0 — gr'=P(M) = gr' (M) — gr' (M) — 0
+ + Je
0 — gri P(N) — gr'(N) — gr'(Ny) = 0

One knows that M — N is strict (as was shown in the first paragraph of the proof
of Lemma 5.4.2) so the left and middle vertical arrows are injective by Lemma 3.1.5.
We have to show « is injective for every i.

For injectivity of @ when i < p we argue as follows. As Weight(N) C [0, p], and
because N = NZ’, we have gr' (N;) = 0 for i < 0. Hence gr (N) = gr'~?(N) for
i < 0. This implies gr' (N) = 0 for i < 0 because F'N = N for small enough i.
Using the diagram we deduce that gr' (M) = 0 for i < 0 also, and that for i < p
we have grl (M) = gr' (My) and gr' (N) = gr! (N). This proves « is injective when
i <p.

For injectivity of @ when i > p it suffices to show F' Ny, = 0 fori > p (because
then FIM; = 0 fori > p so « is just the zero map when i > p and when i = p,
« is the inclusion F! My — F'Ny). By the strong divisibility of N this is equivalent
to showing FiN,ip = 0 fori > p. Since Weight(N) C [0, p] we have FPHN,?’ =0
which completes the argument. O

Putting all this together we deduce the following.
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Proposition5.4.6 Let0 — M — N — P — 0 be an exact sequence in ModEK.
1. If N € Mod,fD then M and P are strongly divisible and the sequence
O—>M;f—>N,f—>P]f—>0

is exact in Fil(k). In particular, Weight(N) = Weight(M) U Weight(P).
2.IfP,M € ModzD then N € Mod,fD if and only if N — P is strict.

Proof (1) Follows from Lemmas 5.4.2, 5.4.4 and 5.4.5. For (2) use Lemma 5.4.3. O

Proposition5.4.7 Let0 - M — N — P — 0 be an exact sequence in Mode(O).

1. If N € ModED(O) then M and P are both strongly divisible and, for each T €
Homp , (k, F), Weight, (N) = Weight, (M) U Weight, (P).
2. If M, P € Mod{P(O) then N € Mod;P(O) if and only if N — P is strict.

Proof This is immediate from Proposition 5.4.6. In particular, we point out that the
exact sequence in (1) of Proposition 5.4.6 is functorial and so is an exact sequence of
k ®r, F-modules. Thus it decomposes into exact sequences

% 4 %
O_)Mk,rﬁNk,r_)Pk,r_)O

which shows Weight, (N) = Weight, (M) U Weight, (P). m]

6 Irreducible objects

Provided F is sufficiently large, irreducible F-representations of Gg and Gk, are
induced from characters, see Lemma 2.1.2. In this section and the next we investigate
the extent with which this is true for objects of ModgD (O). Throughout assume k C .

6.1 Rank ones

Recall from Construction 4.3.4 how & ®z, O is made into an O[[u]]-algebra. Then
k[[u]] ®F, FF becomes an F[[u]]-algebra. Also let e; € k[[u]] QF, F denote the image
of the idempotent g; € & ®z , O defined in Construction 4.3.4. Thus ¢(erop) = er.

The next lemma is proven by an easy change of basis argument (see [9, Lemma
6.2]).

Lemma6.1.1 Fix 7p € Homp,(k,F). Let M € ModEK(O) be of rank one over
k[[u]] ®F, F. Then M is isomorphic to a Breuil-Kisin module

N =kl @, F,  on(D) =) ) ue

where ry € Z and where (x) = xeg, + Zr#m e; for some x € F*.
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Remark 6.1.2 If N is as in Lemma 6.1.1 then Weight,(N) = {r;}. Note also that N
satisfies the equivalent conditions of Lemma 5.3.4. Thus N € Mod,fD((’)) if and only
if r; € [0, p].

Proposition 6.1.3 If N is as in Lemma 6.1.1 then the G g -action on T (N) is through
the restriction to Gk, of the character

Vo [ Jor™
T

Here ;. denotes the unramified character sending the geometric Frobenius to x, and
the w; are the characters defined in the paragraph after the proof of Lemma 2.1.1.

Proof This is [9, Proposition 6.7]. However note that in loc. cit. they contravariantly
associate a Gk -representation to Breuil-Kisin module; this is why the character
appearing here is the inverse of that in loc. cit. O

6.2 Induction and restriction

Notation 6.2.1 Let L/K be the unramified extension corresponding to a finite exten-
sion [ /k, and let Loo = KooL. Set S = W(I)[[u]]. Extension of scalars along the
inclusion f: & — &, describes a functor

f*: Mod®® — ModP¥

For M € Mod%K the module f*M = M ®g S is made into a Breuil-Kisin module
via the semilinear map m ® s — @y (m) ® ¢(s); this map induces the isomorphism

f‘*
@l = e = (eue]) 2 5 (4]) - ranfi)
where the first = comes from the fact that ¢ o f = f o ¢. The natural isomorphism
f*M ®s, W(C") =M ®@g W(C")

is clearly ¢, G -equivariant so 7' (f*M) = T (Mlg,,,-

Notation 6.2.2 With notation as in Notation 6.2.1, restriction of scalars along f
induces a functor

fi: ModB® — ModB¥
IfM e Mod?K we equip fix M with the obvious semilinear map m +— @ (m). Let us

verify that this makes f, M into a Breuil-Kisin module. The semilinear map induces
the composite:

@ £ 3] > o[ 4] = f(eM[£]) 22 n(M[£]) = (00| £]
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which we claim is an isomorphism. It suffices to check the natural map ¢* f,M —
f«@™M is an isomorphism, and this follows because the commutative diagram

a3
1=

1=
G2 &

is a pushout.

Lemma6.2.3 For all M € Mod?}K and N € ModlzK there are functorial isomor-
phisms

Hom(M, fiN) = f,Hom(f*M, N)
in ModﬁK.

Proof The standard adjunction between f* and f provides functorial G-linear iso-
morphisms Homg (M, f,N) — Homg, (f*M, N).Explicitly, this map sends « onto
the homomorphism m ® s — sa(m). As this is ¢-equivariant we get isomorphisms
as claimed. O

Lemma6.2.4 Let N € ModlzK. Then there are functorial identifications iy
T(f«N) — Indf;C T (N) such that the diagram

Homgk (M, f«N) L) Hompk (f*M, N)
dg>inoT (g) Ir
Koo (Frob)H
Homg, (T (M),Ind;* T(N)) = Homg, (T (M)lg, T (N))

commutes for all M € MOd%K. The top horizontal arrow is obtained from the iden-
tification in Lemma 6.2.3 by taking ¢-invariants, and the lower horizontal arrow is
given by Frobenius reciprocity.

Proof Let Og 1. be the p-adic completion of & L[%]. The map f : & — & extends
toamap f : Og¢ — Og and so we can make sense of the operations f* and
f« on etale p-modules. Write M = M ®g Og and N = N ®g, Og . Then
clearly f*(M®) = (f*M)® and, because Og; = O¢ @ &1, we also have that
Fe (N = (fi N)'. We obtain maps

Homgk (M, f«N) — Home (M®, f.N®),
Homgk (f*M, N) — Home (f*M*, N®)

which commute with 7'. The analogue of Lemma 6.2.3 in the setting of etale ¢-modules
is proved in exactly the same way, and the obtained identification is compatible with the
maps above. Thus, to prove the lemma we may replace Hompk with Hom¢ (homsets
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in the category of etale p-modules) and M and N with M®' and N in the diagram of
the lemma.

Since M®' > T (M*') is an equivalence of categories, the map (Frob)oT 0(6.2.3) 0
T~ describes an identification

Homg, (V,T(f«N)) - Homg,_ (V, Indf;’ T(N)) (6.2.5)

for any continuous G -representation V on a finitely generated Z,-module. As
(6.2.5) is functorial in V, Yoneda’s lemma provides the isomorphism ¢y . As (6.2.5) is
functorial in N we see that ¢ is functorial. O

Lemma 6.2.6 Assumek C I C F.

1. If M € ModiP(O) then f*M € Mod{P(0O) and for each & € Homg, (I, F) we
have

Weight, (f*M) = Weight (M)

2. If N € Mod{P(O) then f.N € Mod?P(0) and

Weight, (f,N) = U Weight, (N)

k=t
Proof By functoriality both f* and f, preserve O-actions. Note that the inclusion
kl[ull ®, F — I[[u]] ®F, F sends e; ka:r eg. Thus (f*M)g = My, and

(fuN); = H0| =t Ny. Both (1) and (2) then follow by verifying the second condition
of Lemma 5.3.4. O

6.3 Approximation by induced Breuil-Kisin modules
We consider the situation from Notation 6.2.1. Thus L/K is a finite unramified exten-
sion, corresponding to an extension [/ /k of residue fields, and Lo, = L(zl/ 1’00). We

also have themap f: & — G .

Lemma 6.3.1 Suppose M € Mong(O) and assume that T (M) = Indf;’ T'. Then

there exists an N € ModlSD(O) with T(N) = T/, together with a g-equivariant
inclusion

M — fN

of k[[ul] QF, F-modules which becomes an isomorphism after inverting u.

Proof There is a non-zero map T (M)|g L T’ corresponding under Frobenius

reciprocity to the isomorphism 7' (M) = Indf:j T’.Lemma 5.1.3 produces a surjection
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f*M — N where N € Mod?K(O) is of rank one with T(N) = T'. Applying
Lemma 6.2.4 to f*M — N we obtain a map

M — fiN

which, after applying T, induces the identification T(N) = T’. Thus M — fN
becomes an isomorphism after inverting u and is, in particular, injective. Lemma 6.2.6
implies f*M € ModISD((’)), since M € Mod,fD(O). Therefore N € Mod,f’D((’)) by
Proposition 5.4.7. O

When T (M) is irreducible and F is sufficiently large 7 (M) is induced from a
character. Thus, Lemma 6.3.1 produces an inclusion M < f, N with N of rank one.
Lemma 6.1.1 allows us to describe N explicitly. In this case we would like to know
which submodules of f, N arise in this way. The following example shows that there
are non-trivial (i.e. M # f,N) possibilities.

6.4 An example

Take K = Q, and let L/K be of degree 5 with residue extension //k. Let N €
ModlSD((’)) be the rank one object defined by

N =1[[ull ®F, F, on(1) = u"egops + u"egops + egoy2 + ' egop + o

Here we have fixed 6 € Hom]Fp(l, F)and1 <n < p,0 <x < p.LetM C fuN
be the sub-module generated over F[[u«]] by €Gogts €hogd T €0ops €hog?s U€hog, €0. One
computes that

P(€hoyt €hop® T €oopr €ooy2 UChops €8) = (Cgopts Coopd T Coops Coop?s Uehop, €9) X

where
0O 0 0 0 1 u 0 0 0 0 1 0 0 0 O
1 0 0 0 O 0 1 0 0 0 0O 1 0 0 O
X=10 1 0 0 O 0 0 u! 0 0 -1 0 1 0 O
0O 0 1 0 -1 0O 0 0 u? 0 0O 0 0 1 0
0O 0 0 1 O 0O 0 0 0 ur 0O 0 0 0 1

This shows that M € Mod,fD(O). One checks that M # f, N’ for any rank one
N’ CN.
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6.5 Irreducibility and strong divisibility

Let L/K, l/k and L /Ks be as in Notation 6.2.1; we obtain f: G — &. Let
N e ModlSD(O) be the rank one object given by

N=[ull®r, F. on(D= Y u’e
BeHom]Fp(l,F)

Since N € Mod,fD(O) each ry € [0, p]. Note this N is as in Lemma 6.1.1, except
we’ve fixed x = 1. This is to simplify notation (it will be easy to reduce from the
general case to this one). The following proposition describes which Breuil-Kisin
modules embed into f, N as in Lemma 6.3.1.

Proposition 6.5.1 Assume T (fyN) is irreducible. Let M C f.N be a finite free
k[[u]] ®x, F-sub-module with M[1] = (fuN)[1]. Then M € Mod$P(0) if and
only if the following conditions are satisfied.

1. If m € M then o(m) € M and if m € fN and o(m) € uM thenm € M.
2. Ifm € fuN thenum € M.
3. If Y apes € M with oy € F then

Z ageg € M

ro=r mod p
forevery0 <r < p.

Proof (that SD implies (1), (2) and (3)) If M € Mod{P(O) then FOM; = My and
FPHU M, = 0. The first condition implies ¢(m) € M whenever m € M. The second
condition implies

e Anym € M with ¢(m) € uP+1 M must be zero in M, and so is contained in uM.

Let us show this implies (2). As M[%] = (f*N)[%] there is, for each 6, a smallest
integer 8¢ > 0 with u% ey € M. Since gp(u‘sf)f"ﬂegow) = uboeo P00+ % oo and u ey ¢
uM we see 8gopp — 89 + 19 € [0, p]. Therefore dpopp — 89 < p and

[1Fp]1-1

P = s = D P (Pgegint = Sgag) = PP =1/ (p = 1)
i=0

This implies 8¢ € [0, 1]if p > 2, and 89 € [0,2]if p = 2. If p = 2 and Spop = 2
then, as rg + pdgop — 8¢ € [0, p], we must have 89 = 2 and rg = 0. Thus ry = 0 for
allg € HomFP (I, F) and so T'(N) is the trivial character. In this case T (fiN) is not
irreducible.

Now we can deduce the second part of (1). If m € f.N and ¢(m) € uM then
@(um) € uPt'M; as (2) holds we have um € M and so the above bullet point give
um € uM.Hencem € M.
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To prove (3) we first make the following claim. Suppose that > apey € M with
ap € F[[u]] (so this sum is more general than that in (3)) and that u” ) ageg € M?
for 0 <r < p. Then:

e There existag, € F[[u]] such that Y ageg € M, "' a5 e € M? and

— ap modu ifrg #r, exceptpossiblyifrg =0andr = p
(04 =
o.r Omodu ifrg=r

To verify the claim we use that, since M is strongly divisible, the map My — M ,f
is an isomorphism of filtered modules. As u" ) ageg € F"M? it follows that there
exists an element 8 € F"M such that (B) —u” ) agey € uM? . If B =) Poesoy
then

Z‘P(ﬂe)umee —u" Zaeee = Z ((,0(/3,9)1/9 - I/tr()ée) ep cuM? Nu"M
(6.5.2)

Asu"M C u"N and uM?¥ C uN¥ we deduce that

vu (9(Bo)u"® — u"ap) > max{ry, r — 1}

Here v, denotes the u-adic valuation. If 79 = r this inequality implies agp = ¢(Bp)
modulo u, and so we can write ¢ (8y) = ag + uyp for some yp € F[[u]]. If r > rg the
inequality implies ¢(8p) = 0 modulo u, and so we can write ¢(8y) = u”yp for some
vo € F[[u]]. If rg > r then we simply write ¢(Bg) = yp. Dividing (6.5.2) by u” we
therefore see that

Z agey — Z uypey — Z ul =" ypep — Z u® " ypeg € M

ro#r ro=r r>rp ro>r
and that " ~! times this element is contained in M¥. As such, taking

—Uuyp ifrg =r
gy = og —uP" 0y, ifr >y

" v ifrog >r

g — U
gives the claim.

We now use the claim to verify (3). Suppose Y ageg € M, now with gy € F.
As already remarked, the fact that Weight(M) C [0, p] implies u?M C M?. In
particular u? Y apey € M? so the claim applies, and produces Zmeg € M. Using
that uey € M for every 6 we deduce that there are y» € IF such that ), p 20€0
> _ry—0 Yoes € M. Hence

Z(Xgeg— Zygee eM

rg=p ro=0
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As uP~' 3" wg ,ep € MY we can then apply the claim to Y g yep; this yield
Zofa;—/lee € M. Again using that ueg € M for each 6, we deduce that
D rodtp.p—1 %€+, _oveeo € M, and hence

Repeatedly applying the claim in this fashion we deduce that ), ,=r Qg€ for0 <r <

pandthat } , _oageg + >, _oveeo € M. In particular we find

Z ogeg + Z agey = Z ogeg € M

ro=p ro=0 r=0 mod p

which finishes the proof that M € Mod,fD(O) implies (1), (2) and (3) hold. O

6.6 Finishing the proof of Proposition 6.5.1

Let N be as in the previous subsection and suppose that M C f, N isafree k[[M]]@FP F-
module with M[%] = (f*N)[%]. Assume that M satisfies conditions (1), (2) and (3)

from Proposition 6.5.1. We are going to prove that M € Mod,f’D((’)). Along the way
we shall describe the weights of M in terms of the ry.

Construction 6.6.1 For a fixed A € Homp » (I, F) define an ordering on Homyp » (I, )
by asserting that

[l:Fpl—1

)\.O(p<A)LO(p2<)\"'<)L)\O(p <) A

Using this ordering we define X C Homp, (/, ) by

0 ¢ X < there exists ¢, € [F such that eg + Z oe €M (6.6.2)

K<;0

Clearly X depends upon the choice of A.

Lemma6.6.3 1. If erx e, is an F-linear combination contained in M then

ZKEX acee = 0.
2. If0 ¢ X there exists a unique F-linear combination

eg—l—Zoz,(eK eM, a.elF

in which the sum runs over k € X satisfying (i) k <, 0 (ii) r, = rg modulo p and
(iii) |y = Olk. In particular, the element lies in My), .

Proof (1) If er x Qe 7 0 then there exists a maximal « (with respect to <) with
o, # 0. From Z;«ex ae, € M it follows this maximal « is not contained in X, a
contradiction.
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(2) As 0 ¢ X, there exists eg + Y _ are, € M with the sum running over k <, 6.
Arguing inductively one shows there exists such a sum running only over those k. < 6
with k¥ € X. There can be at most one sum of this form; indeed their difference
would be a sum as in (1) and so would be zero. Condition (3) of Proposition 6.5.1
therefore implies the sum may be taken to run over « additionally satisfying (ii). As
M= HteHome (.F7) Mz we also have (iii). o

Definition 6.6.4 Consider F-linear combinations of the form

et Y djeo, €M (6.6.5)
0<j<I

withO <7 <[/ : Fp]and¢ € Homg , (, F). We say (6.6.5) is minimal if there exists no
e Homp, (I, IF) together with an [F-linear combination e, + ZO<j§J ajeso,i €M
such that J < I. Note that for a fixed ¢ there can exist at most one minimal sum as in
(6.6.5); if there were two their difference would have shorter length.

Note that when there exists a 6 such that e9 € M then the minimal elements are
simply scalar multiples of ey for any 6 with eg € M.

Lemma 6.6.6 If (6.6.5) is a minimal sum thenr ,,j = r, wheneveraj # Oand j < I.

Proof Uniqueness of minimal elements and condition (3) of Proposition 6.5.1 implies
ri =1y, modulo p. Since eachr,.,; € [0, p] this will be an equality, except possibly
if r, = 0 or p. In this case set

z=ue0p + 2 : uaje it
O<j<I

where y; = 0ifr,; = pandy; = lifr,,; = 0. Then ¢(z) equals u? times (6.6.5)
and so condition (1) of Proposition 6.5.1 implies z € M. Thus, either all ; = 0 or all
equal 1, otherwise we would obtain an element of M contradicting the minimality of
(6.6.5). O

The next proposition is where we use that T (M) = T (f«N) is irreducible.
Proposition 6.6.7 There exists A € Homp, (I, ) such that

1. If0 e XandO o ¢ X thenrg > O.
2. If0 ¢ Xand B o € X thenrg = 0.
3. If0 € X and egop ¢ M then 0 < rg < 1. In particular this holds if 0 o ¢ € X.

Proof First observe (3) holds for any choice of A. Indeed, if epo, ¢ M then condition
(1) of Proposition 6.5.1 would imply ¢(egop) = u'eg ¢ uM.1f ro > 2 then u'?eg €
u’ f, N, which is contained in uM by (2) of Proposition 6.5.1.

Next we show (2) holds whenever r,, = 0. Suppose 6 ¢ X and ryp > 0 (we're
assuming that 7, = 0506 7# 1). We show 6 o ¢ ¢ X. Choose eg + ZK<,\0 oee €M
as in Lemma 6.6.3. Set z = egop + Y, 20 Qclrop + UD_, _oUcerop. Using that
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rg = r, modulo p and rp > 0 we see that ¢(z) = u"(eg + Y_ ae,). Condition (1)
of Proposition 6.5.1 implies z € M. Since 6 # A, if k <) O thenk o ¢ <; 0 o ¢.
Therefore z shows 6 o ¢ ¢ X.

Now choose a minimal sum as in (6.6.5) (if none exists then we must have M =
u(f«N) and so X = Homg,(/, F), in which case conditions (1), (2), and (3) hold
vacuously). We are going to show that either A = : satisfies the conditions of the
proposition or e,o,+ ®je,pi+1 € M.Letusexplain why this implies the proposition.
If there exists no A € Homp » (I, TF) satisfying conditions (1)—(3) then it would follow
that e, + D aje,,+i € M for every i > 0. Lemma 6.6.6 would then imply

ry = Iy, forevery (' € Homp , (I, F). If w is the character through which G ¢ acts on

T(N) we would then have w =[], 0, " =[] w;;, = P . If I > 0 this contradicts

the irreducibility of T (M) = Indf T (N).If I = 0it would follow thatevery e, € M,
so X = ¢ and conditions (1)—(3) hold vacuously.

Setz = e,0p + > oje i+ - If r, > 0 then we always have z € M for the following
reason: Lemma 6.6.6 implies Tiopi =T whenever Uyopi # 0andso ¢(z) € u"™ M from
which we deduce z € M using condition (1) of Proposition 6.5.1. If instead r, = 0 set
A = 1. The first and second paragraph of this proof shows that (2) and (3) hold. If (1)
holds also then we are done, so assume it does not. There must then exist 8 € X with
0o@ ¢ X and rg = 0. We use this to show z € M. If 6 = A then L o ¢ ¢ X which
means ejo, € M; by minimality z = e, and we are done. Let us therefore assume
6 # A. Consider the unique

f00(p = €hop T Z (07975

K <3000

from Lemma 6.6.3. As ry = 0 and k <; 6 o ¢ implies k o ¢!

K = A o ¢, we obtain

<, 0, except if

roo_
(p(f(‘)og)) =eg + Apop€) + Z Uycoplh ¥ IEKO(p—] eM

kop~l<;0

Removing those terms with 7,.,,—1 > 0 and re-indexing, we obtain

Ko

eo+ae,+ Y Peec €M (6.6.8)

k<6

for some «, B, € F. If « = 0 then (6.6.8) contradicts the assumption that 6 € X. If
we write # = A o ¢/ and J < I then (6.6.8) contradicts the assumption that (6.6.5)
is minimal. If / < J then the difference between (6.6.8) and the product of « and
(6.6.5) again contradicts the assumption that & € X. Thus I = J. The uniqueness of
minimal elements then implies (6.6.8) equals « times (6.6.5). Thus z = % eM
which completes the proof. O
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Proof (End of the proof of Proposition 6.5.1) We have to show M is strongly divisible.
Fix A as in Proposition 6.6.7 and for 6 € Hom[gp (I, IF) set

es + > apec asin Lemma 6.6.3 if6 ¢ X

0= uey ifo e X
Fort e HomFP (k, F) the fp with 6| = t form an F[[u]]-basis of M. To see this let
W C M. be the subspace they span. It is easy to see that if 0|y = 7 then ueg € W.
It therefore suffices to show any Y wgey € M, with ag € F is in W. We see that
Yo apes — Y g ¢x @0 fo is an F-linear combination of ey with & € X, and is contained
in M. Such a linear combination must be zero (cf. the proof of Lemma 6.6.3) so
W = M., as claimed.
For each 6 we now construct elements ggop € Mgog|,, ho € Mg, sothat 9(ggoy) =
U0t PS0op =50 jy oy where
o= {1 ifoex (6.6.9)
0 ifegX

We do this on a case-by-case basis. We note each fy € My, by (iii) of Lemma 6.6.3(2).
e Supposed ¢ XandBogp € X.Sethy := fy = ey ~|—ZK<A0’K€X ae € My, (2)
of Proposition 6.6.7 implies rg = 0, so each r,, being congruent to rg modulo p,
equals O or p. If r, = p then (3) of Proposition 6.6.7 implies e,op, € M, and
soko@ ¢ X and fiop = exop. If 7 = 0 then (1) of Proposition 6.6.7 implies

k o @ € X. Thus

8op = foaop+ Y Ccfeop €M

Kk<)0,keX

is such that ¢(ggo,) = u’hy. Since hg € My we must have ggop € Mpogp, -
e Suppose 0 ¢ X, 0 o0¢ ¢ X and rg = 0. Set ggop = foop = €gop +
k<)000cex Ot € Mpopy,. Since k € X, if k o ¢! ¢ X then Teop—1 = 0
by (2) of Proposition 6.6.7. By (3) of Proposition 6.6.7, if k 0 ¢~! € X then

Teop—! € [0, 1]. Therefore the difference between ¢(ggo,) and
he = fo + Z Ol,(f,(o(pfl + Z O(,(fkowfl
Kk <300¢,k0p~1¢X k<pop,kopeX,r,  ,—1=1

is an [F-linear combination of e, with x € X. Since this [F-linear combination is
contained in M it must be zero by (1) of Lemma 6.6.3. Therefore ¢(ggop) = hyg.
Since ggoy|, We must have hg € Mg, .

e Suppose ¢ X, 009 ¢ Xandryp > 0.Sethy := fo =eg+ >
My, . Each r, = ry modulo p and so ¢ sends

k<;0,keX Ucer €

€hop + Z Uylrop + U Z Ui Crop

re>0 re=0
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onto u'® hy (note the term u ZrK —o ®Crop appears only if rg = p). Asrg > 0 this
displayed sum is contained in M by condition (1) of Proposition 6.5.1. We claim
this displayed sum is equal to

80op = f&oga + Z aKfKO(p + Z aKfKo(p

Kk <,0,k0p¢ X Kk<30,k0peX r=0

To see this note that, by (1) of Proposition 6.6.7, if r, = 0 then x 0 ¢ € X and if
Tcop ¢ X then r, > 0. From this it follows that the difference between these two
sums, which is an element of M, is an F-linear combination of e, with x € X.
This difference is therefore zero, and s0 ¢(ggop) = u'hg. As hg € My, we have
80op € Mooy, -

e Suppose & € X and 6 o ¢ ¢ X. Set goop := foop = €hop + Dy -, gopxex Ul €
Myoy),» and set

he == fo + Z e frop—1 + Z e freop1

k<300¢,k00~1¢X K<190<p,/(o<p—leX,er_|:l

We claim ¢(goop) = uthy If egop € M then this is clear since ggop = €gog
and hg = ueg.If egop, ¢ M then (1) and (3) of Proposition 6.6.7 implies rg = 1, so
we have to show ¢(ggop) = hg. Proposition 6.6.7 tellsus k € X and « o ¢
implies r,.o,-1 = 0, whileif x € X and « o ¢~ € X then Teop—1 € [0, 1]. Using
these two facts we see that the difference between ¢(goop) and hg is an F-linear
combination of ¢, with ¥k € X. Since this difference is contained in M it must be
2e10. AS gpop € Mooy|, We have hg € My,.

e Finally,if 6 € X and 6 o ¢ € X set goop := foop € Myoy|, and hg := fy € My,.
Then ¢(ggop) = u’*P~1hy.

To finish the proof it suffices to show that for 6 with 0| = 7, the ggo, form an

F[[u]]-basis of My, and the hy form an F[[u]]-basis of M;.If H is the F[[u]]-linear

endomorphism of M sending fy onto hg then H — Id sends fy onto F-linear combi-

nations of f,,,-1 withk <, 6 o¢. Hence H —Id is nilpotent, H is an automorphism,

and the hy form an F[[u]]-basis as claimed. A similar observation shows the gg., also

form an F[[u]]-basis. O
Using Remark 5.2.6 we deduce:

Corollary 6.6.10 With sg as in (6.6.9)
Weight, (M) = {rg + psgoy — 5o | Olx = T}

6.7 Putting everything together

Applying what we’ve shown so far in this subsection gives:
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Proposition 6.7.1 Let M € Mode((’)) with T (M) irreducible. Then there exist inte-
gers ry indexed over 0 € Hom]Fp (1, F) such that (i):

T(M) @ Fp = ¢ ® Ind}> <1—[w9_,~@>
0

for some unramified character W and for Lo = L(@YP™) with L an unramified
extension K, and such that (ii):

Weight, (M) = {rp | 0| = 1}
Proof Lemma 6.3.1 produces a rank one N € ModED((’)), which we assume is as in
Lemma 6.1.1, together with an embedding M — f,N. We want to apply the results
of Sects. 6.5 and 6.6, so we require the x € F* appearing in the definition of N to

equal 1. Let us explain how to reduce to this case. Let ur, € Mod,fD (O) be the rank
one object given by

ur, = k[[u]] ®]F,, F, §0urx(1) = Xeq + Z er
T#T)

Set M = Hom (ury, M) (recall Construction 4.3.3). One easily checks that M €

Mod?P (0) and that Weight, (M) = Weight, (M) foreach T by verifying that condition
(2) of Lemma 5.3.4 holds. The last sentence of Construction 4.3.3 implies

T (M) = Hom(y, Ind; * x) = Ind; > (¥ x)
Thus, if the proposition holds for M it holds for M, and so we may assume x = 1.
Applying Corollary 6.6.10, Weight, (M) = {r¢ + psgop — S0 | 0|x = t}. On the other

hand, x = T(N) and this equals [ [, wgﬁpsew " by Proposition 6.1.3. Therefore, we
can take 7y = rg + PSoop — S6- O

7 Crystalline representations

In this section we state the key results which relate Mod,§D (O) with crystalline repre-
sentations. We then give a proof of the theorem from the introduction

7.1 Crystalline representations and Breuil-Kisin modules

As in [6] let Bqr denote Fontaine’s ring of p-adic periods, and Berys C Bgr the ring
of crystalline periods. As in [7] a p-adic representation V of G is crystalline if

Derys (V) :=(V ®Qp Bcrys)GK

@ Springer



Inertial and Hodge-Tate weights of crystalline representations 679

has Ky-dimension equal to dime V. The inclusion Berys ®k, K C Bgr induces an
equality Derys(V)k := Derys(V) Qk, K = (V ®Qp BdR)GK which allows us to equip
Derys (V) k with the filtration

F' Derys (V)i := (V ®q, 1' Bjp) ¥

Here B(;LR C Bygr is the discrete valuation ring with field of fractions Bgr, and ¢ is any
choice of uniformiser.

Theorem 7.1.1 (Kisin) There is a fully faithful functor T — M(T) which sends a
crystalline Z ,-lattice onto an object OfMOd%K which is free over S. The Breuil-Kisin
module M(T) is uniquely determined by the fact that T(M(T)) = TG -

Proof This is the main result of [10]. The formulation we give here is taken from [4,
Theorem 4.4]. O

Notation 7.1.2 A crystalline O-lattice is a G g-stable O-lattice inside a continuous
representation of Gk on a finite dimensional E-vector space which is crystalline
when viewed as a Q,-representation. By functoriality M + T (M) restricts to a
functor from the category of crystalline O-lattices into Mod]?(K(O).

Definition 7.1.3 If V is a crystalline representation on an E-vector space then Dy (V)
is a free module over Ky ®q, E of rank dimg V and so Derys(V)k is a free Ko ®q,
E-module of rank edimg V. If Ko C E then as in Construction 4.3.4 there is a
decomposition

Dcrys(V)K = 1_[ Dcrys(V)K,r
reHom]Fp (k,IF)

witheach D¢y (V) k¢ afiltered E-vector space of dimension e dimg V. Define the rth
Hodge-Tate weights of V to be the multiset HT, (V') which contains i with multiplicity

dimg gri (Derys(V)k 7)

With these normalisations the cyclotomic character has tth Hodge-Tate weights
{—1,..., —1} (e copies of —1).

Theorem 7.1.4 (Gee—Liu-Savitt, Wang) Suppose K = K. If p = 2 choose 7 so that
Koo NK(pe) = K. If T is a crystalline O-lattice such that HT (V) C [0, p] where
V=T ®oE, then M := M(T) ® F € Mod;P(0) and Weight, (M) = HT (V).

Proof When p > 2 this follows by reducing the description of M(T) given in [9,
Theorem 4.22] modulo any uniformiser of O. The case p = 2 follows similarly using
[14, Theorem 4.2] (note that the existence of a 7 as stated is proven in [14, Lemma
2.17).2 o

2 Itis important when referencing both [9,14] to keep track of differences in normalisation. In both these
references G g, -representations are attached contravariantly to Breuil-Kisin modules and their Hodge—
Tate weights are normalised to be the negative of ours.
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7.2 Proof of main theorem

We can now give the proof of the theorem in the introduction. Assume K = Kj. Recall
thatif p : Gk — GL,(F)) is a continuous representation then in Definition 2.1.3 we
defined the set Inert(p).

Theorem7.2.1 Let K = Kg. Let p : Gg — GL,, (Zp) be crystalline and suppose that
HT:(p) = (A1,c <+ S Ayp) withdy ¢ — A1 < p. Then

(A7) € Inert(p)

Proof Choose a coefficient field E so that p is defined over O. Via a straightforward
twisting argument we may suppose HT; (p) € [0, p]. Let M(p) € ModI?(K((’)) be the
associated Breuil-Kisin module. By Theorem 7.1.4, M = M (p) ®¢ F € Mod;P(0)
and HT, (p) = Weight, (M).

Choose a G g-composition series of p ®o F. Enlarging E if necessary we can
suppose that Lemma 2.1.2 holds for each Jordan—Holder factor. Let 0 = M,C---C
M, Mo = M be the corresponding composition series of M . By Proposition 5.4.7 each of
M,/Ml+1 € Mod,fD(O) and Welghtr(M) = J; Weight, (M;/M;41). Lemma 2.2.2
implies T (M;/M 1) is induced from a character x;: L — F* for some unramified
extension L/K (depending on i). Therefore Proposition 6.7.1 apphes to M; /M1
and shows that the weights of M; / M 41 are contained in Inert(Ind Xi)- Since this is
true for each i we deduce (A;) € Inert(p). O
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