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1 Introduction

Six is the highest dimension in which representation theory allows for interacting supercon-

formal quantum theories [1]. Limits of non-perturbative string theory compactifications [2]

and in particular the decoupling of gravity in F-theory compactifications to 6d provided

the first examples [3, 4] and lead recently to a complete classification of geometrically engi-

neered 6d superconformal quantum field theories [5–7]. Such a classification in 6d is highly

desirable, as it might lead by further compactifications, to an exhaustive classification of

superconformal theories.

The 6d geometry is the one of an — in general desingularised — elliptic fibration with

a contractable configuration of desingularised elliptic surfaces fibred over a configuration of

curves in the base. In the decoupling limit the volume outside of the configuration of elliptic

surfaces is scaled to infinite size, leaving us with an, in general reducible, configuration

of complex desingularised elliptic surfaces that can be contracted within a non-compact

Calabi-Yau threefold. Because compact components can be contracted such geometries

are sometimes called local Calabi-Yau spaces. We will call the above specific ones for

short elliptic non-compact Calabi-Yau geometries X and describe them in more detail in

section 2.1.

The full topological string partition function on these elliptic non-compact CY geome-

tries has received much attention as it contains important information about protected

states of the 6d superconformal theories [3, 8]. Solving the topological string partition

function on compact Calabi-Yau manifolds is currently an open problem. On non-compact

Calabi-Yau spaces with an U(1)R isometry a refined topological string partition function

Z(t, ε1, ε2), which depends on the Kähler parameters t and two Ω background parameters

ε1, ε2 is defined as generating function of refined stable pair invariants.1 The refinement of

the stable pair invariants [9, 10] and the relation to the refined BPS invariants Nβ
jl,jr
∈ N

was given in [11, 12]. Here β ∈ H2(X,Z) is the degree and the half integers (jl, jr) label

a spin representation in the SU(2)l × SU(2)r little group of the 5d Poincaré group, which

can be identified with Lefschetz actions on the moduli space of D2 and D0-branes. On

1In this section we underline a symbol, if it is a vector. After the introduction section, we drop the

underline when there is no risk of confusion.
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toric non-compact Calabi-Yau spaces the refined partition function2 Z(t, ε1, ε2) can be ef-

ficiently calculated by large N techniques [13],3 torus localisation [11], the integration of

the refined holomorphic anomaly equations [14] and a recursive solution of blowup equa-

tions [15] generalized from the Göttsche-Nakajima-Yoshioka K-theoretic blowup equations

in the context of 5d N = 1 supersymmetric gauge theories [16–18].

The class of elliptic non-compact Calabi-Yau relevant for the (1, 0) 6d SCFT is non-

toric, but has a U(1)R isometry, and can be viewed as the borderline case for calculating

Z(t, ε1, ε2). Since the techniques based on toric localisation and large N expansions fail,

two related new methods have been developed. Similar as in heterotic/Type II duality

one can calculate4 [8] the world-sheet elliptic genus of dual 2d quiver (0, 4) gauge theories

with supersymmetric localisation techniques [20, 21] leading to Jeffrey-Kirwan integrals.

These elliptic genera Ed(τ, a,m, ε1, ε2) transform as a Jacobi form and are identified with

the topological string partition function Zd at different winding d of the base [8] up to

certain prefactor. The Kähler parameter τ of the elliptic fibre class becomes the modular

parameter while (ε1, ε2) as well as Kähler parameters a of the desingularisations and even-

tual further sections m in the elliptic fibration become elliptic parameters. The refined

holomorphic anomaly equations and other B-model techniques also apply and lead to a

modular bootstrap approach where different winding contributions Zd are identified with

meromorphic Jacobi forms with weight zero and an index, which depends quadratically on

the base degree d. The Zd are so constrained by modularity, the pole — as well as the

refined BPS structure of the topological string that they can be completely reconstructed

in many examples [22–24].

In the 2d approach one needs for higher d to consider ever more complicated quiver

gauge theories, while in the modular approach one has to deal with more and more com-

plicated rings of weak Jacobi forms. For this reason we further develop in this paper

the recursive approach based on the elliptic blowup equations [25] for the calculation of

Z(t, ε1, ε2) that is further based on a specialisation of the generalized blowup equation

in [15] to the elliptic non-compact Calabi-Yau geometries. The main advantage of this

approach is that it needs as input only5 the classical topological data of X, i.e. the classical

triple intersection numbers as well as the evaluation of the Chern classes on the elements of

the Chow group, and yields with a non ambiguous efficient recursive procedure the string

partition function iteratively in the base degree d and for each d exact in (ε1, ε2) and all

other Kähler parameters.

2The holomorphic all genus partition function Z(t, λ) = exp(
∑∞
g=0 λ

2g−2Fg(t)) containing the informa-

tion of all genus Gromov-Witten invariants is obtained as specialisation ε1 = −ε2 and λ2 = −ε1ε2.
3Strictly speaking the refined topological vertex applies directly only to geometries which engineer N = 2

gauge theories, as these have the required preferred direction in the torus action. In blow downs and

transitions of gauge theories geometries with Chern-Simons terms to geometries which have no immediate

gauge theory interpretation, Z(t, ε1, ε2) for the latter can often be recovered [13].
4The more supersymmetric case of the M-strings has been pioneered in [19].
5This holds for all non-compact CY 3-folds studied in [15] and elliptic non-compact CY 3-folds studied

in [25]. For the elliptic non-compact CY 3-folds associated to exceptional gauge symmetry studied in this

paper, we also input Z0 to the blowup equations, which can be easily calculated from the intersection and

the multi-covering of isolated rational curves, see (2.3) below.
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Let us first give a short summary of the structure behind the blowup equations in four,

five and six dimensions. Non-compact Calabi-Yau spaces with U(1)R isometry and the (re-

fined) topological string partition function feature prominently in the geometric engineering

approach [26] to 5d and 4d supersymmetric gauge theories as Z(t, ε1, ε2) is related with

the K-theoretic extension of Nekrasov’s 4d gauge theory instanton partition [27] on those

non-compact Calabi-Yau spaces [16, 17], which do engineer supersymmetric gauge theories.

In the geometric engineering approach, given mirror symmetry, it is physically obvious that

world-sheet instantons and space time instantons are related. Simply because the former

correct the topological string theory or N = 2 supergravity prepotential, while the latter

correct the rigid N = 2 or Seiberg-Witten prepotential, which is related to the former in a

well defined limit in the B-model, that decouples gravity as decribed in [26]. If the geom-

etry engineers five dimensional U(N) gauge theory, the full correspondence states that the

K-theoretic partition function of the latter is identified with Z(t, ε1, ε2) and provides an al-

ternative definition [16, 18]. The K-theoretic blowup equation for U(N) theories without or

with Chern-Simons terms has been rigorously established in [16] and [17, 18] respectively.

Nakajima and Yoshioka derived the original blowup equations [28] in the context of

4d N = 2 supersymmetric SU(N) framed gauge instanton calculus, by studying invari-

ants on moduli space M̂(N, k, n) of framed torsion free sheaves (E,Φ) on P̂2 — a P1

blowup of P2 — via the Atiyah-Bott localization formalism w.r.t. an induced toric action

T = C∗ × C∗ ×GlN on M̂(N, k, n). Here Φ is the framing automorphism, N is the rank

of E, n = 〈c2(E) − N−1
2N c2

1(E), [P̂2]〉 and k = −〈c1(E), [P1]〉. A general feature of this cal-

culation is that the Euler class of the tangent space of M̂(N, k, n) at all relevant fix loci is

always a product of contributions from two fixed points at the north and the south poles

of the exceptional P1, which arise due to the action of the C∗ ×C∗ on P̂2 parametrized by

ε1 and ε2. Upon evaluation of the Atiyah-Bott localization formula the two contributions

yield — up to calculable factors — a sum of products of the original partition function

on P2 at shifted ε1,2 and Coulomb branch (in type IIA normalisable Kähler) parameters.

The partition function on P̂2 can be also directly specialised for k = 0 to the one on P2.

The identification of the two results gives rise to a finite set of equations for the partition

function of the 4d supersymmetric theory on the Omega background. A similar mechanism

applies to the K-theoretic instanton calculus [16, 18], and leads to blowup equations for the

partition function of the 5d SYM on the Omega background. The latter setup is directly

relevant to the calculation of Z(t, ε1, ε2) on non-compact Calabi-Yau engineering super-

symmetric gauge theories. The blowup equations can then be reformulated in terms of the

geometric data of the non-compact Calabi-Yau X and refined topological string partition

function as follows.

Let C = (Cij) be the intersection matrix between compact divisor classes [Di],

i=1, . . . , bc4 and compact curve classes [Σj ], j=1, . . . , bc2 of X. Then one defines vector

Rn = C · n+ r/2, (1.1)

with n ∈ Zbc4 and r ∈ Zbc4 which parametrise the shift of the Kähler parameters. With

|n| =
∑bc4

i=1 ni, the generalized blowup equations can be cast in the following form [15]

– 3 –
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(see also section 8 of [23] and [29])

∑
n∈Zb

c
4

(−1)|n|Ẑ(t+ε1Rn, ε1, ε2−ε1)Ẑ(t+ε2Rn, ε1−ε2, ε2)=

{
0, r∈Sv,
Λ(ε1, ε2,m, r)Z(t, ε1, ε2) r∈Su.

(1.2)

Here we have separated the Kähler parameters m from the Kähler parameters t to denote

those curve classes that do not intersect with compact divisors [Dk], k = 1, . . . , bc4. These

m correspond to mass parameters in the gauge theory context, while the other Kähler

parameters correspond to Coulomb branch parameters, thus are also called “true” parame-

ters. If a local mirror curve exists, e.g. for non-compact toric Calabi-Yau spaces, the “true”

Kähler parameters are mapped to the complex structure parameters of the (hyperelliptic)

mirror curve (of genus g = bc4) and the m correspond to the residues of the meromorphic

differential λ. The hat over Z means the Kähler moduli in the instanton partition function

have already been shifted

Ẑ(t, ε1, ε2) = Zcls(t, ε1, ε2)Z inst(t+ πir, ε1, ε2) . (1.3)

The integral vector r, which we call the r-field, is consistent with the checkerboard pattern

of refined BPS invariants Nβ
jl,jr

, in other words, they satisfy

2jl + 2jr + 1 ≡ r · β mod 2 (1.4)

for non-vanishing Nβ
jl,jr

. The set of r-fields in (1.2) have to be only considered modulo

2C · n, which leaves two classes of finite sets Sv and Su. The r-fields in these two sets are

called vanishing and unity r-fields. It is important that Λ, whose form is known, depends

beside on ε1,2 only on r-fields in the two classes and the mass parameters m.

Given the simple form of (1.2) and the method of proof in the gauge theory con-

text [16, 18], it seems reasonable to conjecture [15, 23, 25] that these equations, called the

generalised blowup equations, should hold for the refined partition functions Z(t, ε1, ε2) of

all non-compact Calabi-Yau threefolds with a global U(1)R symmetry so that the refined

invariants or equivalently the corresponding BPS index for the space time theory with an

Ω background can be defined [11, 12]. At the technical level the precise non-trivial claim

is that Sv ∪ Su should be non-empty. In addition it was observed in [15] that the classical

topological data of X mentioned above and the genus zero sector determine Z(t, ε1, ε2) re-

cursively, and many examples were already checked in great detail. In particular in [25] this

approach was used to compute the refined BPS invariants of elliptic non-compact Calabi-

Yau geometries associated to minimal 6d (1, 0) SCFTs with gauge group G = SU(3), SO(8).

In this paper we extend this approach to the remaining minimal 6d SCFTs with excep-

tional gauge groups G = F4, E6,7,8 and give a universal description for all minimal building

blocks without matter in the classification of 6d (1, 0) SCFTs [5, 6].

The elliptic non-compact Calabi-Yau geometry corresponding to minimal SCFTs with

gauge group G and no matter contains base surface O(−n) → P1. For n = 3, 4, 5, 6, 8, 12

which are of interest in this paper, the Kodaire singularity of the elliptic fibration gives

– 4 –
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the gauge group G = SU(3), SO(8), F4, E6,7,8 respectively. We find that for these geome-

tries, the generalized blowup equations can be uniformly written as the following recursive

relations of the elliptic genera Ed of the corresponding 6d SCFT:

1
2
||ω||2+d1+d2=d∑

ω∈φλ(Q∨),d1,2∈N

(−1)
|φ−1
λ (ω)|

θ
[a]
i

(
nτ,(n−2)(ε1+ε2)−n

(
(1

2 ||ω||
2+d1)ε1+(1

2 ||ω||
2+d2)ε2−m·ω

))
×Aω(m)Ed1(τ,m−ε1ω,ε1, ε2−ε1)Ed2(τ,m−ε2ω,ε1−ε2, ε2)

=

{
0, d 6∈N,
θ

[a]
i (nτ,(n−2)(ε1+ε2))·Ed(τ,m,ε1, ε2), d∈N.

(1.5)

Here m are the Coulomb parameters6 associated to gauge group G. The subscript of

theta functions i is 4 if n is odd and 3 if n is even, and the characteristic a = k/n − 1/2,

k = 0, 1, . . . , n − 1. Besides, φλ is an embedding of the coroot lattice Q∨ of G into the

weight lattice P . Here the r-field is implicit in a and φλ. Since the number of different

embeddings is |P : Q∨|, the total number of non-equivalent blowup equations is n|P : Q∨|.
The function Aω(m) is composed of θ1 and η functions, see (3.5) for the definition. Due

to the Jacobi form nature of every component of the above equations, we call (1.5) as

elliptic blowup equations. In fact, they can be regarded as the natural elliptic lift of the

K-theoretic blowup equations for 5d gauge theories [16, 30]. Moreover, the unity elliptic

blowup equations in (1.5) ultimately lead to a complete solution of the elliptic genera Ed in

terms of an universal recursion formula, as will be shown in (3.32). The blowup equations

are not only effective tools to calculate the refined partition functions, but also together

with the general constraints from modularity and BPS structure shed some new light on

the structure of Z(t, ε1, ε2). In particular it is possible to derive from the structure of the

blowup equations the index and the weight of the Jacobi forms that constitute the building

blocks in (1.5). The recursive structure also helps clarify the form of the denominator of

elliptic genus in the modular boostrap approach as discussed in appendix E, and predicts

many non-trivial relations among these Jacobi forms, one particular of which is proven in

section 3.3.1.

In the program of classifying superconformal field theories in various dimensions the 6d

SCFTs play a similar role as 11dN = 1 supergravity or more precisely M-theory play for the

classification of supergravity in lower dimensions. For this reason we expect that various

limits as well as suitable expansion of the partition function Z(t, ε1, ε2) of the 6d (1, 0)

minimal SCFTs relate to the protected quantities in lower dimensional supersymmetric

theories.

Since the elliptic blowup equations determine Z(t, ε1, ε2) in particular the elliptic genus

Ed completely, we could make many detailed and indeed successful checks on our results.

We summarise the current status of the knowledge on the elliptic genera of all 6d (1, 0)

minimal SCFTs from various approaches in table 1. For n = 5, 6, 8, 12 which are of main

interest in the current paper, our complete recursive solution for the elliptic genera from

blowup equations reproduces all previous partial results. Since we made many checks of

6Do not confuse with m in (1.2). The Coulomb parameters are not mass parameters.
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n 1 2 3 4 6 8 12 5 7

features E-strings M-strings SU(3) SO(8) E6 E7 E8 F4 E7 + 1
256

2d quiver Ek [32, 33] Ek [19] Ek [34] Ek [8] ?

B-model low genus [35] ? genus zero [8]

modular bootstrap Ek [23, 36] E1 [24, 37] E1 with fugacities off [37, 38]

topological vertex Ek [39] Ek [19] Eq→0
k [40] ?

Hilbert series - - Eq→0
k [41–43] -

HL index - - ? Eq→0
k [44, 45] -

twisted HG theories - - ? E1 [37, 46, 47] E1 [48] ? -

domain walls E1,2 [49] E3 [50] Ek [49] -

5d blowup equations trivial Eq→0
k [30] Eq→0

k [51]

6d blowup equations Ek [15, 23, 52] Ek [52] Ek [25] Ek, current paper Ek [51]

Table 1. Known results on the elliptic genera of 6d minimal (1,0) SCFTs from various approaches.

Here q = Qτ = e2πiτ is the modular parameter. - means the method does not apply, and ? means

possible applicable but results not yet attained. HL means Hall-Littlewood.

the elliptic blowup equations based on extensive calculations, which might yield further

insights, we provide the results of these calculations on a webpage [31].

Part of these checks indicated in table 1 are quite obvious as for example the 5d limit

gives a good confirmation of our results. Others are highly non-trivial and indicate new

exciting connections to the protected quantities in lower dimensional theories. For example

one of the most important tools for the analysis of the spectra and phenomena like Seiberg

duality in four dimensional SCFTs are the superconformal indices for N = 1, 2, 4 SCFT,

which count operators in the chiral rings of these theories. These indices have in turn

various limits such as Macdonald indices, Hall-Littlewood indices and Schur indices which

are relatively easy to compute. As explained in section 5 the latter two occur in a quite non-

trivial manner in the expansion of the elliptic genera that we can efficiently calculate. This

surprising relation between elliptic genera and superconformal indices was found for the

rank one HG theories in [37]. We will push the study on such relation for all rank two and

even some rank three cases. This not only sheds light on the structure of these objects,

but also allows to calculate them efficiently for example in theories with no Lagrangian

description in which other methods are quite difficult to carry through.

This paper is organized as follows: in section 2, we review the geometric construction

of elliptic non-compact Calabi-Yau threefolds that engineer 6d (1, 0) minimal SCFTs, the

basic properties of the generalized blowup equations in [15], and the de-affinisation pro-

cedure which was essentially already used in [25] to obtain elliptic blowup equations for

G = SU(3) and SO(8). In section 3, we discuss both unity and vanishing elliptic blowup

equations in detail, and derive a universal recursion formula for the elliptic genera of all

minimal SCFTs with G = SU(3), SO(8), F4, E6,7,8. We also prove two important properties

of the elliptic blowup equations, i.e. modularity and universality. In section 4, we explicitly

show for each G the one- and two-string elliptic genera computed from our universal recur-

– 6 –
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sion formula and also some relevant information for the blowup equations, such as triple

intersection numbers and the r-fields. In section 5, we discuss a surprising relation between

the elliptic genera of 6d minimal SCFTs and the Hall-Littlewood indices and Schur indices

of 4d N = 2 superconformal HG theories, as was revealed for rank one in [37]. We find

analogous relation indeed exist for rank two and higher. Finally, in section 6, we discuss

various possible application and future directions. In a series of appendices we explain our

convention, some technical details, and collect more results on elliptic genera and refined

BPS invariants too lengthy to be put in the main text.

2 Elliptic non-compact CY 3-folds and generalised blowup equations

The generalised blowup equations proposed in [15] (see also section 8 of [23] and [29])

generalise the K-theoretic blowup equations of Nakajima and Yoshioka [16, 18] for 5d

SYM theories to all non-compact Calabi-Yau geometries that have a U(1)R isometry which

may or may not engineer 5d supersymmetric field theories. In subsection 2.1 we describe

the geometric data of the non-compact elliptic Calabi-Yau threefolds associated to the

minimal 6d SCFTs with pure gauge bulk theory. With this input and bnsi calculated in

subsection 2.2, the r fields can be determined in subsection 2.3 and the generalised blowup

equations can be expanded to extract BPS constraints that allow for solution of refined

BPS invariants as in [15].

We then consider the expansion of the partition function in the base degrees and

describe how to recast the generalised blowup equations, with some additional input, as

functional equations of elliptic genera of the 6d SCFTs. The latter, which we call the

elliptic blowup equations, will be discussed in full detail in the next section.

2.1 Geometry of elliptic fibrations

In this paper we are specifically interested in the non compact elliptic Calabi-Yau threefolds

on which F-theory compactification yields minimal 6d (1, 0) SCFTs with n = 3, 4, 5, 6, 8, 12

so that the bulk theory has a pure gauge group G.

We discuss some generic features of these Calabi-Yau threefolds, in particular the

compact curves and the compact divisors in the Calabi-Yau. The compact curves and

compact divisors in these geometries are best illustrated in [53] and summarised in [25].

Let us go over them here quickly. Suppose the gauge group G has rank rk(G) and its

associated Lie algebra is g, then there are bc2 = rk(G) + 2 linearly independent compact

curves in the Calabi-Yau threefold.7 One of them is the −n curve ΣB in the base, while the

remaining rk+1 curves ΣI (I = 0, 1, . . . , rk) are P1s resulting from resolution of the singular

elliptic fiber fibered over ΣB. These r + 1 curves intersect with each other according to

the affine Dynkin diagram of g, where each node corresponds to a rational curve of self-

intersection −2 and two curves intersect with intersection number 1 if the corresponding

nodes are linked. We denote the curve corresponding to the affine node by Σ0, and it is

7From now on, we simply denote rk(G) as rk to lighten the notation.

– 7 –
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Σ0
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Σ2

Σ3

Σ4

Σb

B ΣB

Figure 1. Compact curves and compact divisors in the n = 5 local elliptic Calabi-Yau from [53].

The indices (−n, n−2) on each rational section S or S′ = S+kF of Fk are the degrees of its normal

bundles O(−n)⊕O(n−2) in the corresponding direction. F6 meets F1 in a double section. Globally

the fibration has a Z2 monodromy encirceling ΣB that corresponds to an outer automorphism of

the E6 Dynkin diagram and folds its sphere tree to an F4 type sphere tree over ΣB .Note that the

curve Σb plays the role of a Mori cone generator and is related to the base curve ΣB by (4.43).

the only P1 which intersects with ΣB. The linear combination

rk∑
I=0

aI [ΣI ] = [δ] (2.1)

with aI the marks of ĝ is homologous to the generic elliptic fiber. We denote the complex-

ified Kähler parameters of ΣB and ΣI by tB and tI respectively.

The bc4 = rk + 1 vertical compact divisors DI for I = 0, 1, . . . are fibrations of ΣI over

ΣB. They are argued in [53] to be Hirzebruch surfaces of various degrees, and the ΣI are the

P1 fibers of these Hirzebruch surfaces. It is then easy to deduce that the (rk + 2)× (rk + 1)

matrix C encoding the intersections between ΣI , ΣB and DI is given by

C =

(
−Â

−n, 0 . . . , 0

)
(2.2)

where Â is the affine Cartan matrix of G. We illustrate compact curves and compact

divisors in the example of the n = 5 model with G = F4 in figure 1.

The topological string partition function on elliptic fibrations can be expanded in terms

of the base degree d w.r.t. the base curve ΣB labelled by QB = etB

Z = ZclsZ0

(
1 +

∞∑
d=1

ZdQ
d
B

)
. (2.3)
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Zcls comes from the degree zero maps and depends hence on the classical topological data

of X. We discuss them in section 2.2. Z0(tI , ε−, ε+) gets contributions from the rational

curves ΣI in the elliptic fibre that form the affine Dynkin diagram. These can be directly

calculated from the geometry reflecting the affine group structure, i.e. the intersection

matrix Â in (2.2) using N
[ΣI ]

0, 1
2

= 1, I = 0, . . . r for rational curves [11] as well as the general

multi cover formula (3.21), which leads to (2.36). These contribution of isolated rational

curves can be also calculated as one loop correction to the gauge coupling [26], which is

the reason that Z0 is sometimes identified as Z0 = Z1-loop. The coefficients Zd>0 in the

expansion, on the other hand, encode the BPS invariants that do wrap the base curve ΣB,

and are rather difficult to compute.

At this point a clarification of subtlety is in order. The curve classes ΣB,ΣI actually

do not give a good basis for computing the BPS invariants, as they are not all Mori cone

generators. To remedy this, one should keep ΣI and replace ΣB by the P1 base of the

Hirzebruch surface with the lowest degree in the chain, so that it cannot be expressed as

linear combinations of other curves with non-negative coefficients. We will illustrate this

point in example section 4.

The topological string partition function is identical with the BPS partition function of

the corresponding 6d SCFT in the tensor branch, put on the Omega background R4 ×ε1,ε2
T 2. In the latter point of view, it is more natural to use another set of Kähler parameters

tell, τ,mi (i = 1, . . . , rk), which are related to tB, tI by

tell = tB −
n− 2

2
τ , τ =

rk∑
I=0

aItI , mi = ti, i = 1, . . . , rk . (2.4)

tell is defined such that the coefficients Ed in the expansion of the BPS partition function

in terms of Qell = etell

Z = ZclsZ1-loop

(
1 +

∞∑
d=1

EdQdell

)
(2.5)

are elliptic genera of the self-dual strings present in the 6d SCFT. τ measures the volume

of the generic elliptic fiber [δ], and since δ intersect with no compact divisor, it is a mass pa-

rameter of the theory. In addition, it is also identified with the complex structure modulus

of the torus T 2. mi are now interpreted as the Wilson loops of the vector multiplets in T 2.

Note that the 6d SCFT can be reduced to a 5d pure SYM with the same gauge group

G if we decompactify Σ0 and send its volume −t0 to infinity. In the resulting 5d theory,

the only mass parameter is the instanton counting parameter tq, and we find, by looking

for curve class not intersecting with divisors, that

tq = tell −
n− 2

2
τ . (2.6)

We finally comment that in light of the correspondence between mi and nodes in

Dynkin diagram of g, we can collect the Kähler moduli mi into a single vector m taking

value in the complexified Cartan subalgebra hC = Crk with

m =

rk∑
i=1

miωi , mi = 〈αi,m〉 , i = 1, . . . , rk , (2.7)
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where ωi are the fundamental weights, αi the simple roots of g, and 〈, 〉 the natural pairing

between hC and h∗C. This allows a reformulation of the generalised blowup equations in

terms of Lie algebraic data, which we use heavily in the uniform formula (1.5). The

convention of Lie algebra we use is given in appendix A.

2.2 Semiclassical partition functions

We summarise the computation of the semiclassical partition functions here. These are

the minimal initial data one needs in order to extract refined BPS invariants from the

generalised blowup equations. First of all the semiclassical contribution Zcls(t, ε1, ε2) =

exp(F cls(t, ε1, ε2)) can be written as

F cls(t, ε1, ε2) =
1

ε1ε2
F cls

(0,0)(t) + F cls
(1,0)(t)−

(ε1 + ε2)2

ε1ε2
F cls

(0,1)(t)

=
1

ε1ε2

(
1

6

bc2∑
i,j,k=1

κijktitjtk

)
+

bc2∑
i=1

bGV
i ti −

(ε1 + ε2)2

(ε1ε2)

bc2∑
i=1

bNS
i ti .

(2.8)

The coefficients κijk are the triple intersection numbers of divisors Ji Poincaré dual to the

curve classes Σi with volumes ti. b
GV
i are intersections of the divisors Ji with the second

Chern class of the Calabi-Yau threefold. The coefficients bNS
i , on the other hand, do not

have a geometric meaning, they are usually computed by the refined holomorphic anomaly

equations [14, 54], which are difficult to apply here. The Nekrasov partition function of a

5d pure SYM also has a semiclassical contribution which takes the same form as (2.8), and

the linear coefficients are subject to the relation

bGV
i + bNS

i = 0 . (2.9)

In our previous paper [25] we argued that bGV
i , bNS

i of the minimal 6d SCFTs with G =

SU(3), SO(8) can be computed by uplifting the semiclassical Nekrasov partition function

of the 5d pure SYM with the same gauge G aided by the nontrivial automorphism of the

affine Dynkin diagrams, and we found these coefficients also satisfy the relation (2.9). In the

remaining minimal SCFTs with G = F4, E6, E7, E8, not all the affine Dynkin diagams have

a non-trivial automorphism, and the method of uplifting does not always work. Instead

we assume (2.9) to be true and only compute bGV
i by geometric means.8

To compute κijk and bGV
i , we need to embed the Calabi-Yau threefold X → OP1(−n)

in a compact Calabi-Yau, for instance the elliptic fibration X̂ over Fn with a single section,

and first compute these intersection numbers in the compact geomtry. The compact Calabi-

Yau X̂ can be realised as a hypersurface in a toric variety [8]. Let us look at an example in

detail. The threefold π : X → OP1(−5) is the zero loci of the section of the anti-canonical

bundle of the toric variety P∆, whose toric data is given in table 2 [8].9 It has 7 Mori

cone generators with charges l(i) = (l
(i)
n ) for i = 1, . . . , 7 (We will use the same notation

8Up to a irrelevant τ term, the numbers bGV
i , bNS

i can be also predicted from blowup equations by

requiring the consistency of BPS invariants. For all the minimal SCFTs, these predictions agree with the

values computed from the method we will describe later.
9See also the geometric description in [55].
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D ν∗i l(1) l(2) l(3) l(4) l(5) l(6) l(7) l
(0)
F4

l
(1)
F4

l
(2)
F4

l
(3)
F4

l
(4)
F4

l
(b)
F4

D0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 −2 0

D1 −1 0 0 0 0 −2 0 0 0 0 1 1 0 0 0 0 0

D2 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

D3 0 1 0 −1 0 3 0 0 0 1 −2 −2 1 0 0 0 0

D4 1 2 0 −2 2 0 0 0 0 −2 1 1 −2 0 0 2 0

S′ 2 3 0 −1 0 1 −2 0 1 0 0 0 0 −2 1 0 0

S′′ 2 3 0 −2 1 −2 1 −1 0 0 0 0 0 1 −2 1 −1

S′′′ 2 3 0 −3 −2 0 0 −1 0 1 0 0 1 0 1 −2 −1

K 2 3 0 0 0 0 1 0 −2 0 0 0 0 1 0 0 0

F 2 3 −1 −5 0 0 0 1 0 0 0 0 0 0 0 0 1

S 2 3 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

F 2 3 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Table 2. The toric data of P∆ for G = F4.

for both the curves and their toric charges). Note the number of Mori cone generators is

(rk + 3). Among these curves l(4), l(5) are identified as the (−5) curve (i.e. ΣB) and the

(0) curve in the base F5,10 while the other five toric curves combine linearly into ΣI for

I = 0, 1, . . . , 4 [8]

Σ0 = l(3) , Σ1 = l(2) + l(6) + 2l(7) , Σ2 = l(1) , Σ3 = l(6) , Σ4 = l(7) . (2.10)

The toric divisors listed in the first column of table 2 can also be identified. D0 is associ-

ated to the canonical bundle of P∆. When X̂ is written in the Weierstrass form, D1, D2

correspond to the divisors x = 0 and y = 0 respectively, while K is the zero section at

x → ∞. F, S′, S are respectively the vertical divisors pulled back from the (0), (−5), and

the (5) curves in F5 in the base. Since the elliptic fibration over π(S′) = ΣB factorises

to an intersecting tree of Hirzebruch surfaces DI for I = 0, 1, . . . , 4, S′ should actually be

identified with D0. The remaining four divisors D3, D4, S
′′, S′′′ are identified (up to linear

combination) as the exceptional divisors Di for i = 1, . . . , 4. Only rk(F4) + 3 = 7 of these

divisors are linearly independent.

Once the toric data of P∆ are specified, there are standard techniques in toric geometry

to compute the triple intersection numbers κ̂ijk of the divisors Ĵi, and the intersection

numbers with c2(X̂) are given by [56]11

− 24b̂GV
i =

∫
X̂
c2(X̂) ∧ Ĵi =

1

2

∑
jk

κ̂ijk(l
(j)
0 l

(k)
0 −

∑
n>0

l(j)n l(k)
n ) . (2.11)

10Strictly speaking, the (0) curve should be corrected by certain linear combination of other curves. But

after decompactifying this curve to arrive at the non-compact threefold X, this difference disappears.
11We use the same notation for the divisor Ĵi and its dual 2-form.
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Alternatively, κ̂ijk can be computed by the special geometry relation. For a compact

Calabi-Yau threefold realised as a hypersurface in a toric variety one can define the de-

formed fundamental period ω̂0(z; ρ) as a holomorphic function of the Batyrev coordinates

zi and compute the homogeneous A- and B-periods (see for instance [57])

Π̂
(1)
i (z) = ∂ρiω̂0(z; ρ)|ρi=0 ,

Π̂
(2)
i (z) =

1

2
κ̂ijk∂ρj∂ρk ω̂0(z; ρ)|ρi=0 .

(2.12)

They are interpreted as the masses of the D2-, D4-branes supported on the curves l(i) and

the dual divisors Ĵi. The affine A- and B-periods defined by

t̂i = Π̂
(1)
i /ω̂0(z; 0) , F̂i = Π̂

(2)
i /ω̂0(z; 0) (2.13)

satisfy the relation

F̂i =
∂F̂(0,0)

∂t̂i
. (2.14)

The existence of the prepotential F̂(0,0) uniquely fixes the coefficients κ̂ijk.

The non-compact Calabi-Yau X is obtained by decompactifying X̂ in the direction of

the (0)-curve in the base. In practise, this corresponds to taking the Kähler parameter in

the decompactified direction tdc to infinity in A-model or taking the corresponding complex

structure parameter zdc to zero in B-model. In A-model, this limit can be understood as

taking some of the compact (1, 1) cycles to infinite size, keeping the other (1, 1) cycles

finite. The periods of the geometry will be rearranged so that only one A-period and

some B-periods go to infinity. In our current case, the B-period ∂
∂τ F(0,0) goes to infinity,

while the corresponding A-period remains finite, and becomes the elliptic fiber parameter

τ . We can then integrate over the new periods to get the triple intersection numbers of

the non-compact geometry. However, this method will always have a integration constant

term τ3 unfixed, which is very important for the refined BPS invariants in the τ direction.

To determine the τ3 term, we study the normalization scheme of τ derivative of the genus

zero free energy ∂
∂τ F(0,0).

In the example of the G = F4 model visited above, this is z5 associated to the curve

l(5). In the limit zdc → 0 the affine A-period associated to the (0)-curve diverges, while the

other rk + 2 affine A-periods remain finite. We can choose a basis of the latter to be12

(tI) , I = 0, 1, . . . , rk, B , (2.15)

which correspond to the curve classes Σ0, . . . ,Σr,ΣB discussed in the previous section. At

the same time, both the zero section of the elliptic fibration and the vertical disivor of the

(0)-curve become infinite in volume. Therefore in the limt zdc → 0 two B-periods diverge,

and only rk + 1 affine B-periods remain finite. We choose a basis

(FJ) , J = 0, 1, . . . , rk , (2.16)

12They are the limit zdc → 0 of proper linear combinations of t̂i of the compact Calabi-Yau. Similarly

FJ defined below are the limit zdc → 0 of linear combinations of F̂i.
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which correspond to the divisor classes DI with I = 0, 1, . . . , rk. The special geometry

relation of the non-compact Calabi-Yau X dictates

FJ =
∑

I=0,...,rk,B

CJI
∂F(0,0)

∂tI
, J = 0, 1, . . . , rk , (2.17)

where CJI are the components of the divisor-curve intersection matrix (2.2). The iden-

tity (2.17) allows the computation of the semi-classical components of F(0,0)(t) up to a

term proportional to τ3; in other words, the intersection number κτττ can not be fixed

by (2.17). Since τ is a mass parameter, the term τ3 can always be factored out of the

blowup equations and it is not of importance to us. Nevertheless, in appendix B we will

introduce a normalisation scheme which fixes such a term in a reasonable way, and we

adopt this normalisation scheme in the example section 4. In any case, for all the minimal

6d SCFTs with a pure gauge theory in the bulk which can be reduced to a 5d pure SYM,

we find that up to τ3

F cls
(0,0)(t) = −

∑
α∈∆+

(
〈α,m〉3

6
+

tq
2h∨G
〈α,m〉2

)
−

((n− 2)τ + tq)
3 − t3q

6n(n− 2)
+ . . . (2.18)

where m, tq are defined in (2.7) and (2.6) respectively. We recognise the sum over positive

roots is from the Nekrasov prepotenital of the 5d pure SYM. We can also massage (2.18)

into a more suggestive form

F cls
(0,0) =

1

2n
t2ellτ +

1

2
tell(m,m)− n− 2

4
τ(m,m) + . . . (2.19)

up to τ3 and cubic terms in mi. Here (, ) is the invariant bilinear form on hC. See

appendix A for our convention.

As for F cls
(1,0)(t) and the intersection numbers with c2(X), we use the same formula (2.11)

with κ̂ijk replaced by the triple intersection numbers of the non-compact Calabi-Yau and

l(i) replaced by the toric charges of Σ0, . . . ,Σr,ΣB. In the example of G = F4 discussed

above, one has the toric charges l
(0)
F4
, l

(1)
F4
, l

(2)
F4
, l

(3)
F4
, l

(4)
F4
, l

(b)
F4

as in table 2.

As in the case of the prepotential, one cannot determine the pure mass term propor-

tional to τ which is irrelevant, although it can be fixed by the same normalisation scheme

if one wishes. We have checked that F cls
(1,0)(t) computed in this way reduces correctly to the

semiclassical Nekrasov partition function when the 6d SCFT is reduced to the 5d pure SYM.

2.3 Determination of r fields

In general, the r fields associated to a non-compact Calabi-Yau can be determined by the

method in [15]. Here we give a brief description of it. As proved in [15], even without

any assumption or constraint put on Λ (for instance it can depend on all Kähler moduli),

the Λ as defined by (1.2) must be quasi-modular of weight zero under the Siegel modular

transformations of τij = ∂2

∂ti∂tj
F(0,0), where ti are the true Kähler parameters.13 Let us

13Note that this τij parameter is different from the τ parameter of the elliptic fiber.
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expand this Λ in terms of all the exponentiated Kähler moduli eti . The leading terms,

which come from Zcls, read

logΛ∼ log
(
Zcls(ε1, ε2−ε1)Zcls(ε1−ε2, ε2)/Zcls(ε1, ε2)

)
=

−1

6

bc2∑
i,j,k=1

κijkRiRjRk+

bc2∑
i=1

(bGV
i −bNS

i )Ri

(ε1+ε2)+

bc2∑
k=1

−1

2

bc2∑
i,j=1

κijkRiRj

 tk
=: f0(n)(ε1+ε2)+

bc2∑
k=1

fk(n)tk , (2.20)

which are linear in ti. It implies that Λ can be expanded as a well-defined power series in

eti . Now let us assume that for appropriate choice of the r-field, this power series with all

the instanton contributions taken into account truncates at finite orders for all true ti,
14

which actually implies that the Λ does not depend on any of the true Kähler parameters as

stated in the introduction, since otherwise it can not be of modular weight zero. Needless

to say, this assumption puts very strong constraint on the choice of the r-field, and these

are the r-fields we are interested in.

In our current cases of elliptic non-compact Calabi-Yau threefolds, there is only one

mass parameter which is τ . The strong constraint then means that for the r fields we are

interested in only the lowest order of Kähler parameters contributes. Then we can simply

define Λ

Λ(τ, ε1, ε2) =
∑
n∈I

(−1)|n|ef0(n)efk(n)tk , (2.21)

where I is the set of integral vectors n that minimize all the fk(n) for true Kähler parame-

ters simultaneously after subtracting mass parameters. If the minimal values for one r are

not zero simultaneously, then it must be a vanishing r or an incorrect r.

In the case of elliptic non-compact Calabi-Yau threefolds associated to minimal 6d

SCFTs, the τ parameter is always some combinations of Kähler parameters in the fiber

direction and it will be a little bit subtle to subtract the mass parameter τ . We can first

consider the τ irrelevant Kähler parameter tell, and the minimum of the associated fell(n),

and then check the solved r fields with the condition (2.21). As also shown in [25], the

existence of the minimum of fell(n), already suffices to fix all the r fields. In particular,

similar to t, we decompose r into components r0, r1, . . . , rrk, rB. Then the weak consistency

condition implies the admissibility condition, which we will prove shortly

rτ =

rk∑
I=0

aIrI = 0 . (2.22)

It means the component of r in the direction of the elliptic fiber must vanish. Recall that

we only consider r modulo 2C · n for ∀n ∈ Zbc4 = Zrk+1. The intersection matrix C defines

the injection Zrk+1 ↪→ Zrk+2. The r fields that satisfy (2.22) can only take value in the

14This assumption is the most natural consideration for the generalized blowup equations compared with

the initial Nakajima-Yoshioka blowup equations.
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n 3 4 5 6 8 12

#(r) 9 16 5 18 16 12

|P : Q∨| 3 4 1 3 2 1

Table 3. Numbers and sizes of groups of r-fields giving rise to the same embedding φλ.

dimension zero quotient lattice Γ/Zrk+1 with Γ = Zrk+2|rτ=0, and they are thus finite in

number. Finally we impose the BPS checkerboard pattern condition

2jl + 2jr + 1 ≡ r · β mod 2 (2.23)

to remove half of them. We comment that the checkerboard condition can be written

down without computing any BPS invariants. As argued in [25], any rational curve β in

the Calabi-Yau with normal bundle O(−n)⊕O(n− 2) must have

2jl + 2jr + 1 ≡ n mod 2 . (2.24)

This implies the r-field always satisfies

r ≡ (0, . . . , 0, n) mod 2 , (2.25)

for minimal 6d (1,0) SCFTs. The argument above not only establishes the finiteness of

admissible r, but also provides a guideline on how to determine them. We find all of them

for the G = SU(3), SO(8) models in [25] and for the remaining models with G = F4, E6,7,8

in the example section 4 of this paper. In all these examples we checked that they satisfy

the stronger consistency condition. Here we summarise their numbers in table 3.

Let us prove the admissibility condition (2.22). An important ingredient of the blowup

equations (1.2) are the shifts of Kähler moduli mi (i = 1, . . . , rk) by

Ri =
rk∑
J=0

Ci,JnJ +
1

2
ri , (2.26)

where nJ take value in Z. We collect them into a single vector just like m

R =

rk∑
i=1

(
−

rk∑
J=0

Âi,JnJ +
1

2
ri

)
ωi = −α∨ + λ+ n0θ , (2.27)

where we have used the generic form (2.2) of the intersection matrix C and the following

Lie algebraic notation

λ =
1

2

rk∑
i=1

riωi , α∨ =
rk∑
i=1

niα
∨
i . (2.28)

The function fell(n), which we also denote by PG(n) due to its particular importance, then

has the form

fell(n) =
1

n
RellRτ +

1

2
(R,R) =: PG(n) , (2.29)
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where Rell, Rτ are the shifts of teff, τ given respectively by

Rell = −nn0 +
1

2
rell , Rτ =

1

2
rτ =

1

2

rk∑
I=0

aIrI . (2.30)

A little algebraic manipulation leads to

PG(n) =
1

2

rk∑
I,J=0

nInJ(α∨I , α
∨
J )− 1

2

rk∑
I,J=0

rInJ(ω̂I , α
∨
J ) + . . . (2.31)

where . . . denote the terms that are independent from n. If we demand that this function

have a minimum, all the derivatives ∂nIPG(n) must have a common zero. Multiplying each

of them with comark aI and adding them up, we immediately arrive at the admissibility

condition (2.22).15 Let us make some remarks here. As we will see in section 4, all the

admissible r-fields are such that the components ri (i = 1, . . . , rk) are even integers. It is

clear then that λ associated to r as well as the shift R have nice interpretation as weight

vectors of g. And PG(n) is nothing else but half the norm square of R due to (2.22)

PG(n) =
1

2
(R,R) . (2.32)

Furthermore λ defines an embedding of Q∨ into P

φλ : Q∨ ↪→ P

α∨ 7→ φλ(α∨) = −α∨ + λ
(2.33)

and R takes value in the image φλ(Q∨) if n0 = 0. The number of inequivalent embeddings

is the index |P : Q∨|, which also happens to be the order of the automorphism group of

the associated Dynkin diagram. We also list these numbers in table 3. The reader may

notice the curious relation

n · |P : Q∨| = #(r) , (2.34)

whose meaning will be clear in section 3.

2.4 De-affinisation

Once the semiclassical piece Zcls and the r-fields are known, we can start solving refined

BPS invariants by expanding the blowup equations (1.2) in terms of Kähler moduli and

extracting constraint equations of BPS invariants at each order. Alternatively since the

Z1-loop piece is rather easy to compute for the minimal 6d SCFTs, which reads [25]16

Z1-loop(m,ε1, ε2) = PE

[
−

qR+q−1
R(

q
1/2
1 −q

−1/2
1

)(
q

1/2
2 −q

−1/2
2

) ∑
α∈∆+

(
e〈α,m〉+Qτe−〈α,m〉

) 1

1−Qτ

]
,

(2.36)

15This condition was found in [25] by an intuitive geometric argument for minimal theories with a gauge

group G of the ADE type. Here we prove it for all gauge groups including the non-ADE types.
16Here PE is the plethystic exponent operator defined as

PE[f(x)] = exp

[
∞∑
n=1

1

n
f(xn)

]
. (2.35)

Note we only consider the contribution from vector multiplets to the one-loop partition function here. The

tensor multiplets actually also contribute to one-loop partition function, but their contribution does not

depend on the gauge parameter m, i.e. it is pure τ terms which will decouple from the blowup equations.

Thus we do not consider them here. See more discussion in section 2.4 in [25].
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we can also plug in this piece of information, expand the partition functions in the blowup

equation (1.2) only in terms of Qell, and obtain recursion relations of elliptic genera∑
PG(n)+d1+d2=d

D
′,clsD1-loop Ed1(τ,m+ ε1Rm(n), ε1, ε2 − ε1)Ed2(τ,m+ ε2Rm(n), ε1 − ε2, ε2)

= ΛEd(τ,m, ε1, ε2) ,

(2.37)

which allows the solution of the elliptic genera in compact formulas. Here

D
′,cls = (−1)|n|+(d1+d2−d)rell exp

(
f0(n)(ε1+ε2)+

rk∑
I=0

fI(n)tI+(d1ε1+d2ε2)Rell(n)

)
(2.38)

collects contributions from the semiclassical partition function (as well as the shift of tell),

and

D1-loop =Z1-loop(τ,m+ε1Rm(n), ε1, ε2−ε1)Z1-loop(τ,m+ε2Rm(n), ε1−ε2, ε2)/Z1-loop(τ,m,ε1, ε2)

(2.39)

is the contribution from the one-loop partition function. The elliptic blowup equations can

be put in an elegant form by partially resumming the left hand side of (2.37). With (2.31)

and the admissibility condition (2.22), one can show that the polynomial PG(n) that char-

acterises the summation index n is invariant under the translation

nI → nI + a∨I k , k ∈ Z . (2.40)

Besides, in the components Z1-loop and Ed the dependence on n only appears in the shifts

RI = −
rk∑
J=0

ÂI,JnJ +
1

2
rI , I = 0, 1, . . . , rk , (2.41)

which are also invariant under (2.40). As a result, we can decompose the summation index

n = n̂+ a∨k (2.42)

with the zeroth component of n̂ fixed to zero, i.e. n̂ = (0, n1, n2, . . . , nrk), a step we call

“de-affinisation”, and perform the infinite sum on the left hand side of (2.37) in two steps.

In the first step, we factor out D1-loop, Ed1,d2 and only sum D
′,cls over k ∈ Z. Due to the

quadratic nature of the polynomials f0(n), fI(n), and the relation of tI with τ (2.4), this

first summation in fact produces a theta function with characteristics [25]. In the second

step, we sum over d1, d2 and n̂ that satisfy

PG(n̂) + d1 + d2 = d . (2.43)

Instead of n̂ we can treat R(n̂) as the summation index, which as we argued before is

now interpreted as a weight vector in φλ(Q∨) determined by r. In addition, the one-

loop contribution D1-loop also turns out to be a quotient of theta functions [25], while the

elliptic genera themselves are meromorphic Jacobi forms. Therefore in the end, the elliptic

blowup equations can be presented as beautiful equations of Jacobi forms with a sum over

the shifted coroot lattice φλ(Q∨). These equations are the highlights of the next section.

We will present these equations in the beginning of the next section, and then discuss their

properties and how to solve elliptic genera from them.
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3 Elliptic blowup equations

In this section, we first present the elliptic blowup equations for 6d minimal N = (1, 0)

SCFTs with G = SU(3), SO(8), F4, E6, E7, E8, and discuss their two interesting properties,

the modularity and the universality. The first property in particular serves as a strong

support for the validity of the elliptic blowup equations to arbitrary degrees. Then we

distinguish two cases with Λ(ε1, ε2,m, r) non-vanishing or identically vanishing, and discuss

these two cases in detail. In particular, the blowup equations in the first case with non-

vanishing Λ allow us to write down an exact and universal recursion formula for elliptic

genera, thus offering a complete solution to the elliptic genera.

Let us first fix some conventions. In the following whenever there is no risk of confusion

we will use the dot to denote both the invariant bilinear form on h or h∗ and the natural

inner product between h and h∗

α · β = (α, β) , or α · β = 〈α, β〉 . (3.1)

We define the norm square

||α||2 = α · α . (3.2)

For a coroot β∨ ∈ Q∨, we also define

|β∨| =
rk∑
i=1

β∨i , with β∨ =
rk∑
i=1

β∨i α
∨
i . (3.3)

Besides, for a vector m representing the Kähler paramters associated to a Lie algebra, we

denote mα = m · α for short.

Following the de-affinisation procedure described in section 2.4, we derive the elliptic

blowup equations as

1
2
||ω||2+d1+d2=d∑

ω∈φλ(Q∨),d1,2∈N

(−1)|φ
−1
λ (ω)| ·θ[a]

i

(
nτ,(n−2)(ε1+ε2)−n

(
(1

2 ||ω||
2+d1)ε1+(1

2 ||ω||
2+d2)ε2−mω

))
×Aω(m)·Ed1(τ,m−ε1ω,ε1, ε2−ε1)·Ed2(τ,m−ε2ω,ε1−ε2, ε2)

=

{
θ

[a]
i (nτ,(n−2)(ε1+ε2))·Ed(τ,m,ε1, ε2), fixed d∈N,

0, fixed d 6∈N.
(3.4)

Here the subscript of theta functions i is 4 if n is odd and 3 if n is even, and the characteristic

a = k/n− 1/2, k = 0, 1, . . . , n− 1. The factor Aω(m) is given by

Aω(m) =
∏
α∈∆+

θ̆(mα,−α · ω) , (3.5)

where we denote for R ≥ 0,

θ̆(z,R) =
∏

m,n≥0
m+n≤R−1

η

θ1(z +mε1 + nε2)

∏
m,n≥0

m+n≤R−2

η

θ1(z + (m+ 1)ε1 + (n+ 1)ε2)
, (3.6)
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and for R ≤ 0, θ̆(z,R) = θ̆(z,−R)|ε1,2→−ε1,2 . Note the α · ω in (3.5) is guaranteed to be

an integer, as requested for the definition of θ̆(z,R). See more about the origin of θ̆(z,R)

function in appendix D. Let us show some examples here:

θ̆(z, 0) = 1 ,

θ̆(z,±1) =
η

θ1(z)
,

θ̆(z,±2) =
η4

θ1(z)θ1(z ± ε1)θ1(z ± ε2)θ1(z ± ε1 ± ε2)
.

(3.7)

The dependence on the r-field in (3.4) is related to the choice of a. If we choose basis

of Kähler moduli (tell, τ,mi), i = 1, . . . , rk as in (2.4), the corresponding components of the

r-field are (rell, rτ , ri), i = 1, . . . , rk. The first component rell controls the characteristic a

through a = rell/2n, thus the latter can take any of the following values

a = −n− 2k

2n
, k = 0, 1, . . . , n− 1 . (3.8)

The component rτ vanishes due to the admissibility condition (2.22). The remaining com-

ponents ri, i = 1, . . . , rk always correspond to a weight vector λ ∈ P through (2.28), which

in turn induces the embedding φλ : Q∨ ↪→ P , and the summation index vector ω ∈ φλ(Q∨)

plays the role of the shift vector −R. The number of different embeddings is |P : Q∨|.
The total number of different blowup equations is then n|P : Q∨|, which explains the

numerology found in (2.34).

3.1 Modularity of elliptic blowup equations

In this section, we provide evidence for the elliptic blowup equations (3.4) by showing that

the components of the elliptic blowup equations transforms correctly as weak Jacobi forms.

This is established by showing that the weight and the index, in general a quadratic poly-

nomial, of the corresponding components in (3.4) match the predictions for the index and

weight made from the 2d and the 6d anomaly polynomial or from the transformation prop-

erties of the refined topological string partition function under the S and T monodromies

of the Calabi-Yau space X, see [22] and more generally [58]. In general the blowup equa-

tions give interesting identities for Jacobi forms, one example is proven in section 3.3.1,

see also (3.48). In the fortuitous cases where the expressions of Ed are already known, for

instance the G = SU(3), SO(8) models [8, 34], we can plug in their expressions, and verify

these identities by small Qτ expansion.

It is easy to see that each term in the summation of (3.4) has weight 1/2 as both Aω
and Ed are of weight zero and θi has weight 1/2. The identification of the modular indices

requires a bit of computation, which is independent from the characteristic a. The basic

idea is to repeatedly use the fact that θ(Nτ,Nz) is of index N/2. Let us denote

d0 = 1
2 ||ω||

2 . (3.9)

It is easy to see the theta function θ
[a]
i on the left hand side has modular index

IndGd0
=

n

2

((
d0 + d1 −

n− 2

n

)
ε1 +

(
d0 + d2 −

n− 2

n

)
ε2 −mω

)2

. (3.10)
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Using (D.16), the modular index polynomial of Aω(m) can be computed as

IndGA = −n

2
m2
ω −

n

2
d0m ·m+ (nd0 + 2− n) (ε1 + ε2)mω

− d0

2
(nd0 + 2− n) (ε21 + ε1ε2 + ε22).

(3.11)

The elliptic genus Ed(τ,m, ε1, ε2) is known to have the modular index [24, 37]

IndGd = −1

2
d(n− 2)(ε1 + ε2)2 +

1

2
d(n d− n + 2)ε1ε2 −

1

2
n dm · m. (3.12)

Thus the modular index polynomials of Ed1(τ,m− ε1ω, ε1, ε2− ε1) and Ed2(τ,m− ε2ω, ε1−
ε2, ε2) can be computed respectively as

IndGd1
=

1

2

(
−(n− 2)d1ε

2
2 + (n d1 − n + 2)d1ε1(ε2 − ε1)− nd1 (m− ε1ω)2

)
, (3.13)

IndGd2
=

1

2

(
−(n− 2)d2ε

2
1 + (n d2 − (n− 2))d2(ε1 − ε2)ε2 − nd2 (m− ε2ω)2

)
. (3.14)

Using d = ||ω||2/2+d1 +d2, we find that the four components on the left hand side of (3.4)

has total modular index polynomial as

IndGd0
+IndGA+IndGd1

+IndGd2
= −(n− 2)(n− 2 + dn)

2n
(ε1+ε2)2+

d(dn− n + 2)

2
ε1ε2−

dn

2
m·m,

(3.15)

which is independent from ω, d1, d2 individually but only depends on their combination d !

This highly nontrivial fact guarantees the modularity of elliptic blowup equation, which

means in summation of the left hand side of (3.4) all terms share the same modular index,

thus transform as whole Jacobi form together! In the case that d 6∈ N where the right hand

side of (3.4) vanishes, this is the end of the story. If d ∈ N so that the right hand side

of (3.4) is non-vanishing, we still need to show the right hand side also shares the same

index polynomial. The index polynomial of Λ is simply,

IndGΛ =
(n− 2)2

2n
(ε1 + ε2)2, (3.16)

which together with (3.12) indeed sum up to (3.15).

3.2 Universality of elliptic blowup equations

We demonstrate here an interesting property of the elliptic blowup equations. The n blowup

equations (3.4) with a fixed embedding φλ can be ordered by the characteristics a of the

theta functions, where for two consecutive equations a differ by 1/n. We claim that if two

consecutive unity blowup equations are valid, the other equations must hold automatically.

We call this the universality of the elliptic blowup equations.17

17The following argument assumes the form of refined BPS expansion. Thus the universality here does not

contradict with our statement that choosing arbitrary three unity r fields, i.e. three different characteristics

a, one is able to use the blowup equations to solve out the elliptic genus.
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Theta functions with characteristics have the following properties

θ
[m
2n

]

3 (nτ, z) = eπiτ
m2

4n
+πizm

n θ3(nτ, z + 1
2mτ) , m ∈ Z , (3.17)

θ
[m
2n

]

4 (nτ, z) = eπi
m
2n+πiτ

m2

4n +πiz
m
n θ4(nτ, z + 1

2mτ) , m ∈ Z . (3.18)

Therefore, shifting z by τ is equivalent to shifting the characteristic of these theta function

by 1/n. Then starting from one unity blowup equation, let us shift ε1 by τ and check how

various Jacobi forms in (3.4) change.

• θ[a]
i (nτ, . . .): the elliptic parameter changes by −2τ+integer ·nτ . The shift integer ·nτ

can be removed at the expense of an additional exponential factor due to quasi-

periodicity of the theta function, while the shift −2τ , as we have argued, is equivalent

to shifting a by −2/n.

• Aω(m): it is a product of factors like θ1(τ,mα + mε1 + nε2), m,n ∈ Z, therefore is

invariant under this shift up to an exponential factor.

• Ek: we first argue that under the shift ε1 → ε1 + 1, Ek(τ,m, ε1, ε2) is invariant up to

an exponential factor. The refined BPS are defined from the topological string free

energy as18

F inst(Q, ε1, ε2) =
∑

jl,jr≥0

∑
w≥1,β

(−1)2(jl+jr)Nβ
jl,jr

χjl(q
w
l )χjr(q

w
r )

w(q
w/2
1 − q−w/21 )(q

w/2
2 − q−w/22 )

Qwβ ,

(3.19)

where

χj(q) =
q2j+1 − q−2j−1

q − q−1
. (3.20)

Exponentiating (3.19) the instanton partition function reads

Z inst(Q,ε1, ε2) =
∏
β

∞∏
jl/r=0

jl/r∏
ml/r=−jl/r

∞∏
m1,m2=1

(
1−qmll qmrr q

m1− 1
2

1 q
m2− 1

2
2 Qβ

)(−1)2(jl+jr)Nβ
jljr

.

(3.21)

Using (3.19) and the checkerboard pattern identity

2jl + 2jr + 1 ≡ r · β (mod 2) (3.22)

for non-vanishing BPS invariants one can show that the refined BPS partition function

is invariant under the combined transformation

(ε1, ε2, t)→ (ε1 + 1, ε2, t+ r) . (3.23)

Since the r-vector for the minimal 6d SCFTs in terms of the Kähler moduli tI , tB
have components

r ≡ (0, . . . , 0, n) mod (2Z)rk+2, (3.24)

18Here qj ≡ exp(2πiεj) j = 1, 2 and ql ≡
√
q1/q2, qr ≡

√
q1q2. We will also use v ≡ qr, x ≡ ql in section 4

and 5 to make contact with the literature such as [37, 38].
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the elliptic genus Ek(τ,m, ε1, ε2) is invariant under the shift ε1 → ε1 + 1, at most up

to a sign if n is odd. In fact

Ek(τ,m, ε1 + 1, ε2) = (−1)nkE(τ,m, ε1, ε2) . (3.25)

Together with the modular property of Ek, this implies Ek(τ,m, ε1, ε2) is quasi-

periodic for ε1 → ε1 +τ . Similarly, one can show that Ek(τ,m, ε1, ε2) is quasi-periodic

for ε2 → ε2 + τ as well. As examples one could inspect the expressions of Ek for the

n = 3, 4 models [8, 34], which are composed of θ1(τ, integer · ε1 + integer · ε2 + . . .)

and therefore are indeed quasi-periodic for ε1,2 → ε1,2 + τ . Now if we forget for

the moment the shift on the mass parameters, the three instances of elliptic genera

Ek(τ,m − ε1ω, ε1, ε2 − ε1), Ek(τ,m − ε2ω, ε1 − ε2, ε2), Ek(τ,m, ε1, ε2) in (3.4) should

already be invariant under ε1 → ε1 + τ up to an exponential factor. The shift on the

mass parameters m− ε1ω in the first instance of Ek means that upon ε1 → ε1 + τ its

elliptic parameter is in addition shifted by τ times a weight vector, which can also

be removed at the expense of an additional exponential factor [24].19

In summary, the shift ε1 → ε1 + τ is equivalent to shifting the characteristic a of the

theta functions θ
[a]
i (nτ, . . .) by −2/n and in addition multiplying each term in (3.4) by

an exponential factor. These exponential factors are determined by the index polynomial

of each term, which as a consequence of section 3.1, should be identical. Thus all the

exponential factors can be factored out and removed, and we are left again with a unity

blowup equation where the characteristic is shifted by −2/n. This immediately indicates

that starting from two consecutive unity blowup equations, we can obtain all the other

unity blowup equations, hence the universality property.

3.3 Unity blowup equations

The elliptic blowup equations depend on the choice of the weight vector λ and they take

different forms depending on if λ ∈ Q∨ or not. We first consider the former case where

φλ(Q∨) coincides with Q∨. We can denote ω as vector β∨ in the coroot lattice. Then

||β∨||2/2 and thus d are always nonnegative integers, and as a result the right hand side

of (3.4) does not vanish

1
2
||β∨||2+d1+d2=d∑
β∨∈Q∨,d1,2∈N

(−1)|β
∨|θ

[a]
i

(
nτ,(n−2)(ε1+ε2)−n

(
(1

2 ||β
∨||2+d1)ε1+(1

2 ||β
∨||2+d2)ε2−mβ∨

))
×Aβ∨(m)Ed1(τ,m−ε1β∨, ε1, ε2−ε1)Ed2(τ,m−ε2β∨, ε1−ε2, ε2)

= θ
[a]
i (nτ,(n−2)(ε1+ε2))·Ed(τ,m,ε1, ε2) , d∈N . (3.26)

We say these elliptic blowup equations are of the unity type following the nomenclature

in [15]. Since the number of embedding Q∨ ↪→ φλ(Q∨) = Q∨ is unique, the number of unity

19It is established in section 4 of [24] that the elliptic genera of 6d SCFTs with a pure gauge bulk theory

in fact consist of special Weyl invariant Jacobi forms, which, among other things, are quasi-periodic if the

elliptic parameter is shifted by τ times a weight vector.
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blowup equations is the same as the range of characteristics a, which is n. We also point

out that, using the property that the leading Qτ order of Ed is −dh∨G/6,20 these equations

in the leading order of Qτ boil down to the identity∑
α∈∆+(G)

(β · α)2 = h∨G ||β||2 , (3.27)

which is guaranteed by the Lie algebraic identity (A.5).

The unity blowup equations are particular interesting as they allow us to write down

recursion formulas for the elliptic genera.

3.3.1 Recursion formulas for elliptic genera

The unity blowup equations (3.26) can be put in the following more suggestive form

θ
[a]
i (nτ, (n− 2− dn)ε1 + (n− 2)ε2)Ed(τ,m, ε1, ε2 − ε1)

+ θ
[a]
i (nτ, (n− 2)ε1 + (n− 2− dn)ε2)Ed(τ,m, ε1 − ε2, ε2)

− θ[a]
i (nτ, (n− 2)(ε1 + ε2))Ed(τ,m, ε1, ε2) = Id(E<d) .

(3.28)

where Id(E<d) only contains the elliptic genera of degrees lower than d. Since three copies

of Ed on the left hand side do not depend on the characteristic a, if we have three such

equations with different a, which is indeed the case for all the minimal 6d N = (1, 0) SCFTs

with pure gauge bulk theory, we can solve Ed(τ, ,ε1, ε2) in terms of elliptic genera with lower

number of strings; in other words, we obtain recursion formulas for elliptic genera.

Let us use the short hand notation21

θ
[a]
i,{d0,d1,d2} = θ

[a]
i (nτ, nmα∨ + (n− 2)(ε1 + ε2)− n((d0 + d1)ε1 + (d0 + d2)ε2)) , (3.29)

where mα∨ = m · α∨, and furthermore define

Dd = Det


θ

[a1]
i,{0,d,0} θ

[a1]
i,{0,0,d} θ

[a1]
i,{0,0,0}

θ
[a2]
i,{0,d,0} θ

[a2]
i,{0,0,d} θ

[a2]
i,{0,0,0}

θ
[a3]
i,{0,d,0} θ

[a3]
i,{0,0,d} θ

[a3]
i,{0,0,0}

 , (3.30)

as well as

Dα∨

{d0,d1,d2} = Det


θ

[a1]
i,{0,d,0} θ

[a1]
i,{0,0,d} θ

[a1]
i,{d0,d1,d2}

θ
[a2]
i,{0,d,0} θ

[a2]
i,{0,0,d} θ

[a2]
i,{d0,d1,d2}

θ
[a3]
i,{0,d,0} θ

[a3]
i,{0,0,d} θ

[a3]
i,{d0,d1,d2}

 . (3.31)

Note that Dd = Dα∨

{0,0,0} does not depend on α∨ since α∨ = 0 when d0 = ||α∨||2/2 = 0.

Then the recursion formulas of Ed solved from (3.28) read

Ed =

d0+d1+d2=d∑
d0=

1
2 ||α

∨||2,d1,2<d

(−1)|α
∨|
Dα∨

{d0,d1,d2}

Dd
Aα∨(m)Ed1(m−ε1α∨, ε1, ε2−ε1)Ed2(m−ε2α∨, ε1−ε2, ε2).

(3.32)

Here the τ dependence is implied.

20See more discussion in section 4.1.
21Note d0 = ||α∨||2/2 is always implied. When d0 = 0, θ

[a]

i,{d0,d1,d2} does not depend on α∨ since α∨ = 0.
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Let us look at some examples. The one-string elliptic genus is given by

E1 =
∑
α∈∆∨

||α∨||2=2

Dα∨

{1,0,0}

D1

η4

θ1(mα)θ1(mα − ε1)θ1(mα − ε2)θ1(mα − ε1 − ε2)

∏
β∈∆

α∨·β=1

η

θ1(mβ)

(3.33)

where mβ = m · β. In particular, for ADE type algebras, the E1 formula can be further

simplified due to the identification of roots and coroots. Indeed, for A2, D4, E6,7,8, we have

the following universal formula

E1 =
∑
α∈∆

Dα

D

η4

θ1(mα)θ1(mα − ε1)θ1(mα − ε2)θ1(mα − ε1 − ε2)

∏
β∈∆
α·β=1

η

θ1(mβ)
. (3.34)

Here Dα and D are the short notations for Dα
{1,0,0} and D1.

In the Qτ → 0 limit, E1 formula (3.33) reduces to the universal one-instanton partition

function of 5d N = 1 pure SYM theory [30, 59]

Z1 =
1

(1−e−ε1)(1−e−ε2)

∑
γ∈∆l

e(h∨G−1)mγ/2

(1−e−ε1−ε2+mγ )(emγ/2−e−mγ/2)
∏
α·γ=1(emα/2−e−mα/2)

,

(3.35)

where ∆l denotes the set of long roots which is the same with coroots with ||α∨||2 = 2.

Furthermore, the two-string elliptic genus is given by

E2 =
Dα∨=0
{0,1,1}

D2
E1(m,ε1, ε2−ε1)E1(m,ε1−ε2, ε2)+

∑
||α∨||2=4

(−1)|α
∨|Aα∨(m)

Dα∨

{2,0,0}

D2

+
∑

||α∨||2=2

(−1)|α
∨|Aα∨(m)

(
Dα∨

{1,1,0}

D2
E1(m−ε1α∨, ε1, ε2−ε1)+

Dα∨

{1,0,1}

D2
E1(m−ε2α∨, ε1−ε2, ε2)

)
.

(3.36)

Note in the bracket of the second line of (3.36), the two terms are symmetric in ε1 ↔ ε2.

In the later section, we use this formula to compute the two-string elliptic genus of all 6d

(1,0) minimal SCFTs with G = A2, D4, F4, E6,7,8. From (3.32), we can also easily write

down the universal formula for three-string elliptic genus as

E3 =

[
Dα∨=0
{0,1,2}

D3
E1(m,ε1, ε2−ε1)E2(m,ε1−ε2, ε2)+(ε1↔ ε2)

]
+

∑
||α∨||2=6

(−1)|α
∨|Aα∨(m)

Dα∨
{3,0,0}

D3

+
∑

||α∨||2=4

(−1)|α
∨|Aα∨(m)

[
Dα∨
{2,1,0}

D3
E1(m−ε1α∨, ε1, ε2−ε1)+(ε1↔ ε2)

]

+
∑

||α∨||2=2

(−1)|α
∨|Aα∨(m)

[(
Dα∨

{1,2,0}

D3
E2(m−ε1α∨, ε1, ε2−ε1)+(ε1↔ ε2)

)

+
Dα∨

{1,1,1}

D3
E1(m−ε1α∨, ε1, ε2−ε1)E1(m−ε2α∨, ε1−ε2, ε2)

]
. (3.37)
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From the topological string point of view, the d-string elliptic genus Ed encodes the

BPS invariants Nβ
jl,jr

with base degree d as well as multi-wrapping contributions from lower

base degree curves. Once all the elliptic genera up to certain base degree d are computed,

all the BPS invariants up to base degree d and arbitrary degrees along other directions

can be extracted. The recurison formulas (3.32) thus allow us to reproduce the genus zero

Gopakumar-Vafa invariants for the Calabi-Yau threefolds associated to the minimal 6d

SCFTs with n = 5, 6, 8, 12 [24], and to compute the refined BPS invariants for the first

time in the literature.

Let us make a remark here concerning the validity of the recursion formula (3.32).

Obviously, the recursion formula is only well-defined when Dd 6= 0. We have checked that

this is indeed true for all the minimal models except for the model of G = SU(3) with d = 1,

where both Dα
{1,0,0} and D1 vanish. This is a special situation since for the model with

G = SU(3) there are only three choices of the characteristics ai and there may be certain

symmetry enhancement for E1 such that only two of the three unity blowup equations are

linearly independent. Note that this does not contradict with the fact that the universal

one-instanton partition function Z1 of 5d pure SYM theories [30, 59] works perfectly for the

SU(3) theory which is recovered from one-string elliptic genus in the 5d limit with Qτ → 0.

What happens in this limit is that the 6d unity r-field r = (0, 0, 0, 3) splits to two 5d unity

r-fields r1 and r2, and the leading Qτ order term of D1 is the difference of two contributions

associated to r1 and r2 respectively, both of which remain finite and identical. Nevertheless,

it should be emphasize that though recursion formula does not work for ESU(3)
1 , by assuming

the refined BPS expansion, one can still use two unity blowup equations and one vanishing

blowup equation to solve out all the refined BPS invariants, which is what we have done

in [25]. If further assuming the knowledge on Z0, one can actually use one single unity

blowup equations to solve out all refined BPS invariants. To compute ESU(3)
2 by recursion

formula (3.36), practically one can use the exact formula ESU(3)
1 in [34]. For all d > 1, the

recursion formula (3.32) works well for SU(3).

The identity D
SU(3)
1 = 0 here despite its simple form does not seem so trivial. In fact,

we find it is a special case of the following series of identities. With q = eπiτ and y = e2πiz

we define the following double indexed θ functions

θ
[r/2n]
3 (nτ, z) = q

r2

4n y
r

2n

∑
l∈Z

ql(nl+r)yl =
∑

k=r (2n)

q
k2

4n y
k
2n ,

θ
[r/2n]
4 (nτ, z) = e

πir
4n q

r2

2n y
r

2n

∑
l∈Z

(−1)lql(nl+r)yl =
∑

k=r (2n)

q
k2

4n (−y)
k
2n ,

(3.38)

where the notations k = r (m) in the second sums, mean that k runs over values of the

form r +ml, for any l ∈ Z. We claim that if

n−1∑
j=0

zi = 0 ↔
n−1∏
j=0

yj = 1, (3.39)
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the determinant of the n× n matrices defined from these θ functions

det

[
θ
[ in ]
3 (nτ, zj)i,j=0,...,n−1

]
= 0, if 2 | n

det

[
θ
[ 2i+1

2n ]
4 (nτ, zj)i,j=0,...,n−1

]
= 0, if 2 - n

(3.40)

vanish. Note the n = 1 case is just the well-known fact θ1(τ, 0) = 0, while n = 3 case

implies the D
SU(3)
1 = 0 identity in our previous context. The proof proceeds in both cases

in (3.40) by showing that each term of the form qm
∏n
j=1 y

kj
j that occur in the expansion of

the determinant, constrained by (3.39), appears once with positive and once with negative

sign.22 The first case is notationally simpler so we prove it explicitly. Using 2 | n and

an irrelevant rescaling23 zi → z̃i = nzi we rewrite the first determinate in the statement

in (3.40) as

det

[( ∑
k=i (n)

q
k2

n ykj

)
i,j=0,...,n−1

]
=
∑

Π

sgn(Π)
∑

k0 = Π(0) (n)
.
.
.

kn−1 = Π(n− 1) (n)

q
k2
0+...+k2

n−1
n yk0

0 . . . y
kn−1

n−1

=
∑

k0, . . . , kn−1 ∈ Z
ki 6= kl mod n

sgn(Pk)q
k2
0+...+k2

n−1
n yk0

0 . . . y
kn−1

n−1 . (3.41)

Here Pk is defined by the maps i 7→ ki modn, for i=0, . . . , n−1. Let k̄=(k0 + . . .+ kn−1)/n

be the average of ki and use it to define k∗i = ki − 2k̄. Since 2 | n, k̄ runs over k̄ = 1
2 (1)

and hence k∗i ∈ Z. Direct calculation shows that under the ∗ operation ki 7→ k∗i the terms

mk := q(k2
0+...+k2

n−1)/n∏n−1
j=0 y

kj
j in (3.40) stay invariant mk = mk∗ ; the second factor due

to (3.39). Let now P ∗k be defined by i 7→ k∗i mod n. It follows immediately that it likewise

defines a permutation of the indices {0, . . . , n−1}, however with the opposite parity. Hence

mk appears twice with opposite sign and the sum (3.41) is zero. The proof of the second

case in (3.40) proceeds analogously, with appropriate relabelling of the indices.

3.3.2 Uniqueness of recursion formulas

One important consequence of the universality property is that the recursion formula (3.32)

does not depend on the choice of three different r-fields in its construction, as it should. Let

us supppose that we already known E<d and we wish to compute Ed using the recursion

formula (3.32) obtained from three consecutive unity blowup equations forming the linear

system
θ

[a1]
i,{0,d,0} θ

[a1]
i,{0,0,d} θ

[a1]
i,{0,0,0}

θ
[a2]
i,{0,d,0} θ

[a2]
i,{0,0,d} θ

[a2]
i,{0,0,0}

θ
[a3]
i,{0,d,0} θ

[a3]
i,{0,0,d} θ

[a3]
i,{0,0,0}

 ·
Ed(m, ε1, ε2 − ε1)

Ed(m, ε1 − ε2, ε2)

−Ed(m, ε1, ε2)

 = −

I
[a1]
d (E<d)
I

[a2]
d (E<d)
I

[a3]
d (E<d)

 , (3.42)

22We thank Don Zagier for pointing this mechanism out to us.
23Followed by a renaming of the z̃i to zi again.
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where a2−a1 = a3−a2 = 1/n, and the matrix of theta function on the l.h.s. is of full rank.

If the Ed(m, ε1, ε2) solved from the linear system is correct, so should be Ed(m, ε1, ε2− ε1),

Ed(m, ε1 − ε2, ε2), and the three unity blowup equations in (3.42) should all be correct as

well. Otherwise, the linear system could always be corrected by
θ

[a1]
i,{0,d,0} θ

[a1]
i,{0,0,d} θ

[a1]
i,{0,0,0}

θ
[a2]
i,{0,d,0} θ

[a2]
i,{0,0,d} θ

[a2]
i,{0,0,0}

θ
[a3]
i,{0,d,0} θ

[a3]
i,{0,0,d} θ

[a3]
i,{0,0,0}

 ·
Ed(m, ε1, ε2 − ε1)

Ed(m, ε1 − ε2, ε2)

−Ed(m, ε1, ε2)

 = −

I
[a1]
d (E<d)
I

[a2]
d (E<d)
I

[a3]
d (E<d)

+

R1

R2

R3

 . (3.43)

By inverting the matrix of theta functions in (3.42) and (3.43) and subtracting the two

equations from each other, we get
θ

[a1]
i,{0,d,0} θ

[a1]
i,{0,0,d} θ

[a1]
i,{0,0,0}

θ
[a2]
i,{0,d,0} θ

[a2]
i,{0,0,d} θ

[a2]
i,{0,0,0}

θ
[a3]
i,{0,d,0} θ

[a3]
i,{0,0,d} θ

[a3]
i,{0,0,0}


−1

·

R1

R2

R3

 = 0 , (3.44)

which means the corrections R1,2,3 must all vanish, as a consequence of Dd 6= 0. Once the

validity of the three unity blowup equations in (3.42) is established, using the universality

we can argue for the validity of all unity blowup equations. The recursion formula con-

structed out of any three unity blowup equations then should always gives the correct Ed
which coincides with the solution of (3.42).

3.4 Vanishing blowup equations

We consider here the case where λ ∈ P\Q∨. This is only possible if |P : Q∨| > 1, i.e. for the

minimal 6d N = (1, 0) SCFTs with G = SU(3), SO(8), E6, E7. In this case, φλ(Q∨) 6= Q∨;

||ω||2/2 for any ω ∈ φλ(Q∨) and thus d is not an integer. In fact we find

||ω||2

2
=

n− 2

n
+ k , k ∈ Z≥0 , (3.45)

where the minimum norm square (n− 2)/n is reached if and only if ω is in a lowest dimen-

sional irreducible representation24 �G of G. As a consequence, the right hand side of the

elliptic blowup equations (3.4) vanishes

1
2
||ω||2+d1+d2=d∑

ω∈φλ(Q∨),d1,2∈N

(−1)|φ
−1
λ (ω)| ·θ[a]

i

(
nτ,(n−2)(ε1+ε2)−n

(
(1

2 ||ω||
2+d1)ε1+(1

2 ||ω||
2+d2)ε2−mω

))
×Aω(m)·Ed1(τ,m−ε1ω,ε1, ε2−ε1)·Ed2(τ,m−ε2ω,ε1−ε2, ε2) = 0 , λ 6∈Q∨fixedd.

(3.46)

Following the nomenclature of [15], we call these equations of the vanishing type.

The number of inequivalent embeddings φλ of this kind is |P : Q∨| − 1, which

happens to be the order of the automorphism group of the Dynkin diagram ΓG for

24This can be the fundamenal representation, the anti-fundamental representation, and in the case of

SO(8) the two spinor representations.
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G = SU(3), SO(8), E6, E7. As representatives we can choose λ to be a fundamental weight25

that generates �G as the highest weight. The total number of inequivalent vanishing blowup

equations for each of these models is n(|P : Q∨|−1). Furthermore, using the property that

the leading Qτ order of Ed is −dh∨G/6, the equations (3.46) at the leading order requires

that ∑
α∈∆+

(
(ω · α)2 − (ω0 · α)2

)
= 2kh∨G , ω ∈ φλ(Q∨) , ω0 ∈ �G , (3.47)

where the integer k is associated to the weight vector ω by (3.45), and it is again guaranteed

by the Lie algebraic identity (A.5).

With the elliptic genus solved from the recursion formulas (3.32) plugged in, the van-

ishing blowup equations give rise to infinitely many nontrivial identities of Jacobi forms.

In the lowest order, d = (n−2)/n and φλ(Q∨) is chosen to be one of the lowest dimensional

representations ∑
ω∈�G

(−1)|φ
−1
λ (ω)| θ

[a]
i (nτ, nmω)

∏
β∈∆+
ω·β=±1

1

θ1(mβ)
= 0 . (3.48)

This elegant formula specializing to G = SU(3) and SO(8) has been explicitly shown and

checked in [25]. Here we further checked it for E6 and E7 for various characteristic a to

higher order of Qτ . For example, for E6, the relevant representation is 27, with the weights

encoded in the character

χE6
27 =

27∑
i=1

6∏
j=1

emjwij . (3.49)

Then for arbitrary a ∈ Z/6, the following identity holds:26

27∑
i=1

(−1)|φ
−1
λ (ωi)|θ

[a]
3 (6τ, 6mωi)

∏
β∈∆+(E6)
ωi·β=±1

1

θ1(mβ)
= 0 . (3.51)

Note there actually exist two 27 representations due to the symmetry of Dynkin diagram

of E6, i.e. |Aut(ΓE6)| = 2, both of them make (3.51) holds. This also explains why there

are two copies of vanishing r field for E6 geometry, as we will see in next section in table 9.

For higher base degree of the vanishing blowup equations, one can also write down some

more complicated identities like (3.48). We checked them for all G = SU(3), SO(8), E6,7 in

the setting of refined BPS expansion to very high orders.

25Not all the fundamental weights generate a lowest dimensional irreducible representation. For instance,

the fundamental weight of SO(8) corresponding to the central node in the Dynkin diagram ΓSO(8) generates

the adjoint representation. The nodes associated to the �G-generating fundamental weights are permuted

precisely by the automorphism group Aut(ΓG).
26Let us write the notations in components in case of any misunderstanding.

|φ−1
λ (ωi)|=

6∑
j,k=1

(C−1
E6

)jkωij , mωi =

6∑
j,k=1

mk(C−1
E6

)jkωij , ωi ·β=

6∑
j=1

ωijβj , mβ =

6∑
j=1

mjβj , (3.50)

where CE6 is the Cartan matrix.
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G SU(3) SO(8) E6 E7

dim(�) 3 8 27 56

dim(∆+) 3 12 36 63

#{β ∈ ∆+ : ω · β = 0, ∀ω ∈ �} 1 6 20 36

#{β ∈ ∆+ : ω · β = ±1, ∀ω ∈ �} 2 6 16 27

#{β ∈ ∆+ : ω · β = ±2, ∀ω ∈ �} 0 0 0 0

Table 4. Distribution of positive roots with respect to product with weights in �G.

We list various Lie theoretical data including the distribution of positive roots with

respect to product with any weight in �G in table 4, from which one can check (3.47)

indeed holds.

4 Elliptic genera for 6d (1, 0) minimal SCFTs

In this section we illustrate explicitly the solution of one-string and two-string elliptic

genera of minimal 6d (1,0) SCFTs with G = F4, E6, E7, E8, using the elliptic blowup

equations. The elliptic genera of the minimal theories with G = SU(3), SO(8) have been

computed in [8, 34], and we also reproduce some relevant results here. From these concrete

results we summarise some universal features of the elliptic genera, including the expansion

coefficients, the symmetric product approximation, and some additional symmetries. They

are presented immediately in the first subsection, which one can then check in the following

example subsections.

In this and the next sections, we work with the reduced elliptic genera which has the

center-of-mass degree of freedom removed:27

E
h

(k)
G

= E
h̃

(k)
G

/Ec.m., (4.1)

where

Ec.m. = −θ1(ε1)θ1(ε2)

η2
. (4.2)

In the reduced version, elliptic genera normally obtain simplification. For example, the

reduced one-string elliptic genus is independent from ε−, i.e. SU(2)l, as expected.

4.1 Universal behaviors of elliptic genera

4.1.1 Universal expansion

For all possible gauge group G, recall v ≡ exp(πi(ε1 + ε2)) and x ≡ exp(πi(ε1 − ε2)), we

propose the following general ansatz for the reduced k-string elliptic genera

E
h

(k)
G

(v, x,Qτ , Qmi) = vkh
∨
G−1Q

−(kh∨G−1)/6
τ

∞∑
n=0

Qnτ g
(n)
k,G(v, x,Qmi). (4.3)

27We follow the notation of [37] where E
h̃
(k)
G

is used to stress it is the RR elliptic genus of underlying 2d

(0, 4) CFT associated to the k-strings in 6d (1, 0) minimal SCFT with gauge group G. It is the same with

what we previously denoted as Ek to emphasize that it is coefficient of base degree k in the topological

string partition function.
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Here all g
(n)
k,G(v, x,Qmi) are rational functions. In particular, g

(n)
1,G is independent from x.

One obvious symmetry for all g
(n)
k,G is

g
(n)
k,G(v, x,Qmi) = g

(n)
k,G(v, x−1, Qmi), (4.4)

which comes from the symmetry between ε1 and ε2 in the Omega background, and can be

understood as the Weyl symmetry of SU(2)x. From now on we use SU(2)x to denote SU(2)l
symmetry to stress the associated fugacity is x. We can further compute the v-expansion of

each g
(n)
k,G function where the coefficients are finite sum of products between the characters

of SU(2)x and characters of G which respect Weyl symmetries of both groups. For example,

g
(0)
k,G = 1 + . . . gives the Hilbert series of the reduced k G-instanton moduli space. In fact,

we find plenty of universal coefficients for the first a few order v-expansion of g
(n)
k,G.

It is known that the Hilbert series of the reduced one-instanton moduli space for any

simple gauge group G has the expansion [41]

g
(0)
1,G(v,Qmi) =

∞∑
k=0

χGnθv
2n , (4.5)

where χkθ is the character of the representation whose highest weight is k-multiple of the

longest root θ; in particular χθ is the character of the adjoint representation of G. In

particular this is true for G = SU(3), SO(8), F4, E6,7,8 when g
(0)
1,G serves as the leading

contribution to one-string elliptic genus. As for sub- and subsub-leading contributions, we

find that except for G = SU(3)28

g
(1)
1,G(v,Qmi) = 1+χθ+

(
1+χθ+χ2θ+χAlt2θ

)
v2 +

(
2χ2θ+χAlt2θ+χ3θ+B2(G)

)
v4 +O(v6),

(4.6)

while except for G = SU(3), SO(8),

g
(2)
1,G(v,Qmi) = 2 + 2χθ + χSym2θ +O(v2) . (4.7)

Here B2(G) are characters of some representations for which we do not find any universal

expressions, and we list them in table 5.29 The exceptions of SU(3) and SO(8) can be

explained by the higher structures of E1 revealed by its intriguing relation with the Schur

indices of certain rank one 4d SCFTs discovered in [37], which we will review and extend

in section 5.

Furthermore, we find the Hilbert series of reduced two-instanton modulis space for any

simple gauge group G has the expansion

g
(2)
0,G(v,x,Qmi

) = 1+(χθ+χ3)v2+χθχ2v
3+
(
χ5+χθχ3+χSym2θ

)
v4+(χθχ4+(χ2θ+χAlt2θ)χ2)v5

+
(
χ7+χ5χθ+χ3(χSym2θ+χ2θ)+χSym3θ−C6(G)

)
v6

+
(
χθχ6+(χ2θ+χAlt2θ)χ4+(χ2θ+χ3θ+χAlt2θ+B2(G)+C7(G))χ2

)
v7

+
(
χ9+χ7χθ+χ5(χSym2θ+χ2θ)+χ3(χ3θ+χ2θ+B2(G)+χSym3θ−C6(G))+χSym4θ−C8(G)

)
v8

+
(
χθχ8+(χ2θ+χAlt2θ)χ6+(χ2θ+2χ3θ+χAlt2θ+B2(G)+C7(G))χ4+. . .

)
v9+. . . (4.8)

28From now on, to shorten formulas, we do not explicitly write G in each character.
29The bold numbers mean the character of representations with dimension of such number. Note different

representations can have the same dimension sometimes, for instance, the representations 35v, 35s and 35c
of SO(8). To lighten the notation, we do not distinguish them in the table. Nevertheless, they can be

recovered by taking into account the symmetry of Dynkin diagrams.
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G χθ χ2θ χ3θ B2 C6 C7 C8

A2 8 27 64 2 · 35 1 27 8

D4 28 300 1925 4096 2 · 28 3 · 567 2 · (300 + 350 + 1) + 3 · 35

F4 52 1053 12376 29172 273 10829 8424 + 4096 + 324 + 26

E6 78 2430 43758 105600 650 34749 34749 + 2 · 5824 + 650 + 78

E7 133 7371 238602 573440 1463 152152 150822 + 40755 + 1539

E8 248 27000 1763125 4096000 0 779247 147250

Table 5. Certain representations appearing in the expansion of g
(n)
k,G functions.

Here χn is the character of n-dimensional representation of SU(2)x. The expansion coef-

ficients up to v6 were already observed in [30], and we further push the observation up

to v8. We have checked this expression to be consistent with all the results on Hilbert

series of reduced two G instanton moduli space in [42]. In particular it is true for

G = SU(3), SO(8), F4, E6,7,8 when g
(0)
2,G is the leading contribution to the two-string elliptic

genera. Note that in this expression, C6(G), C7(G) are characters of certain representations

of G for which universal expressions are not found. They are collected for individual G

in table 5. As for the subleading and subsubleading contribution to the two-string elliptic

genera, we find there exists the following universal v-expansion: except for G = SU(3),

g
(2)
1,G(v, x,Qmi) = 1 + χθ + χ3 + (χθ + 1)χ2v + (χ5 + (2χθ + 3)χ3 + (χθ + 1)2)v2

+
(

(2χθ + 1)χ4 + (χ2θ + (χθ + 1)2 + χSym2θ)χ2

)
v3

+ (χ7 + (2χθ + 3)χ5 + . . . )v4 +O(v5) ,

(4.9)

while except for G = SU(3) and SO(8),

g
(2)
2,G(v,x,Qmi) = (χ5+(χθ+2)χ3+χSym2θ+2χθ+4)+

(
(χθ+1)χ4+((χθ+1)2+2(χθ+1))χ2

)
v

+
(
χ7+(2χθ+4)χ5+((χθ+1)2+2χSym2θ+6χθ+9)χ3+. . .

)
v2+O(v3) .

(4.10)

For the reduced three string elliptic genus E
h

(3)
G

, although we have not checked for

all six G due to the complexity of computation, still we propose the following universal

expansion:

g
(3)
0,G(v,x,Qmi) = 1+(χ3+χθ)v

2+(χ4+χθχ2)v3+
(
χ5+χθχ3+χSym2θ+1

)
v4

+
(
χ6+(2χθ+1)χ4+2χSym2θ

)
v5

+
(

2χ7+3χθχ5+(χ2θ+3χSym2θ+1)χ3+χSym3θ+χSym2θ

)
v6+O(v7) .

(4.11)

We have checked this against the three-instanton Hilbert series for SU(2), G2, SO(7), Sp(4),

Sp(6) in [43, 60], and against the three-string elliptic genus for SU(3) [34]. Note the first
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two terms also agree with the rank three E6 Hall-Littlewood index ((A.14) in [45]). For

the subleading Qτ order, again except SU(3), we propose

g
(3)
1,G(v, x,Qmi) = (χ3 + χθ + 1) + (χ4 + (χθ + 1)χ2)v

+ (χ5 + (3χθ + 4)χ3 + 2χSym2θ + χθ + 2)v2 +O(v3) .
(4.12)

As in rank one and two cases, for SU(3), the higher contributions begin to merge in at Qτ
subleading order.

All above v-expansion coefficients can be easily obtained by setting Qm = 1 in

g
(k)
n,G(v, x,Qm). Thus the rational functions g

(k)
n,G(v, x, 1) are very useful as they encode

most information. For large k or n, such rational functions with generic x turn out to be

too lengthy. One can take the unrefined limit x = 1 in g
(k)
n,G(v, x, 1) to still store meaning

information on arbitrary order coefficients of v-expansion. Indeed, when the fugacities of

flavor as well as SU(2)x are turned off, we find

g
(n)
1,G(v) =

1

(1− v2)2(h∨G−1)
× P (n)

1,G(v) , (4.13)

g
(n)
2,G(v) =

1

(1− v2)2(h∨G−1)(1 + v)2bG(1 + v + v2)2h∨G−1
× P (n)

2,G(v) . (4.14)

The exponents bG are given by

G SU(3) SO(8) F4 E6 E7 E8

b 3 6 11 16 26 46

We notice that b = 5h∨G/3 − 4 except for SU(3). The numerators P
(n)
1,G(v) and P

(n)
2,G(v)

are palindromic Laurent polynomials. They have negative powers of v when n is large.

Nevertheless P
(0)
1,G(v), P

(0)
2,G(v) are both polynomials and their maximum degrees are h∨G− 1

and 2(2h∨G−1)+2bG respectively. The explicit expressions of P
(n)
k,G(v) for the minimal SCFTs

with G = SU(3), SO(8), F4, E6, E7, E8 are presented in the following example subsections

and also appendix F.

4.1.2 Symmetric product approximation

It was noticed both in [42] and [45] that the reduced two G-instanton Hilbert series can be

realized as certain symmetric product of two one G-instantons as approximation:

1

1− vx±1
g

(2)
0,G(v, x, a) =

1

2

((
g

(1)
0,G(v, a)

1

1− vx±1

)2
+ g

(1)
0,G(v2, a2)

1

1− v2x±2

)
+O(v4) .

(4.15)

Here we adopt their notation a = QmG to lighten the notation. It also was noticed in [43]

that the reduced three G-instanton Hilbert series can be realized as certain symmetric

product of three one G-instantons as approximation:

1

1−vx±1
g

(3)
0,G(v,x,a) =

1

6

(( 1

1−vx±1
g

(1)
0,G(v,a)

)3
+

3

(1−vx±1)(1−v2x±2)
g

(1)
0,G(v,a)g

(1)
0,G(v2,a2)

+
2

1−v3x±3
g

(1)
0,G(v3,a3)

)
+O(v4) . (4.16)
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The above formulas have clear physical meaning. For example in (4.16), the first term

represents the configuration where three instantons are far from each other, the second term

represents the configuration where two instantons sit on the same site and the third one is

far from them, while the third term represents the configuration where all three instantons

sit on the same site. Note the triple symmetric product would give the coefficient of v4 of

g
(3)
0,G as χ5 +χθχ3 +χ2θ+χSym2θ+1, one can see the difference with (4.11) begins to appear.

In fact, it is reasonable that arbitrary k G-instanton Hilbert series can be realized as

symmetric product of k G-instantons as approximation:

1

1− vx±1
g

(k)
0,G(v, x, a) = Symk

MG,1
(v, x, a) +O(v4) , (4.17)

where Symk
G,1(v, x, a) can be obtained from generating function

∞∑
k=1

Symk
MG,1

(v, x, a)Qk = PE

[
Q

1− vx±1
g

(1)
0,G(v, a)

]
≡ PE

[
g̃

(1)
0,G(v, x, a)Q

]
. (4.18)

For example,

Sym4
MG,1

(v,x,a) =
1

24

((
g̃

(1)
0,G(v,x,a)

)4
+6
(
g̃

(1)
0,G(v,x,a)

)2
g̃

(1)
0,G(v2,x2,a2)+3

(
g̃

(1)
0,G(v2,x2,a2)

)2

+8 g̃
(1)
0,G(v,x,a)g̃

(1)
0,G(v3,x3,a3)+6 g̃

(1)
0,G(v4,x4,a4)

)
= 1+(χ3+χθ)v

2+(χ4+χθχ2)v3+O(v4) . (4.19)

It is not hard to find that for all k ≥ 3, the leading coefficients in v expansion of symmetric

product are the same:

Symk
MG,1

(v, x, a) =
1

k!

((
g̃

(1)
0,G(v, x, a)

)k
+ C2

k

(
g̃

(1)
0,G(v, x, a)

)k−2
g̃

(1)
0,G(a2, v2, x2) + . . .

)
= 1 + (χ3 + χθ)v

2 + (χ4 + χθχ2)v3 +O(v4) . (4.20)

Here the first term represents all k instantons are far from each other, while the second

term represents two instantons sit at the same site and the rest k − 2 instanton are far

from them and each other. . . From v4, the interaction among instantons will contribute.

We can also include g
(k)
0,G into the elliptic genus to write down the above symmetric

product approximation. For example in the reduced three-string elliptic genus, since

E
h̃

(3)
G

(v, x, a,Qτ ) =
v3h∨G

1− vx±1
g

(3)
0,G(v, x, a)Q

−h∨G/2
τ +O(Q

−h∨G/2+1
τ ), (4.21)

combining (4.16), we obtain

E
h̃

(3)
G

(v, x, a,Qτ ) =
1

6

(
E
h̃

(1)
G

(v, x, a,Qτ )3 + 3E
h̃

(1)
G

(v, x, a,Qτ )E
h̃

(1)
G

(v2, x2, a2, Q2
τ )

+ 2E
h̃

(1)
G

(v3, x3, a3, Q3
τ )
)

+ . . . ,
(4.22)

which holds for the leading Qτ order and the first four v-expansion coefficients. For ar-

bitrary k-strings elliptic genus, it is better to use Hecke transformation. Neglecting the
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interaction among strings, the resulting k-strings elliptic genus E
Sym

(k)
G

(v, x, a,Qτ ) can be

generated from∑
k=0

E
Sym

(k)
G

(v, x, a,Qτ )Qk = exp

[∑
n≥0

Qn
1

n

∑
cd=n
c,d>0

∑
b(mod d)

E
h̃

(1)
G

(
c τ + b

d
, c εi, cmG

)]
.

(4.23)

Note this relies on the Jacobi form nature of E
h̃

(1)
G

(τ, εi,mG). Also take d = 1 in (4.23), one

will go back to instanton formula (4.18) where there is no modularity. Finally, we obtain

E
h̃

(k)
G

(v, x, a,Qτ ) = E
Sym

(k)
G

(v, x, a,Qτ ) +O(Q
−kh∨G/6+1
τ ) +O(vkh

∨
G+4) . (4.24)

As we have checked this symmetric product approximation does not give exact subleading

Qτ orders g
(k)
1,G even for its leading v-expansion coefficient. This means all subleading Qτ

orders involves interaction among strings.

4.1.3 Symmetries

Besides the obvious symmetry

E
h

(k)
G

(v, x,Qτ , Qm) = E
h

(k)
G

(v, x−1, Qτ , Qm) , (4.25)

which comes from the symmetry between ε1 and ε2 in Omega background, it was found

in [37] that the reduced one-string elliptic genus E
h

(1)
G

(v,Qτ) satisfies an additional symmetry

E
h

(1)
G

(Q1/2
τ /v,Qτ ) = (−1)n+1v2(1−h∨G/3)Q

(h∨G/3−1)/2
τ E

h
(1)
G

(v,Qτ ) . (4.26)

Here the dependence on mG is implicit. This symmetry was later interpreted as a spectral

flow symmetry in [38]. The left hand side of (4.26) actually computes the NS-R elliptic

genus, which should be equal to the R-R elliptic genus on the right hand side due to the

lack of chiral fermions in the minimal SCFT in consideration. See section 6.4 of [37] for a

detailed discussion.

We extend the symmetry (4.26) to arbitrary k-string elliptic genus E
h

(k)
G

(v, x,Qτ ):

E
h

(k)
G

(
Q

1/2
τ

v
,
Q

1/2
τ

x
,Qτ

)
= (−1)nk+1v

k(k−5)
6

h∨G+k2+1x−
k(k−1)

6
h∨G−k

2+1Q
(kh∨G−3)/6
τ E

h
(k)
G

(
v,x,Qτ

)
,

(4.27)

which can be derived by combining (3.25) and the modular anomaly of elliptic genera (3.12).

For the situation where 2d quiver description is known, i.e. G = SU(3) and SO(8), the above

symmetry can also be obtained by looking into the transformation of integrand of localiza-

tion with the quasi-periodicity of Jacobi theta function (D.5), (D.6). Note symmetry (4.27)

is a nonperturbative symmetry, which can not be seen from the Qτ expansion of the elliptic

genus, except for the one-string case that is (4.26).30 This means (4.27) should be seen as

30Practically, we find that for the two-string elliptic genus, when Qτ order is enough high, for one order

of Qτ goes up, the leading v order goes down for 3. Thus, if one naively does the transformation for the

left hand side of (4.27) in Qτ expansion, one would get infinite negative order of Qτ . Similar situation also

happens for three-string elliptic genus. But for one-string elliptic genus, luckily for one order of Qτ goes

up, the leading v order goes down for 2, which only result in finite negative order of Qτ .
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r old r fundamental weights

unity

(0, 0, 0, 1) (0, 0, 0, 1)

ω1 + ω2(0, 0, 0, 3) (0, 0, 0, 3)

(0, 0, 0, 5) (0, 0, 0,−1)

vanishing

(−2, 2, 0, 1) (−2, 2, 0, 1)

ω1(−2, 2, 0, 3) (0,−2, 2, 1)

(−2, 2, 0, 5) (2, 0,−2, 1)

vanishing

(−2, 0, 2, 1) (−2, 0, 2, 1)

ω2(−2, 0, 2, 3) (0, 2,−2, 1)

(−2, 0, 2, 5) (2,−2, 0, 1)

Table 6. The r-fields of the n = 3 model and the fundamental weights of a2 which induce the

embedding φ : Q∨ ↪→ P . The old r-fields are from our previous paper [25]. They are equivalent

with the r in the second column by 2C · n shift.

the symmetry of the chiral algebra associated to the underlying (0, 4) 2d CFT, as suggested

in [37].

4.2 Revisiting G = SU(3) and SO(8)

With the new understanding on the structure of r fields of 6d (1, 0) minimal SCFTs for

all G, we now can reproduce all r fields for SU(3) and SO(8) found in [25] using just the

fundamental weights of the Lie algebras. We summarize the correspondence between the

r fields given in [25] and fundamental weights in tables 6 and 7.

The elliptic genera of 6d (1, 0) SCFT with G = SU(3) were computed using Jeffrey-

Kirwan residue in [34], and were checked to satisfy the elliptic blowup equations [25].

Following the general proposal (4.3), the reduced two-string elliptic genus for SU(3) model

can be written as

E
h

(2)
A2

(v, x,Qτ ,mi) = v5Q−5/6
τ

∞∑
n=0

Qnτ g
(n)
2,A2

(v, x,Qmi) , (4.28)

where g
(n)
2,A2

(v, x,Qmi) are rational functions. We computed g
(n)
2,A2

(v, x,Qmi=1) up to n=10.

Let us turn off the fugacities of both SU(3) and SU(2)x, we obtain

g
(n)
2,A2

(v, x = 1, Qmi = 1) =
1

(1− v)10(1 + v)6 (1 + v + v2)5 × P
(n)
2,A2

(v), (4.29)

where all P
(n)
2,A2

(v) are palindromic Laurent polynomials, in which only P
(0)
2,A2

(v) is a true

polynomial:

P
(0)
2,A2

(v) = 1+v+6v2+17v3+31v4+52v5+92v6+110v7+112v8+110v9+· · ·+v16 . (4.30)

Here the ellipsis is completed by making the expression palindromic. This agrees with

the Hilbert series of reduced two SU(3)-instanton moduli space in [42]. For the subleading
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r old r fundamental weights

unity

(0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0)

ωc(0, 0, 0, 0, 0, 2) (0, 0, 0, 0, 0, 2)

(0, 0, 0, 0, 0, 4) (0, 0, 0, 0, 0, 4)

(0, 0, 0, 0, 0, 6) (0, 0, 0, 0, 0,−2)

vanishing

(−2, 2, 0, 0, 0, 0) (−2, 2, 0, 0, 0, 0)

ω1(−2, 2, 0, 0, 0, 2) (−2,−2, 0, 0, 2, 2)

(−2, 2, 0, 0, 0, 4) (0, 0,−2, 2, 0, 0)

(−2, 2, 0, 0, 0, 6) (0, 0,−2,−2, 2, 2)

vanishing

(−2, 0, 2, 0, 0, 0) (−2, 0, 2, 0, 0, 0)

ω2(−2, 0, 2, 0, 0, 2) (−2, 0, 2, 0, 2, 2)

(−2, 0, 2, 0, 0, 4) (0,−2, 0, 2, 0, 0)

(−2, 0, 2, 0, 0, 6) (0,−2, 0,−2, 2, 2)

vanishing

(−2, 0, 0, 2, 0, 0) (−2, 0, 0, 2, 0, 0)

ω3(−2, 0, 0, 2, 0, 2) (−2, 0, 0,−2, 2, 2)

(−2, 0, 0, 2, 0, 4) (0,−2, 2, 0, 0, 0)

(−2, 0, 0, 2, 0, 6) (0,−2,−2, 0, 2, 2)

Table 7. The r-fields of the n = 4 model and the fundamental weights of d4 which induce the

embedding φ : Q∨ ↪→ P . The old r-fields are from our previous paper [25]. They are equivalent

with the r in the second column by 2C · n shift.

order, P
(1)
2,A2

(v) starts with negative power of v, which is different from all the other minimal

SCFTs.31 Indeed,

P
(1)
2,A2

(v) = v−4
(
1+3v+8v2+11v3+18v4+13v5+55v6+238v7+601v8+1121v9+1777v10

+2262v11+2424v12+2262v13+· · ·+v24
)
. (4.31)

More results on P
(n)
2,A2

(v) with n > 1 can be found in appendix F. Let us also show

some results with generic fugacities, for example,

g
(2)
0,A2

(v,x,mi) = 1+(8+χ3)v2+8χ2v
3+
(
χ5+8χ3+Sym28

)
v4+

(
8χ4+(27+Alt28)χ2

)
v5

+
(
χ7+8χ5+(Sym28+27)χ3+Sym38−1

)
v6+O(v7), (4.32)

v4g
(2)
1,A2

(v,x,mi) = 1+χ2v+(χ3+8)v2+(χ4+8χ2)v3+(χ5+(8+1)χ3+Sym28)v4

+(χ6+8χ4+Sym28χ2)v5+O(v6). (4.33)

Note (4.32) agrees with our universal expansion formula (4.8).

31This phenomenon as also occurring in one-string elliptic genus, will be discussed in detail in section 5.
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Similarly, the reduced three-string elliptic genus for SU(3) model can be written as

E
h

(2)
A2

(v, x,Qτ ,mi) = v8Q−4/3
τ

∞∑
n=0

Qnτ g
(n)
3,A2

(v, x,Qmi), (4.34)

where all g
(n)
3,A2

(v, x,Qmi) are rational functions. We computed g
(n)
3,A2

(v, x,Qmi = 1) up to

n = 6. Turning off the fugacities of both SU(3) and SU(2)x, we obtain

g
(n)
3,A2

(v, x = 1, Qmi = 1) =
1

(1− v)16(1 + v)10 (1 + v2)5 (1 + v + v2)6 × P
(n)
3,A2

(v), (4.35)

where all P
(n)
3,A2

(v) are palindromic Laurent polynomials, in which only P
(0)
3,A2

(v) is a true

polynomial:

P
(0)
3,A2

(v) = 1+6v2+14v3+40v4+82v5+213v6+388v7+772v8+1260v9+2079v10+2986v11

+4226v12+5226v13+6384v14+6940v15+7334v16+6940v17+. . .+v32, (4.36)

P
(1)
3,A2

(v) = v−4(1+v2)(1+2v+8v2+24v3+62v4+114v5+242v6+456v7+964v8+1926v9

+4225v10+8448v11+16317v12+28038v13+44954v14+64960v15+87437v16

+106636v17+121046v18+125368v19+121046v20+. . .+v38). (4.37)

Note g
(0)
3,A2

agrees with our universal expansion formula (4.11). More higher P
(n)
3,A2

(v) can

be found in appendix F.

The elliptic genera for the 6d (1, 0) SCFT with G = SO(8) were computed using

Jeffrey-Kirwan residue in [24], and they were checked to satisfy elliptic blowup equations

in [25]. Let us write the reduced two-string elliptic genus as

E
h

(2)
D4

(v, x,Qτ ,mi) = v11Q−11/6
τ

∞∑
n=0

Qnτ g
(n)
2,D4

(v, x,mi) . (4.38)

We computed g
(2)
n,D4

(v, x,mi = 0) up to n = 6. In particular, g
(2)
n,D4

for n = 0, 1, 2 agree with

our universal expansion formulas (4.8), (4.9). Turning off the SU(2)x fugacity, we have

g
(n)
2,D4

(v, x = 1,mi = 0) =
1

(1− v)22(1 + v)12 (1 + v + v2)11 × P
(n)
2,D4

(v) . (4.39)

Here P
(n)
2,D4

(v) are palindromic Laurent polynomials. In particular, only for n = 0, 1, they

are true polynomials:

P
(0)
2,D4

(v) = 1+v+20v2+65v3+254v4+841v5+2435v6+6116v7+14290v8+29700v9

+55947v10+96519v11+152749v12+220408v13+293226v14+359742v15

+406014v16+421960v17+406014v18+· · ·+v34. (4.40)

P
(1)
2,D4

(v) = (1+v2)
(
32+90v+697v2+2913v3+10582v4+34415v5+97961v6+242492v7

+540749v8+1085137v9+1958185v10+3205774v11+4789888v12+6522178v13

+8110633v14+9248825v15+9668450v16+9248825v17+· · ·+v32
)
. (4.41)

Note the above g
(2)
0,D4

agrees with the SO(8) two-instanton Hilbert series in [42]. More

results on P
(n)
2,D4

(v) with n > 1 can be found in appendix F.
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4.3 G = F4

The divisors and curves of the non-compact n = 5 geometry are explained in [53]. There

are five compact divisors, all of which are Hirzebruch surfaces Fni of various degrees ni.

We denote them by DI (I = 0, 1, . . . , 5). They intersect with each other like the affine

dynkin diagram of f4

F3 F1 F1 F6 F8

(0:1:1) (1:2:2) (2:3:3) (3:4:2) (4:2:1)

where each node corresponds to a Hirzebruch surface, and two nodes are connected if

the corresponding Hirzebruch surfaces intersect at a P1 normal to their respective P1

fibers. In the diagram above we also give the ordering of the nodes I and the associ-

ated marks/comarks aI/a
∨
I with the notation (I : aI : a∨I ) following [61]. The F3 denoted

by a dashed circle corresponds to the affine node and it intersects with the base at the P1

with normal bundle O(−5) ⊕ O(3) → P1. The arrow with double line means the F1 and

F6 intersect at a P1 which is the double cover of the (+1) curve in F1. See the illustration

in figure 1. There are six linearly independent curves, which we choose for the moment

to be the P1 fibers ΣI of the divisors DI and the (−5) curve in the base denoted by ΣB.

Denoting their complexified Kähler moduli by tI and tB, the linear combination

5∑
I=0

aItI = τ , (4.42)

with aI the marks of f4, is the volume of the elliptic fiber. Since we will be interested

in the extraction of BPS invariants from the partition function, we would like to also

identify among the compact curves the Mori cone generators. They include the P1 fibers

ΣI (I = 0, 1, . . . , 4), as well as the P1 base of the F1 surface that intersects with F6 (see

the Dynkin diagram above and the figure 7 in [53], which we reproduce in figure 1). We

denote the latter curve by Σb, and it is related to ΣB by

[ΣB] = [Σb] + 3[Σ0] + [Σ1] . (4.43)

This implies the relation between their Kähler moduli

tB = tb + 3t0 + t1 . (4.44)

The C-matrix of intersection between ΣI ,Σb and DI
32

C =



−2 1 0 0 0

1 −2 1 0 0

0 1 −2 2 0

0 0 1 −2 1

0 0 0 1 −2

0 −1 −1 0 0


. (4.45)

32Note that here we use Σb instead of ΣB , which is why the matrix C does not follow exactly the

pattern (2.2).
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r fundamental weights

unity

(0, 0, 0, 0, 0, 1)

ωi (i = 1, . . . , 4)

(0, 0, 0, 0, 0, 3)

(0, 0, 0, 0, 0, 5)

(0, 0, 0, 0, 0, 7)

(0, 0, 0, 0, 0, 9)

Table 8. The r-fields of the n = 5 model and the fundamental weights of f4 which induce the

same embedding φ : Q∨ ↪→ P . All the r-fields and all the fundamental weights induce the same

embedding as Q∨ = P for f4.

The semiclassical components of the partition function can be computed using the pre-

scription in section 2.2 with the normalisation scheme in appendix B. We obtain

−F cls
(0,0) =

(
t0
10

+
t1
5

+
3t2
10

+
2t3
5

+
t4
5

)
t2b+

(
3t20
10

+
t0t1
5

+
t21
5

+
3t22
10

+
6t23
5

+
4t24
5

+
4t2t3

5

+
2t2t4

5
+

6t3t4
5

)
tb+

3t30
10

+
3t20t1
10

+
t0t

2
1

10
+
t31
15

+
t32
10

+
6t33
5

+
16t34
15

+
6t2t

2
3

5

+
4t2t

2
4

5
+

12t3t
2
4

5
+

2t22t3
5

+
t22t4
5

+
9t23t4

5
+

6t2t3t4
5

,

(4.46)

which is consist with the universal formula (2.18). Furthermore, using the relations (2.4),

(4.44) and (4.42), F cls
(0,0) can be more succinctly written as

− F (0,0) =
1

10
t2ellτ +

1

2
tell(m,m)− 3

4
τ(m,m) + . . . (4.47)

up to τ3 and terms cubic in mi, which agrees with the universal formula (2.19). Therefore

the analysis in section 2.3 goes through. Here for F4,

m =

4∑
i=1

miω
∨
i , (4.48)

and

(m,m) = m2
1 +3m1m2 +3m2

2 +4m1m3 +8m2m3 +6m2
3 +2m1m4 +4m2m4 +6m3m4 +2m2

4 .

(4.49)

We also find

F cls
(1,0) =

18

5
t0 +

16

5
t1 + 6t2 + 12t3 + 8t4 +

36

5
tb . (4.50)

Imposing the admissibility condition (2.22) and the BPS checkerboard pattern condi-

tion (2.25), which specialises to

r ≡ (0, 0, 0, 0, 0, 1) mod 2 , (4.51)

there are only five inequivalent r-fields, and we list their representatives in table 8. Ac-

cording to the discussion in section 3, we should classify them according to the embedding
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φλ : Q∨ ↪→ P induced by the reduced r-vector λ defined in (2.28). In the case of the n = 5

model, all the r-fields have the same reduced λ = (0, 0, 0, 0), which induces the unique em-

bedding φ(0,0,0,0) : Q∨ ↪→ P = Q∨. As a consequence, this model has no blowup equation

of the vanishing type. We notice that all the fundamental weights ωi also induce the same

embedding (which is not the case in all the other models.)

We use (3.33) and (3.36) to compute the one-string and two-string elliptic genera. The

one-string elliptic genus does not depend on SU(2)x. Its expansion in Qτ reads

E
h

(1)
F4

(v,Qτ ,mi) = v8Q−4/3
τ

∞∑
n=0

g
(n)
1,F4

(v,Qmi)Q
n
τ , (4.52)

where g
(n)
1,F4

(v,Qmi) are rational functions. Turning off all flavor fugacities,

g
(n)
1,F4

(v,Qmi = 1) =
1

(1− v2)16
× P (n)

1,F4
(v) , (4.53)

where

P
(0)
1,F4

(v) = 1+36v2+341v4+1208v6+1820v8+1208v10+341v12+36v14+v16,

P
(1)
1,F4

(v) = (1+v2)2
(
53+1478v2+9419v4+18036v6+9419v8+1478v10+53v12

)
,

P
(2)
1,F4

(v) = 1484+36252v2+241608v4+663716v6+909400v8+· · ·+1484v16.

(4.54)

The ellipsis in P
(2)
1,F4

(v) is completed by making the expression palindromic. Here the

leading order expression g
(0)
1,F4

agrees with the Hilbert series of the reduced moduli space of

one F4-instanton in [41], which is not surprising since the one-string formula (3.33) reduces

to the one-instanton partition function (3.35) in the Qτ → 0 limit. Furthermore, higher

order expressions agree with [37].

The Qτ expansion of the two-string elliptic genus reads

E
h

(2)
F4

(v, x,Qτ ,mi) = v17Q−17/6
τ

∞∑
n=0

g
(n)
2,F4

(v, x,Qmi)Q
n
τ , (4.55)

where g
(n)
2,F4

(v, x,Qmi) are rational functions. Turning of flavor fugacities and SU(2)x, we

find

g
(n)
2,F4

(v, x = 1, Qmi = 1) =
1

(1− v)34(1 + v)22 (1 + v + v2)17 × P
(n)
2,F4

(v) , (4.56)

where

P
(0)
2,F4

(v) = 1+5v+48v2+287v3+1560v4+7503v5+32316v6+125355v7+444325v8

+1443572v9+4322993v10+11989241v11+30913094v12+74321701v13+167106519v14

+352245510v15+697557618v16+1300152932v17+2284606168v18+3790004228v19

+5943020899v20+8818128233v21+12392104012v22+16505926853v23

+20851379873v24+24994963144v25+28442119825v26+30731161887v27

+31533797982v28+30731161887v29+· · ·+v56. (4.57)
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P
(1)
2,F4

(v) = (1+v2)(56+386v+3217v2+20295v3+110327v4+529286v5+2266151v6

+8718327v7+30479449v8+97433532v9+286304088v10+777049966v11

+1956035588v12+4581942186v13+10017235514v14+20492637094v15

+39315499928v16+70871529676v17+120240591034v18+192278945658v19

+290168035137v20+413676858801v21+557641624668v22+711294838217v23

+859008747683v24+982638991174v25+1065069893896v26+1094033908456v27

+1065069893896v28+· · ·+v56). (4.58)

and the ellipses are again completed by making the expressions palindromic. Here the

leading order expression g
(0)
2,F4

agrees with the Hilbert series of the reduced moduli space

of two F4-instanton in [42]. Some polynomials P
(n)
2,F4

(v) of higher order n can be found in

the appendix F.

We also use the expressions of E1,E2 to extract the BPS invariants Nβ
jl,jr

. For this

purpose, we need to use instead the Kähler moduli tb, tI (I = 0, 1, . . . , 4) associated to the

Mori cone generators. The results are tabulated in appendix G. They display the proper

checkerboard pattern, and reproduce the known genus 0 Gopakumar-Vafa invariants [24].

At base degree one, we also notice a pattern that the only non-vanishing BPS invariants

for the curve classes β = (0, k, 0, 0, 0, 1), (0, 0, k, 0, 0, 1) are

N
(0,k,0,0,0,1)
0,k = N

(0,0,k,0,0,1)
0,k = 1 , k = 0, 1, . . . , (4.59)

which in fact can be proved from the one-string formula (3.33) with the help of (D.7), (D.8)

and (D.9).

4.4 G = E6

The divisors and curves of the non-compact n = 6 geometry is explained in [53]. There

are seven compact divisors, which are Hirzebruch surfaces Fni of various degrees ni. We

denote them by DI (I = 0, 1, . . . , 6). They intersect with each other like the affine dynkin

diagram of e6

F4 F2 F0 F2 F4

F2

F4

(2:1) (3:2) (4:3) (5:2) (6:1)

(1:2)

(0:1)

where each node corresponds to a Hirzebruch surface and two nodes are connected if the

corresponding Hirzebruch surfaces intersect (see figure 5 in [53]). In the diagram above we

also give the ordering of the nodes I and the associated marks aI with the notation (I : aI)

following [61]. The F4 denoted by a dashed circle corresponds to the affine node and it
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intersects with the base at the P1 with normal bundle O(−6)⊕O(4)→ P1. There are eight

linearly independent curves, which we choose for the moment to be the P1 fibers ΣI of the

divisors DI and the (−6) curve in the base denoted by ΣB. Denoting their complexified

Kähler moduli by tI and tB, the linear combination

6∑
I=0

aItI = τ (4.60)

with aI the marks of e6, is the volume of the elliptic fiber. We also identify the Mori cone

generators. They include the P1 fibers ΣI (I = 0, 1, . . . , 6), as well as the P1 base of the F0

surface in the center. We denote the last curve by Σb, and it is related to ΣB by

[ΣB] = [Σb] + 4[Σ0] + 2[Σ1] . (4.61)

This implies the following relation of their Kähler moduli

tB = tb + 4t0 + 2t1 . (4.62)

The C-matrix of intersection between ΣI ,Σb and DI is

C =



−2 1 0 0 0 0 0

1 −2 0 0 1 0 0

0 0 −2 1 0 0 0

0 0 1 −2 1 0 0

0 1 0 1 −2 1 0

0 0 0 0 1 −2 1

0 0 0 0 0 1 −2

0 0 0 0 −2 0 0


. (4.63)

The semiclassical components of the partition function can be computed using the pre-

scription in section 2.2 with the normalisation scheme in appendix B. We obtain

−F cls
(0,0) =

(
t0
12

+
t1
6

+
t2
12

+
t3
6

+
t4
4

+
t5
6

+
t6
12

)
t2b(

t20
3

+
t21
3

+
t22
3

+
t23
3

+
t25
3

+
t26
3

+
t0t1
3

+
t2t3
3

+
t5t6
3

)
tb (4.64)

+
4t30
9

+
2t31
9

+
4t32
9

+
2t33
9

+
2t35
9

+
4t36
9

+
2t20t1

3
+
t0t

2
1

3
+
t2t

2
3

3
+

2t22t3
3

+
2t5t

2
6

3
+
t25t6
3
,

which is consistent with the universal formula (2.19). Using the relations (2.4), (4.62),

(4.60), we can express F (0,0)(t) in terms of the Kähler moduli tell, τ,mi (i = 1, . . . , 6)

and find

− F (0,0) =
1

12
t2ellτ +

1

2
tell(m,m)− τ(m,m) + . . . (4.65)

up to τ3 and terms cubic in mi, where

m =

6∑
i=1

miω
∨
i . (4.66)
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r fundamental weights

unity

(0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 2)

ω1, ω4(0, 0, 0, 0, 0, 0, 0, 4) (0, 0, 0, 0, 0, 0, 0, 6)

(0, 0, 0, 0, 0, 0, 0, 8) (0, 0, 0, 0, 0, 0, 0, 10)

vanishing

(−2, 0, 2, 0, 0, 0, 0, 0) (−2, 0, 2, 0, 0, 0, 0, 2)

ω2, ω5(−2, 0, 2, 0, 0, 0, 0, 4) (−2, 0, 2, 0, 0, 0, 0, 6)

(−2, 0, 2, 0, 0, 0, 0, 8) (−2, 0, 2, 0, 0, 0, 0, 10)

vanishing

(−2, 0, 0, 0, 0, 0, 2, 0) (−2, 0, 0, 0, 0, 0, 2, 2)

ω3, ω6(−2, 0, 0, 0, 0, 0, 2, 4) (−2, 0, 0, 0, 0, 0, 2, 6)

(−2, 0, 0, 0, 0, 0, 2, 8) (−2, 0, 0, 0, 0, 0, 2, 10)

Table 9. The r-fields of the n = 6 model and the fundamental weights of e6 which induce the

same embedding φ : Q∨ ↪→ P . They can be divided into three groups; inside each group r-fields or

fundamental weights induce the same embedding.

It is in agreement with the universal expression (2.19), and thus the analysis in section 2.3

goes through. We also find

F cls
(1,0) =

9

2
t0 + 5t1 +

9

2
t2 + 5t3 +

3

2
t4 + 5t5 +

9

2
t6 + 8tb . (4.67)

Imposing the admissibility condition (2.22) and the BPS checkerboard pattern condi-

tion (2.25), which specialises to

r ≡ (0, 0, 0, 0, 0, 0, 0, 0) mod 2 , (4.68)

there are in total 18 inequivalent r-fields, and we list their representatives in table 9. We

classify them according to the embeddings φλ : Q∨ ↪→ P induced by the reduced r-field λ

defined in (2.28), (2.33). We also list in the table the fundamental weights which induce

the same embedding.

We use (3.33) and (3.36) to compute the one-string and two-string elliptic genera. The

results are again presented in terms of the reduced elliptic genera defined in (4.1).

The reduced one-string elliptic genus does not depend on SU(2)x. The expansion in

Qτ reads

E
h

(1)
E6

(v,Qτ ,mi) = v11Q−11/6
τ

∞∑
n=0

g
(n)
1,E6

(v,Qmi)Q
n
τ , (4.69)

where g
(n)
1,E6

(v,Qmi) are rational functions. Turning off all flavor fugacities

g
(n)
1,E6

(v,Qmi = 1) =
1

(1− v2)22
× P (n)

1,E6
(v) , (4.70)
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where the first few orders are

P
(0)
1,E6

(v) = 1+56v2+945v4+6776v6+23815v8+43989v10+· · ·+v22,

P
(1)
1,E6

(v) = 79+3774v2+54206v4+337457v6+1067286v8+1862806v10+· · ·+79v22,

P
(2)
1,E6

(v) = 3239+130034v2+1603334v4+8798601v6+25393522v8+42223058v10+· · ·+3239v22.

(4.71)

The ellipses are completed by making the expression palindromic. Here g
(0)
1,E6

agrees with

the Hilbert series of reduced one E6-instanton moduli space [41], while higher order con-

tributions agree with [37].

The Qτ expansion of the two-string elliptic genus reads

E
h

(2)
E6

(v, x,Qτ ,mi) = v23Q−23/6
τ

∞∑
n=0

g
(n)
2,E6

(v, x,Qmi)Q
n
τ . (4.72)

Turning off flavor fugacities and SU(2)x, we obtain

g
(n)
2,E6

(v, x,Qmi = 1) =
1

(1− v)46(1 + v)32 (1 + v + v2)23 × P
(n)
2,E6

(v) , (4.73)

where the first few orders are

P
(0)
2,E6

(v) = 1+9v+94v2+739v3+5121v4+31432v5+173895v6+874485v7+4036298v8

+17200367v9+68039474v10+250943933v11+866242068v12+2807705547v13

+8569454706v14+24690503239v15+67304396959v16+173919980352v17

+426790882149v18+996158535441v19+2214670938701v20+4695878015170v21

+9507297417908v22+18398716114730v23+34066083855696v24+60399840583490v25

+102628223553496v26+167232472484542v27+261500117384417v28+392614934492341v29

+566271723784347v30+784947220008032v31+1046126546231772v32+1340924322289616v33

+1653587141756229v34+1962268356880815v35+2241216639463322v36+2464163123099051v37

+2608327634962043v38+2658213934310966v39+· · ·+v78 . (4.74)

Note that g
(0)
2,E6

agrees with the Hilbert series of reduced two E6-instanton moduli space [42].

We also use the expressions of E1,E2 to extract the BPS invariants Nβ
jl,jr

. For this pur-

pose, we need to use the Kähler moduli tI , tb (I = 0, 1, . . . , 6) associated to the Mori cone

generators. The results are tabulated in appendix G. They display the proper checker-

board pattern, and reproduce the known genus 0 Gopakumar-Vafa invariants [24]. At

base degree one, we notice the interesting pattern that the only non-vanishing BPS invari-

ants for the curve classes β = (0, k, 0, 0, 0, 0, 0, 1), (0, 0, 0, k, 0, 0, 0, 1), (0, 0, 0, 0, 0, k, 0, 1),

(0, 0, 0, 0, k, 0, 0, 1) are

N
(0,k,0,0,0,0,0,1)
0,k−1/2 = N

(0,0,0,k,0,0,0,1)
0,k−1/2 = N

(0,0,0,0,0,k,0,1)
0,k−1/2 = N

(0,0,0,0,k,0,0,1)
0,k+1/2 = 1 , k = 1, 2, . . . ,

(4.75)

which in fact can be proved from the one-string formula (3.33) with the help of (D.7), (D.8)

and (D.9).
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4.5 G = E7

The divisors and curves of the non-compact n = 8 geometry is explained in [53]. There

are eight compact divisors, which are Hirzebruch surfaces Fni of various degrees ni. We

denote them by DI (I = 0, 1, . . . , 7). They intersect with each other like the affine dynkin

diagram of e7

F6 F4 F2 F0 F2 F4 F6

F2

(0:1) (1:2) (2:3) (3:4) (4:3) (5:2) (6:1)

(7:2)

In the diagram above we also give the ordering of the nodes I and the associated marks

aI with the notation (I : aI). The F6 denoted by a dashed circle corresponds to the affine

node and it intersects with the base at the P1 with normal bundle O(−8) ⊕ O(6) → P1.

There are nine linearly independent curves, which we choose for the moment to be the P1

fibers ΣI of the divisors DI and the (−8) curve in the base denoted by ΣB. Denoting their

complexified Kähler moduli by tI and tB, the linear combination

7∑
I=0

aItI = τ (4.76)

with aI the marks of e7, is the volume of the elliptic fiber. We identify the Mori cone

generators. They include the P1 fibers ΣI (I = 0, 1, . . . , 7), as well as the P1 base of the F0

surface in the middle. We denote the last curve by Σb, which is related to ΣB by

[ΣB] = [Σb] + 6[Σ0] + 4[Σ1] + 2[Σ2] . (4.77)

Their Kähler moduli are consequently related by

tB = tb + 6t0 + 4t1 + 2t2 . (4.78)

The C-matrix of intersection between ΣI ,Σb and DI is

C =



−2 1 0 0 0 0 0 0

1 −2 1 0 0 0 0 0

0 1 −2 1 0 0 0 0

0 0 1 −2 1 0 0 1

0 0 0 1 −2 1 0 0

0 0 0 0 1 −2 1 0

0 0 0 0 0 1 −2 0

0 0 0 1 0 0 0 −2

0 0 0 −2 0 0 0 0


. (4.79)
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The semiclassical components of the partition function can be computed using the

prescription in section 2.2 with the normalisation scheme in appendix B. We obtain

−F cls
(0,0) =

(
t0
16

+
t1
8

+
3t2
16

+
t3
4

+
3t4
16

+
t5
8

+
t6
16

+
t7
8

)
t2b+

(
3t20
8

+
t21
2

+
3t22
8

+
3t24
8

+
t25
2

+
3t26
8

+
t27
4

+
t0t1
2

+
t0t2
4

+
t1t2
2

+
t4t5
2

+
t4t6
4

+
t5t6
2

)
tb+

3t30
4

+
2t31
3

+
t32
4

+
t34
4

+
2t35
3

+
3t36
4

+
t37
6

+
3t20t1

2
+

3t20t2
4

+t0t
2
1+

t0t
2
2

4
+t0t1t2+

t1t
2
2

2
+t4t

2
5+

3t4t
2
6

4
+

3t5t
2
6

2

+t21t2+
t24t5
2

+
t24t6
4

+t25t6+t4t5t6, (4.80)

which is consistent with the universal formula (2.19). Using the relations (2.4), (4.78)

and (4.76), we can express F (0,0)(t) in terms of the Kähler moduli tell, τ,mi (i = 1, . . . , 7)

and find

− F (0,0) =
1

16
t2ellτ +

1

2
tell(m,m)− 3

2
τ(m,m) + . . . (4.81)

up to τ3 and terms cubic in mi, where

m =

7∑
i=1

miω
∨
i . (4.82)

It is in agreement with the universal expression (2.19), and therefore the analysis in sec-

tion 2.3 goes through, which then leads to the elliptic blowup equations (3.4). We also find

F cls
(1,0) =

51

8
t0 +

35

4
t1 +

57

8
t2 +

3

2
t3 +

57

8
t4 +

35

4
t5 +

51

8
t6 +

11

4
tb . (4.83)

Imposing the admissibility condition (2.22) and the BPS checkerboard pattern condi-

tion (2.25), which specialises to

r ≡ (0, 0, 0, 0, 0, 0, 0, 0, 0) mod 2 , (4.84)

there are in total 16 inequivalent r-fields, and we list their representatives in table 10. We

classify them according to the embeddings φλ : Q∨ ↪→ P induced by the reduced r-field λ

defined in (2.28), (2.33). We also list in the table the fundamental weights which induce

the same embedding.

We use (3.33) and (3.36) to compute the one-string and two-string elliptic genera and

convert them to reduced versions. The one string elliptic genus when expanded in Qτ reads

E
h

(1)
E7

(v,Qτ ,mi) = v17Q−17/6
τ

∞∑
n=0

g
(n)
1,E7

(v,Qmi)Q
n
τ , (4.85)

where g
(n)
1,E7

(v,Qmi) are rational functions. When all flavor fugacities are turned off

g
(n)
1,E7

(v,Qmi = 1) =
1

(1− v2)34
× P (1)

n,E7
(v) , (4.86)
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r fundamental weights

unity

(0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 2)

ω1, ω2, ω3, ω5

(0, 0, 0, 0, 0, 0, 0, 0, 4) (0, 0, 0, 0, 0, 0, 0, 0, 6)

(0, 0, 0, 0, 0, 0, 0, 0, 8) (0, 0, 0, 0, 0, 0, 0, 0, 10)

(0, 0, 0, 0, 0, 0, 0, 0, 12) (0, 0, 0, 0, 0, 0, 0, 0, 14)

vanishing

(−2, 0, 0, 0, 0, 0, 2, 0, 0) (−2, 0, 0, 0, 0, 0, 2, 0, 2)

ω4, ω6, ω7

(−2, 0, 0, 0, 0, 0, 2, 0, 4) (−2, 0, 0, 0, 0, 0, 2, 0, 6)

(−2, 0, 0, 0, 0, 0, 2, 0, 8) (−2, 0, 0, 0, 0, 0, 2, 0, 10)

(−2, 0, 0, 0, 0, 0, 2, 0, 12) (−2, 0, 0, 0, 0, 0, 2, 0, 14)

Table 10. The r-fields of the n = 8 model and the fundamental weights of e7 which induce the

same embedding φ : Q∨ ↪→ P . They can be divided into two groups; inside each group r-fields or

fundamental weights induce the same embedding.

where the leading order contributions are

P
(0)
1,E7

(v) = (1+v2)(1+98v2+3312v4+53305v6+468612v8+2421286v10+7664780v12

+15203076v14+19086400v16+15203076v18+· · ·+v32),

P
(1)
1,E7

(v) = (1+v2)(134+11593v2+345521v4+4931707v6+38850151v8+182614170v10

+536726278v12+1014596958v14+1252490096v16+1014596958v18+· · ·+v32),

P
(2)
1,E7

(v) = (1+v2)(9179+693316v2+18210733v4+231525774v6+1645739978v8

+7093827388v10+19507715662v12+35350906224v14+43009574252v16

+35350906224v18 · · ·+v32). (4.87)

where the ellipses are completed by palindrome. Here g
(0)
1,E7

agrees with the Hilbert series

of reduced one E7-instanton moduli space in [41], while higher order contributions agree

with [37].

The Qτ expansion of the two-string elliptic genus reads

E
h

(2)
E7

(v, x,Qτ ,mi) = v35Q−35/6
τ

∞∑
n=0

g
(n)
2,E7

(v, x,Qmi)Q
n
τ . (4.88)

Turning off SU(2)x and flavours, we have

g
(n)
2,E7

(v, x,Qmi = 1) =
1

(1− v)70(1 + v)52 (1 + v + v2)35 × P
(2)
n,E7

(v) . (4.89)

We have computed P
(2)
n,E7

(v) for n = 0, 1 which we put in the appendix F. Indeed, our g
(0)
2,E7

agrees with the Hibert series of reduced two E7-instanton moduli space in [42].

We also use the expressions of E1,E2 to extract the BPS invariants Nβ
jl,jr

. For this

purpose, we need to use the Kähler moduli tI , tb (I = 0, 1, . . . , 7) associated to the Mori cone

generators. The results are tabulated in appendix G. They display the proper checkerboard
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pattern, and reproduce the known genus zero Gopakumar-Vafa invariants [24]. At base

degree one, we notice the interesting pattern that the only non-vanishing BPS invariants

for the curve classes β = (0, 0, k, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, k, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, k, 1),

(0, 0, 0, k, 0, 0, 0, 0, 1) are

N
(0,0,k,0,0,0,0,0,1)
0,k−1/2 = N

(0,0,0,0,k,0,0,0,1)
0,k−1/2 = N

(0,0,0,0,0,0,0,k,1)
0,k−1/2 = N

(0,0,0,k,0,0,0,0,1)
0,k+1/2 = 1, , k = 1, 2, . . . ,

(4.90)

which in fact can be proved from the one-string formula (3.33) with the help of (D.7), (D.8)

and (D.9).

4.6 G = E8

The divisors and curves of the non-compact n = 12 geometry is explained in [53]. There are

nine compact divisors, which are Hirzebruch surfaces of various degrees. We denote them

by DI (I = 0, 1, . . . , 8). They intersect with each other like the affine dynkin diagram of e8

F10 F8 F6 F4 F2 F0 F2 F4

F2

(0:1) (1:2) (2:3) (3:4) (4:5) (5:6) (6:4) (7:2)

(8:3)

In the diagram above we also give the ordering of the nodes I and the associated marks aI
with the notation (I : aI). The F10 denoted by a dashed circle corresponds to the affine

node and it intersects with the base at the P1 with normal bundle O(−12)⊕O(10)→ P1.

There are ten linearly independent curves, which we choose for the moment to be the P1

fibers ΣI of the divisors DI and the (−12) curve in the base denoted by ΣB. Let tI and

tB be their complexified Kähler moduli. The linear combination

8∑
I=0

aItI = τ (4.91)

with aI marks of e8, is the volume of the elliptic fiber. We identify the Mori cone genera-

tors. They include P1 fibers ΣI (I = 0, 1, . . . , 8) as well as the P1 base of the F0 surface in

the center. We denote the latter by Σb, which is related to ΣB by

[ΣB] = [Σb] + 10[Σ0] + 8[Σ1] + 6[Σ2] + 4[Σ3] + 2[Σ4] , (4.92)

which implies

tB = tb + 10t0 + 8t1 + 6t2 + 4t3 + 2t4 . (4.93)
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The C-matrix of intersection between ΣI ,Σb and DI is

C =



−2 1 0 0 0 0 0 0 0

1 −2 1 0 0 0 0 0 0

0 1 −2 1 0 0 0 0 0

0 0 1 −2 1 0 0 0 0

0 0 0 1 −2 1 0 0 0

0 0 0 0 1 −2 1 0 1

0 0 0 0 0 1 −2 1 0

0 0 0 0 0 0 1 −2 0

0 0 0 0 0 1 0 0 −2

0 0 0 0 0 −2 0 0 0



. (4.94)

The semiclassical components of the partition function can be computed using the

prescription in section 2.2 with the normalisation scheme in appendix B. We obtain

−F cls
(0,0) =

(
t0
24

+
t1
12

+
t2
8

+
t3
6

+
5t4
24

+
t5
4

+
t6
6

+
t7
12

+
t8
8

)
t2b

+

(
5t20
12

+
2t21
3

+
3t22
4

+
2t23
3

+
5t24
12

+
t26
3

+
t27
3

+
t28
4

+
2t0t1

3
+
t0t2
2

+
t0t3
3

+
t0t4
6

+t1t2+
2t1t3

3
+t2t3+

t1t4
3

+
t2t4
2

+
2t3t4

3
+
t6t7
3

)
tb

+
25t30
18

+
16t31

9
+

3t32
2

+
8t33
9

+
5t34
18

+
2t36
9

+
4t37
9

+
t38
6

+
10t20t1

3
+

5t20t2
2

+
5t20t3

3
+

5t20t4
6

+
8t0t

2
1

3
+

3t0t
2
2

2
+

2t0t
2
3

3
+
t0t

2
4

6
+4t0t1t2+

8t0t1t3
3

+2t0t2t3+
4

3
t0t1t4+t0t2t4+

2t0t3t4
3

+3t1t
2
2+

4t1t
2
3

3
+2t2t

2
3+

t1t
2
4

3
+
t2t

2
4

2
+

2t3t
2
4

3
+

2t6t
2
7

3
+4t21t2+

8t21t3
3

+3t22t3+4t1t2t3

+
4t21t4

3
+

3t22t4
2

+
4t23t4

3
+2t1t2t4+

4t1t3t4
3

+2t2t3t4+
t26t7
3
, (4.95)

which is consistent with (2.19). Using the relations (2.4), (4.93), (4.91), we can express

F (0,0)(t) in terms of the Kähler moduli tell, τ,mi (i = 1, . . . , 8) and find

− F (0,0) =
1

24
t2ellτ +

1

2
tell(m,m)− 5

2
τ(m,m) + . . . (4.96)

up to τ3 and terms cubic in mi, where

m =
8∑
i=1

miω
∨
i . (4.97)

It is in agreement with the universal expression (2.19), and therefore the analysis in

section 2.3 goes through leading to the elliptic blowup equations (3.4). We also find

F cls
(1,0) =

41

4
t0 +

33

2
t1 +

75

4
t2 + 17t3 +

45

4
t4 +

3

2
t5 + 5t6 +

9

2
t7 +

11

4
t8 + 10tb . (4.98)
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r fundamental weights

unity

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 2)

ωi (i = 1, . . . , 8)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 4) (0, 0, 0, 0, 0, 0, 0, 0, 0, 6)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 8) (0, 0, 0, 0, 0, 0, 0, 0, 0, 10)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 12) (0, 0, 0, 0, 0, 0, 0, 0, 0, 14)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 16) (0, 0, 0, 0, 0, 0, 0, 0, 0, 18)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 20) (0, 0, 0, 0, 0, 0, 0, 0, 0, 22)

Table 11. The r-fields of the n = 12 model and the fundamental weights of e8 which induce the

same embedding φ : Q∨ ↪→ P . All the r-fields and all the fundamental weights induce the same

embedding as Q∨ = P for e8.

Imposing the admissibility condition (2.22) and the BPS checkerboard pattern condi-

tion (2.25), which specialises to

r ≡ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) mod 2 , (4.99)

there are in total 12 inequivalent r-fields, and we list their representatives in table 11. All

of them have the same reduced λ which induces the same embedding φλ : Q∨ ↪→ P = Q∨.

In this special case, there is no vanishing blowup equations.

We use (3.33) and (3.36) to compute the one-string and two-string elliptic genera and

convert them to reduced versions. The one-string reduced elliptic genus in Qτ expansion

reads

E
h

(1)
E8

(v,Qτ ,mi) = v29Q−29/6
τ

∞∑
n=0

g
(n)
1,E8

(v,Qmi)Q
n
τ , (4.100)

where g
(n)
1,E8

are rational functions. Turning off flavor fugacities

g
(n)
1,E8

(v,Qmi = 1) =
1

(1− v2)58
× P (1)

n,E8
(v) , (4.101)

where the leading orders are

P
(1)
0,E8

(v) = (1+v2)(1+189v2+14080v4+562133v6+13722599v8+220731150v10

+2454952400v12+19517762786v14+113608689871v16+492718282457v18

+1612836871168v20+4022154098447v22+7692605013883v24+11332578013712v26

+12891341012848v28+11332578013712v30+· · ·+v56), (4.102)

P
(1)
1,E8

(v) = 249+43435v2+2998484v4+111587988v6+2558096217v8+38985250263v10

+415090167480v12+3197400818096v14+18281159666407v16+79099752469353v18

+262872507223458v20+678620928038790v22+1372471431431505v24

+2187800775100695v26+2759575276449180v28+2759575276449180v30+· · ·+v58,

(4.103)
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P
(1)
2,E8

(v) = 31374+4996185v2+316301853v4+10844316461v6+230109165319v8

+3262175735364v10+32482207865920v12+235331998114532v14

+1273365718136904v16+5249113972780491v18+16738824444898167v20

+41781447040327605v22+82360817736515085v24+129037047832755990v26

+161349436368883950v28+161349436368883950v30+· · ·+v58. (4.104)

where the ellipses are completed by palindome. Note g
(0)
1,E8

indeed agrees with the Hilbert

series of reduced one E8-instanton moduli space in [41]. Higher order contributions agree

with [37].

The two-string reduced elliptic genus in Qτ expansion reads

E
h

(2)
E8

(v, x,Qτ ,mi) = v59Q−59/6
τ

∞∑
n=0

g
(n)
2,E8

(v, x,Qmi)Q
n
τ , (4.105)

where g
(n)
2,E8

(v, x,Qmi) are rational functions. Turning off flavor fugacities and SU(2)x

g
(n)
2,E8

(v, x,Qmi = 1) =
1

(1− v)118(1 + v)92(1 + v + v2)59
× P (n)

2,E8
(v) . (4.106)

We have computed g
(0)
2,E8

which indeed agrees with the Hilbert series of two E8-instanton

reduced moduli space in [42].

We also use the expressions of E1,E2 to extract the BPS invariants Nβ
jl,jr

. For this

purpose, we need to use the Kähler moduli tI , tb (I = 0, 1, . . . , 8) associated to the Mori

cone generators. The results are tabulated in appendix G. They display the proper checker-

board pattern, and reproduce the known genus zero Gopakumar-Vafa invariants [24]. At

base degree one, we notice a pattern that the only non-vanishing BPS invariants for the

curve classes β = (0, 0, 0, 0, k, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, k, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, 0, k, 1),

(0, 0, 0, 0, 0, k, 0, 0, 0, 1) are

N
(0,0,0,0,k,0,0,0,0,1)
0,k−1/2 = N

(0,0,0,0,0,0,k,0,0,1)
0,k−1/2 = N

(0,0,0,0,0,0,0,0,k,1)
0,k−1/2 = N

(0,0,0,0,0,k,0,0,0,1)
0,k+1/2 = 1 , k = 1, 2, . . . ,

(4.107)

which in fact can be proved from the one-string formula (3.33) with the help of (D.7), (D.8)

and (D.9).

5 On the relation with 4d SCFTs of type H
(k)
G

The purpose of this section is to connect the k-string elliptic genera E
h

(k)
G

for the minimal

N = (1, 0) 6d SCFTs with G = A2, D4, F4, E6,7,8 discussed above to the superconfor-

mal indices of the N = 2 4d SCFTs of rank k denoted by H
(k)
G . The simplest series of

N = 2 SCFTs namely H
(1)
G can be obtained by geometric engineering on non-compact

del Pezzo geometries and contains the Minahan-Nemeschansky theories. The main re-

sult is an extension of a surprising conjecture by Del Zotto-Lockhart from the rank one

case [37] to the higher rank cases. To be precise [37] recognised that the one-string elliptic

– 51 –



J
H
E
P
1
2
(
2
0
1
9
)
0
3
9

genus E
h

(1)
G

(Qτ , v) can be decomposed in terms of a seemingly more fundamental function

LG(Qτ , v), which for special choices of Qτ and v specialises to the Hall-Littlewood index

or the Schur index of the H
(1)
G theories. With the two string elliptic genera computed in

our previous sections, we are able to study this conjectural relation at rank two and in

principle at arbitrary rank, and find indeed that similar striking relations exist.

We first review some basic properties of 4d rank k type H
(k)
G — and H̃

(k)
G theories,

including their class S theory construction, and then review the superconformal indices

of 4d SCFTs in various physically motivated limits as well as the methods to compute

them. Next we state the conjectural relation at rank one from [37], and explain in some

detail the new relations at rank two for all G. We also extend the analysis to some rank

three cases. For all choices of rank and G we analysed, the surprising relation between

elliptic genera and superconformal indices exists. We define an intermediate function at

rank k called L
(k)
G .33 This function is on the one hand the ingredient of k-string elliptic

genus, on the other hand gives the Hall-Littelwood index and Schur index of H
(k)
G theories

at special choices of parameters. This general structure allows us to calculate the latter

indices efficiently from the E
h

(k)
G

that are determined from the elliptic blowup equations.

5.1 Rank k HG theories

The 4d N = 2 SCFTs H
(k)
G are well known to exist for G = ∅, A1, A2, D4, E6,7,8 and

k = 1, 2, 3 . . . [62–66].34 In type IIB superstring theory, they are realized as the world-

volume theory for k multiple D3-branes probing a stack of exotic seven-branes. Such

seven-branes in F-theory are defined as codimension one singularities with Kodaire type

II, III, IV, I∗0 , IV
∗, III∗, and II∗, which give the gauge symmetries G for the low energy

8d SYM theories. The number k is usually called the rank of HG theories. For example, the

rank one H∅,A1,A2
theories appear as certain limit of SU(2) gauge theory with Nf = 1, 2, 3

respectively [62]. The rank one HD4 theory is well known to be the SU(2) gauge theory with

Nf = 4, while the higher rank cases with k > 1 are equivalent to USp(2k) gauge theories

with four fundmental hypermultiplets and one antisymmetric hypermultiplet, which are all

Lagrangian theories. The rank one HE6,7,8 are also known as the Minahan-Nemeschansky

theories [65, 66], where the simplest example rank one E6 theory is in S-duality with SU(3),

Nf = 6 theory [67].

All H
(k)
G theory can be coupled with a free hypermultiplet associated to the center

of mass motion of the instantons. We follow [37] and denote these theories as H̃
(k)
G . As

was observed in [45], for higher rank cases, H̃G are sometimes more natural than HG

theories. One major difference between rank one and higher rank HG theories is the

flavour symmetry. Besides the flavour G given by the strings stretched between D3-branes

and exotic seven-brane, for k > 1 there is one more SU(2) symmetry coming from the

transverse space in the seven-brane. By coupling a free hypermultiplet, all H̃
(k)
G theories

share flavour symmetry G× SU(2).

33The LG function in [37] becomes L
(1)
G here.

34The G = ∅, A1, A2 type theories are also traditionally denoted as H0,1,2 theories. Here we follow the

notations in [37].
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The H
(k)
G theories of interest in this paper are G = A2, D4, E6,7,8 as they are directly

related to 6d minimal (1, 0) SCFTs with corresponding gauge group G. To be precise, the

RR elliptic genus is identified as the β-twisted T 2×S2 partition function of the 4d SCFTs:

E
h

(k)
G

= Z(T 2×S2)β

(
H

(k)
G

)
. (5.1)

Adding the “tildes”, one can also obtain the equality with the free hypermultiplet coupled.

Here the β-twist was introduced by Kapustin in [68] to preserve half of the supersymmetries

on the backgrounds such as T 2 × S2. See a good description of such twist in for example

section 3.2 of [37]. The identification (5.1) makes it sometimes possible to compute the

elliptic genus from 4d setting, in which cases the S-duality with a Lagrangian theory is

invoked and one can use certain analogy of Spiridonov-Warnaar inverse formula [69] to

compute the T 2 × S2 partition function. This was indeed achieved for one string elliptic

genus with G = D4, E6,7 [37, 46–48]. For example, the elliptic genus of one E7 instanton

string was obtained in [48] via SU(4) gauge theory Nf = 8 and appropriate Higgsing as

Z(T 2×S2)β

(
H

(1)
E7

)
= 1 + χE7

133v
2 + χE7

7371v
4 + χE7

238602v
6 + χE7

5248750v
8 + . . .

+Qτ

(
1 + χE7

133 +
(
1 + 2χE7

133 + χE7
7331 + χE7

8645

)
v2

+
(
χE7

133 + 2χE7
7371 + χE7

8645 + χE7
238602 + χE7

573440

)
v4 + . . .

)
+Q2

τ

(
3 + 2χE7

133 + χE7
1539 + χE7

7371 + . . .
)

+O(Q3
τ ) ,

(5.2)

which completely agrees with our universal expansion formula (4.5), (4.6) and (4.7).35 We

also checked for D4 and E6, where the agreement holds to all known orders.

Another important feature of H
(k)
G theories is that they all admit 6d construction. It

is well known all rank k HD4,E6,7,8 theories can be realized by compactifying a 6d AN−1

(2,0) SCFT on some punctured sphere with regular singularities [70], i.e. they are class S
theories. The regular singularities are classified by embeddings of SU(2) in SU(N), thus can

be denoted as Young diagrams. Such punctures with associated Young diagram represent

how the SU(N) decomposes and what is the residual flavour symmetry. For example, the

rank one HSO(8) theory is obtained by compactifying 6d A1 (2,0) SCFT on a sphere with

four full punctures {12}, i.e. the residual flavour symmetry is SU(2). Thus the resulting

4d theory has gauge symmetry SU(2) and four fundamentals, as was mentioned already

above. We summarize the gauge algebras and punctures for the 6d construction of all H
(k)
G

theories with G = D4, E6,7,8 in table 12. The 6d construction for rank k HA2 theories

however involves irregular punctures. For example, they can be realized by compactifying

6d A2k−1 theory on a sphere with one regular puncture with Young diagram {k2} and one

irregular puncture of form

Φ =
1

z3
diag(1, . . . , 1kth

,−1, . . . ,−1kth
) + . . . (5.3)

35In the coefficients of Q2
τ , one also need to use the Joseph relation Sym2133 = 1 +133+7371 to obtain

the identification.
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G 6d (2, 0) AN−1 punctures Λi

D4 A2k−1 four {k2}
E6 A3k−1 three {k3}
E7 A4k−1 {(2k)2} and two {k4}
E8 A6k−1 {(3k)2},{(2k)3} and {k6}

Table 12. 6d construction for rank k HG theory.

where the coefficients of z−2 and z−1 have the same type of matrix [71]. In particular,

the rank one HA2 theory coincides with (A1, D4) Argyres-Douglas theory. See also the 6d

construction involving irregular punctures in [72].

Class S 4d SCFTs are also known to be connected to 2d vertex operator algebra, i.e.

chiral algebra [73, 74]. This correspondence relies directly on the class S construction and

can be understood from certain generalized TQFT structure on the punctured Riemann

surface. This relation sometimes gives a new approach to compute the indices of 4d SCFT

by realizing them as the vacuum character of associated chiral algebra. For example, the

chiral algebras associated to rank one HD4 and HE6 theories are identified as so(8) affine

Lie algebra at level k2d = −2 and e(6) affine Lie algebra at level k2d = −3 in [73]. See

some recent works trying to explain VOA/SCFT correspondence [75–79]. Besides, the rank

one HD4,E6,E7 theories are also connected with the curved βγ systems on cones over the

complex Grassmannian Gr(2, 4), the complex orthogonal Grassmannian OG+(5, 10), and

the complex Cayley plane OP2 respectively in [80].

5.2 Hall-Littlewood and Schur indices

The superconformal index of 4d N = 2 SCFT is defined as [81, 82]

I(p, q, t) = Tr (−1)F
(
t

pq

)r
pj12 qj34 tR

∏
i

afii , (5.4)

where j12 = j2 + j1 and j34 = j2 − j1 denote the rotation generators in C2 with j1,2
representing each SU(2) Lorentz symmetry, and r and R denote the U(1)r and SU(2)R
generators respectively. Besides, ai are the fugacities for the flavour generators fi which

sometimes are set to be zero for simplicity. For generic 4d SCFT, the full superconformal

indices with (p, q, t) are difficult to compute. For example, among all H
(k)
G theories, the

full superconformal indices to our knowledge are only computable so far for HSO(8) with

arbitrary rank owing to their Lagrangian nature and HE6,E7 for rank one owing to the

existence of certain N = 1 Lagrangian flow [47, 48].

Certain limits of superconformal index are particularly interesting due to symmetry en-

hancement. The name of limit comes from the observation that the resulting indices involve

corresponding symmetric polynomial known in mathematics literature. Following [44], we

list three of them here:

• (Macdonald) p → 0. Superconformal index when taking the Macdonald limit is

computable for all class S theory with regular punctures. For a genus g theory with
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s punctures compactified from 6d AN−1 (2,0) SCFT, the Macdonald index is given

in [44] as

IM
g,s(a, q, t) =

N∏
j=2

(tj ; q)2g−2+s (t; q)(k−1)(1−g)+s

(q; q)(k−1)(1−g)

∑
λ

∏s
i=1 K̂Λi(ai) P

λ(ai(Λi)|q, t)[
P λ(t

k−1
2 , t

k−3
2 , . . . , t

1−k
2 |q, t)

]2g−2+s .

(5.5)

Here P λ(ai(Λi)|q, t) are Macdonald polynomials and the summation is over all pos-

sible Young diagrams λ = {λ1, λ2, . . . , λN−1, 0}. The Pochhammer symbol (a; b) is

defined by

(a; b) =

∞∏
i=0

(1− abi) . (5.6)

The K̂Λi factors are defined by

K̂Λ(a) =

row(Λ)∏
i=1

li∏
j,k=1

PE

[
aij ā

i
k

1− q

]
ai,q

, (5.7)

with the coefficients aik associated to the Young diagram as

aij = cjv
λj+1−i and āik = c−1

k vλk+1−i , (5.8)

with v2 = t. Here these cj parameterize the residual flavour symmetry and are subject

to constraint
∏row(Λ)
i=1

∏li
j cj = 1 to preserve the traceless condition of SU(N). The

association of the flavour fugacities for a puncture a(Λ) in Macdonald polynomial is

defined similarly as cjv
−λj−1+2i. Some good figures to visualize these definitions can

be found in [44, 45].

• (Hall-Littlewood) p, q → 0. By taking limit in (5.5), it is easy to obtain the Hall-

Littlewood index for all class S theories. As only genus zero theories are of concern

in this paper, we only write down the formulas with g = 0. For example, the Hall-

Littlewood index of 4d SCFT compactified from 6d AN−1 theory is

IHL = NN,s
∑
λ

∏s
i=1 K̂Λi(ai) ψ

λ(ai(Λi)|v)

[ψλ(vN−1, vN−3, . . . , v1−N |v)]
s−2 , (5.9)

where

NN,s = (1− v2)N−1+s
N∏
j=2

(1− v2j)s−2, (5.10)

and ψλ is the Hall-Littlewood polynomials defined as

ψλ(x1, . . . , xN |v) = Nλ(v)
∑
σ∈SN

xλ1

σ(1) . . . x
λN
σ(N)

∏
i<j

xσ(i) − v2xσ(j)

xσ(i) − xσ(j)
, (5.11)

with

Nλ(v) =
∞∏
i=0

m(i)∏
j=1

(
1− v2j

1− v2

)−1/2

, (5.12)
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where m(i) is the number of rows in the Young diagram λ = (λ1, . . . , λN ) of length

i. Here we have made the substitution t = v2 for convenience.

It is argued in [44] that for linear quiver theories the HL index is equivalent to the

Hilbert series of the Higgs branch. In particular, this is true for all HG theories.

It is well-known the Higgs branch of H
(k)
G theories are the reduced moduli space of

k G-instantons, which can be understood from the probing picture that the k D3-

branes dissolving into the seven-branes resemble k instantons in the transverse space.

Thus the HL index of H
(k)
G theory are supposed to be equal to the Hilbert series of

reduced moduli space of k G-instantons. On the other hand, the Hilbert series can

also be obtained from the 5d Nekrasov partition function with pure gauge group G,

which are just the 5d limit of elliptic genus of 6d minimal (1, 0) SCFT with type G.

Therefore, we arrive at the relation:

IHL

H
(k)
G

= HilbkG = g
(0)
k,G, (5.13)

where g
(0)
k,G as we defined previously in (4.3) is the coefficient of leading Qτ order of

k-string elliptic genus E
h

(k)
G

. One can also add “tildes” to get the equality with a

free hypermultiplet coupled, in which situation one encounters the full Hilbert series

other than the reduced. We have checked relation (5.13) for k = 1, 2 for all possible

G and k = 3 for SU(3).36

• (Schur) q = t with p arbitrary. In fact, it can be shown in such specialization the

index is independent of p. Thus, taking p → 0, Schur index is actually a limit of

Macdonald index. Using (5.5), the Schur index for a class S theory is given by

ISchur = N̂N,s
∏s
i=1 K̂Λi(ai) χ

λ(ai(Λi))

[χλ(vN−1, vN−3, . . . , v1−N )]
s−2 , (5.14)

where37

N̂N,s = (v2; v2)s
N∏
j=2

(v2j ; v2)s−2, (5.15)

and χλ is the Schur polynomials defined as

χλ(a) =
det(a

λj+k−j
i )

det(ak−ji )
. (5.16)

At last, one replaces back v2 → q.

The Schur indices in some sense are more interesting than the Hall-Littlewood indices.

For instance, for class S theories, Schur indices equal the q-deformed topological 2d

36For SU(3) and F4, we are not aware how to compute the HL indices directly. Still, the Hilbert series

are well-defined and computed in [41, 42], which are in perfect agreement with our computation for elliptic

genus from blowup equations.
37As in this paper we only deal with the cases with three or four punctures, we also shorten NN,3 as NN

and NN,4 as N ′N in the latter subsections, and same for those with hat.
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Yang-Mills partition function on the punctured Riemann surface [83], and also equal

the vacuum character of the associated chiral algebra [73, 74]. Furthermore, Schur

indices can be computed in IR via wall crossing for theories even beyond class S,

such as certain Argyres-Douglas theories [84] including rank one HA2 theory.

The full superconformal indices of rank one HD4,E6,7 theories have been computed

in [46, 48, 85]. The Schur index of rank one HE8 was given in [37] and the Schur index

of rank one HA2 was given in [84]. To compute the Hall-Littlewood indices and Schur

indices of higher rank HD4,E6,7,8 theories one will encounter certain subtle issues. Directly

using the general formulas (5.9) and (5.14) fails to give correct results, because at a given

order of v infinite number of Young diagrams λ contribute. To cure such divergence, it

was suggested in [45] that one reduces the flavor symmetry “one box at a time”, that is to

change one specific puncture by moving one box down in the associated Young diagram.

The physical meaning of such operation is interpreted as coupling a free hypermultiplet to

H
(k)
G theory, which in our notation is just H̃

(k)
G theory. In the terminology of [45], H

(k)
G

are “bad” theories, while H̃
(k)
G are “good” theories. One can directly use (5.9) and (5.14)

to compute the indices of H̃
(k)
G , then divide by the index of a free hypermultiplet which is

well defined, finally one will obtain the finite indices of H
(k)
G . Following this procedure, the

Hall-Littlewood indices of rank two HD4,E6,7,8 theories were computed in [45]. Similarly,

we computed the Schur indices of rank two and three HD4,E6,7,8 theories which will be

shown in details in later sections. For higher rank HA2 we are not aware how to compute

its Schur indices due to the irregular punctures of 6d construction. Although there exist

no Hk
G theory for G = F4, we suspect certain analogy can be constructed such that Hall-

Littlewood indices still make sense as the Hilbert series of moduli space of k F4 instantons,

and the Schur indices can be associated with affine f4 algebra. One support for such

speculation is that the Hilbert series for arbitrary k F4 instantons has been constructed

from certain folding from E6 [43]. Thus we sometimes informally denote the analogy as

H
(k)
F4

theories.

5.3 Rank one: Del Zotto-Lockhart’s conjecture

In [37], Del Zotto-Lockhart found an intriguing structure of one string elliptic genera of

6d mininal (1, 0) SCFTs and a surprising relation between the elliptic genera and the

supersymmetric indices of rank one HG theories. Let us rephrase their conjecture here:

Conjecture (Del Zotto-Lockhart). There exists a function L
(1)
G (v,mG, Qτ )=

∑∞
i,j=0 b

G
i,jQ

i
τv
j

such that

1. bGi,j can be written as the sum of characters of irreducible representations of G with

integral coefficients.

2. L
(1)
G (v,mG, 0) is the Hilbert series of the reduced moduli space of one G-instanton,

i.e. the Hall-Littlewood index of the H
(1)
G theory.

3. L
(1)
G (q1/2,mG, q

2) is the Schur index of the H
(1)
G theory.
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i, j 0 2 4 6 8 10 12 14

0 1 28 300 1925 8918 32928 102816 282150

1 0 0 29 707 6999 42889 193102 699762

2 −1 0 0 2 · 1 463 + 1 9947 92391 544786

3 0 −28 −29 −2 · 1 1−1 2 · 29 5280 + 29 +2 · 28 101850

4 0 0 −300 −707 −463− 1 −2 · 29 29−29 2 · 463 + 2 · 1
5 0 0 0 −1925 −6999 −9947 −5280− 29−2 · 28 −2 · 463− 2 · 1
6 0 0 0 0 −8918 −42889 −92391 −101850

7 0 0 0 0 0 −32928 −193102 −544786

8 0 0 0 0 0 0 −102816 −699762

9 0 0 0 0 0 0 0 −282150

Table 13. Expansion coefficients c
SO(8)
i,j for one SO(8) instanton string.

4. The reduced one-string elliptic genus E
h

(1)
G

(v) can be generated from L
(1)
G (v) by the

following formula in which the symmetry (4.26) is manifest:38

E
h

(1)
G

(v) = v2h−1Q1/6
τ

∑
n≥0

Q2n
τ

[
u4hLG(Qnτ v)− (−1)2hu−4hLG(Qn+1/2

τ /v)

+ (1 + (−1)2h)Qh+1/2
τ

(
u2LG(Qn+1/2

τ v)− u−2LG(Qn+1
τ /v)

)
+Q2

τ

(
(−1)2hu4(1−h)LG(Qn+1

τ v)− u−4(1−h)LG(Qn+3/2
τ /v)

)] (5.17)

where h = h∨G/6, u = v/Q
1/4
τ .

The conjectural formula (5.17) is quite intricate. Roughly speaking, it means the

coefficient matrix of reduced one-string elliptic genus contains several “blocks”, overlapping

or non-overlapping, and each block contains infinite copies of the L
(1)
G function. The number

of blocks turns out to be 2 for SU(3), 4 for F4 and 6 for the other G. In the following

we show the coefficient matrix of one-string elliptic genus of SO(8) in a way consistent

with our later higher rank discussion. The coefficient matrix of elliptic genus and the L
(1)
G

functions for other G can be found in [37]. Let us denote

E
h

(1)
SO(8)

(v,Qτ ,mi = 0) = v5Q−5/6
τ

∞∑
i,j=0

c
SO(8)
i,j vj(Qτv

−4)i. (5.18)

Then we have table 13 for the coefficients c
SO(8)
i,j where each “block” is colored differently:

the coefficients coming from the first term in the square bracket in (5.17) is colored red,

the second black, the third blue, the forth orange, the fifth cyan and the last magenta. As

we can see from the table, the reduced one-string elliptic genus indeed depends on v2. One

can also see the symmetry (4.26) on the two sides of the ray with slop −1/2. Here the

38Here the dependence on Qτ and Qm are implied.
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L
(1)
SO(8)(v,Qτ ) function can be defined by all the red numbers in table 13 with the red +1

and +29 moving out, as they come from n = 1 term in the summation. Thus we have

L
(1)
SO(8)(v,Qτ )

= (1+28v2+300v4+1925v6+8918v8+32928v10+102816v12+282150v14+O(v16))

+(29+707v2+6999v4+42889v6+193102v8+699762v10+O(v12))Qτ

+(463+9947v2+92391v4+544786v6+O(v8))Q2
τ

+(5280+101850v2++O(v4))Q3
τ+O(Q4

τ ). (5.19)

Clearly, the first row in table 13 gives the well-known Hilbert series for the reduced moduli

space for one SO(8) instanton, i.e. the Hall-Littlewood index for rank one HSO(8) theory:

L
(1)
SO(8)(v,0) =

∞∑
n=0

χ
SO(8)
nθ v2n = 1+28v2+300v4+1925v6+8918v8+32928v10+102816v12+O(v14)

(5.20)

Adding the red numbers from L
(1)
SO(8)(v,Qτ ) in each column of table 13 together, one expects

to obtain the Schur index of rank one HSO(8) theory. Indeed, by making v → q1/2 to make

contact with the literature, we obtain

LSO(8)(q
1/2, q2) = 1+28q+329q2+2632q3+16380q4+85764q5+393589q6+1628548q7+O(q8).

(5.21)

Such series was actually already obtained by a lot of methods. For example, from the view-

point of VOA/SCFT correspondece, it equals the vacuum character of affine Lie algebra

so(8)k=−2 [73]. From the nature that rank one HSO(8) theory is actually just SU(2) gauge

theory with Nf = 4, the Schur index can be computed both from UV Lagrangian and IR

wall-crossing formula [86]. See the Schur series from vacuum character up to q14 in the end

of the appendix of [86].

Such comparison between the reduced elliptic genus and Schur index for all other rank

one HG theory except G = F4 has been done in [37]. In particular, all L
(1)
G (v,Qτ ,mG = 0)

functions are identified, and the conjectural formula (5.17) holds to substantial orders.

Similarly, one can also couple a free hypermultiplet to establish the relation between original

one-string elliptic genus E
h̃

(1)
G

(v) and the Hall-Littlewood and Schur indices of H̃
(k)
G theory.

Indeed, the Schur index of a 4d hypermultiplet is known to be [86]

ISchur
h.m. = PE

[
q1/2

1− q
(
x+ x−1

)]
, (5.22)

which can also be obtained by taking limit Ec.m.(v, x,Qτ ) → Ecm(q1/2, x, q2). The Hall-

Littlewood index of a 4d hypermultiplet i.e. the Hilbert series of C2 is well-known to be

IHL
h.m. =

1

(1− vx±1)
, (5.23)

which can also be obviously obtained by taking limit Ec.m.(v, x,Qτ → 0), with a factor

vQ
−1/6
τ absorbed into the overall factor of (4.3). This makes the whole story consistent.
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In the viewpoint of pure 4d, this intriguing conjecture indicates there exists certain

precise relation between the β-twisted partition function on T 2 × S2 and the partition

function on S3 × S1. We suspect the connection may be established by realizing one S1 of

T 2 as the Hopf fibration over S2 to get S3×S1. To find the consequence of such realization

one has to go into the details of localization which is beyond the scope of current paper.39

5.4 Rank two

We would like to generalize Del Zotto-Lockhart’s conjecture to the rank two cases, where

there exist more flavour symmetry that is SU(2)x in HG theories. To be precise, we want

to find some functions L
(2)
G (v, x,mG, Qτ ) =

∑∞
i,j=0 b

G
i,jQ

i
τv
j such that

1. bGi,j can be written as the sum of products between the characters of irreducible

representations of SU(2)x and the characters of irreducible representations of G with

integral coefficients.

2. L
(2)
G (v, x,mG, 0) is the Hilbert series of the reduced moduli space of two G-instanton,

i.e. the Hall-Littlewood index of the H
(2)
G theory.

3. L
(2)
G (q1/2, x,mG, q

2) is the Schur index of the H
(2)
G theory.

4. The reduced two-string elliptic genus E
h

(2)
G

(v, x,mG, Qτ ) can be generated from

L
(2)
G (v, x,mG, Qτ ) and L

(1)
G (v, x,mG, Qτ ) functions.

It turns out the rank two cases are much more complicated than the rank one cases, one

reason for which is that we can not rely on the additional symmetry (4.27). Although we

have not achieved an exact formula to generate the two string elliptic genus, we successfully

manage to identify the L
(2)
G functions to substantial orders, which we will elaborate on later

for each example. In fact, the leading and subleading Qτ order of L
(2)
G (v, x,mG, Qτ ) are

just given by g
(0)
2,G(v, x,mG) in (4.8) and g

(1)
2,G(v, x,mG) in (4.9), while the subsubleading

order is given by

(χ5 +(χθ+2)χ3 +χSym2θ+2χθ+3)+
(

(χθ+1)χ4 +((χθ+1)2 +(2χθ+1))χ2

)
v+. . . , (5.24)

which differs from g
(2)
2,G(v, x,mG) in (4.10) by 1 + χ2v + . . . . Such difference is recognized

as what we call “blue” series in contrast to the red L
(2)
G functions. Indeed, the reason we

also include L
(1)
G in the last condition is that we observe a “blue” series appearing multiple

times in the coefficient matrix of E
h

(2)
G

:

M
(2),blue
G (v,x) =

∞∑
n=0

vn
∑

i+2j=n+1

χiχjθ =
1

(1−vx)(1−v/x)
g

(0)
1,G(v)

= 1+χ2v+(χ3+χθ)v
2+(χ4+χθχ2)v3+(χ5+χθχ3+χ2θ)v

4+(χ6+χθχ4+χ2θχ2)v5+. . . .

(5.25)

39Guglielmo Lockhart came up independently with a similar idea (private communication).
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i, j −2 −1 0 1 2 3 4 5 6 7 8

0 0 0 1 0 11 16 65 142 335 700 1542

1 0 0 1 2 11 20 12+56 18+92 143+192 356+292 1091+517

2 −1 0 1 −2 2 0 51 150 473 1032 90+2225

i, j 9 10 11 12

0 2788 5350 9288 16184

1 2676+742 6387+1183 13476+1624 28204+2408

2 232+4024 8589 15552 30469

Table 14. Unrefined coefficients cA2
i,j for the elliptic genus of two SU(3) instanton strings.

For example, the blue series always appears at Qτ order h∨G/3 with leading v order −2h∨G/3

(comparing to the leading Qτ order). The reason for such phenomenon is yet not clear to us.

On the other hand, from the technique of class S theory, we can compute the Schur

index of H
(2)
G theories for G = D4, E6,7,8. All of them are in agreement with our expectation

from elliptic genera up to quite high orders. For example, from the L
(2)
G functions, we are

able to write down the following general formula for the Schur indices up to q7/2:

ISchur

H
(2)
G

= ISchur

H̃
(2)
G

/ISchur
h.m. = 1+(χ3+χθ)q+χθχ2q

3/2+
(
χ5+(χθ+1)χ3+χSym2θ+χθ+1

)
q2

+
(
χθχ4+(χ2θ+χSym2θ+1)χ2

)
q5/2+

(
χ7+(χθ+1)χ5+(χ2θ+χSym2θ+2χθ+3)χ3

+χSym3θ+(χθ+1)2−C6(G)
)
q3+

(
χθχ6+(χ2θ+χAlt2θ+2χθ+1)χ4

+(χ3θ+2χ2θ+(χθ+1)2+χSym2θ+χAlt2θ+B2(G)+C7(G))χ2

)
q7/2+. . . . (5.26)

In the following, we show the striking comparison between elliptic genus and indices at

rank two for all symmetry group G.

SU(3). For SU(3), let us denote the two-string elliptic genus as

E
h

(2)
A2

(v, x,Qτ , Qm) = v5Q−5/6
τ

∞∑
i,j=0

cA2
i,j (x,Qm)vj(Qτv

−4)i. (5.27)

Then we have the unrefined coefficients cA2
i,j (x = 1, Qm = 1) listed in table 14. Keeping in

mind that all such numbers can be refined to incorporate SU(2)x, we show the unrefined

coefficients just to make them look clearer. The red numbers give the definition of L
(2)
G

functions. In particular, they are in agreement with the universal expansion (4.8), (4.9)

and (5.24). Note the red numbers in the first row agrees with the Hilbert series for reduced

moduli space of two A2 instantons in [42]. The two red numbers in the i = 2 rows are

predicted from (5.24). Besides, the blue numbers agree with our proposal (5.25). Adding

the red numbers in each column together, we expect to obtain a series that is equal to the

Schur index of rank two HA2 4d SCFT.

The construction of H
(2)
A2

theory from 6d involves irregular punctures. We are not

aware how to directly compute its indices. We write our prediction from elliptic genus
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here: the Hall-Littlewood index of rank two HA2 theory is

IHL

H
(2)
A2

= 1+(χ3+8)q+8χ2q
3/2+(χ5+8χ3+36)q2+(8χ4+55χ2)q5/2

+(χ7+8χ5+63χ3+119)q3+(8χ6+55χ4+216χ2)q7/2

+(χ9+8χ7+63χ5+280χ3+322)q4+(8χ8+55χ6+280χ4+637χ2)q9/2+O(q5) ,

(5.28)

which agrees with the Hilbert series of reduced moduli space of two SU(3) instantons [42],

and the Schur index of rank two HA2 theory is

ISchur

H
(2)
A2

= 1+(χ3+8)q+8χ2q
3/2+(χ5+9χ3+45)q2+(8χ4+64χ2)q5/2

+(χ7+9χ5+82χ3+200)q3+(8χ6+72χ4+360χ2)q7/2

+(χ9+9χ7+83χ5+479χ3+799)q4+(8χ8+72χ6+496χ4+1608χ2)q9/2+O(q5) .

(5.29)

Taking x = 1 in (5.29), we have the unrefined Schur index as

1+11q+16q3/2+77q2+160q5/2+498q3+1056q7/2+2723q4+5696q9/2+O(q5) . (5.30)

This is in complete agreement with Beem-Rastalli’s to appear computation from chiral

algebra!40

SO(8). The H
(2)
D4

theory can be constructed by compactifying A3 (2, 0) 6d SCFT on a

sphere with four square punctures {22}, i.e. 2222 theory, which is expected to be a usp(4)

gauge theory with four fundamental hypermultiplets and one anti-fundamental. On the

other hand, the H̃
(2)
D4

theory can be constructed as a 222L theory, i.e. we replace one

{22} puncture to {2, 12}. In [45], the Hall-Littlewood indices of both 222L theory and

usp(4) + 4f + 1a theory were computed, which are in relation

I222L(v, x,mi) =
1

1− vx±1
Iusp(4)+4f+1a(v, x,mi) . (5.31)

We expect and indeed checked to high orders

Iusp(4)+4f+1a(v, x,mi) = g
(2)
0,D4

(τ, a,mi). (5.32)

For example, one can directly see the series coefficients in (A.12) of [45] agree with the Q0
τ

entries in table 15.

The Schur index of 222L theory can be obtained in a similar manner. Following the

general formula in [44], we obtain

ISchur
222L (c,d,e;a,b) = N̂ ′4 K̂1(c)K̂1(d)K̂1(e)K̂2(a,b)

∑
λ

χλ(vb,v−1b,b−1a,b−1a−1)

χ2
λ(v−3,v−1,v,v3)

×χλ(vc,v−1c,vc−1,v−1c−1)χλ(vd,v−1d,vd−1,v−1d−1)χλ(ve,v−1e,ve−1,v−1e−1) ,

(5.33)

40We thank Beem and Rastelli for providing us their unpublished results on the unrefined Schur index of

rank two SU(3) theory.
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where (b1 = b, b2 = 1/b). The summation is over Young diagrams λ = (λ1, λ2, λ3, 0). The

N̂ and K̂ factors are given by

N̂ ′4 = (v2; v2)4
4∏
j=2

(v2j ; v2)2 ,

K̂1(b) = PE

[
(v2 + v4)(b2 + b−2 + 2)

1− v2

]
,

K̂2(a, b) = PE

[
3v2 + v4 + v3b±2a±1 + v2a±2

1− v2

]
.

(5.34)

At last, one usually replaces v → q1/2 to make contact with literature. From the above

formula, we computed the Schur index up to v20 as

ISchur
222L = 1+χ2v+(2χ3+28)v2+(2χ4+58χ2)v3+(3χ5+87χ3+465)v4+. . . . (5.35)

Decoupling the free hypermultiplet, we obtain the Schur index of H
(2)
D4

theory

ISchur

H
(2)
D4

= ISchur
usp(4)+4f+1a = ISchur

222L /ISchur
h.m. (5.36)

up to q10. The first 12 terms with full SU(2)x fugacity are

ISchur

H
(2)
D4

= 1+(χ3+28)q+28χ2q
3/2+(χ5+29χ3+435)q2+(28χ4+707χ2)q5/2

+(χ7+29χ5+765χ3+4845)q3+(28χ6+735χ4+9947χ2)q7/2

+(χ9+29χ7+766χ5+12337χ3+43353)q4

+(28χ8+735χ6+12607χ4+101878χ2)q9/2

+(χ11+29χ9+766χ7+12667χ5+141518χ3+330360)q5

+(28χ10+735χ8+12635χ6+155449χ4+845225χ2)q11/2+O(q6) .

(5.37)

We can compare this with elliptic genus up to q11/2. Let us denote the SO(8) two-string

elliptic genus as

E
h

(2)
D4

(v, x, τ,mi = 0) = v11Q−11/6
τ

∞∑
i,j=0

c
SO(8)
i,j (x)vj(Qτv

−4)i. (5.38)

Then we have table 15 for the coefficients c
SO(8)
i,j (x = 1). Here the red numbers are from

the L
(2)
D4

series. Add the red numbers in each column together, we expect to obtain a series

that is equal to the Schur index of rank two HD4 4d SCFT. Indeed, we have

L
(2)
D4

(q1/2,x= 1,mD4 = 0, q2) = 1+31q+56q3/2+527q2+1526q5/2+7292q3+23002q7/2

+84406q8+258818q9/2+823883q5+2394216q11/2+. . . .

(5.39)

On the other hand, by taking the unrefined limit x = 1 in (5.36), we obtain the unrefined

Schur series

1+31q+56q3/2+527q2+1526q5/2+7292q3+23002q7/2+84406q8+258818q9/2+823883q5

+2394216q11/2+6943434q6+19082748q13/2+51665849q7+134888730q15/2+345764537q8

+862482876q17/2+2112344321q9+5061362222q19/2+11921262927q10+O(q21/2) . (5.40)

One can see the two series match perfectly up to q11/2!
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i, j 0 1 2 3 4 5 6 7 8

0 1 0 31 56 495 1468 6269 19680 64768

1 0 0 0 0 32 58 1023 3322 19078

2 −1 −2 −31 −60 −389 −718 −2972 + 2 · 1 −5226 + 2 · 2 560−16398 + 2 · 31 + 1

i, j 9 10 11

0 187792 537021 1424526

1 69114 266799 886104

2 1912−27570 + 2 · 60 + 2 20063−71670 + 2 · 389 + 31 83586−115770 + 2 · 718 + 60

Table 15. Series coefficients c
SO(8)
i,j for the elliptic genus of two SO(8) instanton strings.

i, j 0 1 2 3 4 5 6 7 8 9

0 1 0 55 104 1539 4966 32091 119340 542109 1973088

1 0 0 0 0 56 106 3135 10900 97125 405480

2 0 0 0 0 0 0 0 0 1652+1 6040+2

3 1 2 55 108 1214 2320 15802 29284 143542−1 257800−2

i, j 10 11 12

0 7460100 25288640 84766812

1 2210027 9075756 38900537

2 99611+55 466860+108 3399668+1214

3 999970−55 1742140−108 5704242

Table 16. Series coefficients cF4
i,j for the elliptic genus of two F4 instanton strings.

F4. Let us denote the two-string elliptic genus with gauge symmetry F4 as

E
h

(2)
F4

(v, x = 1, τ,mi = 0) = v17Q−17/6
τ

∞∑
i,j=0

cF4
i,jv

j(Qτv
−4)i. (5.41)

Then we have table 16 for the unrefined coefficients cF4
i,j . The red numbers in the first row

agree with the Hilbert series for reduced moduli space of two F4 instantons in [42]. By

summing over the red numbers in each column, we obtain certain analogy of Schur index

of rank two HG theory for F4 up to q11/2. The unrefined version is

1 + 55q + 104q3/2 + 1595q2 + 5072q5/2 + 35226q3 + 130240q7/2 + 640886q4 + 2384608q9/2

+ 9769738q5 + 34831256q11/2 +O(q6) . (5.42)

This is in complete agreement with Beem-Rastalli’s to appear computation from chiral

algebra!41

41We thank Beem and Rastelli for providing us their unpublished results on the unrefined Schur index of

rank two F4 theory.
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E6. The H
(2)
E6

theory can be constructed by compactifying A5 (2, 0) 6d SCFT on a sphere

with three {23} punctures, which is a “bad” theory. One can change one of the punctures

to {22, 12} to add a decoupled hypermultiplet, i.e. the H̃
(2)
E6

theory. The Hall-Littlewood

index of this theory was computed in [45]. We expect and indeed checked

IHL

H
(2)
E6

(v, x,mE6) = g
(2)
0,E6

(v, x,mE6). (5.43)

The Schur index can be obtained in a similar manner. Following the general formula

in [44], we obtain

ISchur

H̃
(2)
E6

= N̂6 K̂1(a1,a2)K̂1(a3,a4)K̂2(a5,a6,x)
∑
λ

χλ(va5,v
−1a5,va6,v

−1a6,
x

a5a6
, x
−1

a5a6
)

χλ(v−5,v−3,v−1,v1,v3,v5)

×χλ
(
va1,v

−1a1,va2,v
−1a2,v

1

a1a2
,v−1 1

a1a2

)
χλ

(
va3,v

−1a3,va4,v
−1a4,v

1

a3a4
,v−1 1

a3a4

)
.

(5.44)

Here λ = (λ1, · · · , λ5, 0) and (b3 ≡ 1
b1b2

)

N̂6 = (v2;v2)3
6∏
j=2

(v2j ;v2) ,

K̂1(b1, b2) =

2∏
`=1

3∏
i,j=1

PE

[
v2`bi/bj
1−v2

]
,

K̂2(b1, b2,x) =

2∏
`=1

2∏
i,j=1

PE

[
v2`bi/bj
1−v2

]
×PE

[
2v2+v2x±2+v3(b21b2x

±1)±1+v3(b1b
2
2x
±1)±1

1−v2

]
.

(5.45)

At last, one needs to replace v → q1/2. We computed the Schur index up to q7:

ISchur

H
(2)
E6

= 1+(χ3+78)q+78χ2q
3/2+(χ5+79χ3+3160)q2+(78χ4+5512χ2)q5/2

+(χ7+79χ5+5670χ3+87751)q3+(78χ6+5590χ4+201292χ2)q7/2+(χ9+79χ7

+5671χ5+248290χ3+1871196)q4+(78χ8+5590χ6+250640χ4+5048654χ2)q9/2

+(χ11+79χ9+5671χ7+250400χ5+7248975χ3+32615793)q5

+(78χ10+5590χ8+250718χ6+7900243χ4+97665932χ2)q11/2

+(χ13+79χ11+5671χ9+250801χ7+7949911χ5+157280287χ3+483480405)q6

+(78χ12+5590χ10+250718χ8+7949591χ6+186447755χ4+1552411211χ2)q13/2

+(χ15+79χ13+5671χ11+250801χ9+7952421χ7+193661181χ5+2725694921χ3

+6263699772)q7+. . . . (5.46)

Note the leading terms up to q7/2 agree with our general proposal (5.26).

Let us denote the two-string elliptic genus as

E
h

(2)
E6

(v, x = 1, τ,mi = 0) = v23Q−23/6
τ

∞∑
i,j=0

cE6
i,j v

j(Qτv
−4)i. (5.47)
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i, j 0 1 2 3 4 5 6 7 8 9

0 1 0 81 156 3320 11178 98440 401280 2344619 9785226

1 0 0 0 0 82 158 6723 24132 296879 1335694

2 0 0 0 0 0 0 0 0 3485+1 13112+2

3 0 0 0 0 0 0 0 0 −1 −2

4 −1 −2 −81 −160 −2669 −5178 −51445 −97712 −681945 −1266178

i, j 10 11 12 13

0 45870686 182872426 746229150 2782158570

1 9484963 44112702 236141466 1042037420

2 301488+81 1497516+160 14405643+2669 75613998+5178

3 −81 −160 102090−2669+83 563580−5178+322

4 −6819518 + 2 · 1 −12372858 + 2 · 2 −54611704 + 2 · 81−83 −96850550 + 2 · 160−322

i, j 14 15

0 10261780870 35695088906

1 4709271558 19202312882

2 486421964+51445 2415319754+97712

3 9603627−51445+7039 58071366−97712+24620

4 −365050846 + 2 · 2669−7039 −633251142+2 · 5178−24620

Table 17. Series coefficients cE6
i,j for the unrefined elliptic genus of two E6 instanton strings.

Then we have table 17 for the coefficients cE6
i,j . Here the red numbers are from the L

(2)
E6

series. Add the red numbers in each column together, we expect to obtain a series that is

equal to the Schur index of rank two HE6 4d SCFT. Indeed, we have

L
(2)
E6

(q1/2,x= 1,mE6 = 0, q2)

= 1+81q+156q3/2+3402q2+11336q5/2+105163q3+425412q7/2

+2644983q4+11134032q9/2+55655137q5+228482644q11/2+996878349q6

+3900373568q13/2+15467078019q7+57370792908q15/2+. . . .

(5.48)

On the other hand, taking x = 1 in (5.46), the unrefined Schur index is

1+81q+156q3/2+3402q2+11336q5/2+105163q3+425412q7/2+2644983q4+11134032q9/2

+55655137q5+228482644q11/2+996878349q6+3900373568q13/2+15467078019q7+. . . .

(5.49)

We can see the two series match perfectly up to q7!

E7. The H
(2)
E7

theory can be constructed by compactifying A7 (2, 0) 6d SCFT on a sphere

with one {42} puncture and two {24} punctures, which is a “bad” theory. One can change

one of the {24} punctures to {23, 12} to add a decoupled hypermultiplet, i.e. the H̃
(2)
E7

theory. The Hall-Littlewood index of this theory was computed in [45]. We find it agrees

with our computation for g
(2)
0,E7

(τ, x,mE7). The Schur index can be obtained in a similar
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i, j 0 1 2 3 4 5 6 7 8 9

0 1 0 136 266 9315 32830 449050 2026080 17179899 84195608

1 0 0 0 0 137 268 18768 69544 1349005 6575250

2 0 0 0 0 0 0 0 0 9590+1 36982+2

Table 18. Series coefficients cE7
i,j for the unrefined elliptic genus of two E7 instanton.

manner. Following the general formula in [44], we obtain

ISchur

H̃
(2)
E7

= N̂8 K̂1(a1, a2, a3) K̂2(a4, a5, a6, x) K̂3(a7)

×
∑
λ

χλ(v3a7, v
−3a7, va7, v

−1a7, v
3a−1

7 , v−3a−1
7 , va−1

7 , v−1a−1
7 )

χλ(v−7, v−5, v−3, v−1, v, v3, v5, v7)

× χλ
(
va1, v

−1a1, va2, v
−1a2, va3, v

−1a3, v
1

a1a2a3
, v−1 1

a1a2a3

)
× χλ

(
va4, v

−1a4, va5, v
−1a5, va6, v

−1a6,
x

a4a5a6
,
x−1

a4a5a6

)
.

(5.50)

Here

K̂3(b) = PE

[
2(v2+v4+v6+v8)

1−v2

] 4∏
`=1

PE

[
v2`b±2

1−v2

]
,

K̂2(b1, b2, b3,x) = PE

[
2v2+v2x±2

1−v2

] 2∏
`=1

3∏
i,j=1

PE

[
v2`bi/bj
1−v2

], 3∏
i=1

[
v3(x−1 bi/b4)±1+v3(x bi/b4)±1

1−v2

]
,

K̂1(b1, b2, b3) =

2∏
`=1

4∏
i,j=1

PE

[
v2`bi/bj
1−v2

]
. (5.51)

At last, one needs to replace v → q1/2. We computed the Schur index up to q2 order.

After decoupling the free hypermultiplet, the Schur index of H
(2)
E7

theory is given by

ISchur

H
(2)
E7

= ISchur

H̃
(2)
E7

/ISchur
h.m. = 1+(χ3+133)q+133χ2q

3/2+(χ5+(133+1)χ3+Sym2133+133+1)q2+. . . .

(5.52)

Let us denote the two-string elliptic genus as

E
h

(2)
E7

(v, x = 1, τ,mi = 0) = v35Q−35/6
τ

∞∑
i,j=0

cE7
i,j v

j(Qτv
−4)i . (5.53)

Then we have table 18 for the coefficients cE7
i,j . Here the red numbers are from the L

(2)
E7

series. Add the red numbers in each column together, we expect to obtain a series that is

equal to the Schur index of rank two HE7 4d SCFT. Thus, we predict the unrefined Schur

index as

1 + 136q + 266q3/2 + 9452q2 + 33098q5/2 + 467818q3 + 2095624q7/2 + 18538494q4

+ 90807840q9/2 +O(q5) .
(5.54)
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Indeed, taking x = 1 in (5.52), the unrefined Schur index is given by

1 + 136q + 266q3/2 + 9452q2 +O(q5/2) . (5.55)

We can see the two series match perfectly!

E8. The H
(2)
E8

theory can be constructed by compactifying A11 (2, 0) 6d SCFT on a

sphere with three {62}, {43} and {26}, which is a “bad” theory. One can change the {26}
puncture to {25, 12} to add a decoupled free hypermultiplet, i.e. the H̃

(2)
E8

theory. Following

the general formula in [44], we obtain its Schur index as

ISchur

H̃
(2)
E8

= N̂12 K̂1(a1,a2,a3,a4,a5,x)K̂2(a6,a7)K̂3(a8)
∑
λ

χλ(va1,v−1a1, . . . ,va5,v−1a5,
x

a1···a5
, x−1

a1···a5
)

χλ(v−11,v−9, . . . ,v9,v11)

×χλ
(
v3a6,v

−3a6,va6,v
−1a6,v

3a7,v
−3a7,va7,v

−1a7,v
3 1

a6a7
,v−3 1

a6a7
,v

1

a6a7
,v−1 1

a6a7

)
×χλ

(
v−5a8,v

−3a8, . . . ,v
3a8,v

5a8,v
−5a−1

8 ,v−3a−1
8 , . . . ,v3a−1

8 ,v5a−1
8

)
. (5.56)

Here λ = (λ1, · · · , λ11, 0) and

K̂3(b) =

6∏
`=1

PE

[
2v2` + v2`b±2

1− v2

]
,

K̂2(b1, b2) =
4∏
`=1

3∏
i,j=1

PE

[
v2`bi/bj
1− v2

]
,

K̂1(c1, c2, c3, c4, c5, x) = PE

[
2v2 + v2 x±2

1− v2

] 2∏
`=1

5∏
i,j=1

PE

[
v2`ci/cj
1− v2

]
×

5∏
i=1

PE

[
v3(x−1 ci/c6)±1 + v3(x ci/c6)±1

1− v2

]
,

(5.57)

where b3 ≡ 1
b1b2

and c6 ≡ 1
c1c2c3c4c5

. At last, one needs to replace v → q1/2. As the leading

terms up to q3/2 are contributed from rank one theory, the Schur index is given by

ISchur

H̃
(2)
E8

= 1 + χ2q
1/2 + (2χ3 + 248)q + (2χ4 + 2(248 + 1)χ2)q3/2 + . . . . (5.58)

After decoupling the free hypermultiplet, the Schur index of H
(2)
E8

theory is

ISchur

H
(2)
E8

= ISchur

H̃
(2)
E7

/ISchur
h.m. = 1 + (χ3 + 248)q + 248χ2q

3/2 + . . . . (5.59)

Let us denote the two-string elliptic genus as

E
h

(2)
E8

(v, x = 1, τ,mi = 0) = v59Q−59/6
τ

∞∑
i,j=0

cE8
i,j v

j(Qτv
−4)i. (5.60)

Then we have table 19 for the coefficients cE8
i,j . Here the red numbers are from the L

(2)
E8

series. Add the red numbers in each column together, we expect to obtain a series that is
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i, j 0 1 2 3 4 5 6 7

0 1 0 251 496 31625 116248 2747875 13624000

1 0 0 0 0 252 498 63503 241742

Table 19. Series coefficients cE8
i,j for the unrefined elliptic genus of two E8 instanton strings.

equal to the Schur index of rank two HE8 4d SCFT. Thus, we predict from the general

formula (5.26) for the unrefined Schur index as

1 + 251q + 496q3/2 + 31877q2 + 116746q5/2 + 2811378q3 + 13865742q7/2 +O(q4) . (5.61)

Indeed, taking x = 1 in (5.59), the unrefined Schur index is given by

1 + 251q + 496q3/2 +O(q2) . (5.62)

Indeed, the two series match perfectly!

5.5 Rank three and higher

We expect the Del Zotto-Lockhart’s conjecture can be generalized to rank three and higher.

From the universal leading expansion for three-string elliptic genus (4.11) and (4.12), we

are able to predict the Schur index of rank three HG SCFT up to order q3:

ISchur

H
(3)
G

= 1+(χ3+χθ)q+(χ4+χθχ2)q3/2+
(
χ5+(χθ+1)χ3+χSym2θ+χθ+2

)
q2

+
(
χ6+(2χθ+2)χ4+2χSym2θ+χθ+1

)
q5/2

+
(

2χ7+(3χθ+1)χ5+(χ2θ+3χSym2θ+3χθ+5)χ3+χSym3θ+3χSym2θ+χθ+2
)
q3

+O(q7/2) . (5.63)

This is actually because (4.11) and (4.12) are also the definition of leading and subleading

Qτ order of L
(3)
G functions. Besides, we observe in the coefficient matrix of reduced three

string elliptic genus, other than the L
(3)
G function that appears as expected, the blue series

also appears as in the rank two. The difference is that here the blue series is generated

from the leading Qτ order of two string elliptic genus!

M
(3),blue
G (v, x) =

1

(1− vx)(1− v/x)
g

(2)
0,G(v, x). (5.64)

Note g
(2)
0,G(v, x) is also the leading Qτ order of L

(2)
G . In the following, we show the relation

between reduced elliptic genus of three strings and the Schur index of H
(3)
G theories for

each G.

SU(3). The formula for the elliptic genus of three SU(3) string has been written down

via Jeffrey-Kirwan residues in [34], using which we computed E
h

(3)
A2

up to Q6
τ order. Denote

E
h

(3)
A2

(v, x, τ,mi = 0) = v8Q−4/3
τ

∞∑
i,j=0

c
SU(3)
i,j (x)vj(Qτv

−4)i. (5.65)
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i, j 0 1 2 3 4 5 6 7

0 1 0 11 20 90 218 698 1618

1 1 2 14 22 135+12 370+22 960+171 2250+502

Table 20. Coefficients c
SU(3)
i,j for the unrefined elliptic genus of three SU(3) instanton strings.

Then the unrefined L
(3)
G function is shown red in the coefficient matrix of E

h
(3)
A2

in table 20.

Note the red numbers are in agreement with our universal expansion (4.11) and (4.12),

while the blue numbers are in agreement with our proposal (5.64).

The construction for rank three HA2 theory from 6d involves certain irregular punctures

as the rank two case. We are not aware how to compute its indices directly. We write down

our prediction for the Schur index of rank three HA2 theory here:

ISchur

H
(3)
A2

= 1+(χ3+8)q+(χ4+8χ2)q3/2+(χ5+17χ3+46)q2+(χ6+18χ4+81χ2)q5/2

+(2χ7+25χ5+164χ3+248)q3+(χ8+27χ6+209χ4+557χ2)q7/2+O(q4) .
(5.66)

The unrefined limit is

ISchur

H
(3)
A2

(x= 1) = 1+11q+20q3/2+102q2+240q5/2+869q3+2120q7/2+O(q4) . (5.67)

SO(8). We can use class S theory technique to compute the HL and Schur index of rank

three HD4 4d SCFT. The H
(3)
D4

theory can be constructed by compactifying A5 (2, 0) 6d

SCFT on a sphere with four {32} punctures, which is a “bad” theory. We need instead to

consider H̃
(3)
D4

theory obtained from three {32} punctures and one {3, 2, 1} puncture. We

compute the Schur index as

ISchur

H̃
(3)
D4

(c1, c2, c3;x, b)

= N̂ ′6 K̂1(c) K̂1(d) K̂1(e) K̂2(x, b)
∑
λ

χλ(v2b, b, v−2b, vb−1x, v−1b−1x, b−1x−2)

χ2
λ(v−5, v−3, v−1, v, v3, v5)

×
∏

i=1,2,3

χλ(v2ci, ci, v
−2ci, v

2c−1
i , c−1

i , v−2c−1
i ) ,

(5.68)

with (b1 = b, b2 = 1/b)

N̂ ′6 = (v2; v2)4
6∏
j=2

(v2j ; v2)2 ,

K̂1(b) = PE

[
(v2 + v4 + v6)(b2 + b−2 + 2)

1− v2

]
,

K̂2(a, b) = PE

[
3v2 + 2v4 + v6 + (v3 + v5)(b2a−1)±1 + v3a±3 + v4(b2a2)±1

1− v2

]
.

(5.69)
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i, j 0 1 2 3 4 5 6

0 1 0 31 60 580 1858 9457

1 0 0 0 0 32 62 1111

Table 21. Expected coefficients c
SO(8)
i,j for the unrefined elliptic genus of three SO(8) instanton

strings.

From the above formula, we compute the Schur index up to q11/2. After decoupling the

free hypermultiplet, we obtain

ISchur

H
(3)
D4

= ISchur

H̃
(3)
D4

/ISchur
h.m. = 1+(χ3+28)q+(χ4+28χ2)q3/2+(χ5+57χ3+436)q2

+(χ6+58χ4+841χ2)q5/2+(2χ7+85χ5+1607χ3+5308)q3

+(χ8+87χ6+2042χ4+14135χ2)q7/2+(2χ9+115χ7+2806χ5+29042χ3+55871)q4

+(2χ10+115χ8+3242χ6+43166χ4+177896χ2)q9/2

+(2χ11+144χ9+4008χ7+60673χ5+392233χ3+527217)q5

+(2χ12+145χ10+4441χ8+75128χ6+649112χ4+1857119χ2)q11/2+O(q6) . (5.70)

The unrefined limit is

ISchur

H
(3)
D4

(x = 1) = 1 + 31q + 60q3/2 + 612q2 + 1920q5/2 + 10568q3 + 36968q7/2 + 157850q4

+ 548848q9/2 + 2036655q5 + 6798456q11/2 +O(q6) . (5.71)

Let us denote the reduced three-string elliptic genus as

E
h

(3)
D4

(v, x, τ,mi = 0) = v17Q−17/6
τ

∞∑
i,j=0

c
SO(8)
i,j vj(Qτv

−4)i. (5.72)

Then from (4.11) and (4.12), we expect to have table 21 for the unrefined coefficients

c
SO(8)
i,j . Here the red numbers are from the L

(3)
D4

series. Add the red numbers in each

column together, we expect to obtain a series that is equal to the Schur index of rank three

HD4 4d SCFT. Indeed, we have

L
(3)
D4

(q1/2, x = 1, Qm = 1, q2) = 1 + 31q + 60q3/2 + 612q2 + 1920q5/2 + 10568q3 + . . . .

(5.73)

One can see the two series match perfectly up to q3!

E6. The formula to compute the Hall-Littlewood index of rank three HE6 SCFT has been

written down in [45]. Similarly, we compute the Schur index as

ISchur

H̃
(3)
E6

= N̂9 K̂1(a1, a2) K̂1(a3, a4) K̂2(a5, a6, x)×

∑
λ

χλ

(
v2a5, v

−2a5, a5, v
2a6, v

−2a6, a6, v
x

a5a6
, v−1 x

a5a6
, x
−2

a5a6

)
χλ(v−8, v−6, v−4, v−2, 1, v2, v4, v6, v8)

×

× χλ
(
v2a1, v

−2a1, a1, v
2a2, v

−2a2, a2, v
2 1

a1a2
, v−2 1

a1a2
,

1

a1a2

)
× χλ

(
v2a3, v

−2a3, a3, v
2a4, v

−2a4, a4, v
2 1

a3a4
, v−2 1

a3a4
,

1

a3a4

)
.
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i, j 0 1 2 3 4 5 6

0 1 0 81 160 3555 12958 121447

1 0 0 0 0 82 162 6961

Table 22. Coefficients cE6
i,j for the unrefined elliptic genus of three E6 instanton strings.

with

K̂1(b1, b2) = PE

 3∑
i,j=1

(v2 + v4 + v6)bi/bj
1− v2

 ,
K̂2(b1, b2, x) = PE

 1

1− v2

(v2 + v4 + v6)

 2∑
i,j=1

bi/bj

+ 2v2 + v4 + v3x±3

+(b1 + b2)((v3 + v5)(b3x)±1 + v4(b3x
−2)±1)

 ,
where b1b2b3 = 1. From the above formula, we computed the Schur index up to q2. After

decoupling the free hypermultiplet, we obtain

ISchur

H
(3)
E6

= ISchur

H̃
(3)
E6

/ISchur
h.m. = 1+(χ3+78)q+(χ4+78χ2)q3/2+(χ5+157χ3+3161)q2

+(χ6+158χ4+6241χ2)q5/2+(2χ7+235χ5+11912χ3+91483)q3

+(χ8+237χ6+15072χ4+260821χ2)q7/2+O(q4) . (5.74)

The unrefined limit is

ISchur

H
(3)
E6

(x= 1) = 1+81q+160q3/2+3637q2+13120q5/2+128408q3+583360q7/2+O(q4) .

(5.75)

On the other hand, the universal leading expansion (4.11) and (4.12) indicate the

following table 22 for the coefficients of reduced three-string elliptic genus for E6. By

adding the red numbers in each column together, one can indeed obtain the same unrefined

Schur series as (5.75) up to q3.

F4, E7, E8. The Schur indices with generic SU(2)x fugacity for rank three HG theories

can be predicted from (5.63) up to q3 order. Let us just mark the unrefined series here:

ISchur

H
(3)
F4

= 1 + 55q + 108q3/2 + 1752q2 + 6048q5/2 + 45835q3 +O(q7/2) ,

ISchur

H
(3)
E7

= 1 + 136q + 270q3/2 + 9852q2 + 36990q5/2 + 533401q3 +O(q7/2) ,

ISchur

H
(3)
E8

= 1 + 251q + 500q3/2 + 32622q2 + 126000q5/2 + 3030748q3 +O(q7/2) .

(5.76)

Note for F4, we always mean the analogy for HG theories.
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In summary, we arrive at the final conjecture for arbitrary rank:

Conjecture. There exists an infinite series of functions L(n)
G (v, x,mG, Qτ )=

∑∞
i,j=0 b

G,n
i,j Q

i
τv
j,

n = 1, 2, . . . such that

1. bG,ni,j can be written as the sum of products between the characters of irreducible

representations of SU(2)x and the characters of irreducible representations of G with

integeral coefficients.

2. L
(n)
G (v, x,mG, 0) is the Hilbert series of the reduced moduli space of n G-instantons,

i.e. the Hall-Littlewood index of the H
(n)
G theory.

3. L
(n)
G (q1/2, x,mG, q

2) is the Schur index of the H
(n)
G theory.

4. The n-string elliptic genus E
h

(n)
G

(v, x,mG, Qτ ) can be generated from the first n LG

functions, i.e. L
(r)
G (v, x,mG, Qτ ), r = 1, 2, . . . , n.

6 Conclusion and outlook

In this paper we study the elliptic blowup equations for minimal 6d (1, 0) SCFTs with all

six possible gauge groups G = SU(3), SO(8), F4, E6,7,8. The study is twofold, topological

string partition function on elliptic non-compact Calabi-Yau and elliptic genera for 6d (1, 0)

SCFTs. From the viewpoint of Calabi-Yau, we use the geometric construction in [8] and

the generalized blowup equations in [15] to solve the refined BPS invariants to high base

degrees, which in turn serve as numerous nontrivial checks for the blowup equations, both

unity and vanishing ones. From the viewpoint of 6d SCFTs, we use the de-affinisation

procedure to derive some elegant functional equations for the elliptic genera, from which

we obtain an exact and universal recursion formula for the elliptic genera of arbitrary

number of strings and arbitrary gauge group. In particular, we explicitly compute the

one and two-string elliptic genera for all G, which recover all previous partial results from

refined topological string, modular bootstrap, Hilbert series, 2d quiver gauge theories and

the β-twisted partition function of N = 2 superconformal HG theories. We also prove the

modularity of the elliptic blowup equations which is a strong support that they hold for

arbitrary number of strings.

The elliptic genera we solve from blowup equations could be useful in many aspects.

For example, they would help to identify the 2d quiver description of the 6d minimal SCFT

with exceptional gauge symmetry, see some attempts for G = E7 in [87]. They also serve

as the calibration to determine modular ansatz for higher-string elliptic genus and the web

of topological vertex for the associated non-toric Calabi-Yau threefolds [40]. The elliptic

genera of 2d (0, 4) SCFTs we studied also play a role in the context of certain compact

elliptic Calabi-Yau threefolds [88, 89]. For example, the SO(8) and E6 minimal SCFT

serve as the constituents of the 2d quiver gauge theories associated to the T 6/Z2 × Z2

and T 6/Z3 × Z3 geometries respectively, and their elliptic genera are useful to compute

the degeneracies of 5d spinning BPS black holes in the dual gravity picture, as suggested

in [89]. We hope our exact formulas of the elliptic genera for exceptional minimal SCFTs

would contribute to this subject.
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It is also interesting to investigate the K-theoretic blowup equations for all possible

5d SYM theories. The K-theoretic blowup equations are quite different from the elliptic

ones in that they exist for all simple Lie groups. Part of the unity K-theoretic blowup

equations were already conjectured by Nakajima-Yoshioka [28] and explicitly checked by

Keller-Song [30]. One may suggest to use dimensional reduction i.e. Qτ → 0 to obtain

the K-theoretic blowup equations for the six gauge groups G. However, intriguingly we

find that the 5d reduction of elliptic blowup equations does not produce all non-equivalent

K-theoretic blowup equations for these six gauge groups. We leave these issues and the

complete set of K-theoretic blowup equations for all simple Lie group to future work.

The elliptic blowup equations for 6d (1, 0) minimal SCFTs allow us to further study

more complicated examples. Some immediate models are the non-Higgsable clusters with

matters which we will investigate in a subsequent paper [51]. There are four of them:

one belongs to minimal (1,0) SCFT with n = 7, and the other three have more than one

dimensional tensor branch. See some primary results on the elliptic genera for such theories

in [8, 38, 87]. One can also use blowup equations to study elliptic Calabi-Yau with multi-

sections. See some discussion on such geometries in [90, 91]. Our final goal is to find an

exact, explicit and universal formula for the elliptic genera of all 6d (1,0) SCFTs in the

atomic classification [6], see also a good review on the classification in [92]. It is known

there are two approaches to classifying 6d (1,0) SCFTs: top down and bottom up. We

expect blowup equations make sense in both settings. In the top down approach, given the

explicit description of a elliptic non-compact Calabi-Yau, i.e. base and elliptic fibration, one

should be able to use the generalized blowup equations in [15] to solve the partition function

of refined topological strings. On the other hand, in the bottom up approach, given the

explicit content of 6d multiplets which satisfy the anomaly cancellations, one should also be

able to directly write down the elliptic blowup equations for the elliptic genera of such 6d

SCFT, as a generalization of the current paper. The two pictures are related by geometric

engineering, as the two formalism of blowup equations are related by de-affinisation.

The K-theoretic Nekrasov partition function inspired the study on K-theoretic invari-

ants for general 4-manifolds, specially complex surfaces [17]. Since the elliptic genus of 6d

(1, 0) SCFTs in 5d limit gives K-theoretic Nekrasov partition function, naturally one won-

ders if elliptic genus can be used to construct some elliptic version of 4-manifold invariants,

such as Donaldson invariants. Besides, the Nekrasov partition function is known to relate

to W-algebras. In 4d, the equality between the universal one-instanton Nekrasov partition

function and the norm of Gaiotto-Whittaker vectors in W-algebra has been checked in [59].

See proof in [93]. In 5d, the relation between K-theoretic SU(N) Nekrasov partition func-

tion and q-deformed WN -algebra was also studied in [94]. It seems natural to extend such

relation to 6d where the elliptic genus should be related to the elliptic W-algebras. The

elliptic W-algebra associated to general Lie algebras is very difficult to study. We hope

our exact formula on the elliptic genus could shed some new light. For example, it would

be nice to see if one can use elliptic W-algebra to make comparison with our universal

one-string elliptic genus formula (3.33) like those comparison done in [59]. One can even

ask whether the structure of blowup equations itself can find some origin in pure algebras.

See a possible direction [95].
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One major remaining question is of course how to prove the elliptic blowup equations,

or more general, the blowup equations for all local Calabi-Yau in [15, 23, 29]. As the refined

BPS invariants for non-compact Calabi-Yau threefolds have been rigorously defined via

refined stable pairs in [11], these functional equations for the partition functions are indeed

well-formulated mathematical conjectures. See also the definition of refined invariants

in [12]. The proof of Göttsche-Nakajima-Yoshioka K-theoretic blowup equations [18] relies

deeply on the structure of gauge theories, which may not be exactly suitable for Calabi-Yau

setting, as the latter does not necessarily engineer a gauge theory. As emphasized before,

the formalism of generalized blowup equations is not sensitive to additional structures of

non-compact Calabi-Yau threefolds, be they toric or elliptic. Let us also point out there is

even no physical proof for the generalized blowup equations in [15, 23, 29]. In particular,

it would be good to see if one can connect the blowup equations with refined holomorphic

anomaly equations. Specializing to elliptic blowup equations studied in this paper, we

suspect by using the Kac-Weyl character formulas and following the 4d derivation in [59],

one may be able to derive the universal E1 formulas (3.33) and the identities from the

leading degree of vanishing blowup equations (3.48). We leave these for future studies.

Another major question is how to explain the surprising relation between the elliptic

genera of 6d (1,0) SCFT and the Schur indices of 4d N = 2 HG theories. Despite the

striking relation for rank two cases and even some rank three cases shown in this paper, we

do not find the exact formulas connecting the two and three-string elliptic genera and those

LG functions like (5.17) in rank one cases found in [37]. To obtain such fascinating formulas

for arbitrary rank, it seems one has to answer some questions first. For example, what is

the physical meaning for the L
(k)
G functions?42 How to interpret and make use of those

nonpertubative symmetries (4.27)? In 4d SCFT HG, precisely how should the β-twisted

partition function on T 2 × S2 be related to the superconformal indices on S3 × S1? And

how should the SCFT/VOA correspondence be put in this picture? One possible direction

is to look into the localization on the 4d backgrounds following the recent works [75–79].

42Naively one may tempt to identify LG functions as Macdonald indices, since they both have two

parameters, and both serve as an unification of Hall-Littlewood indices and Schur indices. However, this

seems not ture. For example, the Macdonald index of rank one HE7 can be easily obtained by taking limit

in the full superconformal index in [48] as

IM
H

(1)
E7

(q, t) = 1 + 133t+ (134tq + 7371t2) + (134tq2 + 16149t2q + 238602t3)

+ (134tq3 + 25193t2q2 + 819413t3q + 5248750t4) + . . . (6.1)

While the L
(1)
E7

function is determined in [37] as

L
(1)
E7

(Qτ , v) = 1 + 133v2 + 7371v4 + 238602v6 + 5248750v8 + . . .

+Qτ (134 + 16283v2 + 835562v4 + . . . ) +Q2
τ (31373 + . . . ) + . . . (6.2)

One can see they are indeed not the same, albeit IM
H

(1)
E7

(0, v2) = L
(1)
E7

(0, v) and IM
H

(1)
E7

(q, q) = L
(1)
E7

(q2, q1/2).
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A Lie algebraic convention

We collect some definitions in (affine) Lie algebras and fix our convention used throughout

the paper. Given a simple Lie algebar g of rank rk(G), there are four rk(G)-dimensional

lattices of importance, the root and coroot lattices Q,Q∨, the weight and coweight lattices

P, P∨. They satisfy

Q∨ ⊂ P ⊂ hC , (A.1)

Q ⊂ P∨ ⊂ h∗C . (A.2)

Here hC, h
∗
C
∼= Crk are the complexified Cartan subalgebra and its dual. They are isomor-

phic to each other via the natural inner product

〈•, •〉 : h∗C × hC → C . (A.3)

The Cartan matrix is then defined by

Aij = 〈αi, α∨j 〉 , (A.4)

where αi are simple roots. Consider the invariant bilinear form (•, •) on the coroot lattice

Q∨ normalized so that the norm square of the shortest coroot θ∨ is two. It can be gen-

eralized to a bilinear form on hC in which Q∨ is embedded. By the isomorphism between

hC and h∗C, it induces also an invariant bilinear form with the same notation on the latter

vector space. With our normalization, the bilinear form satisfies

(k, k) =
1

2h∨g

∑
α∈∆

〈α, k〉2 , k ∈ h , (A.5)

where h∨g is the dual Coxeter number, and ∆ the set of all roots.

We also define the fundamental weights ωi ∈ P and fundamental coweights ω∨i ∈ P∨

(i = 1, . . . , rk) through

〈αi, ωj〉 = 〈ω∨i , α∨j 〉 = δij . (A.6)

They are related to roots and coroots by

αi =
rk∑
j=1

Aijω
∨
j , α∨i =

rk∑
j=1

ωjAji . (A.7)
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Most of these definitions can be generalized to the affine Lie algebra ĝ. We add an

additional simple root α0 satisfying

α0 = α∨0 , (α0, α0) = (α∨0 , α
∨
0 ) = 2 . (A.8)

The affine Cartan matrix is defined to be

ÂIJ = 〈αI , α∨J 〉 , I, J = 0, 1, . . . , rk , (A.9)

where aI , a
∨
J are the marks and the comarks of the affine Lie algebra ĝ respectively. The

affine Cartan matrix satisfies

rk∑
I=0

aIÂIJ =

rk∑
J=0

ÂIJa
∨
J = 0 . (A.10)

Note that α0 can be written in terms of the longest root θ and the imaginary root δ, which

annihilates anything in h or h∗ and has a vanishing norm square, by

α0 = δ − θ . (A.11)

Similarly we can also define the fundamental weights ω̂I and coweights ω̂∨I in the affine

Lie algebra ĝ by

〈αI , ω̂J〉 = 〈ω̂∨I , α∨J 〉 = δIJ , I, J = 0, . . . , rk . (A.12)

For i = 1, . . . , rk the fundamental (co-)weights in ĝ are related those in g by

ω̂i = ωi + aiω̂0 , (A.13)

ω̂∨i = ω∨i + a∨i ω̂
∨
0 , (A.14)

while ω̂0 = ω̂∨0 is imaginary, and it satisfies

〈αi, ω̂0〉 = 〈ω̂0, α
∨
i 〉 = 0 , (δ, ω̂0) = 1 . (A.15)

Using these relations together with (A.7), we find the affine version of (A.7)

αI =

rk∑
J=0

ÂIJ ω̂
∨
J + δ · δI,0 , α∨I =

rk∑
J=0

ω̂J ÂJI + δ · δI,0 . (A.16)

B Mirror symmetry for elliptic non-compact Calabi-Yau three-folds

The prescription in section 2.2 can determine all the triple intersection numbers in the

non-compact Calabi-Yau X associated to a minimal 6d SCFT except for the number κτττ .

Given the non-compactness of X we do not expect all the triple intersection numbers to

be computable, and the number κτττ is irrelevant for the blowup equations in any case.

Nevertheless we propose here a reasonable normalisation scheme for κτττ , which involves

a local version of mirror symmetry. We use this normalisation scheme in the example

section 4.
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For the compact Calabi-Yau X̂ where X is embedded, one can define for every toric

charge l(i) a Picard-Fuchs operator L̂i which annihilates the homogeneous periods ω̂0, Π̂
(1)
i ,

Π̂
(2)
i . In the decompactification limit zde → 0, the Picard-Fuchs (PF) operator associated

to the (0)-curve in the base vanishes, while the other operators LI remain well-defined

and non-trivial, and they annihilate all the finite homogeneous periods43 ω0, ω0tI , ω0FJ
of the resulting local Calabi-Yau. These operators, however, do not form a PF complete

system, in the sense that they have extra independent solutions. To cure this problem,

we define in addition the PF operator Lτ from the toric charge of the elliptic fiber τ :

(−6, 2, 3, 0, . . . , 1, . . .).44 It annihilates all the finite homogeneous periods, but not the

other superfluous solutions, thus making the PF system complete.

The number κτττ is contained in the homogeneous B-period ω0Fτ = ω0∂τF(0,0) which

corresponds to the zero section. We find that it is completely fixed by the normalisation

condition

Lτ (ω0∂τF(0,0)) = 0 . (B.1)

Note that the resulting homogeneous B-period is not a solution to the complete PF system.

When it is acted upon by the other PF operators it does not vanish but produces ω0 up

to a scaling factor, which may have some open string interpretation.

There are several ways to understand this normalisation scheme. Once all the triple

intersection numbers are known, the normalised Euler characteristic can be computed by45

χ =

∫
X
c3(X) =

1

3

∑
ijk

κijkl
(i)
n l

(j)
n l(k)

n , (B.2)

we list the results of all the minimal 6CFTs except for the cases of n = 3, 7 in table 23. Note

that the calculation of the normalised Euler characteristic for the case n > 3 is different

from that for the first three cases. For n > 2 the elliptic singularity is constant over the

−n curve in the base. Except for the n = 3 case, the resolved geometry can be described

as configuration of Hirzebruch surfaces inside the compact CY-3-fold with only even Betti

numbers and χ(X) = 1 + b2 + b4. The case of n = 3, G = SU(3) is special as the reduction

from the compact geometry to the non-compact geometry also involves a flop operation.

The geometry of n = 2 has more supersymmetry and odd Betti numbers b0 = b4 = 1,

b1 = b2 = b3 = 2. In the case n = 1 we normalise the Euler characteristic using the formula

for the compact threefold [96] with E8 elliptic fibre type χ(Xcomp) = −2 · 30 ×
∫
B c

2
1(M).

The effect of blowing up a C2 = −n = 1 curve decreases
∫
B c

2
1(M) by one. Hence the

contribution of the non-compact geometry should be χ(M) = 60.

The Euler characteristics thus computed for the theories with a pure gauge bulk agree

with the naive definition in terms of the numbers bn of compact n-cycles χ =
∑

n(−1)nbn.

43For these elliptic Calabi-Yau threefolds decompactified in the horizontal direction, the fundamental

period ω̂0 does not become a constant but remains a non-trivial holomorphic function ω0.
44The charge 1 corresponds to the zero section of the elliptic fibration.
45Here it is understood that we omit the toric charge of the (0)-curve in the summation. If one wishes

the charge entry associated to the pullback of the base curve (denoted by S in table 2) can also be ignored

as it is only nonzero for the (0)-curve. See for instance table 2 for the model with G = F4.
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n 1 2 4 5 6 8 12

G − − SO(8) F4 E6 E7 E8

b2 1 6 6 8 9 10

b4 10 5 5 7 8 9

χ(X) 60 0 12 12 16 18 20

Table 23. The normalised Euler characteristics of the non-compact elliptic Calabi-Yau threefolds

associated to minimal 6d SCFTs.

Furthermore, by integrating the B-period ∂τF(0,0) we can compute the genus 0 GW invari-

ants in the τ direction, which should be the same as the Euler characteristics. We checked

this for the n = 1, 2, 5, 6 models.46

In the following, we illustrate this idea with two examples.

n = 1.

D ν∗i l(1) l(2) l(3)

D0 0 0 0 0 −6 0 0

D1 −1 0 0 0 2 0 0

D2 0 −1 0 0 3 0 0

S′ 2 3 0 −1 0 −1 1

K 2 3 0 0 1 −1 −2

F 2 3 −1 −1 0 1 0

S 2 3 0 1 0 0 1

F 2 3 1 0 0 1 0

(B.3)

The Picard-Fuchs operators of the compact geometry are

L̂1 = θ1 (θ1 − θ2 − 2θ3)− 12z1 (6θ1 + 1) (6θ1 + 5) ,

L̂2 = θ2
2 − z2 (θ1 − θ2 − 2θ3) (θ3 − θ2) ,

L̂3 = θ3 (θ3 − θ2)− z3 (θ1 − θ2 − 2θ3 − 1) (θ1 − θ2 − 2θ3) ,

(B.4)

where θi := zi
∂
∂zi

. Denote F̂0 the compact genus zero free energy, we have the periods:

X̂0 = ω̂0, X̂1 = ω̂0t1, X̂2 = ω̂0t2,

X̂3 =

(
∂

∂ρ2∂ρ3
+

1

2

∂

∂ρ2
3

)
ω̂0(ρ)|ρ=0,

X̂4 =

(
−1

2

∂

∂ρ2
1

− ∂

∂ρ1∂ρ2

)
ω̂0(ρ)|ρ=0,

X̂5 =

(
− ∂

∂ρ2
1

− ∂

∂ρ1∂ρ3

)
ω̂0(ρ)|ρ=0,

(B.5)

46For the remaining models the first non-vanishing invariants appear at very high degree and we fail to

obtain them within a reasonable period of time.

– 79 –



J
H
E
P
1
2
(
2
0
1
9
)
0
3
9

and another period with triple logarithmic singularity. Here ω̂0(ρ) is the deformed funda-

mental period

ω̂0(ρ) =
∑

n1,n2,n3∈Z≥0
xi=ni+ρi

Γ(x1+1)

Γ(x1+1)Γ(x1+1)Γ(x1−x2−2x3+1)Γ(−x2+x3+1)Γ(x3+1)Γ(x2+1)2
zx1

1 zx2
2 zx3

3 ,

(B.6)

and ω̂0 = ω̂0(0). The non-compact geometry is related to the compact geometry by setting

zdc := z3 → 0. Then the Picard-Fuchs operator L̂3 vanishes while the other two become:

L1 = θ1 (θ1 − θ2)− 12z1 (6θ1 + 1) (6θ1 + 5) ,

L2 = θ2
2 + z2 (θ1 − θ2) θ2.

(B.7)

The deformed fundamental period ω̂0(ρ) becomes ω0(ρ) = ω̂0(ρ)|z3→0. There are one period

X0 = ω0 = ω̂0|z3→0 without singularity, two periods with logarithmic singularities

X1 = X̂1|z3→0, X2 = X̂2|z3→0, (B.8)

one with double logarithmic singularities

X3 =

(
−1

2

∂

∂ρ2
1

− ∂

∂ρ1∂ρ2

)
ω0(ρ)|ρ=0 = ω0

∂

∂t2
F0 = X̂3|z3→0, (B.9)

and no solution with triple logarithmic singularities.

The reason we cannot fix the τ terms is because we do not know the τ = t1 derivative

of the free energy, however, there is an interesting “period” X4 = ω0
∂
∂τ F(0,0) which satisfies

(up to all the orders we have checked)

L1X4 = 0, L2X4 = 2ω0. (B.10)

Note that L1 is precisely the PF operator in the τ -direction. If X4 is a special period, we

can integrate both X3, X4 and fix the full triple intersection ring

R = −J3
1 − J2J

2
1 − J2

2J1 , (B.11)

and then proceed to compute the Euler number χ = 60 as well as
∫
c2J1 = −10,∫

c2J1 = −12 using (B.2) and (2.11).

Note that X4 indeed descends from a period of the compact geometry. In the non-

compact geometry it is the properly normalised integral over a non-compact cycle in the

mirror Calabi-Yau.

n = 5. The computation for the geometry with n = 1 is kind of trivial. Let us now

consider a more complicated model with n = 5. Notice in the compact cases, we embed

our elliptic Calabi-Yau 3-fold into a toric variety described by a reflexive polytope and

its star triangulation. Then the Mori cone generators l(i), which are also known as toric

charges, are related to the star triangulation directly. In the de-compactification limit, a

point of the polytope is missing, leaving a non-reflexive polytope. The dual polytope now

in principle have infinite size. As depicted in section 2.2, the limit happens to take the
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variable zdc to 0. This is equivalent to deleting one Mori generator, and keeping the others.

From the polytope point of view, we delete a sub-polytope from it, and keep the same

triangulation on the remaining part. We may assume that the standard method of mirror

symmetry for a compact hyper-surface embedded in a compact toric variety still holds.

For now, we try to triangulate the non-reflexive polytope, it has 16 star triangulations.

For one of them, the toric charges are l(i), i = 1, 2, 3, 4, 6, 7 in table 2, we say the associated

curves form the toric basis of compact curves. One can in principle write down the Picard-

Fuchs equations, and then try to find solutions. For this model, it is possible to change the

variables of complex structure parameters zi so that the solutions do not change, and the

mirror maps have expansions with positive powers of zi. The charges of the new basis l
(i)
F4

can be found in table 2, which correspond exactly to nodes in the Dynkin diagram. Then

the complete Picard-Fuchs operators are given in (B.12). There are five B-periods solved

from these operators, and an extra one X0
∂
∂τ F(0,0) annihilated by all the operators except

for Lb, with Lb(ω0
∂
∂τ F(0,0)) ∼ ω0. The Euler number can be predicted from the τ direction

genus zero invariant as 12.

L0 = θ1 (θ1−2θ2+θ3−θ6)−z1 (2θ1−θ2)(2θ1−θ2+1) ,

L1 =−(2θ1−θ2)(θ2−2θ3+θ4−θ6)−z2 (θ1−2θ2+θ3−θ6−1)(θ1−2θ2+θ3−θ6) ,

L2 = (2θ3−2θ4+θ5−1)(2θ3−2θ4+θ5)(θ1−2θ2+θ3−θ6) ,

−2z3 (2θ3+1)(θ2−2θ3+θ4−θ6−1)(θ2−2θ3+θ4−θ6) ,

L3 = (θ4−2θ5)(θ2−2θ3+θ4−θ6)−z4 (2θ3−2θ4+θ5−1)(2θ3−2θ4+θ5) ,

L4 = θ5 (2θ3−2θ4+θ5)−z5 (θ4−2θ5−1)(θ4−2θ5) ,

Lb = θ2
6−z6 (θ1−2θ2+θ3−θ6)(θ2−2θ3+θ4−θ6) ,

Lτ = θ1 (θ5−1)θ5−8z1z
2
2z

3
3z

4
4z

2
5 (2θ3+1)(2θ3+3)(2θ3+5) .

(B.12)

C Geometric data

We express here the Mori cone generators of the elliptic non-compact Calabi-Yau threefolds

X associated to the minimal 6d SCFTs in terms of the Mori cone generators l(i) of the

compact Calabi-Yau X̂ given in [8].

G = SO(8). l(5) is the direction of decompactification.

Σb = l(4), Σ0 = l(6), Σ1 = 2l(1) + l(6) + 2l(7),

Σ2 = 2l(1) + l(6), Σ3 = l(3) + l(6), Σ4 = l(1) + l(2) + 2l(7) . (C.1)

G = F4. l(5) is the direction of decompactification.

Σb = l(4), Σ0 = l(3), Σ1 = l(2) + l(6) + 2l(7), Σ2 = l(1), Σ3 = l(6), Σ4 = l(7) . (C.2)

G = E6. l(3) is the direction of decompactifiction.

Σb = l(5), Σ0 = l(4), Σ1 = l(1) + l(6) + 2l(7) + 2l(9), Σ2 = l(8) + l(9),

Σ3 = l(6) + 2l(7) + l(8), Σ4 = l(2) + l(7) + l(8), Σ5 = l(6), Σ6 = l(7) + l(9) .
(C.3)
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G = E7. l(4) is the direction of decompactification.

Σb = l(3), Σ0 = l(5), Σ1 = l(6), Σ2 = l(2)+l(7)+2l(8)+l(9), Σ3 = l(1)+l(7)+l(10),

Σ4 = l(7), Σ5 = l(8)+l(10), Σ6 = l(9), Σ7 = l(7)+2l(8)+l(9) . (C.4)

G = E8. l(3) is the direction fo decompactification.

Σb = l(8), Σ0 = l(4), Σ1 = l(5), Σ2 = l(6), Σ3 = l(7), Σ4 = l(1)+l(2)+l(10)+2l(11),

Σ5 = l(9), Σ6 = l(10), Σ7 = l(11), Σ8 = l(1)+l(10)+2l(11) . (C.5)

D Useful identities

Jacobi theta functions with characteristics are defined as

θ
[a]
1 (τ, z) = −i

∑
k∈Z

(−1)k+aQ(k+1/2+a)2/2
τ Qk+1/2+a

z ,

θ
[a]
2 (τ, z) =

∑
k∈Z

Q(k+1/2+a)2/2
τ Qk+1/2+a

z ,

θ
[a]
3 (τ, z) =

∑
k∈Z

Q(k+a)2/2
τ Qk+a

z ,

θ
[a]
4 (τ, z) =

∑
k∈Z

(−1)k+aQ(k+a)2/2
τ Qk+a

z ,

(D.1)

which satisfy the well-known addition formulas

θ
[a1]
3 (τ, z1)θ

[a2]
3 (τ, z2) =

∑
i=2,3

θ
[
a1+a2

2
]

i (2τ, z1 + z2)θ
[
a1−a2

2
]

i (2τ, z1 − z2),

θ
[a1]
4 (τ, z1)θ

[a2]
4 (τ, z2) =

∑
i=1,4

θ
[
a1+a2

2
]

i (2τ, z1 + z2)θ
[
a1−a2

2
]

i (2τ, z1 − z2).

(D.2)

Jacobi theta function θ1 can be defined as triple products

θ1(τ, z) = iQ
1
12
τ Q

− 1
2

z η(τ)
∞∏
n=1

(
1−QzQn−1

τ

)(
1− Qnτ

Qz

)
, (D.3)

which satisfies the quasi-periodicity

θ1(τ, z + 1) = −θ1(τ, z), (D.4)

θ1(τ, z + τ) = −Q−1/2
τ Q−1

z θ1(τ, z), (D.5)

θ1(τ, z − τ) = −Q−1/2
τ Qzθ1(τ, z). (D.6)

For a cluster of refined BPS invariants Nk
(0,k) = 1 for all k ≥ 0, the total contribution

to BPS partition function is

∞∑
k=0

Qkχ2k+1

(
(q1q2)1/2

)(
q

1/2
1 −q

−1/2
1

)(
q

1/2
2 −q

−1/2
2

) =
1+Q(

q
1/2
1 −q

−1/2
1

)(
q

1/2
2 −q

−1/2
2

)
(1−Qq1q2)

(
1−Qq−1

1 q−1
2

) .
(D.7)
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Similiarly, for a cluster of refined BPS invariants Nk
(0,k+1/2) = −1 for all k ≥ 0, the total

contribution to BPS partition function is

∞∑
k=0

Qkχ2k+2

(
(q1q2)1/2

)(
q

1/2
1 −q

−1/2
1

)(
q

1/2
2 −q

−1/2
2

) =
(q1q2)1/2+(q1q2)−1/2(

q
1/2
1 −q

−1/2
1

)(
q

1/2
2 −q

−1/2
2

)
(1−Qq1q2)

(
1−Qq−1

1 q−1
2

) .
(D.8)

We also often encounter the case where a cluster of refined BPS invariants Nk
(0,k−1/2) =

−1 for all k ≥ 0 are combined with a “zero” degree invariants N0
(0,1/2) = −1. In such case,

the total contribution is

1(
q

1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

) +
∞∑
k=1

Qkχ2k

(
(q1q2)1/2

)(
q

1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

)
=

(
(q1q2)1/2 + (q1q2)−1/2

)
(1 +Q+Q2 −

(
q1q2 + q−1

1 q−1
2

)
Q)(

q
1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

)
(1−Qq1q2)

(
1−Qq−1

1 q−1
2

) .
(D.9)

In the computation of vector multiplets, we often encounter the following expressions:

PE

[
Q

1−Qτ

]
=
∞∏
n=0

1

1−QQnτ
, (D.10)

and

PE

[(
Qz +

Qτ
Qz

)( 1

1−Qτ

)]
=

iQ
1
12
τ Q

− 1
2

z η(τ)

θ1(τ, z)
. (D.11)

In counting the total index quadratic form of the contribution from vector multiplets, we

often encounter the following expression:

PE

(
−
(
Bl(0,1/2,R)(q1, q2)Qz +Bl(0,1/2,−R)(q1, q2)

Qτ
Qz

)( 1

1−Qτ

))
. (D.12)

Here

Bl(jl,jr,R)(q1, q2) = f(jl,jr)(q1, q2/q1)qR1 + f(jl,jr)(q1/q2, q2)qR2 − f(jl,jr)(q1, q2), (D.13)

and

f(jl,jr)(q1, q2) =
χjl(qL)χjr(qR)(

q
1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

) . (D.14)

Supposing R ≥ 2, the expression (D.12) can be written as

∏
m,n≥0

m+n≤R−1

iQ
1/12
τ η(Qzqm1 q

n
2 )−1/2

θ1(z+mε1+nε2)

∏
m,n≥0

m+n≤R−2

iQ
1/12
τ η(Qzq

m+1
1 qn+1

2 )−1/2

θ1(z+(m+1)ε1+(n+1)ε2)

=
(
iQ1/12
τ Q−1/2

z

)R2

(q1q2)
−

(R−1)R(R+1)

6
∏

m,n≥0
m+n≤R−1

η

θ1(z+mε1+nε2)

∏
m,n≥0

m+n≤R−2

η

θ1(z+(m+1)ε1+(n+1)ε2)
.

(D.15)
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We normally denote the modular part of (D.12), i.e. those θ1 and η functions in the above

expression together as θ̆. The index quadratic form of θ̆ can be computed as

Indθ̆(z,R) = −R
2z2

2
− (R− 1)R(R+ 1)

3
z(ε1 + ε2)− (R− 1)R2(R+ 1)

12
(ε21 + ε1ε2 + ε22), (D.16)

which actually holds for all R ∈ Z. See more details in the appendix A in [25].

E Relation with modular ansatz

In this appendix, we show how the modular ansatz, or its denominator to be specific, for

the elliptic genus emerges from our exact formulas. Simply speaking, the denominator

of the modular ansatz comes from suming over all α∨ with a fixed norm square in the

recursion formula.

It was proposed in [24, 37] the k-string elliptic genus satifies the following ansatz

E
h̃

(k)
G

(τ, ε1, ε2,mα) =
NG,k(τ, ε1, ε2,mα)

DG,k(τ, ε1, ε2,mα)
, (E.1)

where both the numerator and the denominator are Weyl invariant Jacobi forms. Fur-

thermore the denominator has the following unique structure as a Weyl invariant Jacobi

form which reproduces the poles of the Hilbert series of the moduli space of k G-gauge

instantons [43] and the correct leading order of Qτ :

DG,k = η(τ)4kh∨G

k∏
i=1

ϕ
−1,

1
2
(iε1)ϕ

−1,
1
2
(iε2)D̃G,k (E.2)

with the gauge group related factor

D̃G,k =
∏
α∈∆

k∏
i=1

i−1∏
`=0

ϕ
−1,

1
2
((i+ 1)ε+ + (i− 1− 2`)ε− +mα) , (E.3)

multiplying over the set of roots. Later [97] claims that Ek has actually fewer poles and as

a consequence the denominator is smaller (see also [59]). It can be written as47

Dred
G,k = η(τ)4kh∨G

k∏
i=1

ϕ
−1,

1
2
(iε1)ϕ

−1,
1
2
(iε2)D̃red

G,k (E.4)

with the gauge group related factor

D̃red
G,k =

∏
α∈∆l

DSU(2)
k,α (τ,m)

∏
α∈∆s

DSU(2)
bk/cαc,α(τ,m) , (E.5)

where ∆l,∆s are the set of long roots and short roots respectively, the constants cα are

cα = 2 if G = Sp(N), SO(2N + 1), F4 ,

cα = 3 if G = G2 ,
(E.6)

47Here “red” means “reduced”, i.e. the number of poles reduces. The “tilde” and “reduced” in this section

should not be confused with them in the main text where them mean a free hypermultiplet is coupled or

decoupled.
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and that

DSU(2)
k,α (τ,m) =

∏
a,b≤k
a,b>0

ϕ
−1,

1
2
(aε1 + bε2 +mα) . (E.7)

To see that Dred
G,k is actually smaller than DG,k, we spell out explicitly the components of

D̃G,k, D̃red
G,k for some small values of k. To be concrete, we take the model of n = 5 with

G = F4. On the one hand,

D̃1 =
∏
α∈∆

ϕ
−1,

1
2
(ε1 + ε2 +mα) , (E.8)

D̃2 =
∏
α∈∆

ϕ
−1,

1
2
(ε1 + ε2 +mα)ϕ

−1,
1
2
(2ε1 + ε2 +mα)ϕ

−1,
1
2
(ε1 + 2ε2 +mα) , (E.9)

D̃3 =
∏
α∈∆

ϕ
−1,

1
2
(ε1 + ε2 +mα)ϕ

−1,
1
2
(2ε1 + ε2 +mα)ϕ

−1,
1
2
(ε1 + 2ε2 +mα)

ϕ
−1,

1
2
(3ε1 + ε2 +mα)ϕ

−1,
1
2
(2ε1 + 2ε2 +mα)ϕ

−1,
1
2
(ε1 + 3ε2 +mα) . (E.10)

On the other hand,

D̃red
1 =

∏
α∈∆l

ϕ
−1,

1
2
(ε1 + ε2 +mα) , (E.11)

D̃red
2 =

∏
α∈∆s

ϕ
−1,

1
2
(ε1 + ε2 +mα)×∏

α∈∆l

ϕ
−1,

1
2
(ε1 + ε2 +mα)ϕ

−1,
1
2
(2ε1 + ε2 +mα)ϕ

−1,
1
2
(ε1 + 2ε2 +mα) , (E.12)

D̃red
3 =

∏
α∈∆s

ϕ
−1,

1
2
(ε1 + ε2 +mα)×∏

α∈∆l

ϕ
−1,

1
2
(ε1 + ε2 +mα)ϕ

−1,
1
2
(2ε1 + ε2 +mα)ϕ

−1,
1
2
(ε1 + 2ε2 +mα)

ϕ
−1,

1
2
(3ε1 + ε2 +mα)ϕ

−1,
1
2
(ε1 + 3ε2 +mα) . (E.13)

We will demonstrate that our recursion formulas (3.32) are consistent with (E.4) and (E.5)

rather than (E.2), (E.3).

Let us first take a look at the case of k = 1 where the recursion formulas (3.32)

simply read

E1 =
∑

||α∨||2=2

(−1)|α
∨Dα∨

{1,0,0}

D1
Aα∨ . (E.14)

We consider the poles contributed by each component. Suppose we choose three unity

r fields with a1,2,3, which differ from each other by ai − aj = sij/n. According to the

requirement for a1,2,3, we know that all sij are intergers and 0 < |sij | < n. Using (D.2),

it is not difficult to show that both Dα∨
1,0,0 and D1 contain the zero ε1 − ε2 = 0 of order

min(|sij |, n− |sij |). For example, the minor

∆1,2 = det

(
θ

[a1]
3 (nτ,−2ε1 + (n− 2)ε2) θ

[a1]
3 (nτ, (n− 2)ε1 − 2ε2)

θ
[a2]
3 (nτ,−2ε1 + (n− 2)ε2) θ

[a2]
3 (nτ, (n− 2)ε1 − 2ε2)

)
, (E.15)
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can be rewritten as

∆1,2 =
∑
i=2,3

θ
[
a1 − a2

2
]

i (2nτ, n(ε2 − ε1))− θ
[
a1 − a2

2
]

i (2nτ, n(ε1 − ε2)), (E.16)

which clearly contain zeros ε1− ε2 = 0 of order min(|sij |, n−|sij |). Now by the universality

argument in section 3.2, we can choose arbitrary three a1,2,3 in recursion formulas. Let us

choose three successive ones with a3 − a2 = a2 − a1 = 1/n. Both Dα∨
1,0,0 and D1 have the

simple zero ε1 − ε2 = 0. In fact, more is true, the determinant

D(z1, z2, z3) = det

θ
[a1]
i (nτ, nz1) θ

[a1]
i (nτ, nz2) θ

[a1]
i (nτ, nz3)

θ
[a2]
i (nτ, nz1) θ

[a2]
i (nτ, nz2) θ

[a2]
i (nτ, nz3)

θ
[a3]
i (nτ, nz1) θ

[a3]
i (nτ, nz2) θ

[a3]
i (nτ, nz3)

 (E.17)

with characteristics a1,2,3 chosen as above and i = 3, 4 always has simple zeros at z1− z2 =

z2 − z3 = z3 − z1 = 0. Therefore Dα∨
1,0,0/D1 has zeros/poles

(ε1 − ε2)(mα − ε1)(mα − ε2)

(ε1 − ε2)ε1ε2
, (E.18)

which can be boosted to the modular object

θ1(mα − ε1)θ1(mα − ε2)

θ1(ε1)θ1(ε2)
. (E.19)

The other component in (E.14) for E1 is

Aα∨(my) =
η4

θ1(mα)θ1(mα − ε1)θ1(mα − ε2)θ1(mα − ε1 − ε2)

∏
β∈∆

β·α∨=1

η

θ1(mβ)
, (E.20)

where α = α∨ · 2/||α∨||2 in the root associated to the coroot α∨. The components θ1(mα−
ε1)θ1(mα−ε2) cancel with corresponding components in the numerator of Dα∨

1,0,0/D1. Thus

naively Aα∨ should contribute poles48 mβ = 0 for β ∈ ∆ and mα − ε1 − ε2 = 0 for

α ∈ ∆l to E1. The former poles, however, get canceled with some factors in the numerator

after performing the summation over short coroots in (E.14), which can either be seen in

explicit calculations,49 or be argued formally from the Hilbert series of gauge instanton

moduli space [43] as well as from W-algebra via AGT correspondence [59]. The remaining

genuine poles are mα − ε1 − ε2 = 0 for α ∈ ∆l, which are consistent with the slimmer

expression (E.11) rather than (E.8).

The discussion above indicates that the recursion formulas (3.32) for Ek naively contain

both genuine poles and spurious poles, while the cancellation of the latter is not obvious.

Nevertheless, all true poles should already be visible in the recursion formulas, which allows

us to distinguish (E.4) from (E.2). In the following, we will argue in favor of (E.4) by point-

ing out that extra poles indicated in (E.2) are not present in the recursion formulas (3.32),

48There are also poles at positions shifted by 1 or τ of course.
49This cancellation can be checked in all the minimal models, not only in the n = 5 model.
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and assume along the way that the spurious poles not consistent with either (E.2) or (E.4)

cancel automatically. With this comment in mind, let us now look at the denominators

of E2,E3 from the recursion formulas, and consider only relevant poles, the poles which

appear also in either (E.2) or (E.4).

The right hand side of (3.32) for E2 has three sectors with

(||α∨||2, d1, d2) = (4, 0, 0), (2, 1, 0)/(2, 0, 1), (0, 1, 1) (E.21)

respectively. With an explicit calculation in the n = 5 models, we find the following relevant

poles in each of the three sectors50

(||α∨||2, d1, d2) relevant poles

(4,0,0) mα − ε1 − ε2, α ∈ ∆

(2,1,0)/(2,0,1) mα − ε1 − ε2,mα − 2ε1 − ε2,mα − ε1 − 2ε2, α ∈ ∆l

(0,1,1) −

They are clearly consistent with (E.12). Likewise, for E3 there are five sectors on the right

hand sie of (3.32), and we find the relevant poles as follows

(||α∨||2, d1, d2) relevant poles

(6,0,0) mα − ε1 − ε2, α ∈ ∆;

mα − 2ε1 − ε2,mα − ε1 − 2ε2, α ∈ ∆l

(4,1,0)/(4,0,1) mα − ε1 − ε2,mα − 2ε1 − ε2,mα − ε1 − 2ε2, α ∈ ∆l

(2,2,0)/(2,0,2) mα − ε1 − ε2, α ∈ ∆;

mα − 2ε1 − ε2,mα − ε1 − 2ε2,

mα − 3ε1 − ε2,mα − ε1 − 3ε2, α ∈ ∆l

(2,1,1) mα − ε1 − ε2,mα − 2ε1 − ε2,mα − ε1 − 2ε2, α ∈ ∆l

(0,2,1) mα − ε1 − ε2, α ∈ ∆l

which are consistent with (E.13).

F Elliptic genera

We record some high Qτ order results for the reduced elliptic genus here. Recall the k-string

elliptic genus when expanded with respect to Qτ can be written as

E
h

(k)
G

(v, x,Qτ , Qmi) = vkh
∨
G−1Q

−(kh∨G−1)/6
τ

∞∑
n=0

Qnτ g
(n)
k,G(v, x,Qmi).

We are interested in the v-expansion of g
(n)
k,G(v, x,Qmi). Usually, the leading v power

becomes more and more negative when Qτ order n goes up. When n is enough high, we

50We also suppress the poles ε1 = ε2 = 0, which are guaranteed by the Dα∨
{d0,d1,d2}/Dd structure similar

to the previous discussion.
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observe some patterns for the leading v-expansion behavior. For two-strings elliptic genus,

we observe for i ≥ 2(n− 2),

g
(2)
i,G(v, x,Qmi) = −v−3(n+i)−5

(
χ(i−2(n−2))θχi−(n−2)

)
−O(v−3(n+i)−4) . . . . (F.1)

As high as the Qτ order we have reached, this is true. It is nice to see how to explain this

phenomenon.

A2. For the reduced two-string elliptic genus for G = SU(3) model, recall

g
(n)
2,A2

(v, x = 1, Qmi = 1) =
1

(1− v)10(1 + v)6 (1 + v + v2)5 × P
(n)
2,A2

(v).

We have

P
(2)
2,A2

(v) = v−10(−1−v+6v2+9v3−10v4−33v5+41v6+256v7+428v8+220v9−347v10−823v11−131v12

+2652v13+7721v14+14419v15+21826v16+27125v17+28966v18+27125v19+· · ·+v36),
P

(3)
2,A2

(v) = v−13(−16−28v+50v2+198v3+138v4−399v5−963v6−419v7+1716v8+4316v9+5014v10

+2174v11−4110v12−10701v13−12583v14−2128v15+27073v16+75426v17+136089v18+198723v19

+244336v20+260628v21+244336v22+· · ·+v42),
P

(4)
2,A2

(v) = v−16(−81−223v−5v2+880v3+1695v4+577v5−3110v6−6735v7−5803v8+2582v9+17019v10

+31735v11+38096v12+25783v13−11462v14−68637v15−118109v16−116300v17−11102v18

+231810v19+605425v20+1054375v21+1497688v22+1816145v23+1930514v24+· · ·+v48),
P

(5)
2,A2

(v) = v−19(−256−874v−810v2+1432v3+5510v4+7553v5+2483v6−10671v7−26644v8−34874v9

−23600v10+16620v11+90316v12+185964v13+260250v14+241846v15+62988v16−279728v17

−692866v18−963287v19−815649v20+30457v21+1729760v22+4189517v23+7044615v24+9777494v25

+11727151v26+12428414v27+11727151v28+· · ·+v54),
. . .

P
(10)
2,A2

(v)(v) = v−34(−6561−31129v−72335v2−120018v3−168868v4−206886v5−222250v6−170936v7+98441v8

+773013v9+1959712v10+3612563v11+5410138v12+6633691v13+5994478v14+1510639v15

−9064153v16−27314880v17−52091127v18−77137569v19−89646012v20−69861741v21+5587892v22

+154737705v23+377669387v24+641219584v25+868425362v26+940214412v27+718317837v28

+93293293v29−951170969v30−2275980208v31−3545719630v32−4250592736v33−3785597548v34

−1612094548v35+2569710910v36+8659446500v37+16075828305v38+23808502207v39

+30625221095v40+35302136340v41+36965592032v42+35302136340v43+· · ·+v84).
Note that the leading power of v in P

(n)
2,A2

(v) becomes more and more negative as n increases.

In fact, we notice for n ≥ 2,

P
(n)
2,A2

(v) = v−3n−4
(
− (n− 1)4 − · · ·+ palindrome up to v6(n+4)

)
. (F.2)

With generic x, we also observe the following general expansion: for n ≥ 2,

v3n+4g
(n)
2,A2

(v,x,Qmi) =−χA2

(n−2)θχn−1−
(
χA2

(n−3)θχn+. . .
)
v−
(
χA2

(n−4)θχn+1+. . .
)
v2+. . . .

(F.3)
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For the reduced elliptic genus of three-strings, recall

g
(n)
3,A2

(v, x = 1, Qmi = 1) =
1

(1− v)16(1 + v)10 (1 + v2)5 (1 + v + v2)6 × P
(n)
3,A2

(v). (F.4)

We obtain

P
(2)
3,A2

(v) = v−10(−1−2v−5v2−4v3+11v4+30v5+74v6+84v7+267v8+880v9+2718v10+6130v11

+11512v12+17594v13+24774v14+35306v15+64404v16+133960v17+290609v18+569846v19

+1020364v20+1628376v21+2376984v22+3145582v23+3848955v24+4318298v25+4501676v26

+4318298v27+· · ·+v52),

P
(3)
3,A2

(v) = v−17(2−10v2−9v3+12v4+44v5−48v6−367v7−622v8−183v9+1740v10+4336v11+4488v12

−1116v13−12504v14−17424v15+4576v16+77007v17+199630v18+337366v19+417362v20

+382080v21+255946v22+265962v23+839446v24+2662413v25+6368124v26+12524957v27

+21034734v28+31405824v29+42159674v30+51803451v31+58351834v32+60785174v33

+58351834v34+. . .+v66),

P
(4)
3,A2

(v) = v−21(32+40v−84v2−339v3−426v4+487v5+2242v6+2876v7−1500v8−12817v9−23440v10

−16831v11+25630v12+97493v13+150494v14+103012v15−112582v16−448583v17−700938v18

−495362v19+512476v20+2411835v21+4741886v22+6461123v23+6254586v24+3310035v25

−1672684v26−5447913v27−2195270v28+16177917v29+57171170v30+126228382v31+222042686v32

+337620393v33+457167512v34+563129124v35+635332178v36+661625872v37+635332178v38+· · ·+v74),

P
(5)
3,A2

(v) = v−25(162+412v+276v2−1295v3−4518v4−5771v5+1292v6+21793v7+44712v8+38030v9

−38688v10−192767v11−341004v12−309898v13+101910v14+927411v15+1862626v16+2189163v17

+1001340v18−2210183v19−6887108v20−10727974v21−10030208v22−703145v23+19133352v24

+46719280v25+72876216v26+83251991v27+63444248v28+7529926v29−72005488v30−136950773v31

−124639134v32+43752233v33+438669558v34+1103016208v35+2019390168v36+3111882801v37

+4234930428v38+5220665928v39+5892000612v40+6133530828v41+5892000612v42+· · ·+v82),

P
(6)
3,A2

(v) = v−29(512+1690v+3044v2+766v3−10596v4−31191v5−46930v6−19288v7+89188v8+274511v9

+419176v10+288140v11−374722v12−1614464v13−2963132v14−3347473v15−1280918v16

+4247141v17+12688484v18+20686636v19+22001562v20+9184210v21−22497646v22−69062433v23

−113553734v24−124631077v25−65395112v26+91413273v27+339731228v28+622477442v29

+828007584v30+813952151v31+463211226v32−241280313v33−1140297436v34−1857927117v35

−1829759686v36−398271211v37+2994640544v38+8636915664v39+16332876522v40+25397471432v41

+34642293136v42+42690290417v43+48157593258v44+50110832268v45+48157593258v46+· · ·+v90).

For n ≥ 3, we notice the following universal leading behavior

g
(3)
n,A2

(v, x) = v−4n−5(χ2(n−2)χ(n−3)θ +O(v)) . (F.5)

D4. For the reduced two-string elliptic genus of SO(8) 6d SCFT, recall

g
(n)
2,D4

(v, x = 1, Qmi = 1) =
1

(1− v)22(1 + v)12 (1 + v + v2)11 × P
(n)
2,D4

(v) .
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We have

P
(2)
2,D4

(v) =−v−8(1+3v+22v2+47v3+108v4+29v5−184v6−861v7−1762v8−3305v9−13965v10−65210v11

−260932v12−884324v13−2589008v14−6645978v15−15280924v16−31673046v17−59506626v18

−101871752v19−159566189v20−229273231v21−303095099v22−369460130v23−415787266v24

−432409780v25−415787266v26+· · ·+v50),

P
(3)
2,D4

(v) = v−11(1+v2)(2+3v−23v2−281v3−1338v4−3786v5−5794v6−384v7+22410v8+57106v9

+65200v10−8878v11−148110v12−82859v13+911821v14+4473554v15+14488449v16+39847612v17

+97908991v18+217119419v19+434067674v20+782158341v21+1274332193v22+1885916954v23

+2545465687v24+3144719815v25+3566407238v26+3718703248v27+3566407238v28+· · ·+v54),

P
(4)
2,D4

(v) =−v−19(2+2v−22v2−42v3+88v4+329v5−11v6−1411v7−1930v8+1877v9+12149v10

+38843v11+113904v12+240220v13+226932v14−364906v15−1770622v16−3067485v17−1974439v18

+3262797v19+10272490v20+10304550v21−10767498v22−74227039v23−228511951v24

−601571798v25−1479273049v26−3376185023v27−7028420238v28−13251946148v29

−22656311766v30−35281600040v31−50298462814v32−65951082224v33−79826800694v34

−89424037262v35−92856436862v36−89424037262v37+· · ·+v72),

P
(5)
2,D4

(v) =−v−22(1+v2)(84+146v−831v2−2495v3+2027v4+16874v5+12844v6−55230v7−118023v8

+45251v9+412658v10+306961v11−747606v12−1085075v13+2514527v14+8955862v15+7677132v16

−13638464v17−48153754v18−58843606v19−3166625v20+114419603v21+211444789v22

+164548302v23−98377407v24−542911427v25−1148224939v26−2306012154v27−5445277331v28

−13585439053v29−31372682848v30−64179900027v31−116221363135v32−188200853472v33

−275432340276v34−367411722852v35−449506711376v36−506517773112v37−526950799964v38

−506517773112v39+· · ·+v76),

P
(6)
2,D4

(v) =−v−25(1200+3374v−6724v2−40296v3−31436v4+159328v5+410682v6+15592v7−1467224v8

−2279805v9+1088019v10+8007211v11+8314028v12−9090084v13−32918254v14−19726713v15

+67719233v16+186559606v17+183703487v18−107579194v19−661966959v20−1107115384v21

−832956121v22+557841530v23+2672286699v24+4109758618v25+3046056345v26−1483241349v27

−8623040702v28−16826056321v29−28634625983v30−59027415291v31−144463390006v32

−347331281609v33−749797256633v34−1433909622002v35−2450540661913v36−3786292890317v37

−5341633935638v38−6932828077068v39−8322655072044v40−9274316155458v41−9612992092064v42

−9274316155458v43+· · ·+v84).

For n ≥ 4, we observe the following general leading order behavior

v3n+7g
(n)
2,D4

(v, x,Qmi) = −χD4

(n−4)θχn−2(x) +O(v). (F.6)

F4. For the reduced two-string elliptic genus of F4 6d SCFT, recall

g
(n)
2,F4

(v, x = 1, Qmi = 1) =
1

(1− v)34(1 + v)22 (1 + v + v2)17 × P
(n)
2,F4

(v) . (F.7)
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We have

P
(2)
2,F4

(v) = 1653+14307v+118305v2+770928v3+4293754v4+20938534v5+90874761v6+354378137v7

+1254181600v8+4057153817v9+12068000241v10+33173318084v11+84638789902v12+201171570880v13

+446852450528v14+930177353330v15+1818950197662v16+3348446417048v17+5813458948881v18

+9534395062259v19+14791974953829v20+21734938030680v21+30278882934513v22+40026745086453v23

+50246339190488v24+59931545438647v25+67951300040637v26+73260270949890v27

+75118982210308v28+73260270949890v29+· · ·+v56,

P
(3)
2,F4

(v) = v−12(1+7v+58v2+277v3+1071v4+2976v5+5964v6+5832v7−9266v8−57418v9−135552v10

−169110v11+55432v12+957484v13+4373263v14+21374265v15+111764209v16+546538072v17

+2392703794v18+9374157248v19+33193123730v20+107176864396v21+317784470985v22

+870042414425v23+2209544249477v24+5224968453408v25+11543089455336v26+23893104753132v27

+46455227531026v28+85029824340612v29+146800695692191v30+239466759024769v31

+369631201685833v32+540578567158590v33+749891181508407v34+987634558444181v35

+1235929372818009v36+1470501793161916v37+1664270696390466v38+1792334859311106v39

+1837134386523548v40+1792334859311106v41+· · ·+v80) ,

P
(4)
2,F4

(v) = −v−15(2+11v−9v2−729v3−6740v4−37612v5−146242v6−411322v7−786424v8−683123v9

+1519991v10+7863641v11+17299644v12+19396808v13−7574716v14−81039308v15−177701238v16

−228893241v17−328644969v18−1704624732v19−10239254139v20−48437902734v21−193165328741v22

−683657580163v23−2198459381202v24−6491341536008v25−17700027945928v26−44757889196479v27

−105345430184255v28−231557373968430v29−476759190688969v30−921916213048446v31

−1678228390978831v32−2881832101851776v33−4676542813241321v34−7182956156002759v35

−10456822688468996v36−14445439874041454v37−18955600691329352v38−23647746652092629v39

−28066464498494385v40−31707630617443838v41−34110133094328607v42−34949875241183086v43

−34110133094328607v44+· · ·+v86) ,

P
(5)
2,F4

(v) = v−18(1+v−187v2−1942v3−8588v4+388v5+256583v6+1875127v7+8097680v8+23995511v9

+47743204v10+45403031v11−77639509v12−441768092v13−990656365v14−1141697391v15

+314912356v16+4322862537v17+9413229443v18+9932344114v19−1369097445v20−22028614537v21

−15689824140v22+143994570705v23+853983234794v24+3391440788051v25+11730377038184v26

+37232002426385v27+109311773773871v28+297084435895112v29+748700764659463v30

+1754971776388633v31+3839341467548316v32+7864675977003847v33+15128265661342010v34

+27394204368470677v35+46797420093685421v36+75560202097716654v37+115501696318370322v38

+167393226212698984v39+230299469534789175v40+301112810847585121v41+374497086121044331v42

+443382800033202476v43+500006416441373208v44+537304885313273980v45+550330680323572096v46

+537304885313273980v47+· · ·+v92).

For n ≥ 6, we observe the following general leading order behavior

v3n+10g
(n)
2,F4

(v, x,Qmi) = −χF4

(n−6)θχn−3(x) +O(v). (F.8)

E6. For the reduced two-string elliptic genus of E6 6d SCFT, recall

g
(n)
2,E6

(v, x,Qmi = 1) =
1

(1− v)46(1 + v)32 (1 + v + v2)23 × P
(n)
2,E6

(v) .
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We have

P
(1)
2,E6

(v) = (1+v2)(82+896v+9129v2+73825v3+515477v4+3176394v5+17567385v6+88082527v7

+404122599v8+1707996910v9+6687039606v10+24365673656v11+82957003626v12

+264812209428v13+794925309293v14+2249848989493v15+6017588149603v16+15241390482586v17

+36623148751459v18+83623554563863v19+181712020504595v20+376267731853770v21

+743340720549339v22+1402570753853399v23+2530053857442778v24+4367001323365453v25

+7218179887542376v26+11433257908228549v27+17365401325615558v28+25305594210396759v29

+35398201343930359v30+47551931562200552v31+61367940071565626v32

+76109936363599780v33+90737018750916024v34+104007721490984500v35

+114645634265369518v36+121537998101131452v37+123925354694394472v38+· · ·+v76).

P
(2)
2,E6

(v) = 3486+44488v+464913v2+3873323v3+27606333v4+172731506v5+966630727v6+4894721995v7

+22642609833v8+96385144324v9+379809898432v10+1392335683050v11+4768406721146v12

+15311706805952v13+46244599549903v14+131729726893973v15+354773291170080v16

+905322588772629v17+2193217132886674v18+5052883393549785v19+11088020153427871v20

+23207949295452654v21+46391596457503471v22+88666687652950697v23+162200225646883046v24

+284262935556020849v25+477678248920949928v26+770246305708025175v27

+1192619227946678339v28+1774271549538256254v29+2537602212267590587v30

+3490792045588793343v31+4620696016056616197v32+5887558970641741644v33

+7223464858978994614v34+8535984817703595260v35+9717463741648588196v36

+10658977913348459838v37+11266596547576742504v38+11476648364287371362v39

+11266596547576742504v40+· · ·+v78.

P
(3)
2,E6

(v) = v−4(−1−11v−112v2−769v3+97959v4+1465146v5+15949836v6+136827854v7+992270036v8

+6276463714v9+35347238184v10+179602878296v11+831787432544v12+3538777989264v13

+13918341585911v14+50873087148945v15+173571288630315v16+554884515982156v17

+1667591219224745v18+4724849885190467v19+12653182331604747v20+32099832942977106v21

+77298235563217848v22+177003542946746952v23+386049290828201197v24

+803129445851193549v25+1595815215747637914v26+3032155653955325045v27

+5515192004170661557v28+9612446692952872376v29+16067738341715188425v30

+25779182779041415519v31+39727277739048609244v32+58842809938209124305v33

+83817103245449704330v34+114875661886259702901v35+151556399981844604507v36

+192548720900049944088v37+235652392733234663776v38+277900332002367574858v39

+315856987228959670753v40+346060446910493617699v41+365533661213463473501v42

+372262200765577638648v43+· · ·+v86).

P
(4)
2,E6

(v) = v−16(−1−11v−112v2−769v3−4214v4−18313v5−64197v6−177594v7−364431v8−421607v9

+420751v10+3722444v11+10737460v12+18191652v13+11206753v14−38487665v15

−147892027v16−235567050v17+204232919v18+4014329887v19+28747116555v20

+177469181418v21+994624050267v22+5061754204737v23+23475175955326v24

+99852192764195v25+392058843196059v26+1428966813600884v27+4857570355921361v28

+15462381593811917v29+46247090390273044v30+130358984643118795v31

+347206472133377093v32+875864441137943176v33+2096960972906450647v34
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+4773710145181408321v35+10350471755632365352v36+21407072068973867721v37

+42290120178103689822v38+79898824171145741885v39+144526191934600175231v40

+250551336753503603832v41+416666541458353995971v42+665245395666408218767v43

+1020471334680763094257v44+1505001425501016329934v45+2135260459421424616916v46

+2915910779649516764294v47+3834519574899765264582v48+4857787518331415856898v49

+5930740363027659407709v50+6979905103120498497197v51+7920702637212573264754v52

+8668249061573197611391v53+9149752299658818747593v54+9316044470623822160548v55+· · ·+v110).

E7. For the reduced two-string elliptic genus of E7 6d SCFT, recall

g
(n)
2,E7

(v, x,Qmi = 1) =
1

(1− v)70(1 + v)52 (1 + v + v2)35 × P
(2)
n,E7

(v) . (F.9)

We have

P
(2)
0,E7

(v) = 1+17v+237v2+2628v3+25193v4+213819v5+1638666v6+11476871v7+74152233v8

+445070980v9+2495671432v10+13133928036v11+65121712327v12+305215505275v13

+1356033968529v14+5725284334978v15+23021851542594v16+88338636956104v17

+324035139906700v18+1138031848052668v19+3832341391241046v20+12390621413785440v21

+38509222288582663v22+115175603408208175v23+331836472263902521v24+921861932483495244v25

+2471530433876763846v26+6399961693050532054v27+16018745367471142680v28

+38781560068496818142v29+90876821066275028695v30+206242719899419463791v31

+453576963793872584712v32+967171231109021529977v33+2000571291562232590513v34

+4016126507767354504238v35+7828073649219480743672v36+14820947289312246349740v37

+27267076918737091016348v38+48764087264312469202730v39+84802326792798968389732v40

+143449590902653729399624v41+236104043071240448693797v42+378216261606533139497461v43

+589822792928957883073617v44+895677339869346647226824v45+1324728639658651633703727v46

+1908697079658876873038411v47+2679565476854052143878502v48+3665936157860425562998541v49

+4888414479465062757831170v50+6354435158683924634396271v51+8053206553397859455383003v52

+9951646269406905770095206v53+11992251412402642586454948v54

+14093734406768042617860546v55+16154939755233169917249815v56

+18062065264884658609927825v57+19698620890606501833935055v58

+20956986683280640928389866v59+21750009714684524653667914v60

+22020920210850484561094012v61+21750009714684524653667914v62+· · ·+v122 .

P
(2)
1,E7

(v) = (1+v2)(137+2597v+37024v2+419921v3+4077137v4+34901534v5+268811177v6+1887255497v7

+12196657853v8+73094300214v9+408614442098v10+2140990474296v11+10556715862964v12

+49151597538306v13+216730904533865v14+907396069059573v15+3615374924636545v16

+13736293007916068v17+49857926256318138v18+173164585658174276v19+576354715341079126v20

+1840835604225541174v21+5649018624246617909v22+16674709176092326437v23

+47394303096706259811v24+129836595656234291790v25+343131359707453293583v26

+875542039936399623515v27+2158650362542725175948v28+5146221002718346735055v29

+11870970192394860758359v30+26512271515436823962474v31+57361948999125457686102v32

+120296712068566252009120v33+244657061843538883914723v34+482772800850075541856889v35

+924703269912581018952608v36+1719956874446161848789295v37+3107832107172475492688890v38

+5457334614794588632799143v39+9316106764452824593797657v40+15465256039202958794051688v41
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+24973370386295921380753761v42+39238673033178891558314265v43+60003949644181883287996554v44

+89325800153382434388949763v45+129479490500199449940430040v46+182784785431420765743008945v47

+251347720581234682951528991v48+336728327510605097378060508v49+439563294320255738140535927v50

+559192119429259737303598283v51+693350791574808124298361559v52+838003231433873171234645238v53

+987373409206497489976018270v54+1134218396741161783456978908v55

+1270346407634715071774123344v56+1387339824356009883032251758v57

+1477400106011059794784293700v58+1534199301083129786878770830v59

+1553610262702054425407310320v60+· · ·+v120) .

Note g
(2)
0,E7

agree with the two-instanton E7 Hilbert series in [42].

G Refined BPS invariants

The refined BPS invariants are solved from the generalised blowup equations with the

following initial input: the triple intersection numbers κijk of divisors, the intersection

numbers bGV
i of divisors with c2(X) (these are two ingredients of Zcls), the curve-divisor

intersection matrix C, one unity r field with nonzero rb, as well as the one-loop partition

function Z1-loop and the bounds jmax
l,r .

In the case of n = 5, 12 models, there is no vanishing r-fields, the unity r do not

have enough constraints on Z1-loop. On the other hand, as seen in (2.36), Z1-loop is easily

computed, we simply input Z1-loop for all the models.

The input of jmax
l,r is strictly speaking also not necessary, as the bounds can be generated

from the blowup equations with the other input data, but the inclusion of the bounds in

the program makes the computation much faster. In any case, for db ≥ 1, we observe an

experimental formula for jmax
l,r . For F4, we observed for d+ db ≤ 14

jmax
r (d, db) = d(db + 1)− db(db − 1)/2,

jmax
l (d, db) = (d− 1)(db − 1)− db(db − 1)/2 + δdb,1bd/(1 + dτ )c,

(G.1)

where d is the total degree of the fibers, db is the degree of the base, and dτ is the first

total degree of fibers when τ appears. For E6,7,8, we observed for d+ db ≤ 12 ≤ dτ

jmax
r (d, db) = db + d(db + 1),

jmax
l (d, db) = (d− 1)(db − 1).

(G.2)

For F4 model, we compute all the refined BPS invariants up to total degree 14, with 4777

non-vanishing. For E6,7,8, we compute all the BPS invariants up to total degree 12, with

10383, 10491, 10068 non-vanishing respectively. We list part of the refined BPS invariants

in the affine Lie algebra bases in tables 24–31, for complete lists, one can find them at [31].

It is worthwhile to point out that unlike the elliptic genus [24], the Weyl symmetry of gauge

group G is not manifest in the refined BPS invariants. This is simply because the Weyl

symmetry will change the sign of some Kähler parameters, while the refined BPS expansion

is always in positive degrees. Note this should not be confused with the situation where

the refined BPS invariants of E-strings do have manifest E8 symmetry, in which case the

E8 is a global symmetry other than the gauge symmetry G we considered in this paper.
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β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,0,0,1) (0,0) (0,0,1,0,0,1) (0,1)

(0,0,1,1,0,1) (0,0)⊕(0,1) (0,0,1,1,1,1) (0,0)⊕(0,1)

(0,0,1,2,0,1) (0,1) (0,0,1,2,1,1) (0,0)⊕(0,1)

(0,0,1,2,2,1) (0,1) (0,0,2,0,0,1) (0,2)

(0,0,2,1,0,1) (0,1)⊕(0,2) (0,0,2,1,1,1) (0,1)⊕(0,2)

(0,0,2,2,0,1) (0,0)⊕(0,1)⊕(0,2) (0,0,2,2,1,1) (0,0)⊕2(0,1)⊕(0,2)

(0,0,2,3,0,1) (0,1)⊕(0,2) (0,0,3,0,0,1) (0,3)

(0,0,3,1,0,1) (0,2)⊕(0,3) (0,0,3,1,1,1) (0,2)⊕(0,3)

(0,0,3,2,0,1) (0,1)⊕(0,2)⊕(0,3) (0,0,4,0,0,1) (0,4)

(0,0,4,1,0,1) (0,3)⊕(0,4) (0,0,5,0,0,1) (0,5)

(0,1,0,0,0,1) (0,1) (0,1,1,0,0,1) (0,0)⊕(0,1)

(0,1,1,1,0,1) (0,0)⊕(0,1) (0,1,1,1,1,1) (0,0)⊕(0,1)

(0,1,1,2,0,1) (0,0)⊕(0,1) (0,1,1,2,1,1) (0,0)⊕(0,1)

(0,1,2,0,0,1) (0,1)⊕(0,2) (0,1,2,1,0,1) (0,0)⊕2(0,1)⊕(0,2)

(0,1,2,1,1,1) (0,0)⊕2(0,1)⊕(0,2) (0,1,2,2,0,1) 2(0,0)⊕3(0,1)⊕(0,2)

(0,1,3,0,0,1) (0,2)⊕(0,3) (0,1,3,1,0,1) (0,1)⊕2(0,2)⊕(0,3)

(0,1,4,0,0,1) (0,3)⊕(0,4) (0,2,0,0,0,1) (0,2)

(0,2,1,0,0,1) (0,1)⊕(0,2) (0,2,1,1,0,1) (0,1)⊕(0,2)

(0,2,1,1,1,1) (0,1)⊕(0,2) (0,2,1,2,0,1) (0,1)⊕(0,2)

(0,2,2,0,0,1) (0,0)⊕(0,1)⊕(0,2) (0,2,2,1,0,1) (0,0)⊕2(0,1)⊕(0,2)

(0,2,3,0,0,1) (0,1)⊕(0,2)⊕(0,3) (0,3,0,0,0,1) (0,3)

(0,3,1,0,0,1) (0,2)⊕(0,3) (0,3,1,1,0,1) (0,2)⊕(0,3)

(0,3,2,0,0,1) (0,1)⊕(0,2)⊕(0,3) (0,4,0,0,0,1) (0,4)

(0,4,1,0,0,1) (0,3)⊕(0,4) (0,5,0,0,0,1) (0,5)

(1,1,0,0,0,1) (0,0)⊕(0,1) (1,1,1,0,0,1) (0,0)⊕(0,1)

(1,1,1,1,0,1) (0,0)⊕(0,1) (1,1,1,1,1,1) (0,0)⊕(0,1)

(1,1,1,2,0,1) (0,0)⊕(0,1) (1,1,2,0,0,1) (0,1)⊕(0,2)

(1,1,2,1,0,1) (0,0)⊕2(0,1)⊕(0,2) (1,1,3,0,0,1) (0,2)⊕(0,3)

(1,2,0,0,0,1) (0,1)⊕(0,2) (1,2,1,0,0,1) (0,0)⊕2(0,1)⊕(0,2)

(1,2,1,1,0,1) (0,0)⊕2(0,1)⊕(0,2) (1,2,2,0,0,1) (0,0)⊕2(0,1)⊕(0,2)

(1,3,0,0,0,1) (0,2)⊕(0,3) (1,3,1,0,0,1) (0,1)⊕2(0,2)⊕(0,3)

(1,4,0,0,0,1) (0,3)⊕(0,4) (2,1,0,0,0,1) (0,1)

(2,2,0,0,0,1) (0,0)⊕(0,1)⊕(0,2) (2,2,1,0,0,1) (0,0)⊕2(0,1)⊕(0,2)

(2,3,0,0,0,1) (0,1)⊕(0,2)⊕(0,3) (3,1,0,0,0,1) (0,2)

(3,2,0,0,0,1) (0,1)⊕(0,2) (4,1,0,0,0,1) (0,3)

(0,0,2,0,0,2) (0,5/2) (0,0,2,1,0,2) (0,3/2)⊕(0,5/2)

(0,0,2,1,1,2) (0,3/2)⊕(0,5/2) (0,0,2,2,0,2) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,3,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4) (0,0,3,1,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕(1/2,3)⊕
(1/2,4)

(0,0,4,0,0,2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕(1/2,4)⊕
(1/2,5)⊕(1,11/2)

(0,1,2,0,0,2) (0,3/2)⊕(0,5/2)

(0,1,2,1,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,1,3,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕(1/2,3)⊕
(1/2,4)

(0,2,0,0,0,2) (0,5/2) (0,2,1,0,0,2) (0,3/2)⊕(0,5/2)

(0,2,1,1,0,2) (0,3/2)⊕(0,5/2) (0,2,2,0,0,2) 2(0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕(0,7/2)

(0,3,0,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4) (0,3,1,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕(1/2,3)⊕
(1/2,4)

(0,4,0,0,0,2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕(1/2,4)⊕
(1/2,5)⊕(1,11/2)

(1,1,2,0,0,2) (0,3/2)⊕(0,5/2)

continued on next page
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β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(1,2,0,0,0,2) (0,3/2)⊕(0,5/2) (1,2,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(1,3,0,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕(1/2,3)⊕
(1/2,4)

(2,2,0,0,0,2) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,3,0,0,3) (0,3)⊕(1/2,9/2) (0,3,0,0,0,3) (0,3)⊕(1/2,9/2)

Table 24. Refined BPS invariants of 6d F4 minimal SCFT.

β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,0,0,0,0,1) (0,1/2) (0,1,0,0,0,0,0,1) (0,1/2)

(0,2,0,0,0,0,0,1) (0,3/2) (0,3,0,0,0,0,0,1) (0,5/2)

(0,4,0,0,0,0,0,1) (0,7/2) (0,5,0,0,0,0,0,1) (0,9/2)

(0,0,0,0,0,1,0,1) (0,1/2) (0,0,0,0,0,1,1,1) (0,1/2)

(0,0,0,0,0,2,0,1) (0,3/2) (0,0,0,0,0,2,1,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,0,2,2,1) (0,1/2)⊕(0,3/2) (0,0,0,0,0,2,3,1) (0,3/2)

(0,0,0,0,0,3,0,1) (0,5/2) (0,0,0,0,0,3,1,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,0,3,2,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,0,0,4,0,1) (0,7/2)

(0,0,0,0,0,4,1,1) (0,5/2)⊕(0,7/2) (0,0,0,0,0,5,0,1) (0,9/2)

(0,0,0,0,1,0,0,1) (0,3/2) (0,1,0,0,1,0,0,1) (0,1/2)⊕(0,3/2)

(0,2,0,0,1,0,0,1) (0,1/2)⊕(0,3/2) (0,3,0,0,1,0,0,1) (0,3/2)⊕(0,5/2)

(0,4,0,0,1,0,0,1) (0,5/2)⊕(0,7/2) (0,0,0,0,1,1,0,1) (0,1/2)⊕(0,3/2)

(0,1,0,0,1,1,0,1) 2(0,1/2)⊕(0,3/2) (0,2,0,0,1,1,0,1) (0,1/2)⊕(0,3/2)

(0,3,0,0,1,1,0,1) (0,3/2)⊕(0,5/2) (0,0,0,0,1,1,1,1) (0,1/2)⊕(0,3/2)

(0,1,0,0,1,1,1,1) 2(0,1/2)⊕(0,3/2) (0,2,0,0,1,1,1,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,1,2,0,1) (0,1/2)⊕(0,3/2) (0,1,0,0,1,2,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,1,2,1,1) 2(0,1/2)⊕(0,3/2) (0,1,0,0,1,2,1,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,0,1,2,2,1) (0,1/2)⊕(0,3/2) (0,0,0,0,1,3,0,1) (0,3/2)⊕(0,5/2)

(0,1,0,0,1,3,0,1) (0,3/2)⊕(0,5/2) (0,0,0,0,1,3,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,1,4,0,1) (0,5/2)⊕(0,7/2) (0,0,0,0,2,0,0,1) (0,5/2)

(0,1,0,0,2,0,0,1) (0,3/2)⊕(0,5/2) (0,2,0,0,2,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,3,0,0,2,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,0,2,1,0,1) (0,3/2)⊕(0,5/2)

(0,1,0,0,2,1,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,2,0,0,2,1,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,2,1,1,1) (0,3/2)⊕(0,5/2) (0,1,0,0,2,1,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,2,2,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,1,0,0,2,2,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,2,2,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,2,3,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,0,0,3,0,0,1) (0,7/2) (0,1,0,0,3,0,0,1) (0,5/2)⊕(0,7/2)

(0,2,0,0,3,0,0,1) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,0,0,3,1,0,1) (0,5/2)⊕(0,7/2)

(0,1,0,0,3,1,0,1) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,0,0,3,1,1,1) (0,5/2)⊕(0,7/2)

(0,0,0,0,3,2,0,1) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,0,0,4,0,0,1) (0,9/2)

(0,1,0,0,4,0,0,1) (0,7/2)⊕(0,9/2) (0,0,0,0,4,1,0,1) (0,7/2)⊕(0,9/2)

(0,0,0,0,5,0,0,1) (0,11/2) (0,0,0,1,0,0,0,1) (0,1/2)

(0,0,0,1,1,0,0,1) (0,1/2)⊕(0,3/2) (0,1,0,1,1,0,0,1) 2(0,1/2)⊕(0,3/2)

(0,2,0,1,1,0,0,1) (0,1/2)⊕(0,3/2) (0,3,0,1,1,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,1,1,1,0,1) 2(0,1/2)⊕(0,3/2) (0,1,0,1,1,1,0,1) 3(0,1/2)⊕(0,3/2)

(0,2,0,1,1,1,0,1) (0,1/2)⊕(0,3/2) (0,0,0,1,1,1,1,1) 2(0,1/2)⊕(0,3/2)

(0,1,0,1,1,1,1,1) 3(0,1/2)⊕(0,3/2) (0,0,0,1,1,2,0,1) (0,1/2)⊕(0,3/2)

(0,1,0,1,1,2,0,1) (0,1/2)⊕(0,3/2) (0,0,0,1,1,2,1,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,1,1,3,0,1) (0,3/2)⊕(0,5/2) (0,0,0,1,2,0,0,1) (0,3/2)⊕(0,5/2)

(0,1,0,1,2,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,2,0,1,2,0,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)
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β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,1,2,1,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,1,0,1,2,1,0,1) 4(0,1/2)⊕4(0,3/2)⊕(0,5/2)

(0,0,0,1,2,1,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,2,2,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,1,3,0,0,1) (0,5/2)⊕(0,7/2) (0,1,0,1,3,0,0,1) (0,3/2)⊕2(0,5/2)⊕(0,7/2)

(0,0,0,1,3,1,0,1) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,0,1,4,0,0,1) (0,7/2)⊕(0,9/2)

(0,0,0,2,0,0,0,1) (0,3/2) (0,0,0,2,1,0,0,1) (0,1/2)⊕(0,3/2)

(0,1,0,2,1,0,0,1) (0,1/2)⊕(0,3/2) (0,0,0,2,1,1,0,1) (0,1/2)⊕(0,3/2)

(0,1,0,2,1,1,0,1) (0,1/2)⊕(0,3/2) (0,0,0,2,1,1,1,1) (0,1/2)⊕(0,3/2)

(0,0,0,2,2,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,1,0,2,2,0,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,2,2,1,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,2,3,0,0,1) (0,3/2)⊕(0,5/2)⊕(0,7/2)

(0,0,0,3,0,0,0,1) (0,5/2) (0,0,0,3,1,0,0,1) (0,3/2)⊕(0,5/2)

(0,1,0,3,1,0,0,1) (0,3/2)⊕(0,5/2) (0,0,0,3,1,1,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,3,2,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,4,0,0,0,1) (0,7/2)

(0,0,0,4,1,0,0,1) (0,5/2)⊕(0,7/2) (0,0,0,5,0,0,0,1) (0,9/2)

(0,0,1,1,0,0,0,1) (0,1/2) (0,0,1,1,1,0,0,1) (0,1/2)⊕(0,3/2)

(0,1,1,1,1,0,0,1) 2(0,1/2)⊕(0,3/2) (0,2,1,1,1,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,1,1,1,1,0,1) 2(0,1/2)⊕(0,3/2) (0,1,1,1,1,1,0,1) 3(0,1/2)⊕(0,3/2)

(0,0,1,1,1,1,1,1) 2(0,1/2)⊕(0,3/2) (0,0,1,1,1,2,0,1) (0,1/2)⊕(0,3/2)

(0,0,1,1,2,0,0,1) (0,3/2)⊕(0,5/2) (0,1,1,1,2,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,1,1,2,1,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,1,1,3,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,1,2,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,1,2,1,0,0,1) 2(0,1/2)⊕(0,3/2)

(0,1,1,2,1,0,0,1) 2(0,1/2)⊕(0,3/2) (0,0,1,2,1,1,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,1,2,2,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,1,3,0,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,1,3,1,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,1,4,0,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,2,2,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,2,2,1,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,2,3,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,3,2,0,0,0,1) (0,3/2)

(1,1,0,0,0,0,0,1) (0,1/2) (1,2,0,0,0,0,0,1) (0,1/2)⊕(0,3/2)

(1,3,0,0,0,0,0,1) (0,3/2)⊕(0,5/2) (1,4,0,0,0,0,0,1) (0,5/2)⊕(0,7/2)

(1,1,0,0,1,0,0,1) (0,1/2)⊕(0,3/2) (1,2,0,0,1,0,0,1) 2(0,1/2)⊕(0,3/2)

(1,3,0,0,1,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (1,1,0,0,1,1,0,1) 2(0,1/2)⊕(0,3/2)

(1,2,0,0,1,1,0,1) 2(0,1/2)⊕(0,3/2) (1,1,0,0,1,1,1,1) 2(0,1/2)⊕(0,3/2)

(1,1,0,0,1,2,0,1) (0,1/2)⊕(0,3/2) (1,1,0,0,2,0,0,1) (0,3/2)⊕(0,5/2)

(1,2,0,0,2,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (1,1,0,0,2,1,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(1,1,0,0,3,0,0,1) (0,5/2)⊕(0,7/2) (1,1,0,1,1,0,0,1) 2(0,1/2)⊕(0,3/2)

(1,2,0,1,1,0,0,1) 2(0,1/2)⊕(0,3/2) (1,1,0,1,1,1,0,1) 3(0,1/2)⊕(0,3/2)

(1,1,0,1,2,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (1,1,0,2,1,0,0,1) (0,1/2)⊕(0,3/2)

(1,1,1,1,1,0,0,1) 2(0,1/2)⊕(0,3/2) (2,2,0,0,0,0,0,1) (0,1/2)⊕(0,3/2)

(2,3,0,0,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (2,2,0,0,1,0,0,1) (0,1/2)⊕(0,3/2)

(3,2,0,0,0,0,0,1) (0,3/2) (0,3,0,0,0,0,0,2) (0,5/2)

(0,4,0,0,0,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4) (0,0,0,0,0,3,0,2) (0,5/2)

(0,0,0,0,0,3,1,2) (0,3/2)⊕(0,5/2) (0,0,0,0,0,4,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4)

(0,0,0,0,1,0,0,2) (0,5/2) (0,1,0,0,1,0,0,2) (0,3/2)⊕(0,5/2)

(0,2,0,0,1,0,0,2) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,3,0,0,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕
(0,7/2)

(0,0,0,0,1,1,0,2) (0,3/2)⊕(0,5/2) (0,1,0,0,1,1,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,2,0,0,1,1,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,1,1,1,2) (0,3/2)⊕(0,5/2)

(0,1,0,0,1,1,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,1,2,0,2) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,1,0,0,1,2,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,1,2,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,1,3,0,2) (0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕
(0,7/2)

(0,0,0,0,2,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4)
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β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,1,0,0,2,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,2,0,0,2,0,0,2) (0,1/2)⊕3(0,3/2)⊕4(0,5/2)⊕
2(0,7/2)⊕(1/2,2)⊕(1/2,3)⊕(1/2,4)

(0,0,0,0,2,1,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,1,0,0,2,1,0,2) (0,1/2)⊕5(0,3/2)⊕7(0,5/2)⊕
3(0,7/2)⊕(1/2,2)⊕2(1/2,3)⊕
(1/2,4)

(0,0,0,0,2,1,1,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,0,0,2,2,0,2) (0,1/2)⊕3(0,3/2)⊕4(0,5/2)⊕
2(0,7/2)⊕(1/2,2)⊕(1/2,3)⊕(1/2,4)

(0,0,0,0,3,0,0,2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
(1/2,4)⊕(1/2,5)⊕(1,11/2)

(0,1,0,0,3,0,0,2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,0,3,1,0,2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,0,4,0,0,2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
2(0,11/2)⊕(1/2,4)⊕(1/2,5)⊕
2(1/2,6)⊕(1,11/2)⊕(1,13/2)⊕
(3/2,7)

(0,0,0,1,1,0,0,2) (0,3/2)⊕(0,5/2) (0,1,0,1,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,2,0,1,1,0,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,1,1,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,1,0,1,1,1,0,2) 3(0,1/2)⊕3(0,3/2)⊕(0,5/2) (0,0,0,1,1,1,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,1,1,2,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,2,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,1,0,1,2,0,0,2) (0,1/2)⊕5(0,3/2)⊕7(0,5/2)⊕
3(0,7/2)⊕(1/2,2)⊕2(1/2,3)⊕
(1/2,4)

(0,0,0,1,2,1,0,2) (0,1/2)⊕5(0,3/2)⊕7(0,5/2)⊕
3(0,7/2)⊕(1/2,2)⊕2(1/2,3)⊕
(1/2,4)

(0,0,0,1,3,0,0,2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,2,1,0,0,2) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,1,0,2,1,0,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,2,1,1,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,2,2,0,0,2) (0,1/2)⊕3(0,3/2)⊕4(0,5/2)⊕
2(0,7/2)⊕(1/2,2)⊕(1/2,3)⊕(1/2,4)

(0,0,0,3,0,0,0,2) (0,5/2)

(0,0,0,3,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕
(0,7/2)

(0,0,0,4,0,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4)

(0,0,1,1,1,0,0,2) (0,3/2)⊕(0,5/2) (0,1,1,1,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,1,1,1,1,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,1,1,2,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,1,2,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,1,3,0,0,0,2) (0,3/2)⊕(0,5/2)

(1,3,0,0,0,0,0,2) (0,3/2)⊕(0,5/2) (1,1,0,0,1,0,0,2) (0,3/2)⊕(0,5/2)

(1,2,0,0,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (1,1,0,0,1,1,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(1,1,0,0,2,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(1,1,0,1,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,1,0,0,3) (0,7/2) (0,1,0,0,1,0,0,3) (0,5/2)⊕(0,7/2)

(0,2,0,0,1,0,0,3) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,0,0,1,1,0,3) (0,5/2)⊕(0,7/2)

(0,1,0,0,1,1,0,3) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,0,0,1,1,1,3) (0,5/2)⊕(0,7/2)

(0,0,0,0,1,2,0,3) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,0,0,2,0,0,3) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
(1/2,4)⊕(1/2,5)⊕(1,11/2)

(0,1,0,0,2,0,0,3) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,0,2,1,0,3) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)
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β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,0,3,0,0,3) (0,3/2)⊕(0,5/2)⊕3(0,7/2)⊕
3(0,9/2)⊕4(0,11/2)⊕(1/2,3)⊕
2(1/2,4)⊕3(1/2,5)⊕3(1/2,6)⊕
(1/2,7)⊕(1,9/2)⊕2(1,11/2)⊕
3(1,13/2)⊕(3/2,6)⊕(3/2,7)⊕
(2,15/2)

(0,0,0,1,1,0,0,3) (0,5/2)⊕(0,7/2)

(0,1,0,1,1,0,0,3) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,0,1,1,1,0,3) (0,3/2)⊕2(0,5/2)⊕(0,7/2)

(0,0,0,1,2,0,0,3) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,2,1,0,0,3) (0,3/2)⊕(0,5/2)⊕(0,7/2)

(0,0,1,1,1,0,0,3) (0,5/2)⊕(0,7/2) (1,1,0,0,1,0,0,3) (0,5/2)⊕(0,7/2)

(0,0,0,0,1,0,0,4) (0,9/2) (0,1,0,0,1,0,0,4) (0,7/2)⊕(0,9/2)

(0,0,0,0,1,1,0,4) (0,7/2)⊕(0,9/2) (0,0,0,0,2,0,0,4) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
2(0,11/2)⊕(1/2,4)⊕(1/2,5)⊕
2(1/2,6)⊕(1,11/2)⊕(1,13/2)⊕
(3/2,7)

(0,0,0,1,1,0,0,4) (0,7/2)⊕(0,9/2) (0,0,0,0,1,0,0,5) (0,11/2)

Table 25. Refined BPS invariants of 6d E6 minimal SCFT.

β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,0,0,0,0,0,1) (0,1/2) (0,0,0,0,0,0,0,1,1) (0,1/2)

(0,0,0,0,0,0,0,2,1) (0,3/2) (0,0,0,0,0,0,0,3,1) (0,5/2)

(0,0,0,0,0,0,0,4,1) (0,7/2) (0,0,0,0,0,0,0,5,1) (0,9/2)

(0,0,0,0,1,0,0,0,1) (0,1/2) (0,0,0,0,1,1,0,0,1) (0,1/2)

(0,0,0,0,1,1,1,0,1) (0,1/2) (0,0,0,0,2,0,0,0,1) (0,3/2)

(0,0,0,0,2,1,0,0,1) (0,1/2)⊕(0,3/2) (0,0,0,0,2,1,1,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,2,2,0,0,1) (0,1/2)⊕(0,3/2) (0,0,0,0,2,2,1,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,0,2,3,0,0,1) (0,3/2) (0,0,0,0,3,0,0,0,1) (0,5/2)

(0,0,0,0,3,1,0,0,1) (0,3/2)⊕(0,5/2) (0,0,0,0,3,1,1,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,3,2,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,0,4,0,0,0,1) (0,7/2)

(0,0,0,0,4,1,0,0,1) (0,5/2)⊕(0,7/2) (0,0,0,0,5,0,0,0,1) (0,9/2)

(0,0,0,1,0,0,0,0,1) (0,3/2) (0,0,0,1,0,0,0,1,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,0,0,0,2,1) (0,1/2)⊕(0,3/2) (0,0,0,1,0,0,0,3,1) (0,3/2)⊕(0,5/2)

(0,0,0,1,0,0,0,4,1) (0,5/2)⊕(0,7/2) (0,0,0,1,1,0,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,1,0,0,1,1) 2(0,1/2)⊕(0,3/2) (0,0,0,1,1,0,0,2,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,1,0,0,3,1) (0,3/2)⊕(0,5/2) (0,0,0,1,1,1,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,1,1,0,1,1) 2(0,1/2)⊕(0,3/2) (0,0,0,1,1,1,0,2,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,1,1,1,0,1) (0,1/2)⊕(0,3/2) (0,0,0,1,1,1,1,1,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,1,2,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,0,1,2,0,0,1,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,2,1,0,0,1) 2(0,1/2)⊕(0,3/2) (0,0,0,1,2,1,0,1,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,1,2,1,1,0,1) 2(0,1/2)⊕(0,3/2) (0,0,0,1,2,2,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,3,0,0,0,1) (0,3/2)⊕(0,5/2) (0,0,0,1,3,0,0,1,1) (0,3/2)⊕(0,5/2)

(0,0,0,1,3,1,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,4,0,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,0,2,0,0,0,0,1) (0,5/2) (0,0,0,2,0,0,0,1,1) (0,3/2)⊕(0,5/2)

(0,0,0,2,0,0,0,2,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,2,0,0,0,3,1) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,0,2,1,0,0,0,1) (0,3/2)⊕(0,5/2) (0,0,0,2,1,0,0,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,2,1,0,0,2,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,2,1,1,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,2,1,1,0,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,2,1,1,1,0,1) (0,3/2)⊕(0,5/2)
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β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,2,2,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,2,2,0,0,1,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,2,2,1,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,2,3,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,0,3,0,0,0,0,1) (0,7/2) (0,0,0,3,0,0,0,1,1) (0,5/2)⊕(0,7/2)

(0,0,0,3,0,0,0,2,1) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,0,3,1,0,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,0,3,1,0,0,1,1) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,0,3,1,1,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,0,3,2,0,0,0,1) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,0,4,0,0,0,0,1) (0,9/2)

(0,0,0,4,0,0,0,1,1) (0,7/2)⊕(0,9/2) (0,0,0,4,1,0,0,0,1) (0,7/2)⊕(0,9/2)

(0,0,0,5,0,0,0,0,1) (0,11/2) (0,0,1,0,0,0,0,0,1) (0,1/2)

(0,0,1,1,0,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,1,1,0,0,0,1,1) 2(0,1/2)⊕(0,3/2)

(0,0,1,1,0,0,0,2,1) (0,1/2)⊕(0,3/2) (0,0,1,1,0,0,0,3,1) (0,3/2)⊕(0,5/2)

(0,0,1,1,1,0,0,0,1) 2(0,1/2)⊕(0,3/2) (0,0,1,1,1,0,0,1,1) 3(0,1/2)⊕(0,3/2)

(0,0,1,1,1,0,0,2,1) (0,1/2)⊕(0,3/2) (0,0,1,1,1,1,0,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,1,1,1,1,0,1,1) 3(0,1/2)⊕(0,3/2) (0,0,1,1,1,1,1,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,1,1,2,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,1,1,2,0,0,1,1) (0,1/2)⊕(0,3/2)

(0,0,1,1,2,1,0,0,1) 2(0,1/2)⊕(0,3/2) (0,0,1,1,3,0,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,1,2,0,0,0,0,1) (0,3/2)⊕(0,5/2) (0,0,1,2,0,0,0,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,1,2,0,0,0,2,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,1,2,1,0,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,1,2,1,0,0,1,1) 4(0,1/2)⊕4(0,3/2)⊕(0,5/2) (0,0,1,2,1,1,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,1,2,2,0,0,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,1,3,0,0,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,1,3,0,0,0,1,1) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,1,3,1,0,0,0,1) (0,3/2)⊕2(0,5/2)⊕(0,7/2)

(0,0,1,4,0,0,0,0,1) (0,7/2)⊕(0,9/2) (0,0,2,0,0,0,0,0,1) (0,3/2)

(0,0,2,1,0,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,2,1,0,0,0,1,1) (0,1/2)⊕(0,3/2)

(0,0,2,1,1,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,2,1,1,0,0,1,1) (0,1/2)⊕(0,3/2)

(0,0,2,1,1,1,0,0,1) (0,1/2)⊕(0,3/2) (0,0,2,2,0,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,2,2,0,0,0,1,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,2,2,1,0,0,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,2,3,0,0,0,0,1) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,3,0,0,0,0,0,1) (0,5/2)

(0,0,3,1,0,0,0,0,1) (0,3/2)⊕(0,5/2) (0,0,3,1,0,0,0,1,1) (0,3/2)⊕(0,5/2)

(0,0,3,1,1,0,0,0,1) (0,3/2)⊕(0,5/2) (0,0,3,2,0,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,4,0,0,0,0,0,1) (0,7/2) (0,0,4,1,0,0,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,5,0,0,0,0,0,1) (0,9/2) (0,1,1,0,0,0,0,0,1) (0,1/2)

(0,1,1,1,0,0,0,0,1) (0,1/2)⊕(0,3/2) (0,1,1,1,0,0,0,1,1) 2(0,1/2)⊕(0,3/2)

(0,1,1,1,0,0,0,2,1) (0,1/2)⊕(0,3/2) (0,1,1,1,1,0,0,0,1) 2(0,1/2)⊕(0,3/2)

(0,1,1,1,1,0,0,1,1) 3(0,1/2)⊕(0,3/2) (0,1,1,1,1,1,0,0,1) 2(0,1/2)⊕(0,3/2)

(0,1,1,1,2,0,0,0,1) (0,1/2)⊕(0,3/2) (0,1,1,2,0,0,0,0,1) (0,3/2)⊕(0,5/2)

(0,1,1,2,0,0,0,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,1,1,2,1,0,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,1,1,3,0,0,0,0,1) (0,5/2)⊕(0,7/2) (0,1,2,0,0,0,0,0,1) (0,1/2)⊕(0,3/2)

(0,1,2,1,0,0,0,0,1) 2(0,1/2)⊕(0,3/2) (0,1,2,1,0,0,0,1,1) 2(0,1/2)⊕(0,3/2)

(0,1,2,1,1,0,0,0,1) 2(0,1/2)⊕(0,3/2) (0,1,2,2,0,0,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,1,3,0,0,0,0,0,1) (0,3/2)⊕(0,5/2) (0,1,3,1,0,0,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,1,4,0,0,0,0,0,1) (0,5/2)⊕(0,7/2) (0,2,2,0,0,0,0,0,1) (0,1/2)⊕(0,3/2)

(0,2,2,1,0,0,0,0,1) (0,1/2)⊕(0,3/2) (0,2,3,0,0,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,3,2,0,0,0,0,0,1) (0,3/2) (1,1,1,0,0,0,0,0,1) (0,1/2)

(1,1,1,1,0,0,0,0,1) (0,1/2)⊕(0,3/2) (1,1,1,1,0,0,0,1,1) 2(0,1/2)⊕(0,3/2)

(1,1,1,1,1,0,0,0,1) 2(0,1/2)⊕(0,3/2) (1,1,1,2,0,0,0,0,1) (0,3/2)⊕(0,5/2)

(1,1,2,0,0,0,0,0,1) (0,1/2)⊕(0,3/2) (1,1,2,1,0,0,0,0,1) 2(0,1/2)⊕(0,3/2)

(1,1,3,0,0,0,0,0,1) (0,3/2)⊕(0,5/2) (1,2,2,0,0,0,0,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,0,0,0,0,3,2) (0,5/2) (0,0,0,0,0,0,0,4,2) (0,5/2)⊕(0,7/2)⊕(1/2,4)

(0,0,0,0,3,0,0,0,2) (0,5/2) (0,0,0,0,3,1,0,0,2) (0,3/2)⊕(0,5/2)

(0,0,0,0,4,0,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4) (0,0,0,1,0,0,0,0,2) (0,5/2)

continued on next page

– 100 –



J
H
E
P
1
2
(
2
0
1
9
)
0
3
9

β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,1,0,0,0,1,2) (0,3/2)⊕(0,5/2) (0,0,0,1,0,0,0,2,2) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,0,1,0,0,0,3,2) (0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕
(0,7/2)

(0,0,0,1,1,0,0,0,2) (0,3/2)⊕(0,5/2)

(0,0,0,1,1,0,0,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,1,0,0,2,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,1,1,1,0,0,2) (0,3/2)⊕(0,5/2) (0,0,0,1,1,1,0,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,1,1,1,1,0,2) (0,3/2)⊕(0,5/2) (0,0,0,1,2,0,0,0,2) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,0,1,2,0,0,1,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,2,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,1,3,0,0,0,2) (0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕
(0,7/2)

(0,0,0,2,0,0,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4)

(0,0,0,2,0,0,0,1,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,0,2,0,0,0,2,2) (0,1/2)⊕3(0,3/2)⊕4(0,5/2)⊕
2(0,7/2)⊕(1/2,2)⊕(1/2,3)⊕
(1/2,4)

(0,0,0,2,1,0,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,0,2,1,0,0,1,2) (0,1/2)⊕5(0,3/2)⊕7(0,5/2)⊕
3(0,7/2)⊕(1/2,2)⊕2(1/2,3)⊕
(1/2,4)

(0,0,0,2,1,1,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,0,2,2,0,0,0,2) (0,1/2)⊕3(0,3/2)⊕4(0,5/2)⊕
2(0,7/2)⊕(1/2,2)⊕(1/2,3)⊕
(1/2,4)

(0,0,0,3,0,0,0,0,2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
(1/2,4)⊕(1/2,5)⊕(1,11/2)

(0,0,0,3,0,0,0,1,2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,3,1,0,0,0,2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,4,0,0,0,0,2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
2(0,11/2)⊕(1/2,4)⊕
(1/2,5)⊕2(1/2,6)⊕(1,11/2)⊕
(1,13/2)⊕(3/2,7)

(0,0,1,1,0,0,0,0,2) (0,3/2)⊕(0,5/2) (0,0,1,1,0,0,0,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,1,1,0,0,0,2,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,1,1,1,0,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,1,1,1,0,0,1,2) 3(0,1/2)⊕3(0,3/2)⊕(0,5/2) (0,0,1,1,1,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,1,1,2,0,0,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,1,2,0,0,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,1,2,0,0,0,1,2) (0,1/2)⊕5(0,3/2)⊕7(0,5/2)⊕
3(0,7/2)⊕(1/2,2)⊕2(1/2,3)⊕
(1/2,4)

(0,0,1,2,1,0,0,0,2) (0,1/2)⊕5(0,3/2)⊕7(0,5/2)⊕
3(0,7/2)⊕(1/2,2)⊕2(1/2,3)⊕
(1/2,4)

(0,0,1,3,0,0,0,0,2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,2,1,0,0,0,0,2) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,2,1,0,0,0,1,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,2,1,1,0,0,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,2,2,0,0,0,0,2) (0,1/2)⊕3(0,3/2)⊕4(0,5/2)⊕
2(0,7/2)⊕(1/2,2)⊕(1/2,3)⊕
(1/2,4)

(0,0,3,0,0,0,0,0,2) (0,5/2)

(0,0,3,1,0,0,0,0,2) (0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕
(0,7/2)

(0,0,4,0,0,0,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4)

(0,1,1,1,0,0,0,0,2) (0,3/2)⊕(0,5/2) (0,1,1,1,0,0,0,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,1,1,1,1,0,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,1,1,2,0,0,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,1,2,1,0,0,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,1,3,0,0,0,0,0,2) (0,3/2)⊕(0,5/2)

(1,1,1,1,0,0,0,0,2) (0,3/2)⊕(0,5/2) (0,0,0,1,0,0,0,0,3) (0,7/2)

(0,0,0,1,0,0,0,1,3) (0,5/2)⊕(0,7/2) (0,0,0,1,0,0,0,2,3) (0,3/2)⊕(0,5/2)⊕(0,7/2)

(0,0,0,1,1,0,0,0,3) (0,5/2)⊕(0,7/2) (0,0,0,1,1,0,0,1,3) (0,3/2)⊕2(0,5/2)⊕(0,7/2)
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β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,1,1,1,0,0,3) (0,5/2)⊕(0,7/2) (0,0,0,1,2,0,0,0,3) (0,3/2)⊕(0,5/2)⊕(0,7/2)

(0,0,0,2,0,0,0,0,3) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
(1/2,4)⊕(1/2,5)⊕(1,11/2)

(0,0,0,2,0,0,0,1,3) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,2,1,0,0,0,3) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,3,0,0,0,0,3) (0,3/2)⊕(0,5/2)⊕3(0,7/2)⊕
3(0,9/2)⊕4(0,11/2)⊕
(1/2,3)⊕2(1/2,4)⊕3(1/2,5)⊕
3(1/2,6)⊕(1/2,7)⊕(1,9/2)⊕
2(1,11/2)⊕3(1,13/2)⊕
(3/2,6)⊕(3/2,7)⊕(2,15/2)

(0,0,1,1,0,0,0,0,3) (0,5/2)⊕(0,7/2) (0,0,1,1,0,0,0,1,3) (0,3/2)⊕2(0,5/2)⊕(0,7/2)

(0,0,1,1,1,0,0,0,3) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,1,2,0,0,0,0,3) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,2,1,0,0,0,0,3) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,1,1,1,0,0,0,0,3) (0,5/2)⊕(0,7/2)

(0,0,0,1,0,0,0,0,4) (0,9/2) (0,0,0,1,0,0,0,1,4) (0,7/2)⊕(0,9/2)

(0,0,0,1,1,0,0,0,4) (0,7/2)⊕(0,9/2) (0,0,0,2,0,0,0,0,4) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
2(0,11/2)⊕(1/2,4)⊕
(1/2,5)⊕2(1/2,6)⊕(1,11/2)⊕
(1,13/2)⊕(3/2,7)

(0,0,1,1,0,0,0,0,4) (0,7/2)⊕(0,9/2) (0,0,0,1,0,0,0,0,5) (0,11/2)

Table 26. Refined BPS invariants of 6d E7 minimal SCFT.

β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,0,0,0,0,0,0,1) (0,1/2) (0,0,0,0,0,0,0,0,1,1) (0,1/2)

(0,0,0,0,0,0,0,0,2,1) (0,3/2) (0,0,0,0,0,0,0,0,3,1) (0,5/2)

(0,0,0,0,0,0,0,0,4,1) (0,7/2) (0,0,0,0,0,0,0,0,5,1) (0,9/2)

(0,0,0,0,0,0,1,0,0,1) (0,1/2) (0,0,0,0,0,0,1,1,0,1) (0,1/2)

(0,0,0,0,0,0,2,0,0,1) (0,3/2) (0,0,0,0,0,0,2,1,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,0,0,2,2,0,1) (0,1/2)⊕(0,3/2) (0,0,0,0,0,0,2,3,0,1) (0,3/2)

(0,0,0,0,0,0,3,0,0,1) (0,5/2) (0,0,0,0,0,0,3,1,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,0,0,3,2,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,0,0,0,4,0,0,1) (0,7/2)

(0,0,0,0,0,0,4,1,0,1) (0,5/2)⊕(0,7/2) (0,0,0,0,0,0,5,0,0,1) (0,9/2)

(0,0,0,0,0,1,0,0,0,1) (0,3/2) (0,0,0,0,0,1,0,0,1,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,0,1,0,0,2,1) (0,1/2)⊕(0,3/2) (0,0,0,0,0,1,0,0,3,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,0,1,0,0,4,1) (0,5/2)⊕(0,7/2) (0,0,0,0,0,1,1,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,0,1,1,0,1,1) 2(0,1/2)⊕(0,3/2) (0,0,0,0,0,1,1,0,2,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,0,1,1,0,3,1) (0,3/2)⊕(0,5/2) (0,0,0,0,0,1,1,1,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,0,1,1,1,1,1) 2(0,1/2)⊕(0,3/2) (0,0,0,0,0,1,1,1,2,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,0,1,2,0,0,1) (0,1/2)⊕(0,3/2) (0,0,0,0,0,1,2,0,1,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,0,1,2,1,0,1) 2(0,1/2)⊕(0,3/2) (0,0,0,0,0,1,2,1,1,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,0,0,1,2,2,0,1) (0,1/2)⊕(0,3/2) (0,0,0,0,0,1,3,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,0,1,3,0,1,1) (0,3/2)⊕(0,5/2) (0,0,0,0,0,1,3,1,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,0,1,4,0,0,1) (0,5/2)⊕(0,7/2) (0,0,0,0,0,2,0,0,0,1) (0,5/2)

(0,0,0,0,0,2,0,0,1,1) (0,3/2)⊕(0,5/2) (0,0,0,0,0,2,0,0,2,1) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,0,0,0,2,0,0,3,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,0,0,2,1,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,0,2,1,0,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,0,2,1,0,2,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,0,2,1,1,0,1) (0,3/2)⊕(0,5/2) (0,0,0,0,0,2,1,1,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)
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β ⊕Nβ
jl,jr

(jl, jr) β ⊕Nβ
jl,jr

(jl, jr)

(0,0,0,0,0,2,2,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,0,0,2,2,0,1,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,0,2,2,1,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,0,2,3,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,0,0,0,3,0,0,0,1) (0,7/2) (0,0,0,0,0,3,0,0,1,1) (0,5/2)⊕(0,7/2)

(0,0,0,0,0,3,0,0,2,1) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,0,0,0,3,1,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,0,0,0,3,1,0,1,1) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,0,0,0,3,1,1,0,1) (0,5/2)⊕(0,7/2)

(0,0,0,0,0,3,2,0,0,1) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,0,0,0,4,0,0,0,1) (0,9/2)

(0,0,0,0,0,4,0,0,1,1) (0,7/2)⊕(0,9/2) (0,0,0,0,0,4,1,0,0,1) (0,7/2)⊕(0,9/2)

(0,0,0,0,0,5,0,0,0,1) (0,11/2) (0,0,0,0,1,0,0,0,0,1) (0,1/2)

(0,0,0,0,1,1,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,0,0,1,1,0,0,1,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,0,1,1,0,0,2,1) (0,1/2)⊕(0,3/2) (0,0,0,0,1,1,0,0,3,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,1,1,1,0,0,1) 2(0,1/2)⊕(0,3/2) (0,0,0,0,1,1,1,0,1,1) 3(0,1/2)⊕(0,3/2)

(0,0,0,0,1,1,1,0,2,1) (0,1/2)⊕(0,3/2) (0,0,0,0,1,1,1,1,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,0,1,1,1,1,1,1) 3(0,1/2)⊕(0,3/2) (0,0,0,0,1,1,2,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,1,1,2,0,1,1) (0,1/2)⊕(0,3/2) (0,0,0,0,1,1,2,1,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,0,1,1,3,0,0,1) (0,3/2)⊕(0,5/2) (0,0,0,0,1,2,0,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,1,2,0,0,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,1,2,0,0,2,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,1,2,1,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,1,2,1,0,1,1) 4(0,1/2)⊕4(0,3/2)⊕(0,5/2)

(0,0,0,0,1,2,1,1,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,1,2,2,0,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,1,3,0,0,0,1) (0,5/2)⊕(0,7/2) (0,0,0,0,1,3,0,0,1,1) (0,3/2)⊕2(0,5/2)⊕(0,7/2)

(0,0,0,0,1,3,1,0,0,1) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,0,0,1,4,0,0,0,1) (0,7/2)⊕(0,9/2)

(0,0,0,0,2,0,0,0,0,1) (0,3/2) (0,0,0,0,2,1,0,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,2,1,0,0,1,1) (0,1/2)⊕(0,3/2) (0,0,0,0,2,1,1,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,2,1,1,0,1,1) (0,1/2)⊕(0,3/2) (0,0,0,0,2,1,1,1,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,0,2,2,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,0,2,2,0,0,1,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,2,2,1,0,0,1) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,2,3,0,0,0,1) (0,3/2)⊕(0,5/2)⊕(0,7/2)

(0,0,0,0,3,0,0,0,0,1) (0,5/2) (0,0,0,0,3,1,0,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,3,1,0,0,1,1) (0,3/2)⊕(0,5/2) (0,0,0,0,3,1,1,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,0,3,2,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,0,4,0,0,0,0,1) (0,7/2)

(0,0,0,0,4,1,0,0,0,1) (0,5/2)⊕(0,7/2) (0,0,0,0,5,0,0,0,0,1) (0,9/2)

(0,0,0,1,1,0,0,0,0,1) (0,1/2) (0,0,0,1,1,1,0,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,1,1,0,0,1,1) 2(0,1/2)⊕(0,3/2) (0,0,0,1,1,1,0,0,2,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,1,1,1,0,0,1) 2(0,1/2)⊕(0,3/2) (0,0,0,1,1,1,1,0,1,1) 3(0,1/2)⊕(0,3/2)

(0,0,0,1,1,1,1,1,0,1) 2(0,1/2)⊕(0,3/2) (0,0,0,1,1,1,2,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,1,1,2,0,0,0,1) (0,3/2)⊕(0,5/2) (0,0,0,1,1,2,0,0,1,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,1,1,2,1,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,1,3,0,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,0,1,2,0,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,0,1,2,1,0,0,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,1,2,1,0,0,1,1) 2(0,1/2)⊕(0,3/2) (0,0,0,1,2,1,1,0,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,0,1,2,2,0,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,3,0,0,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,0,1,3,1,0,0,0,1) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,4,0,0,0,0,1) (0,5/2)⊕(0,7/2)

(0,0,0,2,2,0,0,0,0,1) (0,1/2)⊕(0,3/2) (0,0,0,2,2,1,0,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,0,2,3,0,0,0,0,1) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,3,2,0,0,0,0,1) (0,3/2)

(0,0,1,1,1,0,0,0,0,1) (0,1/2) (0,0,1,1,1,1,0,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,1,1,1,1,0,0,1,1) 2(0,1/2)⊕(0,3/2) (0,0,1,1,1,1,1,0,0,1) 2(0,1/2)⊕(0,3/2)

(0,0,1,1,1,2,0,0,0,1) (0,3/2)⊕(0,5/2) (0,0,1,1,2,0,0,0,0,1) (0,1/2)⊕(0,3/2)

(0,0,1,1,2,1,0,0,0,1) 2(0,1/2)⊕(0,3/2) (0,0,1,1,3,0,0,0,0,1) (0,3/2)⊕(0,5/2)

(0,0,1,2,2,0,0,0,0,1) 2(0,1/2)⊕(0,3/2) (0,1,1,1,1,0,0,0,0,1) (0,1/2)

(0,1,1,1,1,1,0,0,0,1) (0,1/2)⊕(0,3/2) (0,1,1,1,2,0,0,0,0,1) (0,1/2)⊕(0,3/2)

(1,1,1,1,1,0,0,0,0,1) (0,1/2) (0,0,0,0,0,0,0,0,3,2) (0,5/2)

(0,0,0,0,0,0,0,0,4,2) (0,5/2)⊕(0,7/2)⊕(1/2,4) (0,0,0,0,0,0,3,0,0,2) (0,5/2)
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β ⊕Nβ
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(0,0,0,0,0,0,3,1,0,2) (0,3/2)⊕(0,5/2) (0,0,0,0,0,0,4,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4)

(0,0,0,0,0,1,0,0,0,2) (0,5/2) (0,0,0,0,0,1,0,0,1,2) (0,3/2)⊕(0,5/2)

(0,0,0,0,0,1,0,0,2,2) (0,1/2)⊕(0,3/2)⊕(0,5/2) (0,0,0,0,0,1,0,0,3,2) (0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕
(0,7/2)

(0,0,0,0,0,1,1,0,0,2) (0,3/2)⊕(0,5/2) (0,0,0,0,0,1,1,0,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,0,1,1,0,2,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,0,1,1,1,0,2) (0,3/2)⊕(0,5/2)

(0,0,0,0,0,1,1,1,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,0,1,2,0,0,2) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,0,0,0,1,2,0,1,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,0,1,2,1,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,0,1,3,0,0,2) (0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕
(0,7/2)

(0,0,0,0,0,2,0,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4)

(0,0,0,0,0,2,0,0,1,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,0,0,0,2,0,0,2,2) (0,1/2)⊕3(0,3/2)⊕4(0,5/2)⊕
2(0,7/2)⊕(1/2,2)⊕(1/2,3)⊕
(1/2,4)

(0,0,0,0,0,2,1,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,0,0,0,2,1,0,1,2) (0,1/2)⊕5(0,3/2)⊕7(0,5/2)⊕
3(0,7/2)⊕(1/2,2)⊕2(1/2,3)⊕
(1/2,4)

(0,0,0,0,0,2,1,1,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,0,0,0,2,2,0,0,2) (0,1/2)⊕3(0,3/2)⊕4(0,5/2)⊕
2(0,7/2)⊕(1/2,2)⊕(1/2,3)⊕
(1/2,4)

(0,0,0,0,0,3,0,0,0,2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
(1/2,4)⊕(1/2,5)⊕(1,11/2)

(0,0,0,0,0,3,0,0,1,2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,0,0,3,1,0,0,2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,0,0,4,0,0,0,2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
2(0,11/2)⊕(1/2,4)⊕
(1/2,5)⊕2(1/2,6)⊕(1,11/2)⊕
(1,13/2)⊕(3/2,7)

(0,0,0,0,1,1,0,0,0,2) (0,3/2)⊕(0,5/2) (0,0,0,0,1,1,0,0,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,1,1,0,0,2,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,1,1,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,1,1,1,0,1,2) 3(0,1/2)⊕3(0,3/2)⊕(0,5/2) (0,0,0,0,1,1,1,1,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,1,1,2,0,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,1,2,0,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,0,0,1,2,0,0,1,2) (0,1/2)⊕5(0,3/2)⊕7(0,5/2)⊕
3(0,7/2)⊕(1/2,2)⊕2(1/2,3)⊕
(1/2,4)

(0,0,0,0,1,2,1,0,0,2) (0,1/2)⊕5(0,3/2)⊕7(0,5/2)⊕
3(0,7/2)⊕(1/2,2)⊕2(1/2,3)⊕
(1/2,4)

(0,0,0,0,1,3,0,0,0,2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,0,2,1,0,0,0,2) (0,1/2)⊕(0,3/2)⊕(0,5/2)

(0,0,0,0,2,1,0,0,1,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,0,2,1,1,0,0,2) 2(0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,0,2,2,0,0,0,2) (0,1/2)⊕3(0,3/2)⊕4(0,5/2)⊕
2(0,7/2)⊕(1/2,2)⊕(1/2,3)⊕
(1/2,4)

(0,0,0,0,3,0,0,0,0,2) (0,5/2)

(0,0,0,0,3,1,0,0,0,2) (0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕
(0,7/2)

(0,0,0,0,4,0,0,0,0,2) (0,5/2)⊕(0,7/2)⊕(1/2,4)

(0,0,0,1,1,1,0,0,0,2) (0,3/2)⊕(0,5/2) (0,0,0,1,1,1,0,0,1,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2)

(0,0,0,1,1,1,1,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,1,2,0,0,0,2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕
(1/2,3)⊕(1/2,4)

(0,0,0,1,2,1,0,0,0,2) (0,1/2)⊕2(0,3/2)⊕(0,5/2) (0,0,0,1,3,0,0,0,0,2) (0,3/2)⊕(0,5/2)

(0,0,1,1,1,1,0,0,0,2) (0,3/2)⊕(0,5/2) (0,0,0,0,0,1,0,0,0,3) (0,7/2)

(0,0,0,0,0,1,0,0,1,3) (0,5/2)⊕(0,7/2) (0,0,0,0,0,1,0,0,2,3) (0,3/2)⊕(0,5/2)⊕(0,7/2)
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(0,0,0,0,0,1,1,0,0,3) (0,5/2)⊕(0,7/2) (0,0,0,0,0,1,1,0,1,3) (0,3/2)⊕2(0,5/2)⊕(0,7/2)

(0,0,0,0,0,1,1,1,0,3) (0,5/2)⊕(0,7/2) (0,0,0,0,0,1,2,0,0,3) (0,3/2)⊕(0,5/2)⊕(0,7/2)

(0,0,0,0,0,2,0,0,0,3) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
(1/2,4)⊕(1/2,5)⊕(1,11/2)

(0,0,0,0,0,2,0,0,1,3) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,0,0,2,1,0,0,3) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,0,0,3,0,0,0,3) (0,3/2)⊕(0,5/2)⊕3(0,7/2)⊕
3(0,9/2)⊕4(0,11/2)⊕
(1/2,3)⊕2(1/2,4)⊕3(1/2,5)⊕
3(1/2,6)⊕(1/2,7)⊕(1,9/2)⊕
2(1,11/2)⊕3(1,13/2)⊕
(3/2,6)⊕(3/2,7)⊕(2,15/2)

(0,0,0,0,1,1,0,0,0,3) (0,5/2)⊕(0,7/2) (0,0,0,0,1,1,0,0,1,3) (0,3/2)⊕2(0,5/2)⊕(0,7/2)

(0,0,0,0,1,1,1,0,0,3) (0,3/2)⊕2(0,5/2)⊕(0,7/2) (0,0,0,0,1,2,0,0,0,3) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕
3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕
2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0,0,0,0,2,1,0,0,0,3) (0,3/2)⊕(0,5/2)⊕(0,7/2) (0,0,0,1,1,1,0,0,0,3) (0,5/2)⊕(0,7/2)

(0,0,0,0,0,1,0,0,0,4) (0,9/2) (0,0,0,0,0,1,0,0,1,4) (0,7/2)⊕(0,9/2)

(0,0,0,0,0,1,1,0,0,4) (0,7/2)⊕(0,9/2) (0,0,0,0,0,2,0,0,0,4) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕
2(0,11/2)⊕(1/2,4)⊕
(1/2,5)⊕2(1/2,6)⊕(1,11/2)⊕
(1,13/2)⊕(3/2,7)

(0,0,0,0,1,1,0,0,0,4) (0,7/2)⊕(0,9/2) (0,0,0,0,0,1,0,0,0,5) (0,11/2)

Table 27. Refined BPS invariants of 6d E8 minimal SCFT.
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E8

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 3 7 13 21 27 28 17 4 1

1 1 4 10 19 28 31 19 4

2 1 4 11 20 25 15 2

3 1 4 10 15 9 1

4 1 4 8 5

5 1 3 2

6 1 1

β = (1, 1, 1, 1, 1, 3, 0, 0, 0, 4)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 17 44 79 91 63 23 2

1 1 6 22 51 68 50 17 1

2 1 6 20 31 25 9

3 1 5 9 8 3

4 1 2 2 1

β = (0, 1, 1, 1, 1, 3, 0, 0, 2, 3)

Table 31. Refined BPS invariants for selected degrees of 6d E8 minimal SCFT.
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