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We prove that matrix-product unitaries with on-site unitary symmetries are completely classified by the
(chiral) index and the cohomology class of the symmetry group G, provided that we can add trivial and
symmetric ancillas with arbitrary on-site representations of G. If the representations in both system and
ancillas are fixed to be the same, we can define symmetry-protected indices (SPIs) which quantify the
imbalance in the transport associated to each group element and greatly refines the classification. These SPIs
are stable against disorder and measurable in interferometric experiments. Our results lead to a systematic
construction of two-dimensional Floquet symmetry-protected topological phases beyond the standard
classification, and thus shed new light on understanding nonequilibrium phases of quantum matter.
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Introduction.—Classification of topological phases of
matter is a central issue in modern condensed matter
physics [1]. Particular recent interest is attracted by the
classification of topological systems far from thermal
equilibrium [2-15]. This tendency is largely driven by
the remarkable experimental developments in atomic,
molecular and optical physics, which have opened up
unprecedented flexibility for controlling and probing quan-
tum many-body dynamics [16-21]. Moreover, understand-
ing nonequilibrium phases of matter per se is of
fundamental theoretical importance in extending the con-
ventional paradigm of statistical mechanics to the largely
unexplored nonequilibrium regime [22-24].

For equilibrium interacting systems, the arguably most
well-understood classification is that of one-dimensional
(1D) bosonic symmetry-protected topological (SPT) phases
[25-28] as ground states of gapped local Hamiltonians with
symmetries. These 1D SPT phases are well described by
the matrix-product states (MPSs) [29-32], and are com-
pletely classified by the second cohomology group
[33-36], provided that the symmetries are not spontane-
ously broken. An analogous minimal setting in the non-
equilibrium context is the classification of matrix-product
unitaries (MPUs) [36-39], which have been shown to be
equivalent to quantum cellular automata [38]. They effi-
ciently approximate finite-time 1D dynamics generated by
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local Hamiltonians [40]. While an MPU can be regarded as
an MPS with an enlarged local Hilbert space, the classi-
fication of MPUs can be very different from that of MPSs
due to the unitarity requirement. Indeed, without symmetry
protection, MPSs can always be continuously deformed into
product states, while MPUs are classified by the (chiral)
index quantized as the logarithm of a rational number [37—
39,41]. Efforts have also been made to classify 1D SPT
many-body-localized (MBL) phases, and the result turns out
to be the same as that of ground-state SPT MPSs [42].

In stark contrast to the case of MPSs, the problem of
classifying MPUs commuting with a local symmetry
operation stays unsolved. In this Letter, we address this
problem for general on-site unitary symmetries forming a
finite group G. First, we allow adding arbitrary symmetric
ancillas (identities) with arbitrary on-site representations of
G. We prove that the combination of the index and the
second cohomology class completely classifies all the
MPUs with given symmetries. This actually proves a
conjecture raised by Hastings [43] for quantum cellular
automata. Second, we allow ancillas only with the same
symmetry representation as the original system. Here,
we unveil a series of quantized symmetry-protected indices
(SPIs). Nonzero SPIs quantify an imbalance of the left and
right transport of each group element in the Heisenberg
picture. We identify an observable signature of SPIs as the
asymmetries in the two edges of symmetry-string operators
evolved by the MPU, and propose an interferometry
experiment for probing the SPIs relative to the index.

Our results have direct implications in the classification
of Floquet SPT phases [44]. Given a 2D Floquet system
with boundary in the MBL regime, its edge dynamics is
well described by an MPU [37]. Here, we construct a
class of 2D Floquet systems with edge MPUs characterized
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by nontrivial SPIs, and provide a unified picture for
understanding the edge dynamics of 2D intrinsic Floquet
SPT phases as symmetry-charge pumps.

Matrix-product unitaries.—We are interested in 1D
quantum dynamics that keep locality, i.e., the unitaries
U’s that map any operator O supported on a finite region
into U OU supported on another finite region. In particular,
we wish to classify all possible U that can continuously be
deformed into each other by keeping locality, which defines
different dynamical phases. According to Ref. [38], this
allows us to use MPUs, which we define in the following.

AnMPU of length L is a unitary operator UL : (C4)®L —
(C4)®L generated by a rank-four tensor U:

Tr(uiljl...UiLjL)ﬁl, ""iL><jlv ,JL|

(1)

The dimension D of the matrices U;; is called bond
dimension. After blocking k, at most D* times (combining
multiple physical indices into one index), I/ — U, is termed
simple and U") acquires the standard form

g U A 7 Y - (2)

in terms of unitaries u: (C* )®2 - C!®C" and v: C' @ C! -
(Cdk)@’z. We apply operators in the graphical notation from
bottom to top. The unitaries are unique up to gauge trans-
formations u — (X™ ® Y")u,v - v(Y ® X), where d is the
local Hilbert-space dimension before blocking, X € U(/)
and Y € U(r). Conversely, two arbitrary unitaries « and v
generate a MPU, possibly with the unit cell doubled.

We will focus our attention on G-symmetric MPUs
which commute with a unitary representation p, of the
finite group G, [p®L, U (L)] = 0. Henceforth, we omit the
length L due to the translation-invariance of MPUs and
assume the standard form. Although we assume translation
invariance throughout the letter, all the topological indica-
tors we unveil can be shown to be stable against disorder
[45]. The essential physics behind the stability is the
locality-preserving constraint, which is obviously satisfied
by the standard form (2) even if u and v are position
dependent.

Equivalence and complete classification.—We classify
the MPUs according to

Definition 1.—(Equivalence) Two G-symmetric MPUs
U, and U, are equivalent if we allow for blocking (i.e., treat
multiple sites as a single site), and the addition of local
ancillas with the identity operator, such that the MPUs can
then be continuously connected within the manifold of
symmetric MPUs.

Here, by adding local ancillas to an MPU U, we mean that
we take the enlarged MPU U’ = U ® 19 on (C¢ ® C%)®~,
and consider the representation pj, = p, ® o,, where ¢ can
be an arbitrary representation of G on C%.

MPUs can be considered as MPSs by bunching the
two physical indices of each tensor into one. Thus, G-
symmetric MPUs can be associated to a cohomology class
in H?[G, U(1)] [51]. However, the fact that they are unitary
gives extra restrictions. In order to analyze these restric-
tions, we employ the standard form (2) and note that, due to
the gauge redundancy, the action of the symmetry on the
building blocks consists of two projective representations
x, and yg:

. QO 9 €
(v ] =[u] and [o]=[v] (3
L), .

Both x, and y; belong to the same cohomology class as the

associated MPS [45].
The index [38,39,41] of the MPU is defined as

i 1 r 1. Try,
d=-log-=-1
in > ogl > og

(4)

Trx,

for the identity e € G it captures the imbalance of right-
and left-moving information. Both index and cohomology
class are stable under blocking and additive under tensoring
as well as composition of MPUs [45].

As Hastings conjectured [43], equivalent phases are
indeed completely classified by index and cohomology:

Theorem 1.—(Equivalence) Two symmetric MPUs U,
and U, with the same or different symmetry representations
are equivalent if and only if they share the same indices and
same cohomology classes.

Note that the necessity of the same indices was shown by
Cirac et al. [38]; that of same cohomology classes follows
from Ref. [34], just as for MPS. We then only have to
construct an explicit path that continuously connects U,
with U;. This turns out to be always possible after a
symmetrization of the on-site symmetry representations of
Uy and U, and a regularization through attaching ancillas
with regular representations [45].

Examples of MPUs with nontrivial cohomology classes
are already found in Refs. [53,54] as the edge dynamics of
2D intrinsic Floquet SPT phases [55]. Initialized as a
symmetric state, a nontrivial 1D edge evolves from one
SPT phase into another after each Floquet period, reminis-
cent of the discrete time crystals that toggle between
different symmetry-broken phases [56—59]. In the tensor-
network picture, we can understand this “topological dis-
crete time-crystalline oscillation” from the virtual level—
when a symmetric MPS is evolved by a symmetric MPU,
their cohomology classes simply sum up [see Fig. 1(a)].
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FIG. 1. (a) G-symmetric MPS evolved by a G-symmetric MPU
with the cohomology classes summing up. (b) Z, x Z,-symmetric
MPU in the nontrivial cohomology class. Here e is the delta tensor
and H is the Hadamard matrix. (c) Stroboscopic dynamics of the
entanglement spectrum (ES) governed by (b) starting from a
symmetric product state.

t=0 1 2 3 4 5

To diagnose this phenomenon, we may trace the strobo-
scopic evolution of the entanglement spectrum [10,12,13],
which is experimentally accessible by many-body-state
tomography [60] or interferometric measurement [61].
For the G = Z, x Z, SPT MPU corresponding to the
generator of H*[G, U(1)] = Z,, [53], starting from a sym-
metric trivial state, we will obtain (at least) [n/gcd(n, t)]*-
fold degeneracy in the entanglement spectrum after ¢ time
steps [45]. See Figs. 1(b) and 1(c) for the simplest case
n = 2. More general examples with nontrivial cohomology
classes are available in the Supplemental Material [45].

Strong equivalence and symmetry-protected indices.—In
real physical systems with symmetries, the representation is
usually determined by the microscopic details and cannot
be changed freely. This motivates us to ask how the
classification will be modified if the representation is fixed.
Forbidding arbitrary representations for the ancillas in
Definition 1 leads to

Definition 2.—(Strong equivalence) Two G-symmetric
MPUs U, and U, are strongly equivalent if (i) their on-site
representations are (generally different) powers of a single
fixed representation p of G and (ii) they can be continu-
ously connected within the manifold of symmetric MPUs
upon blocking and/or adding identities as ancillas with
representation p.

If p is regular, we will return to Theorem 1. Otherwise,
there is at least one g # e with character y, = Trp, # 0. In
this case, the notion of strong equivalence refines the phase
structure beyond Theorem 1, as revealed by the SPIs which
are the natural generalization of the index (4) to other group
elements:

Definition 3.—(Symmetry protected index) Given a
G-symmetric MPU U for which we can determine x,
and y, from a standard form, the SPI with respectto g € G
with y, # 0 is defined as

1
ind, = Elog

Tryg

: (5)

Trxq

Given a blocking number k, the SPI is well defined since
the absolute value removes the phase ambiguity and the
trace is gauge invariant. Moreover, we can show that, just

like ind = ind, [38], ind, is invariant under blocking and
additive under tensoring and composition [45].

We further claim that the SPI is a topological invariant
for strong equivalence. Recall that ind, does not rely on
blocking and is obviously invariant if we add identities
with the fixed representation. Moreover, it can be shown
that ind, is continuous and stays discretized during a
continuous deformation [45]. Therefore, the SPI is a
quantizied topological invariant, implying

Theorem 2.—Two symmetric, strongly equivalent MPUs
share the same SPI for all group elements with y, # 0.

The contraposition of Theorem 2 allows us to use SPIs to
distinguish topologically different MPUs. For cyclic groups
G = Z,, with n > 3, the minimal nontrivial example is the
bilayer SWAP circuit of qubits [38], where a single site
contains two qubits and p1, = 1® Z,, (1z,: generator of
Z,)and Z, =|0)(0] + €>*/"|1)(1| [see Fig. 2(d)]. We can
check that x;, = 1% and y,, = Z3”, leading to ind;, =
log | cos(z/n)| # 0, which is sufficient to rule out the
strong equivalence between the bilayer SWAP circuit
and the identity. However, having ind =0 and trivial
cohomology, it is still equivalent to the identity. While
the SPI therefore allows for an enriched classification for
strong equivalence, the classification provided by Theorem
2 is not complete [45].

Physical implication and experimental probing of
SPIs.—Similar to the cohomology character, the SPI (5)
is defined on the virtual level, so its physical meaning is not
clear at first glance. Having in mind that SPT phases with
nontrivial cohomology classes usually exhibit exotic edge
physics [62], we are naturally led to think about a similar
situation for SPIs, which depend on g. In fact, we can
consider a sufficiently long string operator p®" evolved by
the MPU and show that the g-string operator will almost
stay unchanged, except that near the left and right edges
two 2k-site unitaries L, and R, emerge [see Fig. 2(a)].
These two unitaries on the physical level are related
to x, and y, on the virtual level via L, = u'(x, ® y,)u
and R, = u'(x, ® y,)u, leading to

TrL g
TrR, |

g

1
ind, —ind = Elog

(6)

It is now clear from Eq. (6) that ind, gives a measure of
the edge imbalance in the g-string operator evolved by
the MPU.

Equation (6) also opens up the possibility for
practically measuring the SPI relative to the index. Note
that TrL,TrR, = d*y2*; it is sufficient to measure either
|TrL,| or |TrR,|. This problem can be simplified into how to
measure |TrU,| for a subsystem unitary U, embedded in
U = U, ® Up, where the Hilbert-space dimension dp of
subsystem B can be much larger than d, that of subsystem
A. Combining |TrUu|> = d3'Trg[Tr,UTr,U'] with the
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FIG. 2. (a) Symmetry string operator evolved by a
symmetric MPU. Only the left and right edges are modified
into L, and R, respectively. (b) Tensor-network representation of
Trg[Tr,UTr, U] = Tr[USU'S], where S (green rectangles) is
the SWAP operator between subsystem A and its copy A’
(c) Interferometric approach to probing the relative SPI (6).
Initially, the qubit is set to be |0) while the remaining part is
prepared as the infinite-temperature state p,. Here H is the
Hadamard gate and the controlled-SWAP gates read Ucg =
[0)(0] ® T44 +|1){(1] ® S. The final expectation value (X) of
the qubit is related to |TrL,| and thus the relative SPI. (d) Bilayer
SWAP circuit subject to Z,, symmetry. (¢) SPI of (d) with respect
to 1, . determined by linear fitting (7).

identity in Fig. 2(b), we obtain | TrU, |> = A Tr[USp, U'S],
where S is the SWAP operator acting on A and a copy A’
and po, = d;>dg' 1,445 is the infinite-temperature state
of the entire system including A’. Since eventually we
rewrite |TrU,|? into the form of a Loschmidt echo, we
can measure it by means of the standard interferometric
approach [63-66].

We sketch out the experimental scheme in Fig. 2(c),
where an auxiliary qubit is introduced and either of two
controlled-SWAP gates consists of 2k two-site ones acting
on a region A near the left domain wall and its copy A’. By
measuring the final expectation value (X) for the Pauli X of
the auxiliary qubit, we can determine the relative SPI from

1 d
ind, — ind = -~ log(X) + klog—. (7)
! 2 7

If d and y,, are unknown, we are still able to measure (X)
with increasing length 2k of A and then extract ind, — ind
from a linear fitting. See Fig. 2(e) for the example of the
bilayer SWAP circuit subject to Z; symmetry.

General parent Floquet systems as symmetry-charge
pumps.—Recalling the relation between MPUs and Floquet
systems, the (strong) equivalence between MPUs are
necessary for the (strong) equivalence between the

corresponding G-symmetric 2D MBL Floquet systems—
they are continuously connected without crossing a delo-
calization point [37,53,54]. This is because MBL implies a
spatial factorization of the bulk Floquet unitary and its
separation from the boundary unitary, which is 1D, locality
preserving, and thus well described by an MPU [37]. A
continuous deformation of the Floquet system thus gives
rise to that of the edge MPU. Conversely, two inequivalent
MPUs sufficiently distinguish their parent Floquet systems.

It is thus natural to ask whether an MPU with nontrivial
SPIs can be embedded into a parent Floquet system, just
like those with nontrivial indices [37] and cohomology
classes [53,54]. Since topologically different MPUs dis-
tinguish different MBL parent Floquet systems, the
embeddability would imply a new class of 2D SPT
Floquet phases characterized by SPIs. We answer in the
affirmative by giving a general construction shown and
explained in Fig. 3(a), whose bulk is trivial and thus many-
body localizable [67], while the edge dynamics is governed
by an MPU generated by u and v = u'S,, where S,
exchanges the virtual Hilbert spaces C! and C’. This
construction is inspired by the standard form (2) and the
four-step SWAP model [37,68,69]—we compose two four-
step SWAP processes, one on the left virtual Hilbert spaces
and pulled back by u, and the other on the physical level.

The above general construction of parent Floquet sys-
tems in turn gives a simple symmetry-charge-pump picture
for topological MPUs. Here a G-symmetry charge refers to
a Hilbert space on which G acts as a linear (integer charge)
or projective representation (fractional charge). These
charges can fuse or split following the fusion rules set

\]

FIG. 3. (a) 2D Floquet system with a trivial bulk and a nontrivial
edge dynamics (shaded in magenta) governed by an MPU. The
open (periodic) boundary condition is imposed to the vertical
(horizontal) direction. In the first (left panel) and second (right
panel) half period, we apply u-conjugated (thick black bonds)
SWAP gates (thick color bonds) and physical-level SWAP gates
(color bonds) sequentially as red — blue — green — orange.
(b) MPU segment as a symmetry-charge pump that transfers ¢,
from R, to R, and ¢, from R, to R;. The circuits above and below
the dashed line are generated by the left and right panel in (a).
(c) Edge imbalance (light and dark purple) in an evolved g-string
operator (pink) from current imbalance (6).
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by the group structure. With the physical and the left virtual
charge in the standard form denoted as g, = kg, and ¢,
[70], an MPU segment coupled to two symmetry reservoirs
R, , right translates g, and left translates g, [see Fig. 3(b)].
In fact, the cohomology class and the SPIs (including the
index) are all characters of the net symmetry-charge current
d, — qx- This picture unifies all the related previous works
as special situations, such as G = {e} [37,69] and Trx, =
Tro, = 64 dim ¢ [53,54]. Remarkably, this picture gives
an intuition into Eq. (6): We regard two equally long
segments centered at the edges of a g-string operator as R; .,
which are connected by two pumps with inputs g and e [see
Fig. 3(c)]. We can then interpret Eq. (6) as an equation of
continuity, with the left- and right-hand sides being the
current and the change of charge, respectively. There is a
factor % since a net flow of charge g causes 2¢q charge
imbalance.

Summary and outlook.—We have focused on the clas-
sification problem of symmetric MPUs, where the sym-
metry representation can be arbitrary or fixed. In the former
case, we achieve a complete classification based on the
index and the cohomology class. In the latter case, we
unveil a set of experimentally accessible SPIs that enrich
the classification and lead to the discovery of a new class of
2D Floquet SPT phases. However, the complete classifi-
cation in the latter case stays an open problem, which
we leave for future work. Other directions for future
studies include the generalization to antiunitary [38] and
continuous symmetries, fermionic systems [72], and
higher dimensions [73]. Since both SPIs and cohomology
classes apply to inhomogeneous unitaries, it would also be
interesting to study the impact of topology on information
scrambling in random circuits [74-80].

We acknowledge M. Ueda, K. Shiozaki, M. Furuta, M.
Sato, D. T. Stephen, H. Tasaki, and H. Katsura for valuable
discussions. This project has received funding from the
European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
through the ERC Starting Grant WASCOSYS (No. 636201)
and the ERC Advanced Grant QENOCOBA (No. 742102),
and from the Deutsche Forschungsgemeinschaft (DFG) under
Germany’s Excellence Strategy (EXC-2111-390814868).
Z.G. acknowledges support from the University of Tokyo
through the Graduate Research Abroad in Science Program
(GRASP) and the Max-Planck-Institut fiir Quantenoptik for
hospitality, where this work was completed.

[1] C.-K. Chiu, J. C. Y. Teo, A.P. Schnyder, and S. Ryu, Rev.
Mod. Phys. 88, 035005 (2016).

[2] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys.
Rev. B 82, 235114 (2010).

[3] C.-E. Bardyn, M. A. Baranov, C.V. Kraus, E. Rico, A.
1mamoglu, P. Zoller, and S. Diehl, New J. Phys. 15, 085001
(2013).

[4] D. V. Else and C. Nayak, Phys. Rev. B 93, 201103(R)
(2016).

[5] C. W. von Keyserlingk and S.L. Sondhi, Phys. Rev. B 93,
245145 (2016).

[6] A.C. Potter, T. Morimoto, and A. Vishwanath, Phys. Rev. X
6, 041001 (2016).

[7]1 R. Roy and F. Harper, Phys. Rev. B 96, 155118 (2017).

[8] S.Yao,Z. Yan, and Z. Wang, Phys. Rev. B 96, 195303 (2017).

[9] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S.
Higashikawa, and M. Ueda, Phys. Rev. X 8, 031079 (2018).

[10] Z. Gong and M. Ueda, Phys. Rev. Lett. 121, 250601 (2018).

[11] S. Higashikawa, M. Nakagawa, and M. Ueda, Phys. Rev.
Lett. 123, 066403 (2019).

[12] M. McGinley and N.R. Cooper, Phys. Rev. Lett. 121,
090401 (2018).

[13] M. McGinley and N. R. Cooper, Phys. Rev. B 99, 075148
(2019).

[14] M. McGinley and N.R. Cooper, Phys. Rev. Research 1,
033204 (2019).

[15] A. Coser and D. Pérez-Garcia, Quantum 3, 174 (2019).

[16] J. T. Barreiro, M. Miiller, P. Schindler, D. Nigg, T. Monz, M.
Chwalla, M. Hennrich, C. FE. Roos, P. Zoller, and R. Blatt,
Nature (London) 470, 486 (2011).

[17] P. Schindler, M. Miiller, D. Nigg, J. T. Barreiro, E. A.
Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller, and
R. Blatt, Nat. Phys. 9, 361 (2013).

[18] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya,
F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C.
von Keyserlingk, N. Y. Yao, E. Demler, and M. D. Lukin,
Nature (London) 543, 221 (2017).

[19] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V.
Vuleti¢, and M. D. Lukin, Nature (London) 551, 579 (2017).

[20] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J.
Smith, G. Pagano, L-D. Potirniche, A.C. Potter, A.
Vishwanath, N.Y. Yao, and C. Monroe, Nature (London)
543, 217 (2017).

[21] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A.V. Gorshkov, Z.-X. Gong, and C. Monroe,
Nature (London) 551, 601 (2017).

[22] J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11, 124
(2015).

[23] R. Nandkishore and D.A. Huse, Annu. Rev. Condens.
Matter Phys. 6, 15 (2015).

[24] R. Moessner and S. L. Sondhi, Nat. Phys. 13, 424 (2017).

[25] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).

[26] 1. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.
Lett. 59, 799 (1987).

[27] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).

[28] F. Pollmann, A.M. Turner, E. Berg, and M. Oshikawa,
Phys. Rev. B 81, 064439 (2010).

[29] M. Fannes, B. Nachtergaele, and R. F. Werner, Commun.
Math. Phys. 144, 443 (1992).

[30] F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423 (2006).

[31] D. Pérez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,
Quantum Inf. Comput. 7, 401 (2007).

100402-5


https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1103/PhysRevB.96.195303
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevLett.121.250601
https://doi.org/10.1103/PhysRevLett.123.066403
https://doi.org/10.1103/PhysRevLett.123.066403
https://doi.org/10.1103/PhysRevLett.121.090401
https://doi.org/10.1103/PhysRevLett.121.090401
https://doi.org/10.1103/PhysRevB.99.075148
https://doi.org/10.1103/PhysRevB.99.075148
https://doi.org/10.1103/PhysRevResearch.1.033204
https://doi.org/10.1103/PhysRevResearch.1.033204
https://doi.org/10.22331/q-2019-08-12-174
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nphys2630
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/nphys3215
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1038/nphys4106
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1007/BF02099178
https://doi.org/10.1007/BF02099178
https://doi.org/10.1103/PhysRevB.73.094423

PHYSICAL REVIEW LETTERS 124, 100402 (2020)

[32] F. Verstraete, V. Murg, and J.I. Cirac, Adv. Phys. 57, 143
(2008).

[33] D. Pérez-Garcia, M. M. Wolf, M. Sanz, F. Verstraete, and
J. 1. Cirac, Phys. Rev. Lett. 100, 167202 (2008).

[34] N. Schuch, D. Pérez-Garcia, and I. Cirac, Phys. Rev. B 84,
165139 (2011).

[35] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83,
035107 (2011).

[36] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 84,
235128 (2011).

[37] H. C. Po, L. Fidkowski, T. Morimoto, A. C. Potter, and A.
Vishwanath, Phys. Rev. X 6, 041070 (2016).

[38] J. 1. Cirac, D. Pérez-Garcia, N. Schuch, and E. Verstraete,
J. Stat. Mech. (2017) 083105.

[39] M. B. Sahinoglu, S. K. Shukla, F. Bi, and X. Chen, Phys.
Rev. B 98, 245122 (2018).

[40] T.J. Osborne, Phys. Rev. Lett. 97, 157202 (2006).

[41] D. Gross, V. Nesme, H. Vogts, and R. F. Werner, Commun.
Math. Phys. 310, 419 (2012).

[42] A. Chan and T. B. Wahl, arXiv:1808.05656.

[43] M. B. Hastings, Phys. Rev. B 88, 165114 (2013).

[44] F. Harper, R. Roy, M. S. Rudner, and S. Sondhi, Annu. Rev.
Condens. Matter Phys. 11 (2020).

[45] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.124.100402 for details, which includes
Refs. [46-50].

[46] J.-P. Serre, Linear Representations of Finite Groups
(Springer, New York, 1977).

[47] R. Dijkgraaf and E. Witten, Commun. Math. Phys. 129, 393
(1990).

[48] M. Christandl, arXiv:quant-ph/0604183.

[49] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007).

[50] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B
87, 155114 (2013).

[51] This differs sharply from the setting where MPUs them-
selves form a linear representation of G, a situation related
to equilibrium 2D SPT states classified by H*[G,U(1)]
[43,52].

[52] X. Chen, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 84,
235141 (2011).

[53] A.C. Potter and T. Morimoto, Phys. Rev. B 95, 155126
(2017).

[54] R. Roy and F. Harper, Phys. Rev. B 95, 195128 (2017).

[55] By intrinsic, we mean that they have no equilibrium counter-
parts and correspond to H?[G, U(1)] part in the cohomology
classification H3[Z x G,U(1)] = H*[G,U(1)] x H*[G,U(1)]
[4].

[56] V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi,
Phys. Rev. Lett. 116, 250401 (2016).

[57] D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett. 117,
090402 (2016).

[58] C. W. von Keyserlingk and S. L. Sondhi, Phys. Rev. B 93,
245146 (2016).

[59] N.Y. Yao, A. C. Potter, I.-D. Potirniche, and A. Vishwanath,
Phys. Rev. Lett. 118, 030401 (2017).

[60] B.P. Lanyon, C. Maier, M. Holzipfel, T. Baumgratz, C.
Hempel, P. Jurcevic, I. Dhand, A. S. Buyskikh, A.J. Daley,
M. Cramer, M. B. Plenio, R. Blatt, and C.FE. Roos, Nat.
Phys. 13, 1158 (2017).

[61] H. Pichler, G. Zhu, A. Seif, P. Zoller, and M. Hafezi, Phys.
Rev. X 6, 041033 (2016).

[62] D.V. Else and C. Nayak, Phys. Rev. B 90, 235137
(2014).

[63] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and V.
Vedral, Phys. Rev. Lett. 110, 230601 (2013).

[64] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Phys. Rev. A 94, 040302(R) (2016).

[65] G. Zhu, M. Hafezi, and T. Grover, Phys. Rev. A 94, 062329
(2016).

[66] N.Y. Yao, F. Grusdt, B. Swingle, M.D. Lukin, D. M.
Stamper-Kurn, J.E. Moore, and E.A. Demler, arXiv:
1607.01801.

[67] A.C. Potter and A. Vishwanath, arXiv:1506.00592.

[68] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys.
Rev. X 3, 031005 (2013).

[69] F. Harper and R. Roy, Phys. Rev. Lett. 118, 115301
(2017).

[70] Technically speaking, according to the character theory of
projective representations [71], g, is specified by a 2-cocycle
0:GxG—2xR/Z and a vector n:G—>CU{-0}, 5(g9) =
log Trx,, (we take log to make g additive) subject to the gauge
transformation ~ 6(g, h) — 6(g, h) + 7(g) + z(h) — =(gh),
n(g) = n(g) + iz(g) for Vz: G - 2zR/Z.

[71] C. Cheng, Linear Algebra Appl. 469, 230 (2015).

[72] L. Fidkowski, H. C. Po, A.C. Potter, and A. Vishwanath,
Phys. Rev. B 99, 085115 (2019).

[73] J. Haah, L. Fidkowski, and M.B. Hastings, arXiv:
1812.01625.

[74] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and S.
L. Sondhi, Phys. Rev. X 8, 021013 (2018).

[75] T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk,
Phys. Rev. X 8, 031058 (2018).

[76] A. Nahum, S. Vijay, and J. Haah, Phys. Rev. X 8, 021014
(2018).

[77] V. Khemani, A. Vishwanath, and D. A. Huse, Phys. Rev. X
8, 031057 (2018).

[78] C. Siinderhauf, D. Pérez-Garcia, D. A. Huse, N. Schuch,
and J. I. Cirac, Phys. Rev. B 98, 134204 (2018).

[79] A. Chan, A. De Luca, and J. T. Chalker, Phys. Rev. Lett.
121, 060601 (2018).

[80] A. Chan, A. De Luca, and J. T. Chalker, Phys. Rev. X 8,
041019 (2018).

100402-6


https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevLett.100.167202
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1088/1742-5468/aa7e55
https://doi.org/10.1103/PhysRevB.98.245122
https://doi.org/10.1103/PhysRevB.98.245122
https://doi.org/10.1103/PhysRevLett.97.157202
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1007/s00220-012-1423-1
https://arXiv.org/abs/1808.05656
https://doi.org/10.1103/PhysRevB.88.165114
https://doi.org/10.1146/annurev-conmatphys-031218-013721
https://doi.org/10.1146/annurev-conmatphys-031218-013721
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.100402
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.100402
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.100402
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.100402
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.100402
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.100402
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.100402
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://arXiv.org/abs/quant-ph/0604183
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.195128
https://doi.org/10.1103/PhysRevLett.116.250401
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1038/nphys4244
https://doi.org/10.1038/nphys4244
https://doi.org/10.1103/PhysRevX.6.041033
https://doi.org/10.1103/PhysRevX.6.041033
https://doi.org/10.1103/PhysRevB.90.235137
https://doi.org/10.1103/PhysRevB.90.235137
https://doi.org/10.1103/PhysRevLett.110.230601
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
https://arXiv.org/abs/1607.01801
https://arXiv.org/abs/1607.01801
https://arXiv.org/abs/1506.00592
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevLett.118.115301
https://doi.org/10.1103/PhysRevLett.118.115301
https://doi.org/10.1016/j.laa.2014.11.027
https://doi.org/10.1103/PhysRevB.99.085115
https://arXiv.org/abs/1812.01625
https://arXiv.org/abs/1812.01625
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevB.98.134204
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019

