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1 Introduction

Six is the highest dimension in which representation theory allows for interacting supercon-
formal quantum theories [1]. Limits of non-perturbative string theory compactifications [2]
and in particular the decoupling of gravity in F-theory compactifications to 6d provided
the first examples [3, 4] and lead recently to a complete classification of geometrically engi-
neered 6d superconformal quantum field theories [5-7]. Such a classification in 6d is highly
desirable, as it might lead by further compactifications, to an exhaustive classification of
superconformal theories.

The 6d geometry is the one of an — in general desingularised — elliptic fibration with
a contractable configuration of desingularised elliptic surfaces fibred over a configuration of
curves in the base. In the decoupling limit the volume outside of the configuration of elliptic
surfaces is scaled to infinite size, leaving us with an, in general reducible, configuration
of complex desingularised elliptic surfaces that can be contracted within a non-compact
Calabi-Yau threefold. Because compact components can be contracted such geometries
are sometimes called local Calabi-Yau spaces. We will call the above specific ones for
short elliptic non-compact Calabi-Yau geometries X and describe them in more detail in
section 2.1.

The full topological string partition function on these elliptic non-compact CY geome-
tries has received much attention as it contains important information about protected
states of the 6d superconformal theories [3, 8]. Solving the topological string partition
function on compact Calabi-Yau manifolds is currently an open problem. On non-compact
Calabi-Yau spaces with an U(1)g isometry a refined topological string partition function
Z(t, €1, €2), which depends on the Kéhler parameters ¢ and two 2 background parameters
€1, €2 is defined as generating function of refined stable pair invariants.! The refinement of
the stable pair invariants [9, 10] and the relation to the refined BPS invariants N ]ﬁl g €N
was given in [11, 12]. Here 5 € Hy(X,Z) is the degree and the half integers (j;, j.) label
a spin representation in the SU(2); x SU(2), little group of the 5d Poincaré group, which
can be identified with Lefschetz actions on the moduli space of D2 and DO0-branes. On

In this section we underline a symbol, if it is a vector. After the introduction section, we drop the
underline when there is no risk of confusion.



toric non-compact Calabi-Yau spaces the refined partition function? Z(t, €1, e2) can be ef-
ficiently calculated by large N techniques [13],® torus localisation [11], the integration of
the refined holomorphic anomaly equations [14] and a recursive solution of blowup equa-
tions [15] generalized from the Gottsche-Nakajima-Yoshioka K-theoretic blowup equations
in the context of 5d N' = 1 supersymmetric gauge theories [16-18].

The class of elliptic non-compact Calabi-Yau relevant for the (1,0) 6d SCFT is non-
toric, but has a U(1)g isometry, and can be viewed as the borderline case for calculating
Z(t,€1,€2). Since the techniques based on toric localisation and large N expansions fail,
two related new methods have been developed. Similar as in heterotic/Type II duality
one can calculate* [8] the world-sheet elliptic genus of dual 2d quiver (0,4) gauge theories
with supersymmetric localisation techniques [20, 21] leading to Jeffrey-Kirwan integrals.
These elliptic genera E4(T,a, m, €1, €2) transform as a Jacobi form and are identified with
the topological string partition function Z; at different winding d of the base [8] up to
certain prefactor. The Kéhler parameter 7 of the elliptic fibre class becomes the modular
parameter while (€1, €2) as well as Kéhler parameters a of the desingularisations and even-
tual further sections m in the elliptic fibration become elliptic parameters. The refined
holomorphic anomaly equations and other B-model techniques also apply and lead to a
modular bootstrap approach where different winding contributions Z; are identified with
meromorphic Jacobi forms with weight zero and an index, which depends quadratically on
the base degree d. The Z; are so constrained by modularity, the pole — as well as the
refined BPS structure of the topological string that they can be completely reconstructed
in many examples [22-24].

In the 2d approach one needs for higher d to consider ever more complicated quiver
gauge theories, while in the modular approach one has to deal with more and more com-
plicated rings of weak Jacobi forms. For this reason we further develop in this paper
the recursive approach based on the elliptic blowup equations [25] for the calculation of
Z(t,€e1,€2) that is further based on a specialisation of the generalized blowup equation
in [15] to the elliptic non-compact Calabi-Yau geometries. The main advantage of this
approach is that it needs as input only® the classical topological data of X, i.e. the classical
triple intersection numbers as well as the evaluation of the Chern classes on the elements of
the Chow group, and yields with a non ambiguous efficient recursive procedure the string
partition function iteratively in the base degree d and for each d exact in (€1, €2) and all
other Kéhler parameters.

2The holomorphic all genus partition function Z(¢, \) = exp(352, A2972F,(t)) containing the informa-
tion of all genus Gromov-Witten invariants is obtained as specialisation €1 = —ez and A\? = —e;ea.

3Strictly speaking the refined topological vertex applies directly only to geometries which engineer N = 2
gauge theories, as these have the required preferred direction in the torus action. In blow downs and
transitions of gauge theories geometries with Chern-Simons terms to geometries which have no immediate
gauge theory interpretation, Z(t, €1, €2) for the latter can often be recovered [13].

“The more supersymmetric case of the M-strings has been pioneered in [19].

5This holds for all non-compact CY 3-folds studied in [15] and elliptic non-compact CY 3-folds studied
in [25]. For the elliptic non-compact CY 3-folds associated to exceptional gauge symmetry studied in this
paper, we also input Zp to the blowup equations, which can be easily calculated from the intersection and
the multi-covering of isolated rational curves, see (2.3) below.



Let us first give a short summary of the structure behind the blowup equations in four,
five and six dimensions. Non-compact Calabi-Yau spaces with U(1) g isometry and the (re-
fined) topological string partition function feature prominently in the geometric engineering
approach [26] to 5d and 4d supersymmetric gauge theories as Z(t, €1, €2) is related with
the K-theoretic extension of Nekrasov’s 4d gauge theory instanton partition [27] on those
non-compact Calabi-Yau spaces [16, 17], which do engineer supersymmetric gauge theories.
In the geometric engineering approach, given mirror symmetry, it is physically obvious that
world-sheet instantons and space time instantons are related. Simply because the former
correct the topological string theory or N = 2 supergravity prepotential, while the latter
correct the rigid N = 2 or Seiberg-Witten prepotential, which is related to the former in a
well defined limit in the B-model, that decouples gravity as decribed in [26]. If the geom-
etry engineers five dimensional U(N) gauge theory, the full correspondence states that the
K-theoretic partition function of the latter is identified with Z(t, €1, €2) and provides an al-
ternative definition [16, 18]. The K-theoretic blowup equation for U(NV) theories without or
with Chern-Simons terms has been rigorously established in [16] and [17, 18] respectively.

Nakajima and Yoshioka derived the original blowup equations [28] in the context of
4d N = 2 supersymmetric SU(N) framed gauge instanton calculus, by studying invari-
ants on moduli space M (N, k,n) of framed torsion free sheaves (E,®) on P2 — a P!
blowup of P? — via the Atiyah-Bott localization formalism w.r.t. an induced toric action
T=C*xC*xGly on ]\/Z(N, k,n). Here ® is the framing automorphism, N is the rank
of E, n = (ca(E) — B2 c3(E), [P2]) and k = —(c1(E), [P']). A general feature of this cal-
culation is that the Euler class of the tangent space of M (N, k,n) at all relevant fix loci is
always a product of contributions from two fixed points at the north and the south poles
of the exceptional P!, which arise due to the action of the C* x C* on P2 parametrized by
€1 and €. Upon evaluation of the Atiyah-Bott localization formula the two contributions
yield — up to calculable factors — a sum of products of the original partition function
on P? at shifted €; 2 and Coulomb branch (in type ITA normalisable Kéhler) parameters.
The partition function on P2 can be also directly specialised for & = 0 to the one on P2
The identification of the two results gives rise to a finite set of equations for the partition
function of the 4d supersymmetric theory on the Omega background. A similar mechanism
applies to the K-theoretic instanton calculus [16, 18], and leads to blowup equations for the
partition function of the 5d SYM on the Omega background. The latter setup is directly
relevant to the calculation of Z(t,e€1,€2) on non-compact Calabi-Yau engineering super-
symmetric gauge theories. The blowup equations can then be reformulated in terms of the
geometric data of the non-compact Calabi-Yau X and refined topological string partition
function as follows.

Let C = (Cj;) be the intersection matrix between compact divisor classes [D;],
i=1,...,b§ and compact curve classes [¥;], j=1,...,b5 of X. Then one defines vector
R,=C-n+r/2, (1.1)

with n € Z% and r € Z% which parametrise the shift of the Kahler parameters. With
In| = Zf“: | i, the generalized blowup equations can be cast in the following form [15]



(see also section 8 of [23] and [29])

~ ~ 0, res,,
Z (_1>|H|Z(£+€IEQ> 61762_€1>Z(£+6233a 61_62762):{ B !

nez’s Aler, e2,m, 1) Z(t, €1,€2) 1E€Su.

(1.2)
Here we have separated the Kéhler parameters m from the Kéhler parameters ¢ to denote
those curve classes that do not intersect with compact divisors [Dg], k = 1,...,b5. These
m correspond to mass parameters in the gauge theory context, while the other Kahler
parameters correspond to Coulomb branch parameters, thus are also called “true” parame-
ters. If a local mirror curve exists, e.g. for non-compact toric Calabi-Yau spaces, the “true”
Kéhler parameters are mapped to the complex structure parameters of the (hyperelliptic)
mirror curve (of genus g = b§) and the m correspond to the residues of the meromorphic
differential A. The hat over Z means the Kéhler moduli in the instanton partition function
have already been shifted

Z(t,e1,62) = ZB(L, €1, €2) 27 (t + mir, €1, €2) . (1.3)

The integral vector r, which we call the r-field, is consistent with the checkerboard pattern

of refined BPS invariants N°

Jusgr? in other WOI'dS7 they Satisfy

214+ 2j,+1=r- mod 2 (1.4)

for non-vanishing N ﬁ j,- The set of r-fields in (1.2) have to be only considered modulo
2C - n, which leaves two classes of finite sets S, and S,. The r-fields in these two sets are
called vanishing and unity r-fields. It is important that A, whose form is known, depends
beside on €; 2 only on r-fields in the two classes and the mass parameters m.

Given the simple form of (1.2) and the method of proof in the gauge theory con-
text [16, 18], it seems reasonable to conjecture [15, 23, 25] that these equations, called the
generalised blowup equations, should hold for the refined partition functions Z(¢, €1, €2) of
all non-compact Calabi-Yau threefolds with a global U(1)r symmetry so that the refined
invariants or equivalently the corresponding BPS index for the space time theory with an
Q background can be defined [11, 12]. At the technical level the precise non-trivial claim
is that S, U S, should be non-empty. In addition it was observed in [15] that the classical
topological data of X mentioned above and the genus zero sector determine Z(t, €1, €2) re-
cursively, and many examples were already checked in great detail. In particular in [25] this
approach was used to compute the refined BPS invariants of elliptic non-compact Calabi-
Yau geometries associated to minimal 6d (1,0) SCFTs with gauge group G = SU(3), SO(8).
In this paper we extend this approach to the remaining minimal 6d SCFTs with excep-
tional gauge groups G = F}, Fg 75 and give a universal description for all minimal building
blocks without matter in the classification of 6d (1,0) SCFTs [5, 6].

The elliptic non-compact Calabi-Yau geometry corresponding to minimal SCFTs with
gauge group G and no matter contains base surface O(—n) — P!. For n = 3,4,5,6,8,12
which are of interest in this paper, the Kodaire singularity of the elliptic fibration gives



the gauge group G = SU(3),S0O(8), Fu, Eg 78 respectively. We find that for these geome-
tries, the generalized blowup equations can be uniformly written as the following recursive
relations of the elliptic genera E; of the corresponding 6d SCFT:

w2 4d1+do=d B
> ()W (n-2) (e +eo) —n((GllelP+dea+ (Gl P+ do)er—mew))
weEPA(QY),d1,2€N

X Ag(m)]Edl (T7m_elg7 €1,€2 _el)EdQ (T7m_62g7 €1 —€2, 62)

:{o, d¢N,

[a] (1.5)
0, (n7,(n—2)(e1+e€2))-Eq(1,m,€1,€2), deN.

Here m are the Coulomb parameters® associated to gauge group G. The subscript of
theta functions ¢ is 4 if n is odd and 3 if n is even, and the characteristic a = k/n —1/2,
k =0,1,...,n — 1. Besides, ¢, is an embedding of the coroot lattice Q¥ of G into the
weight lattice P. Here the r-field is implicit in a@ and ¢,. Since the number of different
embeddings is |P : QV[, the total number of non-equivalent blowup equations is n|P : Q"|.
The function A, (m) is composed of #; and n functions, see (3.5) for the definition. Due
to the Jacobi form nature of every component of the above equations, we call (1.5) as
elliptic blowup equations. In fact, they can be regarded as the natural elliptic lift of the
K-theoretic blowup equations for 5d gauge theories [16, 30]. Moreover, the unity elliptic
blowup equations in (1.5) ultimately lead to a complete solution of the elliptic genera E; in
terms of an universal recursion formula, as will be shown in (3.32). The blowup equations
are not only effective tools to calculate the refined partition functions, but also together
with the general constraints from modularity and BPS structure shed some new light on
the structure of Z(t, €1, €2). In particular it is possible to derive from the structure of the
blowup equations the index and the weight of the Jacobi forms that constitute the building
blocks in (1.5). The recursive structure also helps clarify the form of the denominator of
elliptic genus in the modular boostrap approach as discussed in appendix E, and predicts
many non-trivial relations among these Jacobi forms, one particular of which is proven in
section 3.3.1.

In the program of classifying superconformal field theories in various dimensions the 6d
SCFTs play a similar role as 11d N = 1 supergravity or more precisely M-theory play for the
classification of supergravity in lower dimensions. For this reason we expect that various
limits as well as suitable expansion of the partition function Z(t, €1, €2) of the 6d (1,0)
minimal SCFTs relate to the protected quantities in lower dimensional supersymmetric
theories.

Since the elliptic blowup equations determine Z(t, €;, €2) in particular the elliptic genus
E; completely, we could make many detailed and indeed successful checks on our results.
We summarise the current status of the knowledge on the elliptic genera of all 6d (1,0)
minimal SCFTs from various approaches in table 1. For n = 5,6, 8,12 which are of main
interest in the current paper, our complete recursive solution for the elliptic genera from
blowup equations reproduces all previous partial results. Since we made many checks of

Do not confuse with m in (1.2). The Coulomb parameters are not mass parameters.



n 1 2 3 4 6 8 12| 5 7
features E-strings M-strings | SU(3) | SO(8) | Eg E; |Eg|Fy|E;+ %56
2d quiver Ey [32, 33] Er [19] |Ex [34] | Ex [8] ?
B-model low genus [35] ? genus zero [§]
modular bootstrap Ex [23, 36] E, [24, 37 ‘ E; with fugacities off [37, 38]
topological vertex Ey. [39] Ey, [19] E? 70 [40] ‘ ?
Hilbert series - - E{ 0 [41-43) ‘ -
HL index - - ? EI0 [44, 45] -
twisted Hg theories ] ] v | B (37, 46, 47) | Ey 48] | ? ]
domain walls Ei 2 [49] E3 [50] | Ei [49] -
5d blowup equations trivial EZ 0 [30] E{ 0 [51]
6d blowup equations | Ej [15, 23, 52] ‘ Ex [52] Ey [25] ‘ Eg, current paper Eg [51]

Table 1. Known results on the elliptic genera of 6d minimal (1,0) SCFTs from various approaches.
Here ¢ = Q, = *™'" is the modular parameter. - means the method does not apply, and ? means
possible applicable but results not yet attained. HL. means Hall-Littlewood.

the elliptic blowup equations based on extensive calculations, which might yield further
insights, we provide the results of these calculations on a webpage [31].

Part of these checks indicated in table 1 are quite obvious as for example the 5d limit
gives a good confirmation of our results. Others are highly non-trivial and indicate new
exciting connections to the protected quantities in lower dimensional theories. For example
one of the most important tools for the analysis of the spectra and phenomena like Seiberg
duality in four dimensional SCFTs are the superconformal indices for N' = 1,2,4 SCFT,
which count operators in the chiral rings of these theories. These indices have in turn
various limits such as Macdonald indices, Hall-Littlewood indices and Schur indices which
are relatively easy to compute. As explained in section 5 the latter two occur in a quite non-
trivial manner in the expansion of the elliptic genera that we can efficiently calculate. This
surprising relation between elliptic genera and superconformal indices was found for the
rank one H¢ theories in [37]. We will push the study on such relation for all rank two and
even some rank three cases. This not only sheds light on the structure of these objects,
but also allows to calculate them efficiently for example in theories with no Lagrangian
description in which other methods are quite difficult to carry through.

This paper is organized as follows: in section 2, we review the geometric construction
of elliptic non-compact Calabi-Yau threefolds that engineer 6d (1,0) minimal SCFTs, the
basic properties of the generalized blowup equations in [15], and the de-affinisation pro-
cedure which was essentially already used in [25] to obtain elliptic blowup equations for
G = SU(3) and SO(8). In section 3, we discuss both unity and vanishing elliptic blowup
equations in detail, and derive a universal recursion formula for the elliptic genera of all
minimal SCFTs with G = SU(3),SO(8), Fy, E¢,78. We also prove two important properties
of the elliptic blowup equations, i.e. modularity and universality. In section 4, we explicitly
show for each G the one- and two-string elliptic genera computed from our universal recur-



sion formula and also some relevant information for the blowup equations, such as triple
intersection numbers and the r-fields. In section 5, we discuss a surprising relation between
the elliptic genera of 6d minimal SCFTs and the Hall-Littlewood indices and Schur indices
of 4d N = 2 superconformal H¢ theories, as was revealed for rank one in [37]. We find
analogous relation indeed exist for rank two and higher. Finally, in section 6, we discuss
various possible application and future directions. In a series of appendices we explain our
convention, some technical details, and collect more results on elliptic genera and refined
BPS invariants too lengthy to be put in the main text.

2 Elliptic non-compact CY 3-folds and generalised blowup equations

The generalised blowup equations proposed in [15] (see also section 8 of [23] and [29])
generalise the K-theoretic blowup equations of Nakajima and Yoshioka [16, 18] for 5d
SYM theories to all non-compact Calabi-Yau geometries that have a U(1) g isometry which
may or may not engineer 5d supersymmetric field theories. In subsection 2.1 we describe
the geometric data of the non-compact elliptic Calabi-Yau threefolds associated to the
minimal 6d SCFTs with pure gauge bulk theory. With this input and b}** calculated in
subsection 2.2, the r fields can be determined in subsection 2.3 and the generalised blowup
equations can be expanded to extract BPS constraints that allow for solution of refined
BPS invariants as in [15].

We then consider the expansion of the partition function in the base degrees and
describe how to recast the generalised blowup equations, with some additional input, as
functional equations of elliptic genera of the 6d SCFTs. The latter, which we call the
elliptic blowup equations, will be discussed in full detail in the next section.

2.1 Geometry of elliptic fibrations

In this paper we are specifically interested in the non compact elliptic Calabi-Yau threefolds
on which F-theory compactification yields minimal 6d (1,0) SCFTs with n = 3,4,5,6, 8,12
so that the bulk theory has a pure gauge group G.

We discuss some generic features of these Calabi-Yau threefolds, in particular the
compact curves and the compact divisors in the Calabi-Yau. The compact curves and
compact divisors in these geometries are best illustrated in [53] and summarised in [25].
Let us go over them here quickly. Suppose the gauge group G has rank rk(G) and its
associated Lie algebra is g, then there are b§ = rk(G) + 2 linearly independent compact
curves in the Calabi-Yau threefold.” One of them is the —n curve ¥ in the base, while the
remaining rk+1 curves X7 (I = 0, 1,...,rk) are P's resulting from resolution of the singular
elliptic fiber fibered over X 5. These r + 1 curves intersect with each other according to
the affine Dynkin diagram of g, where each node corresponds to a rational curve of self-
intersection —2 and two curves intersect with intersection number 1 if the corresponding
nodes are linked. We denote the curve corresponding to the affine node by ¥, and it is

"From now on, we simply denote rk(G) as rk to lighten the notation.
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Figure 1. Compact curves and compact divisors in the n = 5 local elliptic Calabi-Yau from [53].
The indices (—n, n—2) on each rational section S or S’ = S+kF of Fy, are the degrees of its normal
bundles O(—n)®O(n—2) in the corresponding direction. Fg meets F; in a double section. Globally
the fibration has a Zs monodromy encirceling ¥ p that corresponds to an outer automorphism of
the Fg Dynkin diagram and folds its sphere tree to an Fj type sphere tree over X g.Note that the
curve ¥, plays the role of a Mori cone generator and is related to the base curve ¥ 5 by (4.43).

the only P! which intersects with ¥ 5. The linear combination

rk
S arlsr] = o (21)
I=0

with a7 the marks of g is homologous to the generic elliptic fiber. We denote the complex-
ified Kéhler parameters of 5 and »; by tg and ¢; respectively.

The b = rk + 1 vertical compact divisors Dy for I = 0,1, ... are fibrations of ¥ over
Y p. They are argued in [53] to be Hirzebruch surfaces of various degrees, and the ¥ are the
P! fibers of these Hirzebruch surfaces. It is then easy to deduce that the (rk +2) x (rk 4 1)
matrix C' encoding the intersections between Y;, ¥ p and Dy is given by

i
¢= (—n,O...,O) (22)

where A is the affine Cartan matrix of G. We illustrate compact curves and compact
divisors in the example of the n = 5 model with G = Fj in figure 1.

The topological string partition function on elliptic fibrations can be expanded in terms
of the base degree d w.r.t. the base curve X5 labelled by Qp = !B

Z =27%27, <1 +) ZdQ‘fg> . (2.3)

d=1



7% comes from the degree zero maps and depends hence on the classical topological data
of X. We discuss them in section 2.2. Zy(tr,e_,€4) gets contributions from the rational
curves X7 in the elliptic fibre that form the affine Dynkin diagram. These can be directly
calculated from the geometry reflecting the affine group structure, i.e. the intersection
matrix A in (2.2) using N(Eif] =1,1=0,...r for rational curves [11] as well as the general

multi cover formula (3.21),2Which leads to (2.36). These contribution of isolated rational
curves can be also calculated as one loop correction to the gauge coupling [26], which is
the reason that Zy is sometimes identified as Zy; = Z1°°P. The coefficients Zgso in the
expansion, on the other hand, encode the BPS invariants that do wrap the base curve ¥,
and are rather difficult to compute.

At this point a clarification of subtlety is in order. The curve classes ¥ g, X5 actually
do not give a good basis for computing the BPS invariants, as they are not all Mori cone
generators. To remedy this, one should keep ¥; and replace X by the P! base of the
Hirzebruch surface with the lowest degree in the chain, so that it cannot be expressed as
linear combinations of other curves with non-negative coefficients. We will illustrate this
point in example section 4.

The topological string partition function is identical with the BPS partition function of
the corresponding 6d SCFT in the tensor branch, put on the Omega background R* Xeren
T2. In the latter point of view, it is more natural to use another set of Kihler parameters
ten, 7,m; (1 =1,...,1rk), which are related to tp,t; by

n_
2

rk
tel =tB — 27, T:Zaztz, m; =t;, 1=1,...,rk, (2.4)
=0
ten is defined such that the coefficients E; in the expansion of the BPS partition function
in terms of Qg = elel

o
7 — gcls 7l-loop <1 + Z EdQﬁll) (2.5)
d=1
are elliptic genera of the self-dual strings present in the 6d SCFT. 7 measures the volume
of the generic elliptic fiber [d], and since § intersect with no compact divisor, it is a mass pa-
rameter of the theory. In addition, it is also identified with the complex structure modulus
of the torus T2. m; are now interpreted as the Wilson loops of the vector multiplets in 7°2.
Note that the 6d SCFT can be reduced to a 5d pure SYM with the same gauge group
G if we decompactify 3y and send its volume —tg to infinity. In the resulting 5d theory,
the only mass parameter is the instanton counting parameter t;, and we find, by looking
for curve class not intersecting with divisors, that
n—2
2
We finally comment that in light of the correspondence between m; and nodes in

tqg = ten — T. (2.6)

Dynkin diagram of g, we can collect the Kéahler moduli m; into a single vector m taking
value in the complexified Cartan subalgebra hc = C™ with

rk
m:Zmin-, m; = (a;,m), i=1,...,rk, (2.7)
i=1



where w; are the fundamental weights, «; the simple roots of g, and (,) the natural pairing
between bc and bg. This allows a reformulation of the generalised blowup equations in
terms of Lie algebraic data, which we use heavily in the uniform formula (1.5). The
convention of Lie algebra we use is given in appendix A.

2.2 Semiclassical partition functions

We summarise the computation of the semiclassical partition functions here. These are
the minimal initial data one needs in order to extract refined BPS invariants from the
generalised blowup equations. First of all the semiclassical contribution ZCls(t, €1,€2) =
exp(F(t, €1, €2)) can be written as

1 (e1+ 62)2
1 1 1 1
Fe (L, e1,62) = @F(Co,so)( )+ Foy () — 46162 Flomy ()
N (2.8)
61 62 NS
_ Rijititite |+ b5Vt — b5t
6162( ,Jzkjl o k> Z (er€2) ;

The coefficients x;;;, are the triple intersection numbers of divisors .J; Poincaré dual to the
curve classes Y; with volumes ¢;. b?v are intersections of the divisors .J; with the second
Chern class of the Calabi-Yau threefold. The coefficients bys, on the other hand, do not
have a geometric meaning, they are usually computed by the refined holomorphic anomaly
equations [14, 54], which are difficult to apply here. The Nekrasov partition function of a
5d pure SYM also has a semiclassical contribution which takes the same form as (2.8), and

the linear coefficients are subject to the relation
bV 46N = 0. (2.9)

In our previous paper [25] we argued that b3V, bNS of the minimal 6d SCFTs with G =
SU(3),S0(8) can be computed by uplifting the semiclassical Nekrasov partition function
of the 5d pure SYM with the same gauge G aided by the nontrivial automorphism of the
affine Dynkin diagrams, and we found these coefficients also satisfy the relation (2.9). In the
remaining minimal SCFTs with G = Fy, Fg, F7, s, not all the affine Dynkin diagams have
a non-trivial automorphism, and the method of uplifting does not always work. Instead
we assume (2.9) to be true and only compute b&V by geometric means.®
To compute f;j; and bSY, we need to embed the Calabi-Yau threefold X — Opi(—n)
in a compact Calabi-Yau, for instance the elliptic fibration X over F,, with a single section,
and first compute these intersection numbers in the compact geomtry. The compact Calabi-
Yau X can be realised as a hypersurface in a toric variety [8]. Let us look at an example in
detail. The threefold 7 : X — Op1(—5) is the zero loci of the section of the anti-canonical
bundle of the toric variety Pa, WhOS(? )toric data is given in table 2 [8].? It has 7 Mori
(2
)

cone generators with charges [(V = (Ip/) for i = 1,...,7 (We will use the same notation

8Up to a irrelevant 7 term, the numbers b5V, bl¥S

can be also predicted from blowup equations by
requiring the consistency of BPS invariants. For all the minimal SCFTs, these predictions agree with the
values computed from the method we will describe later.

9See also the geometric description in [55].
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D vt (D@ @ @ G q© @ | ) @ @ ) D)
Db 0 0 0 0[-2 0 0 0 0 0 0[O0 0 0 0 -2 0
Dy -1 0 0 0] 0-2 0 0 0 0 1 0 0 0 0 0
D, 0-1 0 O 1 0 0 0 0 0 0[O0 0 0 0 1 0
Dy 0 1 0 —1] 0 0 0 0 1-2[-2 1 0 0 0 0
Dy 1 2 0 -2 2 0 0 0-2 1| 1-2 0 0 2 0
$ 2 3 0-1/0 1 -2 0 1 0 0[O0 0-2 1 0 0
2 3 0-2| 1 -2 1-1 0 0 0| 0 0 1 -2 1—1
§” 2 3 0-3|-2 0 0-1 0 1 0/ 0 1 0 1 -2 -1
K 2 3 0 0/ 0 0 1 0-2 0 0[]0 0 1 0 0 0
F 2 3-1-5/0 0 0 1 0 0 0/ 0 0 0 0 0 1
S 2 3 0 1,0 0 0 0 0 0/ 0 0 0 0 0 0
F 2 3 1 0/ 0 0 0 1 0 0 0/ 0 0 0 0 0 1

Table 2. The toric data of Po for G = Fj.

for both the curves and their toric charges). Note the number of Mori cone generators is
(rk 4+ 3). Among these curves 1Y), 1) are identified as the (—5) curve (i.e. ¥3) and the
(0) curve in the base F5,'” while the other five toric curves combine linearly into ¥ for
I=0,1,...,4 8]

Yo=1®, 5, =1® 410 4 M v, =D v, =70 xn, =17, (2.10)

The toric divisors listed in the first column of table 2 can also be identified. Dy is associ-
ated to the canonical bundle of Po. When X is written in the Weierstrass form, D1, Do
correspond to the divisors x = 0 and y = 0 respectively, while K is the zero section at
x — oo. F, S’ S are respectively the vertical divisors pulled back from the (0), (—5), and
the (5) curves in F5 in the base. Since the elliptic fibration over 7(S’) = X p factorises
to an intersecting tree of Hirzebruch surfaces ®; for I = 0,1,...,4, S’ should actually be
identified with ©g. The remaining four divisors D3, D4, S”,S"" are identified (up to linear
combination) as the exceptional divisors ®; for ¢ = 1,...,4. Only rk(Fy) + 3 = 7 of these
divisors are linearly independent.

Once the toric data of Pa are specified, there are standard techniques in toric geometry
to compute the triple intersection numbers &;j; of the divisors J}, and the intersection

numbers with ¢(X) are given by [56]'!
. . .1 . ,
G A k
— 24pGV = /XCQ(X) Ni=5Y A1 = ST 19y (2.11)

jk n>0

10Gtrictly speaking, the (0) curve should be corrected by certain linear combination of other curves. But
after decompactifying this curve to arrive at the non-compact threefold X, this difference disappears.
'We use the same notation for the divisor jz and its dual 2-form.
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Alternatively, &;;, can be computed by the special geometry relation. For a compact
Calabi-Yau threefold realised as a hypersurface in a toric variety one can define the de-
formed fundamental period @y(z;p) as a holomorphic function of the Batyrev coordinates
z; and compute the homogeneous A- and B-periods (see for instance [57])

1Y (2) = 0,,00(2: )| =0 » (2.12)
A s A 2.12
HEZ)(Z) - §“ijk3pjapkw0(z5 Pllpi=o-

They are interpreted as the masses of the D2-, D4-branes supported on the curves [ and
the dual divisors .J;. The affine A- and B-periods defined by

f; =1 Jao(2;0), B =112 /éo(2:0) (2.13)
satisfy the relation R
. OF
By =200 (2.14)
ot

The existence of the prepotential F((Lo) uniquely fixes the coefficients ;.

The non-compact Calabi-Yau X is obtained by decompactifying X in the direction of
the (0)-curve in the base. In practise, this corresponds to taking the K&hler parameter in
the decompactified direction t4. to infinity in A-model or taking the corresponding complex
structure parameter zg. to zero in B-model. In A-model, this limit can be understood as
taking some of the compact (1,1) cycles to infinite size, keeping the other (1,1) cycles
finite. The periods of the geometry will be rearranged so that only one A-period and
some B-periods go to infinity. In our current case, the B-period %F(O,O) goes to infinity,
while the corresponding A-period remains finite, and becomes the elliptic fiber parameter
7. We can then integrate over the new periods to get the triple intersection numbers of
the non-compact geometry. However, this method will always have a integration constant
term 72 unfixed, which is very important for the refined BPS invariants in the 7 direction.
To determine the 72 term, we study the normalization scheme of 7 derivative of the genus
zero free energy a%F(O,O)-

In the example of the G = F; model visited above, this is z5 associated to the curve
1), In the limit zg, — 0 the affine A-period associated to the (0)-curve diverges, while the
other rk + 2 affine A-periods remain finite. We can choose a basis of the latter to be!?

(tr), I=0,1,...,tk B, (2.15)

which correspond to the curve classes Y, ..., 2, X g discussed in the previous section. At
the same time, both the zero section of the elliptic fibration and the vertical disivor of the
(0)-curve become infinite in volume. Therefore in the limt zq. — 0 two B-periods diverge,
and only rk + 1 affine B-periods remain finite. We choose a basis

(Fj), J=0,1,...,1k, (2.16)

12They are the limit zqc — 0 of proper linear combinations of #; of the compact Calabi-Yau. Similarly
Fj defined below are the limit zq. — O of linear combinations of ﬁ'l
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which correspond to the divisor classes ®; with I = 0,1,...,rk. The special geometry
relation of the non-compact Calabi-Yau X dictates

Fy= Y. Cu T J=0,1,...,1k, (2.17)

where Cj; are the components of the divisor-curve intersection matrix (2.2). The iden-
tity (2.17) allows the computation of the semi-classical components of Fg)(t) up to a
term proportional to 73; in other words, the intersection number x,,, can not be fixed

3 can always be factored out of the

by (2.17). Since 7 is a mass parameter, the term 7
blowup equations and it is not of importance to us. Nevertheless, in appendix B we will
introduce a normalisation scheme which fixes such a term in a reasonable way, and we
adopt this normalisation scheme in the example section 4. In any case, for all the minimal
6d SCFTs with a pure gauge theory in the bulk which can be reduced to a 5d pure SYM,

we find that up to 7°

a,m)3 —2)7 343
Fgpyh == << o ) +22qé<oa,m>2> ~ ((n ;i(ntt;)) . (2.18)

aEA L
where m, tq are defined in (2.7) and (2.6) respectively. We recognise the sum over positive

roots is from the Nekrasov prepotenital of the 5d pure SYM. We can also massage (2.18)
into a more suggestive form

1 1 n—2
FioY) = %tim + ten(m,m) —

T(m,m) + ... (2.19)

up to 73 and cubic terms in m;. Here (,) is the invariant bilinear form on hc. See
appendix A for our convention.

As for F, (Cllfo) (t) and the intersection numbers with c2(X ), we use the same formula (2.11)
with A, replaced by the triple intersection numbers of the non-compact Calabi-Yau and
1) replaced by the toric charges of X, ..., %, Xp5. In the example of G = F; discussed
above, one has the toric charges l;%), l%), lg), lg), lg), lg) as in table 2.

As in the case of the prepotential, one cannot determine the pure mass term propor-
tional to 7 which is irrelevant, although it can be fixed by the same normalisation scheme
if one wishes. We have checked that F| (CII’SO) (t) computed in this way reduces correctly to the

semiclassical Nekrasov partition function when the 6d SCF'T is reduced to the 5d pure SYM.

2.3 Determination of r fields

In general, the r fields associated to a non-compact Calabi-Yau can be determined by the
method in [15]. Here we give a brief description of it. As proved in [15], even without
any assumption or constraint put on A (for instance it can depend on all Kéhler moduli),
the A as defined by (1.2) must be quasi-modular of weight zero under the Siegel modular
: 0? = 13
transformations of 7;; = MF(QO)’ where ¢; are the true Kéahler parameters.”> Let us

!3Note that this 7;; parameter is different from the 7 parameter of the elliptic fiber.
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expand this A in terms of all the exponentiated Kihler moduli e. The leading terms,
which come from Z, read

log A ~log <ZCIS(61,62—61)ZCIS(61—62,62)/ZCIS(61,62))

bs bs bS bs
1 & 2 2 1
= _6 Z HiijiRij—i-Z(b?V—b?S)Ri (61+62)+Z _§Zf€iijiRj tr
i,5,k=1 =1 k=1 i,7=1
b3
=t fo(m)(er+e2)+y_ frln)ty, (2.20)
k=1

which are linear in ¢;. It implies that A can be expanded as a well-defined power series in
eti. Now let us assume that for appropriate choice of the r-field, this power series with all
the instanton contributions taken into account truncates at finite orders for all true t;,'*
which actually implies that the A does not depend on any of the true Kahler parameters as
stated in the introduction, since otherwise it can not be of modular weight zero. Needless
to say, this assumption puts very strong constraint on the choice of the r-field, and these
are the r-fields we are interested in.

In our current cases of elliptic non-compact Calabi-Yau threefolds, there is only one
mass parameter which is 7. The strong constraint then means that for the r fields we are
interested in only the lowest order of Kahler parameters contributes. Then we can simply
define A

A(T, €1, €2) = Z(_l)\mefo(ﬂ)efk(ﬂ)tk ’ (2.21)
nerl
where 7 is the set of integral vectors n that minimize all the fx(n) for true Kahler parame-
ters simultaneously after subtracting mass parameters. If the minimal values for one r are
not zero simultaneously, then it must be a vanishing r or an incorrect r.

In the case of elliptic non-compact Calabi-Yau threefolds associated to minimal 6d
SCFTs, the T parameter is always some combinations of Kéhler parameters in the fiber
direction and it will be a little bit subtle to subtract the mass parameter 7. We can first
consider the 7 irrelevant Kéahler parameter to, and the minimum of the associated fey(n),
and then check the solved r fields with the condition (2.21). As also shown in [25], the
existence of the minimum of fo(n), already suffices to fix all the r fields. In particular,
similar to ¢, we decompose r into components rg, 71, ..., , 75. Then the weak consistency
condition implies the admissibility condition, which we will prove shortly

rk
rT:Zalrl =0. (222)
=0

It means the component of r in the direction of the elliptic fiber must vanish. Recall that
we only consider r modulo 2C - n for Vn € 7% = 7'+ The intersection matrix C defines
the injection Z™+1 < Z™+2  The r fields that satisfy (2.22) can only take value in the

14This assumption is the most natural consideration for the generalized blowup equations compared with
the initial Nakajima-Yoshioka blowup equations.
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n 3 4 5 6 8 12
#(r) 9 16 5 18 16 12
P:Qv] 3 4 1 3 2 1

Table 3. Numbers and sizes of groups of r-fields giving rise to the same embedding ¢ .

dimension zero quotient lattice T'/Z™*! with T' = Z™+2|,__g, and they are thus finite in
number. Finally we impose the BPS checkerboard pattern condition

21 +2j,+1=r-8 mod?2 (2.23)

to remove half of them. We comment that the checkerboard condition can be written
down without computing any BPS invariants. As argued in [25], any rational curve f in
the Calabi-Yau with normal bundle O(—n) & O(n — 2) must have

2j,+2j, +1=n mod 2. (2.24)
This implies the r-field always satisfies
r=(0,...,0,n) mod?2, (2.25)

for minimal 6d (1,0) SCFTs. The argument above not only establishes the finiteness of
admissible r, but also provides a guideline on how to determine them. We find all of them
for the G = SU(3), SO(8) models in [25] and for the remaining models with G = Fy, Eg 78
in the example section 4 of this paper. In all these examples we checked that they satisfy
the stronger consistency condition. Here we summarise their numbers in table 3.

Let us prove the admissibility condition (2.22). An important ingredient of the blowup
equations (1.2) are the shifts of Kéhler moduli m; (i =1,...,rk) by

rk

1
R; = JZ:OCi,JnJ +gris (2.26)

where n; take value in Z. We collect them into a single vector just like m

rk rk
A 1
R = Z <— Z Ai’JnJ + 27“@) Ww; = —Oév + A + noé?, (2.27)

=1 J=0

where we have used the generic form (2.2) of the intersection matrix C' and the following
Lie algebraic notation

rk rk
1
A= 3 Z;riwi, oV = Zlnioz;/. (2.28)
1= 1=

The function fe(n), which we also denote by Pg(n) due to its particular importance, then
has the form

fen(n) = %RellRT + %(Ru R) =: Pg(n), (2.29)
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where Rep, R, are the shifts of teg, 7 given respectively by

Rai— ot v, Ro— b1y (2.30)
=-—nng+ =7 =_rr == arry . .
ell 0 9 ell » T 2 2 yart 17T
A little algebraic manipulation leads to
1 rk 1 rk
Pg(n) = 3 I%:()n]nJ(a}/, ay) — 5 I;O rmg(@r,ay) +... (2.31)

where ... denote the terms that are independent from n. If we demand that this function
have a minimum, all the derivatives 0, Pz(n) must have a common zero. Multiplying each
of them with comark a; and adding them up, we immediately arrive at the admissibility
condition (2.22).! Let us make some remarks here. As we will see in section 4, all the
admissible r-fields are such that the components r; (i = 1,...,rk) are even integers. It is
clear then that A associated to r as well as the shift R have nice interpretation as weight
vectors of g. And Pg(n) is nothing else but half the norm square of R due to (2.22)

1
Pg(n) = i(R’ R). (2.32)
Furthermore \ defines an embedding of QY into P
QY > P
0@ (2.33)
a’ = pr(aY) = —a¥ + A

and R takes value in the image ¢(Q") if ng = 0. The number of inequivalent embeddings
is the index |P : V|, which also happens to be the order of the automorphism group of
the associated Dynkin diagram. We also list these numbers in table 3. The reader may
notice the curious relation

n- [P QY| = #(r), (2.34)

whose meaning will be clear in section 3.

2.4 De-affinisation

Once the semiclassical piece Z° and the r-fields are known, we can start solving refined
BPS invariants by expanding the blowup equations (1.2) in terms of Kéhler moduli and
extracting constraint equations of BPS invariants at each order. Alternatively since the
Z1-190P piece is rather easy to compute for the minimal 6d SCFTs, which reads [25]'6

-1 1
B ey, e3) = PE| - ant el 4 @ tom) ] ,
(@) (-0, ) QEZA+ ( ) 1-Qr

1 i (2.36)

'5This condition was found in [25] by an intuitive geometric argument for minimal theories with a gauge
group G of the ADE type. Here we prove it for all gauge groups including the non-ADE types.
1$Here PE is the plethystic exponent operator defined as

PE[f(x)] = exp [Z if(m")} . (2.35)

Note we only consider the contribution from vector multiplets to the one-loop partition function here. The
tensor multiplets actually also contribute to one-loop partition function, but their contribution does not
depend on the gauge parameter m, i.e. it is pure 7 terms which will decouple from the blowup equations.
Thus we do not consider them here. See more discussion in section 2.4 in [25].
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we can also plug in this piece of information, expand the partition functions in the blowup
equation (1.2) only in terms of Qey, and obtain recursion relations of elliptic genera

Z DS DYOP R, (7 m + € R (n), €1, €2 — €1)Eqy (T, m + 2Ry (1), €1 — €3, €2)
Pg(n)+di+d2=d
= AE4(1,m,e€1,€2),
(2.37)
which allows the solution of the elliptic genera in compact formulas. Here

D/7cls:(_1)|ﬁ|+(d1+d2 ”C“exp (fo( €1+62 —FZf[ t[—|— d161+d262)Reu(n)) (2.38)

collects contributions from the semiclassical partition function (as well as the shift of toy),
and

Dleor — 71- IOOP(T m~+e1 Ry (n), 61,62—61)Z1 1(’OP(T m+ea Ry, (n), 1—62,62)/21_100p(7'7m,61,62)
(2.39)
is the contribution from the one-loop partition function. The elliptic blowup equations can
be put in an elegant form by partially resumming the left hand side of (2.37). With (2.31)
and the admissibility condition (2.22), one can show that the polynomial Pg(n) that char-

acterises the summation index n is invariant under the translation
ny—nr+ajk, kez. (2.40)

Besides, in the components Z1°°P and E,; the dependence on n only appears in the shifts

rk

A 1
—ZALJnJJrim, I=0,1,...,1k, (2.41)
J=0

which are also invariant under (2.40). As a result, we can decompose the summation index
n=n+a'k (2.42)

with the zeroth component of f fixed to zero, i.e. n = (0,n1,n2,...,n), a step we call
“de-affinisation”, and perform the infinite sum on the left hand side of (2.37) in two steps.
In the first step, we factor out D11°°P, Eq, 4, and only sum D" over k € Z. Due to the
quadratic nature of the polynomials fo(n), fr(n), and the relation of ¢t; with 7 (2.4), this
first summation in fact produces a theta function with characteristics [25]. In the second
step, we sum over dy,ds and f that satisfy

Pg( ) +di +dy=d. (2.43)

Instead of i we can treat R(n) as the summation index, which as we argued before is
now interpreted as a weight vector in ¢,(QV) determined by r. In addition, the one-
loop contribution DI1°°P also turns out to be a quotient of theta functions [25], while the
elliptic genera themselves are meromorphic Jacobi forms. Therefore in the end, the elliptic
blowup equations can be presented as beautiful equations of Jacobi forms with a sum over
the shifted coroot lattice ¢,(Q"Y). These equations are the highlights of the next section.
We will present these equations in the beginning of the next section, and then discuss their
properties and how to solve elliptic genera from them.
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3 Elliptic blowup equations

In this section, we first present the elliptic blowup equations for 6d minimal A" = (1,0)
SCFTs with G = SU(3),SO(8), Fy, Eg, E7, Es, and discuss their two interesting properties,
the modularity and the universality. The first property in particular serves as a strong
support for the validity of the elliptic blowup equations to arbitrary degrees. Then we
distinguish two cases with A(eq, €2, m, ) non-vanishing or identically vanishing, and discuss
these two cases in detail. In particular, the blowup equations in the first case with non-
vanishing A allow us to write down an exact and universal recursion formula for elliptic
genera, thus offering a complete solution to the elliptic genera.

Let us first fix some conventions. In the following whenever there is no risk of confusion
we will use the dot to denote both the invariant bilinear form on h or h* and the natural
inner product between § and bh*

a-f=(a,p),ora-f={a,pf). (3.1)

We define the norm square
a2 =a-a. (3.2)

For a coroot 3 € QV, we also define

rk rk
8] => "8/, with 8¥=>"ga;. (3.3)
=1 =1

Besides, for a vector m representing the Kéhler paramters associated to a Lie algebra, we
denote m, = m - « for short.
Following the de-affinisation procedure described in section 2.4, we derive the elliptic

blowup equations as

lwl|?+di+da=d
71 a
S (-pleel) ](m,(n—z)(qm)—n((%”w\|2+d1)q+(§|\wy|2+d2)62—mw))
wEPA(QY),d1,2€N

XAw(m)'Edl (T,m—61w761,62—61)‘Ed2 (T,m—62w,61—62,62)

_ {Hl[a] (n7,(n—2)(e1+¢€2))-Egq(m,m,€1,€2), fixed d € N,

(3.4)
0, fixed d ZN.

Here the subscript of theta functions ¢ is 4 if n is odd and 3 if n is even, and the characteristic
a=k/n—1/2, k=0,1,...,n— 1. The factor A,(m) is given by

Aym) = ] 00ma, —a-w), (3.5)
aEAL

where we denote for R > 0,

izr) = ] i I1 i (3.6)

>0 91(2 + me1 + nez) >0 91(2 + (m + 1)61 + (n + 1)62)a
m4+n<R—1 m+n<R—2
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and for R < 0, 6(z,R) = 0(z, —R)|e; 55—, Note the a-w in (3.5) is guaranteed to be
an integer, as requested for the definition of #(z, R). See more about the origin of (z, R)
function in appendix D. Let us show some examples here:

v

0(z,0)=1,
bz, £1) = 917(72) ’ (3.7)
0(z,+2) = 7’

IO CECNCE N CECET)

The dependence on the r-field in (3.4) is related to the choice of a. If we choose basis
of Kahler moduli (¢ey, 7,m;), 7 =1,...,rk as in (2.4), the corresponding components of the
r-field are (ren,rr,7;), i = 1,...,1k. The first component ¢ controls the characteristic a
through a = re;/2n, thus the latter can take any of the following values

n— 2k
= — k=01,....n—1. 3.8
a’ 2n b b 7n ( )

The component r, vanishes due to the admissibility condition (2.22). The remaining com-

ponents r;, i = 1,...,rk always correspond to a weight vector A € P through (2.28), which
in turn induces the embedding ¢, : Q¥ < P, and the summation index vector w € ¢»(Q")
plays the role of the shift vector —R. The number of different embeddings is |P : QV].
The total number of different blowup equations is then n|P : QV|, which explains the
numerology found in (2.34).

3.1 Modularity of elliptic blowup equations

In this section, we provide evidence for the elliptic blowup equations (3.4) by showing that
the components of the elliptic blowup equations transforms correctly as weak Jacobi forms.
This is established by showing that the weight and the index, in general a quadratic poly-
nomial, of the corresponding components in (3.4) match the predictions for the index and
weight made from the 2d and the 6d anomaly polynomial or from the transformation prop-
erties of the refined topological string partition function under the S and T" monodromies
of the Calabi-Yau space X, see [22] and more generally [58]. In general the blowup equa-
tions give interesting identities for Jacobi forms, one example is proven in section 3.3.1,
see also (3.48). In the fortuitous cases where the expressions of E; are already known, for
instance the G = SU(3),SO(8) models [8, 34|, we can plug in their expressions, and verify
these identities by small Q) expansion.

It is easy to see that each term in the summation of (3.4) has weight 1/2 as both A,
and E; are of weight zero and 6; has weight 1/2. The identification of the modular indices
requires a bit of computation, which is independent from the characteristic a. The basic
idea is to repeatedly use the fact that 6(N7, Nz) is of index N/2. Let us denote

do = §llwl?. (3.9)

It is easy to see the theta function 02[‘1] on the left hand side has modular index

Indccli) = g (<d0 +dy — - 2>€1 + <d0 +do — n= 2)62 —mw)2. (3.10)
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Using (D.16), the modular index polynomial of A, (m) can be computed as

Ind§ = —gmi - gdgm -m+ (ndg+ 2 —n) (e1 + e2)my,
i (3.11)
- (ndo +2 —n) (2 + 162 + €3).
The elliptic genus Eq4(7,m, €1, €2) is known to have the modular index [24, 37]
¢ 1 , 1 1
Ind; = f§d(n —2)(e1 +€2)° + Qd(nd —n+2)erea — §ndmo m. (3.12)

Thus the modular index polynomials of Eg4, (7, m — €1w, €1, €2 — €1) and Eg, (7, m — eaw, €1 —
€2, €2) can be computed respectively as

1
md§ = 2 (—(n — )12 + (ndy — n+ 2)dier(es — 1) — ndy (m — elw)2> . (3.13)
1
InddG2 = 5 (—(t‘l — 2)d26% + (n dy — (Il — 2))d2(61 — 62)62 — ndy (m — 62&))2) . (3.14)
Using d = ||w]||?/2+d1 +da, we find that the four components on the left hand side of (3.4)
has total modular index polynomial as

(n—2)(n—2+dn)
2n

o d(dn—n+2) dn
—y  ae—jmm,

(3.15)
which is independent from w, dq, ds individually but only depends on their combination d !

Ind§ +Ind§ +Ind§ +Ind§ = — (e1+€2)

This highly nontrivial fact guarantees the modularity of elliptic blowup equation, which
means in summation of the left hand side of (3.4) all terms share the same modular index,
thus transform as whole Jacobi form together! In the case that d ¢ N where the right hand
side of (3.4) vanishes, this is the end of the story. If d € N so that the right hand side
of (3.4) is non-vanishing, we still need to show the right hand side also shares the same
index polynomial. The index polynomial of A is simply,

(n—2)°

Ind§ = (e1 + €)%, (3.16)

which together with (3.12) indeed sum up to (3.15).

3.2 Universality of elliptic blowup equations

We demonstrate here an interesting property of the elliptic blowup equations. The n blowup
equations (3.4) with a fixed embedding ¢, can be ordered by the characteristics a of the
theta functions, where for two consecutive equations a differ by 1/n. We claim that if two
consecutive unity blowup equations are valid, the other equations must hold automatically.

We call this the universality of the elliptic blowup equations.!'”

1" The following argument assumes the form of refined BPS expansion. Thus the universality here does not
contradict with our statement that choosing arbitrary three unity r fields, i.e. three different characteristics
a, one is able to use the blowup equations to solve out the elliptic genus.
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Theta functions with characteristics have the following properties

m s m? o om
0:[),2“](117', z) = e”'TH”'Z?%(W z+gmt), meZ, (3.17)
04[1%}(117, 2) = Mo T gy i Ou(n, 2+ gmr), meL. (3.18)

Therefore, shifting z by 7 is equivalent to shifting the characteristic of these theta function
by 1/n. Then starting from one unity blowup equation, let us shift ¢; by 7 and check how
various Jacobi forms in (3.4) change.

[a] . .. . cpy
e 0, (n7,...): the elliptic parameter changes by —27 4 integer-n7. The shift integer-nr
can be removed at the expense of an additional exponential factor due to quasi-
periodicity of the theta function, while the shift —27, as we have argued, is equivalent
to shifting a by —2/n.

o A,(m): it is a product of factors like 0 (7, my + me; + nea), m,n € 7Z, therefore is
invariant under this shift up to an exponential factor.

e [E;: we first argue that under the shift e — €; + 1, Eg(7,m, €1, €2) is invariant up to
an exponential factor. The refined BPS are defined from the topological string free

energy as'®
inst 2(51+7r) B X (qlu})Xj’V‘ (Qf«v) wp
F™HQ, e1,€2) Z Z NG w2 —w/2\, w2 w2 Q™
Jir20w>1,8 w(qy"" —q )a' " —aq )
(3.19)
where ' _
RIS (3.20)
Xj\4q) = — .
]( ) qg—q 1

Exponentiating (3.19) the instanton partition function reads

Jur L (_1)2(jl+1r)Njﬂm
mil—z5 275
Qe =T[TT 1 I (1 g™ 2Qﬁ)

B Jiyr=0my;p==ji/r m1,ma=1

(3.21)
Using (3.19) and the checkerboard pattern identity

214+ 2j,+1=r-8 (mod2) (3.22)

for non-vanishing BPS invariants one can show that the refined BPS partition function
is invariant under the combined transformation

(€1,€2,t) = (e1+ 1,e2,t + 7). (3.23)

Since the r-vector for the minimal 6d SCFTs in terms of the Kéhler moduli ¢7,tp

have components

r=(0,...,0,n) mod (2Z)™*2 (3.24)
8Here ¢; = exp(2mic;) 5 = 1,2 and ¢t = \/q1/q2, ¢+ = /q1g2. We will also use v = g,, © = ¢; in section 4

and 5 to make contact with the literature such as [37, 38].
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the elliptic genus Ex(7,m, €1, €2) is invariant under the shift e; — €; + 1, at most up
to a sign if n is odd. In fact

E(r,m, €1 4+ 1,€2) = (=1)"™E(1,m, €1, €2) . (3.25)

Together with the modular property of Eg, this implies Ex(7,m, €1, €2) is quasi-
periodic for €1 — €1 +7. Similarly, one can show that Eg(7,m, €1, €2) is quasi-periodic
for €5 — €9 + 7 as well. As examples one could inspect the expressions of E; for the
n = 3,4 models [8, 34], which are composed of 0;(7,integer - €; + integer - €2 + ...)
and therefore are indeed quasi-periodic for €12 — €12 + 7. Now if we forget for
the moment the shift on the mass parameters, the three instances of elliptic genera
Ek(r,m — €1W, €1,€2 — 61), Ek(T,m — €W, €1 — €9, 62), Ek(T, m,e€1, 62) in (34) should
already be invariant under ¢; — €1 + 7 up to an exponential factor. The shift on the
mass parameters m — e€jw in the first instance of E; means that upon €; — € + 7 its
elliptic parameter is in addition shifted by 7 times a weight vector, which can also
be removed at the expense of an additional exponential factor [24].1°

In summary, the shift ¢, — €; + 7 is equivalent to shifting the characteristic a of the
[a]

theta functions 6;"(n7,...) by —2/n and in addition multiplying each term in (3.4) by
an exponential factor. These exponential factors are determined by the index polynomial
of each term, which as a consequence of section 3.1, should be identical. Thus all the
exponential factors can be factored out and removed, and we are left again with a unity
blowup equation where the characteristic is shifted by —2/n. This immediately indicates
that starting from two consecutive unity blowup equations, we can obtain all the other

unity blowup equations, hence the universality property.

3.3 Unity blowup equations

The elliptic blowup equations depend on the choice of the weight vector A and they take
different forms depending on if A € QV or not. We first consider the former case where
dA(QV) coincides with QY. We can denote w as vector 8V in the coroot lattice. Then
18Y[|?/2 and thus d are always nonnegative integers, and as a result the right hand side
of (3.4) does not vanish

318V (12 +d1+da=d

> 0PI (nr (n=2) (e er) —n((11BYI P+du)er+ (118YPHdz)es—mpv ) )
BYEQY d1,2€N

x Agv(m)Eq, (1ym—e18Y,€1,62—€1)Eay (T, m—€28" €1 —€2,€2)
=01 nr, (n—2)(e14€)) Ea(r,m,€1,62),  deEN, (3.26)

We say these elliptic blowup equations are of the unity type following the nomenclature
in [15]. Since the number of embedding Q" < ¢,(Q") = Q" is unique, the number of unity

19Tt is established in section 4 of [24] that the elliptic genera of 6d SCFTs with a pure gauge bulk theory
in fact consist of special Weyl invariant Jacobi forms, which, among other things, are quasi-periodic if the
elliptic parameter is shifted by 7 times a weight vector.
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blowup equations is the same as the range of characteristics a, which is n. We also point
out that, using the property that the leading @) order of Ey is —dhé /6,2 these equations
in the leading order of @), boil down to the identity

> (B-a)? =hGIBI%, (3.27)
aEAH(G)

which is guaranteed by the Lie algebraic identity (A.5).
The unity blowup equations are particular interesting as they allow us to write down
recursion formulas for the elliptic genera.

3.3.1 Recursion formulas for elliptic genera
The unity blowup equations (3.26) can be put in the following more suggestive form
6, (n7, (0 — 2 = dn)er + (n — 2)e2)Ea(T, m, e1, €2 — 1)

+ 01 (a7, (n — 2)er + (n — 2 — dn)ea)Ba(7, m, €1 — €2, €2) (3.28)

— 01 (a7, (n — 2)(e1 + €2))Ea(T,m, €1, €2) = [y(Bcy) .
where I;(E.4) only contains the elliptic genera of degrees lower than d. Since three copies
of E4 on the left hand side do not depend on the characteristic a, if we have three such
equations with different a, which is indeed the case for all the minimal 6d /' = (1,0) SCFTs

with pure gauge bulk theory, we can solve Ey(T, ,e1, €2) in terms of elliptic genera with lower

number of strings; in other words, we obtain recursion formulas for elliptic genera.

Let us use the short hand notation?!

0£?‘%do,d17d2} = 0\ (nr,nmay + (n— 2)(e1 + e2) — n((do + di)er + (do + da)ez)) ,  (3.29)

where m,v = m - o, and furthermore define

[a1] [a1] [a1]
91,{10,51,0} ei,{lo,o,d} 91‘,{10,0,0}

_ [a2] [az] [a2]
Da=Det | 6; 040y Yifo0ay igo00y | (3.30)
gl o o el
7’7{07d70} Z’{O1O7d} Z’{07070}
as well as
glo] glol [a1]
7{7{?7d70} T7{(])707d} ’Lt’{(‘leadlvd2}
aV _ az a2 az
(dodr,doy = DU 0,00 00v Oit00.ar Yifdodrdst |- (3.31)
0. 6. 0.
1,{0,d,0} 1,{0,0,d} 4,{do,d1,d2}
Note that Dy = D?OVO 0y does not depend on " since a” = 0 when do = llaV[|?/2 = 0.
Then the recursion formulas of E; solved from (3.28) read
do+d1+do=d Dac\l/ b d
Vv
Ed: Z (71)"1 ‘{OT:’Q}AQV(m)Edl(mfeloév,61,62*61)Ed2(m*620év,61*62,62).
do=11laV|[2,d1 2<d
(3.32)
Here the 7 dependence is implied.
208ee more discussion in section 4.1.
#Note do = ||a”||?/2 is always implied. When do = 0, Hz[ﬂdoydhdﬂ does not depend on " since a¥ = 0.
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Let us look at some examples. The one-string elliptic genus is given by

Do’ 4

{1,0,0} n
]E pr—
1 Haezl%v Dy 01(mqa)01(ma — €1)01(ma — €2)01 (Mo — €1 — €2) ﬂGI_BIA 61(m
aV||?=2 o 1

(3.33)
where mg = m - 8. In particular, for ADE type algebras, the E; formula can be further
simplified due to the identification of roots and coroots. Indeed, for Ay, Dy, Eg 78, we have
the following universal formula

4

d n
OéEZA D 91 (ma)el( - 61)01 (ma - 62)91(ma — € — 62) Ber[A Hl(m/j) . (334)
a-f=1

Here D, and D are the short notations for D¢ {1,0,0} and D;.
In the @ — 0 limit, E; formula (3.33) reduces to the universal one-instanton partition
function of 5d N/ =1 pure SYM theory [30, 59]

L, 1 5 o(h—1)m. /2
1= (1_6—61)(1_6—62) = (1_e—el—eg—f—m.y)(em»y/Q_e—m»y/Q)Ha.’yzl(ema/Q_efma/Q) ’
(3.35)

where A; denotes the set of long roots which is the same with coroots with [|a¥|? = 2.

Furthermore, the two-string elliptic genus is given by

D({l01_1} laV| Dgoo}
EQ Dy El(m,61,62—61)E1(m,61—62,62)+ll ;;4(—1) Aa\/(Tn)l)i2
DY/ DY/
+ Z ‘aV|A ( )<{51’0}E1(m—61a\/’61762—61)+WEl(m—EgaV7el—€2,€2)>.
laV[[2=2 ? ?

(3.36)
Note in the bracket of the second line of (3.36), the two terms are symmetric in €; <> €.
In the later section, we use this formula to compute the two-string elliptic genus of all 6d
(1,0) minimal SCFTs with G = Ay, Dy, Fy, Es78. From (3.32), we can also easily write
down the universal formula for three-string elliptic genus as

D¢ =0 Da\/
Eg= [%;Q}El(m e1,€2—€1)Eg(m, €1 —€2,€2) + (€1 962)} + ) (_1)\aV|Aav(m){;7,z,0}
[l [[?=6

DY,
+ Z Iav'A ( )[%;’O}El(m—elav,el,ez—q)—%(qHQ)}

v [[2=4

v D
+ Z |a A, v(m )[(%jO}E( —€1av,€1,62—61)+(61<—>62))

lla¥[]?=2

Dy
+ {[1)7*;’1}1[31 (m—e1a”,e1,e2—e1)E1(m—eza” e1— ey, 62):| . (3.37)
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From the topological string point of view, the d-string elliptic genus E4 encodes the
BPS invariants N fl i with base degree d as well as multi-wrapping contributions from lower
base degree curves. Once all the elliptic genera up to certain base degree d are computed,
all the BPS invariants up to base degree d and arbitrary degrees along other directions
can be extracted. The recurison formulas (3.32) thus allow us to reproduce the genus zero
Gopakumar-Vafa invariants for the Calabi-Yau threefolds associated to the minimal 6d
SCFTs with n = 5,6,8,12 [24], and to compute the refined BPS invariants for the first
time in the literature.

Let us make a remark here concerning the validity of the recursion formula (3.32).
Obviously, the recursion formula is only well-defined when Dy # 0. We have checked that
this is indeed true for all the minimal models except for the model of G = SU(3) with d = 1,
where both D?1,070} and D vanish. This is a special situation since for the model with
G = SU(3) there are only three choices of the characteristics a; and there may be certain
symmetry enhancement for E; such that only two of the three unity blowup equations are
linearly independent. Note that this does mot contradict with the fact that the universal
one-instanton partition function Z; of 5d pure SYM theories [30, 59] works perfectly for the
SU(3) theory which is recovered from one-string elliptic genus in the 5d limit with @, — 0.
What happens in this limit is that the 6d unity r-field » = (0,0, 0, 3) splits to two 5d unity
r-fields r1 and ry, and the leading Q) order term of D1 is the difference of two contributions
associated to r1 and ry respectively, both of which remain finite and identical. Nevertheless,

it should be emphasize that though recursion formula does not work for E?U(g)

, by assuming
the refined BPS expansion, one can still use two unity blowup equations and one vanishing
blowup equation to solve out all the refined BPS invariants, which is what we have done
in [25]. If further assuming the knowledge on Zj, one can actually use o(n)e single unity
3

blowup equations to solve out all refined BPS invariants. To compute ]ESU by recursion
formula (3.36), practically one can use the exact formula EfU(?)) in [34]. For all d > 1, the

recursion formula (3.32) works well for SU(3).

The identity DfU@) = 0 here despite its simple form does not seem so trivial. In fact,
we find it is a special case of the following series of identities. With ¢ = ¢™" and y = e>™
we define the following double indexed 6 functions

7‘2 T 2
9:[37"/271] (n,]_’ Z) = gy qu(nl-i-r)yl _ q%ny% ’
€7 k=r (2
[r/2n] zir 2 L i(nl | zn) K2 k (3.38)
0" (n7, 2) = elnqzayzn Y (—1)'g MY = N gan (—y)2a
leZ k=r (2n)

where the notations k& = r (m) in the second sums, mean that & runs over values of the
form r + ml, for any [ € Z. We claim that if

n—1 n—1
dm=0 « JJw=1 (3.39)
=0 =0
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the determinant of the n x n matrices defined from these 0 functions
det [Hgn](nﬁ Zj)i,j—O,...,n—1:| = 0, if 2 ’ n
(3.40)

2i+1

det [Qz[; o ](nﬂ zj)i,j:o,...,n1:| =0, if 24n

vanish. Note the n = 1 case is just the well-known fact 6,(7,0) = 0, while n = 3 case
implies the D?U(S) = 0 identity in our previous context. The proof proceeds in both cases
in (3.40) by showing that each term of the form ¢ H?:1 yfj that occur in the expansion of
the determinant, constrained by (3.39), appears once with positive and once with negative
sign.?? The first case is notationally simpler so we prove it explicitly. Using 2 | n and
an irrelevant rescaling®® z; — %; = nz; we rewrite the first determinate in the statement

in (3.40) as

K2 k34 Ak2 & ko
w[(Z0),, g xR
,)=Y,...,— 11

k=i (n) ko = TI(0) (n)
by ZT(n 1) (m)
K34k

Ky —
= Y seaB)g Wt (341)

k; # k; mod n

Here Py is defined by the maps i +— k; modn, for i=0,...,n—1. Let k= (ko + ... + kn—1)/n
be the average of k; and use it to define k} = k; — 2k. Since 2 | n, k runs over k = 3 (1)
and hence k; € Z. Direct calculation shows that under the * operation k; — k' the terms
my 1= gFottRn_0/n H?;l yfj in (3.40) stay invariant my = my~; the second factor due
to (3.39). Let now P} be defined by i — £} mod n. It follows immediately that it likewise
defines a permutation of the indices {0,...,n—1}, however with the opposite parity. Hence
my appears twice with opposite sign and the sum (3.41) is zero. The proof of the second

case in (3.40) proceeds analogously, with appropriate relabelling of the indices.

3.3.2 Uniqueness of recursion formulas

One important consequence of the universality property is that the recursion formula (3.32)
does not depend on the choice of three different r-fields in its construction, as it should. Let
us supppose that we already known E_; and we wish to compute E; using the recursion
formula (3.32) obtained from three consecutive unity blowup equations forming the linear

System
0[“1} 9[‘11} 0[‘11] [a1]
i{0,d,0} Yi,0,0,d} %i,{0,0,0} Eq(m, €1, €2 — €1) I, (E<a)
9?{2(})@,0} ez[(,?g,o,d} 91[%,0,0} | Ba(m, a1 —eg,e9) | = — I(Ezaﬂ (E<a) | > (3.42)
00y Oiiooay Piiooo) ~Ea(m, &1, e2) 15 (E<a)

22We thank Don Zagier for pointing this mechanism out to us.
ZFollowed by a renaming of the Z; to z; again.

— 96 —



where ay —a; = ag —ag = 1/n, and the matrix of theta function on the Lh.s. is of full rank.
If the E4(m, €1, €2) solved from the linear system is correct, so should be Eg(m, €1, €2 — €1),
Eq(m, €1 — €2, €2), and the three unity blowup equations in (3.42) should all be correct as
well. Otherwise, the linear system could always be corrected by

[a1] [a1] [a1] a
‘91,{10,61,0} 91',{10,0@} 97;,{10,0,0} Eq(m, €1, € — €1) I([j 1](E<d) Ry
91[“{23 40) 92[”{2(])0 2 91[75370,0} N Bam, e —esye0) | == | 1By | + | R2 | - (343)
ez[ilfg,d,o} 91[‘?{3(]),0@} 91[‘?{3(]),0,0} —Ea(m, €1, €2) It[iag](E@) Ry

By inverting the matrix of theta functions in (3.42) and (3.43) and subtracting the two
equations from each other, we get

glaal  glaa] [a1] !

E,{(]),d,o} T,{(]),O,d} ?,{?,0,0} Ry
91’,{20@,0} 91',{20,0,01} 6)z',{Qo,o,o} | B2 ] =0, (3.44)
9[03] 9[“3] 9[“3] R3

Z7{07Cl70} 1/7{0707d} 1/7{07070}

which means the corrections R; 23 must all vanish, as a consequence of Dg # 0. Once the
validity of the three unity blowup equations in (3.42) is established, using the universality
we can argue for the validity of all unity blowup equations. The recursion formula con-
structed out of any three unity blowup equations then should always gives the correct E,
which coincides with the solution of (3.42).

3.4 Vanishing blowup equations

We consider here the case where A € P\QV. This is only possible if |P : QY| > 1, i.e. for the
minimal 6d A = (1,0) SCFTs with G = SU(3),SO(8), Egs, E7. In this case, ¢(QY) # QY;
||w]|?/2 for any w € ¢»(Q") and thus d is not an integer. In fact we find

n—2

= k, keZ 3.45
9 n + K, S >0 ( )

where the minimum norm square (n — 2)/n is reached if and only if w is in a lowest dimen-
sional irreducible representation®® g of G. As a consequence, the right hand side of the
elliptic blowup equations (3.4) vanishes

L|w|[>+dy+da=d
S (plnelgl (m, (n—2)(el—|—62)—n((%||w||2+d1)61+(%||w||2+d2)62—mw))
wEPA(QV),d1,2€N
X Aw(m)-Eg, (T,m—e1w, e1,e2—¢€1)-Eg, (T,m—€aw, €1 —€2,62) =0, A€ Q" fixedd.
(3.46)
Following the nomenclature of [15], we call these equations of the vanishing type.
The number of inequivalent embeddings ¢, of this kind is |P : QY| — 1, which
happens to be the order of the automorphism group of the Dynkin diagram I'g for

24This can be the fundamenal representation, the anti-fundamental representation, and in the case of
SO(8) the two spinor representations.
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G = SU(3),S0(8), Eg, E7. As representatives we can choose A to be a fundamental weight?®
that generates [g as the highest weight. The total number of inequivalent vanishing blowup
equations for each of these models is n(|P : QV| —1). Furthermore, using the property that
the leading @ order of Ey4 is —dh(./6, the equations (3.46) at the leading order requires
that
Z ((w ca)? — (wo - a)2) = 2kh{, w € dA(QY),wo € Ug, (3.47)
acAt
where the integer k is associated to the weight vector w by (3.45), and it is again guaranteed
by the Lie algebraic identity (A.5).
With the elliptic genus solved from the recursion formulas (3.32) plugged in, the van-
ishing blowup equations give rise to infinitely many nontrivial identities of Jacobi forms.
In the lowest order, d = (n—2)/n and ¢,(Q") is chosen to be one of the lowest dimensional

representations
_ u 1
(_1)|¢A1(w)\ 92[ ](m', nmy,) H =0. (3.48)
Ze = 01(mp)
w G BEAL
w-B==%£1

This elegant formula specializing to G = SU(3) and SO(8) has been explicitly shown and
checked in [25]. Here we further checked it for Eg and E7 for various characteristic a to
higher order of ()-. For example, for Ejg, the relevant representation is 27, with the weights
encoded in the character

27 6
XE? = Z H eI, (3.49)
i=1 j=1

Then for arbitrary a € Z/6, the following identity holds:?°

27
_ a 1
Y () @lgkd6r,6m.,) ] ~0. (3.51)
i=1 sea iy 010M8)
+(Es

w;-B==%1

Note there actually exist two 27 representations due to the symmetry of Dynkin diagram
of Eg, i.e. |Aut(I'g,)| = 2, both of them make (3.51) holds. This also explains why there
are two copies of vanishing r field for Fg geometry, as we will see in next section in table 9.
For higher base degree of the vanishing blowup equations, one can also write down some
more complicated identities like (3.48). We checked them for all G = SU(3),SO(8), Es 7 in
the setting of refined BPS expansion to very high orders.

25Not all the fundamental weights generate a lowest dimensional irreducible representation. For instance,
the fundamental weight of SO(8) corresponding to the central node in the Dynkin diagram I'so(s) generates
the adjoint representation. The nodes associated to the [g-generating fundamental weights are permuted
precisely by the automorphism group Aut(I'g).
26Let us write the notations in components in case of any misunderstanding.
6 6 6 6
63 @)= D (Crg)jrwis, muw, = Y mu(Crlipwis, wi-B=» wiyBy, mp=» m;f;, (3.50)
Jok=1

3k=1 Jj=1 J=1

where Cg, is the Cartan matrix.

~ 98 —



G SU(3) SO(8) FEs FEr

dim(0) 3 8 27 56

dim(A4) 3 12 36 63

#{LeAL :w-=0,YweO} 1 6 20 36
HBEA, w-B=+1VweO} 2 16 27
#{eA; w0 =42Vwe O} 0 0 0 0

Table 4. Distribution of positive roots with respect to product with weights in Og.

We list various Lie theoretical data including the distribution of positive roots with
respect to product with any weight in Og in table 4, from which one can check (3.47)
indeed holds.

4 Elliptic genera for 6d (1,0) minimal SCFTs

In this section we illustrate explicitly the solution of one-string and two-string elliptic
genera of minimal 6d (1,0) SCFTs with G = Fy, Fg, E7, Eg, using the elliptic blowup
equations. The elliptic genera of the minimal theories with G = SU(3), SO(8) have been
computed in [8, 34], and we also reproduce some relevant results here. From these concrete
results we summarise some universal features of the elliptic genera, including the expansion
coefficients, the symmetric product approximation, and some additional symmetries. They
are presented immediately in the first subsection, which one can then check in the following
example subsections.

In this and the next sections, we work with the reduced elliptic genera which has the
center-of-mass degree of freedom removed:>”

E,w = Eq0 /Eem., (4.1)
where . ;
IEC.m. — _w- (42)
n

In the reduced version, elliptic genera normally obtain simplification. For example, the
reduced one-string elliptic genus is independent from e_, i.e. SU(2);, as expected.

4.1 Universal behaviors of elliptic genera

4.1.1 TUniversal expansion

For all possible gauge group G, recall v = exp(7i(e1 + €2)) and = = exp(7wi(er — €2)), we
propose the following general ansatz for the reduced k-string elliptic genera

V1 —(khY=1)/6 = - (n
}E’h(éf)(vax7QTani) :’Uth IQT( ¢/ ZQT g](g’g’(vamani)‘ (43)

n=0

2"We follow the notation of [37] where ]EH(’“ is used to stress it is the RR elliptic genus of underlying 2d
G

(0,4) CFT associated to the k-strings in 6d (1,0) minimal SCFT with gauge group G. It is the same with
what we previously denoted as E; to emphasize that it is coefficient of base degree k£ in the topological
string partition function.
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Here all g,inc);(v,x, Qm,) are rational functions. In particular, gyg is independent from z.

(n)

One obvious symmetry for all g, G is

Gl 0,2, Qm,) = gy (0,27, Qum,), (4.4)

which comes from the symmetry between ¢; and ez in the Omega background, and can be
understood as the Weyl symmetry of SU(2),. From now on we use SU(2), to denote SU(2),
symmetry to stress the associated fugacity is x. We can further compute the v-expansion of
each g,ing; function where the coefficients are finite sum of products between the characters
of SU(2), and characters of G which respect Weyl symmetries of both groups. For example,
g,(g% =1+ ... gives the Hilbert series of the reduced k G-instanton moduli space. In fact,
we find plenty of universal coefficients for the first a few order v-expansion of g,(;%

It is known that the Hilbert series of the reduced one-instanton moduli space for any
simple gauge group G has the expansion [41]
9% (v, Qm,) Z Xeg0™" (4.5)

7

where xpg is the character of the representatlon Whose highest weight is k-multiple of the
longest root 6; in particular yy is the character of the adjoint representation of G. In
particular this is true for G = SU(3),S0(8), Fy, E¢,78 when gg% serves as the leading
contribution to one-string elliptic genus. As for sub- and subsub-leading contributions, we
find that except for G = SU(3)?®

1
gi)g(% Qm;) = 1+xo+ (1+X9+X26+XA1‘526)U2+ <2X29+XA1t29+X39+BQ(G)>U4+0(U6),

(4.6)
while except for G = SU( ), SO(8),

91 G( s Qm;) =2+ 2x9 + Xsym2¢ + O(v?). (4.7)

Here By(G) are characters of some representations for which we do not find any universal
expressions, and we list them in table 5.2 The exceptions of SU(3) and SO(8) can be
explained by the higher structures of E; revealed by its intriguing relation with the Schur
indices of certain rank one 4d SCFTs discovered in [37], which we will review and extend
in section 5.

Furthermore, we find the Hilbert series of reduced two-instanton modulis space for any
simple gauge group G has the expansion

950 (0,2, Qumy) = 14+ (xo +x3)0> + X0 x20 + (X5 FX0X3F Xsymza) v+ (XoXa+ (X20+Xanz0) X2) 0

+ (x7+x5X0+ X3 (Xsym20+X20) + Xsym?o — Cs(G) ) v°

+ (X9X6+ (X260 +Xal20)Xa+ (X260 T X30 + X al29 + B2(G) +C7(G))X2) v’

+ <X9 +x7X0+X5(Xsym2o +Xx20) +X3(X30 +X20 + B2(G) + Xsymso — C6(G)) + Xsym*o —CB(G))Us

+ (X9X8+(X29 +Xar20) X6+ (x20 +2X30 + X ar20 + B2(G) +C7(G))xa+. .. ) 0+ (4.8)

28From now on, to shorten formulas, we do not explicitly write G in each character.

29The bold numbers mean the character of representations with dimension of such number. Note different
representations can have the same dimension sometimes, for instance, the representations 35,, 355 and 35,
of SO(8). To lighten the notation, we do not distinguish them in the table. Nevertheless, they can be
recovered by taking into account the symmetry of Dynkin diagrams.

— 30 —



G xeo X260 X360 B Cs Cr Cs

As 8 27 64 2-35 1 27 8

Dy 28 300 1925 4096 2-28 3-567 2-(300+350+1)+3-35
Fy, 52 1053 12376 29172 273 10829 8424 + 4096 + 324 + 26
FEg 78 2430 43758 105600 650 34749 34749 + 2 -5824 + 650 4+ 78
FE; 133 7371 238602 573440 1463 152152 150822 + 40755 + 1539
Eg 248 27000 1763125 4096000 0 779247 147250

Table 5. Certain representations appearing in the expansion of g,(cnc); functions.

Here x,, is the character of n-dimensional representation of SU(2),. The expansion coef-
ficients up to v% were already observed in [30], and we further push the observation up

8. We have checked this expression to be consistent with all the results on Hilbert

to v
series of reduced two G instanton moduli space in [42]. In particular it is true for
G = 8SU(3),S0(8), Fy, Eg 7,8 when gé?(); is the leading contribution to the two-string elliptic
genera. Note that in this expression, Cs(G), C7(G) are characters of certain representations
of G for which universal expressions are not found. They are collected for individual G
in table 5. As for the subleading and subsubleading contribution to the two-string elliptic
genera, we find there exists the following universal v-expansion: except for G = SU(3),

20,2, Qm,) =1+ xo + x5 + (xo + Dx2v + (x5 + (2x6 + 3)x3 + (xo + 1)2)0?

+ ((2X9 + 1)xa+ (x20 + (xo +1)° + xsyng)m) v’ (4.9)
+(x7+ 2x9 +3)x5 + ... v + O(0°),

9

while except for G = SU(3) and SO(8),

950 (0,2, Qum) = (5 + (X0 +2)X3+ Xsym2a+ 2x0+4) + (o + Dxa+ (o +1)2+2(x0+ 1)z

(X (2X0 X5+ (X0 + 1)+ 2,20 +6X0 +9) X3+ )0+ O(07)
(4.10)

For the reduced three string elliptic genus Eh(3), although we have not checked for
G
all six G due to the complexity of computation, still we propose the following universal

expansion:

3
o (0,2, Qum,) = 1+ (x3+X0)v> + (xa+xox2)0* + <X5+X9X3+Xsym2g+1) v
+ (X6+ (2Xe+1)><4+2><sym2e)v5

+ <2X7+3X9X5 +(X20+3Xsym20 T 1) X3+ Xsym30 +Xsym2a> V0.
(4.11)

We have checked this against the three-instanton Hilbert series for SU(2), G2, SO(7), Sp(4),
Sp(6) in [43, 60], and against the three-string elliptic genus for SU(3) [34]. Note the first
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two terms also agree with the rank three Eg Hall-Littlewood index ((A.14) in [45]). For
the subleading @), order, again except SU(3), we propose

gf();(v, z,Qm;) =0 +xo+1)+(xa+ (xo+ 1x2)v

(4.12)
+ (X5 + (3x0 + 4)X3 + 2Xgym20 + X0 + 2)v° + O(°).

As in rank one and two cases, for SU(3), the higher contributions begin to merge in at Q,
subleading order.

All above v-expansion coefficients can be easily obtained by setting @, = 1 in
gff)G(v,x,Qm). Thus the rational functions g,r(j%(v,x, 1) are very useful as they encode
most information. For large k or n, such rational functions with generic x turn out to be
too lengthy. One can take the unrefined limit z = 1 in gfl%(v, x, 1) to still store meaning
information on arbitrary order coefficients of v-expansion. Indeed, when the fugacities of

flavor as well as SU(2), are turned off, we find

1

gﬁl();(”) = (1= p2)2hE—D) X Pf@(v), (4.13)

(n) (\ _ 1 (n)
g2,G(v) o (1— 02)2(}%—1)(1 + 0)26 (14 v + vz)zhgq X P2,G(U) : (4.14)

The exponents bg are given by

G SUBB) SO®) F, Es E; Es
b 3 6 11 16 26 46

We notice that b = 5h)/3 — 4 except for SU(3). The numerators Pl("G)(v) and PQ("G)(U)
are palindromic Laurent polynomials. They have negative powers of v when n is large.

Nevertheless Pl(%(v), PQ(%(U) are both polynomials and their maximum degrees are h, — 1

and 2(2h}—1)42bg respectively. The explicit expressions of P,grg(v) for the minimal SCFTs
with G = SU(3),SO(8), Fy, Fg, E7, Eg are presented in the following example subsections

and also appendix F.

4.1.2 Symmetric product approximation

It was noticed both in [42] and [45] that the reduced two G-instanton Hilbert series can be
realized as certain symmetric product of two one G-instantons as approximation:

2
b = 5 (0T ) P ) + 00,
(4.15)
Here we adopt their notation a = @y, to lighten the notation. It also was noticed in [43]
that the reduced three G-instanton Hilbert series can be realized as certain symmetric
product of three one G-instantons as approximation:

1 3 1 1 1 3 3 1 1
om0 = § (oo (00) + e s 0 a0

2
+1_03xi393,1é(037a3)> +O(vh). (4.16)
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The above formulas have clear physical meaning. For example in (4.16), the first term
represents the configuration where three instantons are far from each other, the second term
represents the configuration where two instantons sit on the same site and the third one is
far from them, while the third term represents the configuration where all three instantons
sit on the same site. Note the triple symmetric product would give the coefficient of v* of
9(()?)0 as X5+ XoX3+X20 + Xgym2¢ +1, one can see the difference with (4.11) begins to appear.

In fact, it is reasonable that arbitrary k& G-instanton Hilbert series can be realized as
symmetric product of k£ G-instantons as approximation:

1
mgé’%(v,x, a) = Symf\,lal(v,a:, a) + O(v?), (4.17)

where Sym’éjl(v, x,a) can be obtained from generating function

Z Symlf\/lq1 (v, z,a)Q* = PE [1_vaﬂ gé%(v, a)} =PE [’gvo(’lc);(v, x, a)Q] . (4.18)
k=1

For example,

1 (1-a 4 2_ 1 ~(1 2
Symﬁwcyl (v,z,a) = 2 <(g(()’é(v,x,a)> +6<gé7é(v,x,a)) gé»é(vQ,xz,aQ)JrB (gé’c);(UQ,xQ,aQ))

~(1 ~(1 ~(1
ST O )

= 1+ (x3+x0) 0"+ (xa+x0x2)0* +O(v). (4.19)

It is not hard to find that for all £ > 3, the leading coefficients in v expansion of symmetric
product are the same:

1 (/@ k (1 k=2_(4
Syl (0:20) = 5 ((@h(02,0) + (A 000) T2 + )

=14 (x3+ x9)v2 + (xa + xox2)v® + O(v?). (4.20)

Here the first term represents all k£ instantons are far from each other, while the second

term represents two instantons sit at the same site and the rest k — 2 instanton are far

from them and each other. .. From v?, the interaction among instantons will contribute.
(k)

We can also include g into the elliptic genus to write down the above symmetric
product approximation. For example in the reduced three-string elliptic genus, since

L3h

3 —hY/2 —hY /241
By (v,2,0,Qr) = T——700,6(0,2,0)Q: "¢ + 0(@Q- "), (421
combining (4.16), we obtain
_ 1 3 2 2 2 2
]E~(3) (v,x,a,QT) - E~(1)(’U,LE,(I, QT) + 3EV(1)('U,$,(I, QT)E~(1)(U y Ly @ aQr)
heg 6\ hg he he (4.22)

+ QE}'L(Gl)(vga 1'3, a‘37 Qi)) +.oy

which holds for the leading ), order and the first four v-expansion coefficients. For ar-
bitrary k-strings elliptic genus, it is better to use Hecke transformation. Neglecting the
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interaction among strings, the resulting k-strings elliptic genus Esym(k) (v,z,a,Q;) can be
G

generated from

ZE g)vxaQT = exp ZQ” Z Z E(1><CT+bcel,cmg>]

n>0 ed=n_b(mod d)
c,d>0
(4.23)
Note this relies on the Jacobi form nature of Ezq) (7, €;, mg). Also take d =1 in (4.23), one
G

will go back to instanton formula (4.18) where there is no modularity. Finally, we obtain
—kh
By (0,2,0,Qr) = Eg o (v,2,0,Q7) + O(Q7 /") 1 ohe+). (4.24)
G

As we have checked this symmetric product approximation does not give exact subleading
(k)

Q; orders g, ¢~ even for its leading v-expansion coefficient. This means all subleading Q-
orders involves interaction among strings.

4.1.3 Symmetries

Besides the obvious symmetry

Eh(k)(vax7QT7Qm) :Eh(k)(vvxilaQTva) y (425)
G G

which comes from the symmetry between ¢; and €5 in Omega background, it was found
in [37] that the reduced one-string elliptic genus Eh(l) (v,Q-) satisfies an additional symmetry

B, (QV2/0,Qs) = (1)L Vg, ) (0,Q,). (4.26)

Here the dependence on mg is implicit. This symmetry was later interpreted as a spectral
flow symmetry in [38]. The left hand side of (4.26) actually computes the NS-R elliptic
genus, which should be equal to the R-R elliptic genus on the right hand side due to the
lack of chiral fermions in the minimal SCFT in consideration. See section 6.4 of [37] for a
detailed discussion.

We extend the symmetry (4.26) to arbitrary k-string elliptic genus Ehg) (v,2,Q7):

1/2 A1/2
T T k1 FE=S) v g2y _kE=Dgv g2y (kh—3)/6
LAG (U, . 7QT> = ()™l T et T e G Qr ¢ T E,m (v,2,Q),

(4.27)
which can be derived by combining (3.25) and the modular anomaly of elliptic genera (3.12).
For the situation where 2d quiver description is known, i.e. G = SU(3) and SO(8), the above
symmetry can also be obtained by looking into the transformation of integrand of localiza-
tion with the quasi-periodicity of Jacobi theta function (D.5), (D.6). Note symmetry (4.27)
is a nonperturbative symmetry, which can not be seen from the ), expansion of the elliptic
genus, except for the one-string case that is (4.26).3° This means (4.27) should be seen as

30Practically, we find that for the two-string elliptic genus, when Q. order is enough high, for one order
of Q@ goes up, the leading v order goes down for 3. Thus, if one naively does the transformation for the
left hand side of (4.27) in ), expansion, one would get infinite negative order of Q.. Similar situation also
happens for three-string elliptic genus. But for one-string elliptic genus, luckily for one order of @, goes
up, the leading v order goes down for 2, which only result in finite negative order of Q.
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old r

r fundamental weights
(0,0,0,1)  (0,0,0,1)
unity (0,0,0,3) (0,0,0,3) w1 + w2

(0,0,0,5)  (0,0,0,—1)
(—2,2,0,1) (—2,2,0,1)

vanishing (-2,2,0,3) (0,-2,2,1) w1
(—2,2,0,5) (2,0,-2,1)
(—2,0,2,1) (-2,0,2, 1)

vanishing (-2,0,2,3) (0,2,-2,1) wo
(—2,0,2,5) (2,—2 0,1)

Table 6. The r-fields of the n = 3 model and the fundamental weights of as which induce the
embedding ¢ : Q¥ < P. The old r-fields are from our previous paper [25]. They are equivalent
with the 7 in the second column by 2C - n shift.

the symmetry of the chiral algebra associated to the underlying (0,4) 2d CFT, as suggested
in [37].

4.2 Revisiting G = SU(3) and SO(8)

With the new understanding on the structure of r fields of 6d (1,0) minimal SCFTs for
all G, we now can reproduce all r fields for SU(3) and SO(8) found in [25] using just the
fundamental weights of the Lie algebras. We summarize the correspondence between the
r fields given in [25] and fundamental weights in tables 6 and 7.

The elliptic genera of 6d (1,0) SCFT with G = SU(3) were computed using Jeffrey-
Kirwan residue in [34], and were checked to satisfy the elliptic blowup equations [25].
Following the general proposal (4.3), the reduced two-string elliptic genus for SU(3) model
can be written as

By (0,2, Qrymi) = vQ; 5“2@"% e (0,7, Qum,) (4.28)

where génjxg (v, z, Qm, ) are rational functions. We computed ggnf)lz (v, 2, Qm,=1) up to n=10.

Let us turn off the fugacities of both SU(3) and SU(2),, we obtain

1
(1 —0)10(1 +0)6 (1 +v+0v2)°

(n) (v,

95,4, (4.29)

=1,Qm, =1) = x ") (v),

0)

where all PZ(ZL(’U) are palindromic Laurent polynomials, in which only P2( A,(v) is a true

polynomial:
P} (v) = 140460+ 170% + 310" +520° 49200+ 11007 + 11205 +1100° +- - -+0 . (4.30)

Here the ellipsis is completed by making the expression palindromic. This agrees with

the Hilbert series of reduced two SU(3)-instanton moduli space in [42]. For the subleading
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T old r fundamental weights
(0,0,0,0,0,0)  (0,0,0,0,0,0)
wity  (0,0,0,0,0,2)  (0,0,0,0,0,2) We
(0,0,0,0,0,4)  (0,0,0,0,0,4)
(0,0,0,0,0,6)  (0,0,0,0,0, —2)
(-2,2,0,0,0,0) (-2,2,0,0,0,0)
vanishing (-2,2,0,0,0,2) (-2,-2,0,0,2,2) w1
(-2,2,0,0,0,4) (0,0,—2,2,0,0)
(—2,2,0,0,0,6) (0,0,—2,-2,2,2)
(—-2,0,2,0,0,0) (—2,0,2,0,0,0)
vanishing (-2,0,2,0,0,2) (-2,0,2,0,2,2) wo
(—2,0,2,0,0,4)  (0,-2,0,2,0,0)
(-2,0,2,0,0,6) (0,-2,0,-2,2,2)
(—2,0,0,2,0,0)  (—2,0,0,2,0,0)
vanishing (-2,0,0,2,0,2) (-2,0,0,-2,2,2) w3
(—2,0,0,2,0,4)  (0,-2,2,0,0,0)
(—-2,0,0,2,0,6) (0,—2,-2,0,2,2)

Table 7. The r-fields of the n = 4 model and the fundamental weights of 04 which induce the
embedding ¢ : Q¥ — P. The old r-fields are from our previous paper [25]. They are equivalent
with the 7 in the second column by 2C - n shift.

order, PQ(I/);Q (v) starts with negative power of v, which is different from all the other minimal
SCFTs.?! Indeed,

Py, (v) = v~ (1430+802 +110° + 1801 +130° +550° + 23807 + 60105 + 11210 + 177701
+22620" +24240'2 4226201+ +07). (4.31)

More results on P2(722 (v) with n > 1 can be found in appendix F. Let us also show

some results with generic fugacities, for example,
9(()?,)42 (v,2,m;) = 1+ (8+x3)v> +8x20°3 + (X5+8X3+Sym28)v4—|— (8X4+ (27—|—A1t28)x2) VP
+ (X7+8X5+(Sym28+27)X3+Sym38f 1) v+ 07, (4.32)
U4gﬁg (v, z,m;) =14 xov+ (x3+8)v*+ (xa+8x2)v° + (x5+ (8+1)x3+Sym*8)v*
+(x6+8xa+Sym?8x2)v° + O (v°). (4.33)

Note (4.32) agrees with our universal expansion formula (4.8).

31This phenomenon as also occurring in one-string elliptic genus, will be discussed in detail in section 5.
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Similarly, the reduced three-string elliptic genus for SU(3) model can be written as

Ehfi (Ua z, QT: ml) = ng;4/3 Z Q:—Lgéﬁzb (U7 xz, sz)v (4‘34)

n=0

where all génAQ (v, , Qm,) are rational functions. We computed génf)12 (v,2,Qm, = 1) up to

n = 6. Turning off the fugacities of both SU(3) and SU(2),, we obtain

(n) 1 (n)
v, 2 =1,Qm, =1) = x P. v), (4.35
g3,A2( ) (1 B U)16(1 ’U)]'O (1 + ’U2)5 (1 —l— v + ’U2)6 37142( ) ( )

where all P3E722(v) are palindromic Laurent polynomials, in which only ng(l)b (v) is a true
polynomial:

Py, (v) = 1460 +140° + 400" +820° + 21305+ 38807 + 7720° +12600° +207901° +2986v"1
+422601? +52260" 4638404 +-69400° + 7334010 +-69400' T +.. 402, (4.36)

Py (0) =0~ (140%) (14+20+80% +240% +620" +1140° + 24200 4 45607 +9640° +19260°
44225010 48448011 +1631702 428038013 + 44954014 + 64960010 4+ 87437v1°
+106636v'7 412104608 412536809 41210460 4. .. +-08). (4.37)

Note 9:(),0,212 agrees with our universal expansion formula (4.11). More higher Pé’XQ (v) can

be found in appendix F.

The elliptic genera for the 6d (1,0) SCFT with G = SO(8) were computed using
Jeffrey-Kirwan residue in [24], and they were checked to satisfy elliptic blowup equations
in [25]. Let us write the reduced two-string elliptic genus as

(o]
E,@ (v,2,Qr,m;) = v Q7M/O Y Q?géf?ll (v, 2,m;). (4.38)
4

n=0

We computed 922;34 (v,z,m; = 0) up to n = 6. In particular, 97(12334 forn =0, 1,2 agree with

our universal expansion formulas (4.8), (4.9). Turning off the SU(2), fugacity, we have
(n) 1
’U’ xr= 1’ m, = 0 =
92,0 +=0) (1—0)22(1+0)12 (1 + v+ v2)!

n

P (v). (4.39)

(
2,
Here P2(7g4(v) are palindromic Laurent polynomials. In particular, only for n = 0,1, they
are true polynomials:

P, (v) = 1+0+200 +650° + 2540 +8410° + 243505 + 611607 +142900° +297000°

+55947019 4+ 965190 + 152749012 + 220408013 + 293226014 + 3597420 1°
140601400 442196007 440601408 4-- - - 4034, (4.40)

PS}M (v) = (1+v%)(32+900+697v> +2913v° +10582v" +344150° +-979610° + 24249207

+5407490% +10851370° +19581850 0 + 32057740 +4789888v'? +6522178v13
+8110633v"* +92488250"° + 966845000 +-92488250'7 +- - - +032) . (4.41)

Note the above 9621)74 agrees with the SO(8) two-instanton Hilbert series in [42]. More

results on P2(7g4 (v) with n > 1 can be found in appendix F.
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4.3 G =Fy

The divisors and curves of the non-compact n = 5 geometry are explained in [53]. There
are five compact divisors, all of which are Hirzebruch surfaces F,,, of various degrees n;.
We denote them by ©; (I = 0,1,...,5). They intersect with each other like the affine

dynkin diagram of f4
F—s)

(0:1:1)  (1:2:2)  (2:3:3) (3:4:2) (4:2:1)

\/EF?)/\ @ ]Fl

where each node corresponds to a Hirzebruch surface, and two nodes are connected if
the corresponding Hirzebruch surfaces intersect at a P! normal to their respective P!
fibers. In the diagram above we also give the ordering of the nodes I and the associ-
ated marks/comarks ay/a) with the notation (I : a : a)) following [61]. The F3 denoted
by a dashed circle corresponds to the affine node and it intersects with the base at the P!
with normal bundle O(—5) @ O(3) — P!. The arrow with double line means the F; and
Fg intersect at a P! which is the double cover of the (+1) curve in F;. See the illustration
in figure 1. There are six linearly independent curves, which we choose for the moment
to be the P! fibers ¥; of the divisors ©; and the (—5) curve in the base denoted by ¥ p.
Denoting their complexified Kéhler moduli by ¢; and tp, the linear combination

5
Zaltf =T, (442)
I=0

with a; the marks of f4, is the volume of the elliptic fiber. Since we will be interested
in the extraction of BPS invariants from the partition function, we would like to also
identify among the compact curves the Mori cone generators. They include the P! fibers
Y7 (I =0,1,...,4), as well as the P! base of the F; surface that intersects with Fg (see
the Dynkin diagram above and the figure 7 in [53], which we reproduce in figure 1). We
denote the latter curve by ¥, and it is related to X5 by

[XB] = [X] + 3[X0] + [£4].- (4.43)
This implies the relation between their Kéahler moduli
tp =1ty + 3tg +t1 - (4.44)

The C-matrix of intersection between Y7, and D;>?

—21 0 0 0
1 -21 0 0
c-| 01220 (4.45)
00 1 -21
00 0 1 -2
0 -1-10 0

32Note that here we use Y instead of ¥ B, which is why the matrix C' does not follow exactly the
pattern (2.2).
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r fundamental weights
(0,0,0,0,0,1)
(0,0,0,0,0,3)
unity (0,0,0,0,0,5) wi (i=1,...,4)
(0,0,0,0,0,7)
(0,0,0,0,0,9)

Table 8. The r-fields of the n = 5 model and the fundamental weights of f4 which induce the
same embedding ¢ : Q¥ < P. All the r-fields and all the fundamental weights induce the same
embedding as QV = P for f4.

The semiclassical components of the partition function can be computed using the pre-
scription in section 2.2 with the normalisation scheme in appendix B. We obtain

to t1 3ty 23 t 32 tot; t2 32 612 At2 Atot
_FCIS —<0+1 2+3+4>tg <0_|_01+ 1_|_72+73_|_74 2'3

10 5 5 10 5 b} )

0O~ 10" 510 5 5

5 5 /T 00 T0 T5T0 s T 5

dtot? 12t3t2 203ty 3ty Otty Gtatsty
5 5 5 5 5 5

which is consist with the universal formula (2.18). Furthermore, using the relations (2.4),
(4.44) and (4.42), F(%SO) can be more succinctly written as

2t2t4+6t3t4>t 3ty 3ty tot? 3 3 63 16t 6totl (4.46)

1 1 3
— F(O’O) = TotzllT -+ ite]](m, m) — ET(m, m) —+ ... (447)

up to 73 and terms cubic in m;, which agrees with the universal formula (2.19). Therefore
the analysis in section 2.3 goes through. Here for Fy,

4
m = Z miw; (4.48)
i=1
and

(m,m) = m% +3mima+ 3m% +4mims +8moms + 6m§ +2mymy +4momy 4+ 6mamy + Qm?l .
(4.49)

We also find
s 18 16 36
Foy = & to+ =t + 6tz + 123 + 8fa + —ty. (4.50)
Imposing the admissibility condition (2.22) and the BPS checkerboard pattern condi-

tion (2.25), which specialises to
r=(0,0,0,0,0,1) mod 2, (4.51)

there are only five inequivalent r-fields, and we list their representatives in table 8. Ac-
cording to the discussion in section 3, we should classify them according to the embedding
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¢x : Q¥ < P induced by the reduced r-vector A defined in (2.28). In the case of the n =5
model, all the r-fields have the same reduced A = (0,0, 0,0), which induces the unique em-
bedding ¢(0,0,0) : @ — P = QV. As a consequence, this model has no blowup equation
of the vanishing type. We notice that all the fundamental weights w; also induce the same
embedding (which is not the case in all the other models.)

We use (3.33) and (3.36) to compute the one-string and two-string elliptic genera. The
one-string elliptic genus does not depend on SU(2),. Its expansion in @, reads

Ehg)(anﬂmi) = USQ;4/3ZQ§72’4<U7Qmi> ~rrL7 (4~52)
4 n=0

(n)

where g; F4(v, Qm,) are rational functions. Turning off all flavor fugacities,

1 n
91F4(” Qm; = ):mxpl(}gh( v), (4.53)

where
P, (v) = 14360 +3410" + 120805+ 18200° + 1208010 + 341012 + 36014 4016,

P (v) = (140%)? (53147802 194190 + 1803605 +94190° + 1478010+ 53012) ,  (4.54)
i

pl

' (v) = 1484+ 3625202 +241608v* +6637160° +9094000% + - - - 4+ 1484016

The ellipsis in Pl(,213“4(”) is completed by making the expression palindromic. Here the
leading order expression 95?1)?4 agrees with the Hilbert series of the reduced moduli space of
one Fy-instanton in [41], which is not surprising since the one-string formula (3.33) reduces
to the one-instanton partition function (3.35) in the @, — 0 limit. Furthermore, higher
order expressions agree with [37].

The Q. expansion of the two-string elliptic genus reads

By (4,2, Qrymy) = v'7Q7 ”/6292 (0,7, Qm, QL (4.55)

(n)

where g, . (v, 2, Q) are rational functions. Turning of flavor fugacities and SU(2),, we
find

O _ _ 1 (n)
fan (e =1Qm =1) = (1—0)34(1 +v)2 (1 4+ v +02)" * P (), (45

where

Py, (v) = 145044807 +2870° + 156001+ 7503v° + 323160° + 12535507 +4443250°
+14435720% +43229930'° 4119892410 + 30913094012 + 7432170103 + 167106519014
43522455100 4697557618010 +13001529320'7 4228460616808 + 379000422801
+594302089902° 4+ 8818128233121 +123921040120%% 4+ 1650592685303
4208513798730 +24994963144v2° + 2844211982502 4+-30731161887v%7
4315337979820 4307311618870 4-- - - 405, (4.57)
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Py (v) = (1+0%)(56+386v-+ 321702 +202050% + 1103270 4 5292860° +22661510°
4871832707 +3047944908 +974335320° 42863040880 4+ 7770499660
4195603558802 +4581942186v12 +10017235514v* +2049263709401
4393154999286 +- 7087152967607 +120240591034v'8 +192278945658v1°
+29016803513702° 4+ 413676858801v* +557641624668v2% + 71129483821 70>
485900874 768301 +-982638991174v2° +1065069893896v2° 4+-1094033908456127
+1065069893896v%8 + - - - +-079). (4.58)

and the ellipses are again completed by making the expressions palindromic. Here the

leading order expression géol);4 agrees with the Hilbert series of the reduced moduli space

of two Fy-instanton in [42]. Some polynomials PQ(L% (v) of higher order n can be found in
the appendix F.

We also use the expressions of Eq,Es to extract the BPS invariants IV ﬁ e For this
purpose, we need to use instead the Kahler moduli ¢,¢; (I =0,1,...,4) associated to the
Mori cone generators. The results are tabulated in appendix G. They display the proper
checkerboard pattern, and reproduce the known genus 0 Gopakumar-Vafa invariants [24].
At base degree one, we also notice a pattern that the only non-vanishing BPS invariants
for the curve classes g = (0,%,0,0,0,1), (0,0,%,0,0,1) are

N(ka70707071) — N(0707k707071)

0,k = Yo,k =1

. k=0,1,..., (4.59)

which in fact can be proved from the one-string formula (3.33) with the help of (D.7), (D.8)
and (D.9).

44 G = Es

The divisors and curves of the non-compact n = 6 geometry is explained in [53]. There
are seven compact divisors, which are Hirzebruch surfaces F,, of various degrees n;. We
denote them by Dy (I =0,1,...,6). They intersect with each other like the affine dynkin
diagram of eg B

(Fa) (0:1)

(2:1) (3:2) (4:3) (5:2) (6:1)

where each node corresponds to a Hirzebruch surface and two nodes are connected if the
corresponding Hirzebruch surfaces intersect (see figure 5 in [53]). In the diagram above we
also give the ordering of the nodes I and the associated marks a; with the notation (I : ay)
following [61]. The F4 denoted by a dashed circle corresponds to the affine node and it

— 41 —



intersects with the base at the P! with normal bundle O(—6) ®O(4) — P'. There are eight
linearly independent curves, which we choose for the moment to be the P! fibers X of the
divisors Dy and the (—6) curve in the base denoted by ¥p. Denoting their complexified
Kahler moduli by t; and ¢g, the linear combination

6
Z(Z[t] =T (4.60)
I1=0

with a; the marks of eg, is the volume of the elliptic fiber. We also identify the Mori cone
generators. They include the P! fibers ¥; (I =0, 1,...,6), as well as the P! base of the Fq
surface in the center. We denote the last curve by ¥, and it is related to X by

[XB] =[] + 4[Z0] + 2[X4]. (4.61)
This implies the following relation of their Kéhler moduli
tg = tp + 4tg + 2t1 . (4.62)

The C-matrix of intersection between Xy, ¥, and Dy is

-21 0 0 0 0 O
1 -20 0 1 0 O
0 0-21 0 0 O
C— 0 01 -21 00 (4.63)
01 0 1 -210
0 0 0 01 =21
0 0 00 0 1 =2
0 00 0-200

The semiclassical components of the partition function can be computed using the pre-
scription in section 2.2 with the normalisation scheme in appendix B. We obtain

ty
_Fcls — Y02
(0,0) <12+6+12+6+4+6+12>

(t2 2 13 2 2 42 toty tots t5t6>t
T b

A B (4.64)

33333 '3 3 ' 3 @ 3
dfg 207 Aty 25 25 A6 2ch | tofi | tafs | 20ty | 205t5  tte
9 "9 99 "9 "9 s T3 T3 T3 T T3

which is consistent with the universal formula (2.19). Using the relations (2.4), ( ),
(4.60), we can express F©00) (t) in terms of the Kéahler moduli tey, 7,m; (i = 1,. 6)
and find

1 1
— F00) = T3 2T+ 2teu(m m) —71(m,m) + ... (4.65)
up to 73 and terms cubic in m;, where
6
m = Z mw,’ . (4.66)
i=1
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r fundamental weights
(0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,2)
unity (0,0,0,0,0,0,0,4) (0,0,0,0,0,0,0,6) w1, Wy
(0,0,0,0,0,0,0,8) (0,0,0,0,0,0,0,10)

(—-2,0,2,0,0,0,0,0) (—2,0,2,0,0,0,0,2)

vanishing  (—2,0,2,0,0,0,0,4) (—2,0,2,0,0,0,0,6) wa, Ws
(—2,0,2,0,0,0,0,8) (—2,0,2,0,0,0,0,10)
(—=2,0,0,0,0,0,2,0) (—2,0,0,0,0,0,2,2)

vanishing  (—2,0,0,0,0,0,2,4) (—2,0,0,0,0,0,2,6) W3, We
(—-2,0,0,0,0,0,2,8) (—2,0,0,0,0,0,2,10)

Table 9. The r-fields of the n = 6 model and the fundamental weights of ¢s which induce the
same embedding ¢ : Q¥ < P. They can be divided into three groups; inside each group r-fields or
fundamental weights induce the same embedding.

It is in agreement with the universal expression (2.19), and thus the analysis in section 2.3
goes through. We also find

9 9 3 9
Fif) = gto + 5t + Sta o+ 5ts + Sta+ 55 + Stg + 8ty (4.67)

Imposing the admissibility condition (2.22) and the BPS checkerboard pattern condi-
tion (2.25), which specialises to

r=(0,0,0,0,0,0,0,0) mod 2, (4.68)

there are in total 18 inequivalent r-fields, and we list their representatives in table 9. We
classify them according to the embeddings ¢y : Q¥ < P induced by the reduced r-field \
defined in (2.28), (2.33). We also list in the table the fundamental weights which induce
the same embedding.

We use (3.33) and (3.36) to compute the one-string and two-string elliptic genera. The
results are again presented in terms of the reduced elliptic genera defined in (4.1).

The reduced one-string elliptic genus does not depend on SU(2),. The expansion in
@, reads

B, (v, Qrymi) = 01 Q0N )"} (0. Q) QY (4.69)
6 n=0

where g%n%G (v, Qm,;) are rational functions. Turning off all flavor fugacities

n 1 n
gi%G (v, Qm; = 1) = A== X Pf,E)G(U)a (4.70)
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where the first few orders are

P (v) = 14560 +9450% +6776v° +238150° + 43989010+ -+ 02,
P} (v) =79+3774v +542060" 4 3374570° +10672860° +18628060'° +- -+ 7902,

P, (v) = 3239+130034v° + 16033340 +87986010° +253935220° + 4222305800+ - - 43239022,
(4.71)

The ellipses are completed by making the expression palindromic. Here ggo)EG agrees with

the Hilbert series of reduced one Eg-instanton moduli space [41], while higher order con-
tributions agree with [37].
The @, expansion of the two-string elliptic genus reads

Ehg> (Uv €, QT7 ml) = U23Q;23/6 Z ggf%f; (U, Z, sz)Q’TrL . (472)
6 n=0

Turning off flavor fugacities and SU(2),, we obtain

(n) — 1) = 1 (n)
92,55 (Vs & Qi = 1) = (1= )81+ 0)32 (1 + v + 02) % X By gy (v) (4.73)

where the first few orders are

Py (v) = 149v+94v2 +739v° + 51210 4 314320° + 1738950° + 87448507 +40362980°
+17200367v" 4680394740 % 4-2509439330 ' + 8662420680 +2807705547v'3
485694547060 4246905032390 +67304396959016 +173919980352v'7
+4267908821490"8 4-996158535441v'% +221467093870102° 446958 7801517002
9507297417908 4-18398716114730v% +340660838556960* +603998405834900%°
+102628223553496v%0 +1672324724845420°7 +-26150011738441 7028 +3926149344923410%°
+566271723784347v3° +-7849472200080320! +104612654623177203% +13409243222896 1603
+16535871417562290* 4-1962268356880815v>° 4-224121663946332203¢ +246416312309905 1137
+2608327634962043v%8 4-26582139343109660° 4+ - - +07® . (4.74)

Note that ggoi% agrees with the Hilbert series of reduced two Ejs-instanton moduli space [42].

We also use the expressions of Eq, Eo to extract the BPS invariants NV ﬁ i

pose, we need to use the Kahler moduli t7,t, (I =0,1,...,6) associated to the Mori cone

. For this pur-

generators. The results are tabulated in appendix G. They display the proper checker-
board pattern, and reproduce the known genus 0 Gopakumar-Vafa invariants [24]. At
base degree one, we notice the interesting pattern that the only non-vanishing BPS invari-
ants for the curve classes § = (0,%,0,0,0,0,0,1), (0,0,0,%,0,0,0,1), (0,0,0,0,0,%,0,1),
(0,0,0,0,%,0,0,1) are

0,%,0,0,0,0,0,1 0,0,0,k,0,0,0,1 0,0,0,0,0,£,0,1 0,0,0,0,%,0,0,1
N(7777777)_N(7777777)_N(7777777)_N(7777777)

0,k—1/2 = Y0,k—1/2 = Y0,k—1/2 — “V0,k+1/2 =1

L k=1,2,...,
(4.75)
which in fact can be proved from the one-string formula (3.33) with the help of (D.7), (D.8)
and (D.9).
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4.5 G = Ey

The divisors and curves of the non-compact n = 8 geometry is explained in [53]. There
are eight compact divisors, which are Hirzebruch surfaces F,,, of various degrees n;. We
denote them by Dy (I =0,1,...,7). They intersect with each other like the affine dynkin
diagram of e7

@ (7:2)

Fo)—E)—E)—C)—C)—C)—&)
(0:1) (1:2) (2:3) (3:4) (4:3) (5:2) (6:1)

In the diagram above we also give the ordering of the nodes I and the associated marks
ay with the notation (I : ay). The Fg denoted by a dashed circle corresponds to the affine
node and it intersects with the base at the P! with normal bundle O(—8) @& O(6) — P!.
There are nine linearly independent curves, which we choose for the moment to be the P!
fibers X5 of the divisors D and the (—8) curve in the base denoted by ¥ 5. Denoting their
complexified Kahler moduli by ¢; and ¢g, the linear combination

7
Za[t] =T (4.76)
1=0

with a; the marks of e7, is the volume of the elliptic fiber. We identify the Mori cone
generators. They include the P! fibers ¥ (I = 0,1,...,7), as well as the P! base of the Fq
surface in the middle. We denote the last curve by 3, which is related to X5 by

[X5] = [Z6] + 6[X0] + 4[X1] + 2[Xs]. (4.77)
Their Kahler moduli are consequently related by
tg =ty + 6tg + 4t1 + 2t5. (4.78)
The C-matrix of intersection between >, ¥, and Dy is

-21 0 0 0
-2 1 0 O

1 =21 0
1

(4.79)

S O O O O o o
S O O O O O
S O O O O

= o
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The semiclassical components of the partition function can be computed using the
prescription in section 2.2 with the normalisation scheme in appendix B. We obtain

6 8161 1678 16 8 '2'8 "8 '2"8
4_fz, tot1 | tola | titz  lals  tats  tste t 3ty 27 3 ] 263
42 4 2 2 4 2

‘ to t1 3ty t3 3ty t 3t 2 33 33 2 32
—8b:<° LN +8>£+<+ e S

4 3 "4 4" 3

3ty 3 3t3ty  3tity t1t3 3tyt? 3t5t§
e tot ———ttt 2 gt
+4 6 2+4+01+4+012+2+45+4 9
t3ts it
+ﬁm+%§+jr+%%+mg%, (4.80)

which is consistent with the universal formula (2.19). Using the relations (2.4), (4.78)
and (4.76), we can express F(O9(t) in terms of the Kihler moduli tey, 7,m; (i = 1,...,7)

and find

1 1 3
— FO0) = 16 t2T + 2teu(m m) — 2T(m,m) +... (4.81)

up to 73 and terms cubic in m;, where

7
m = Zmiwiv . (4.82)
i=1

It is in agreement with the universal expression (2.19), and therefore the analysis in sec-
tion 2.3 goes through, which then leads to the elliptic blowup equations (3.4). We also find

51 35 57 3 57 35 51 11
Fcls to+ oty + =t tg + —ty + oty + —tg+ —t 4.
1,00 = 80+4 1+82+23+84+45+86+4b ( 83)

Imposing the admissibility condition (2.22) and the BPS checkerboard pattern condi-
tion (2.25), which specialises to
r = (0,0,0,0,0,0,0,0,0) mod 2, (4.84)

there are in total 16 inequivalent r-fields, and we list their representatives in table 10. We
classify them according to the embeddings ¢y : Q¥ < P induced by the reduced r-field A
defined in (2.28), (2.33). We also list in the table the fundamental weights which induce
the same embedding.

We use (3.33) and (3.36) to compute the one-string and two-string elliptic genera and
convert them to reduced versions. The one string elliptic genus when expanded in @, reads

h(l)( Q'rymz) = 17@ 17/6 Z 91 E7 sz T (485)

(n)

where g; . (v, Qm,;) are rational functions. When all flavor fugacities are turned off

1
gi Er (’U sz = 1) m X Pyg}%} (’U), (486)
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r fundamental weights

(0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,2)

(0,0,0,0,0,0,0,0,4) (0,0,0,0,0,0,0,0,6)
)

unity w1, W2, W3, Ws
(0,0,0,0,0,0,0,0,8 (0,0,0,0,0,0,0,0,10)
(0,0,0,0,0,0,0,0,12) (0,0,0,0,0,0,0,0,14)
(-2,0,0,0,0,0,2,0,0) (-2,0,0,0,0,0,2,0,2)
- (=2,0,0,0,0,0,2,0,4)  (-2,0,0,0,0,0,2,0,6)
vanishing W4, We, W7
(-2,0,0,0,0,0,2,0,8) (-2,0,0,0,0,0,2,0,10)

(-2,0,0,0,0,0,2,0,12) (-2,0,0,0,0,0,2,0,14)

Table 10. The r-fields of the n = 8 model and the fundamental weights of e; which induce the
same embedding ¢ : Q¥ < P. They can be divided into two groups; inside each group r-fields or
fundamental weights induce the same embedding.

where the leading order contributions are

Pl(%7(v) = (14+v?)(1+980? +33120% + 5330505 + 46861205 424212860 4 766478002
4152030760 +190864000'° + 1520307608 4-- - - +132),

PY) (v) = (1+0?) (13441159302 43455210 4493170705 + 388501510 + 1826141700
4536726278012 4101459695804 412524900960 ¢ + 101459695808 4 - - - +-032),

Pl(?]%?(v) = (14v%)(9179+ 69331602 + 182107330 +231525774v5 +16457399780°

+7093827388v'0 +195077156620'2 + 3535090622404 + 4300957425206
4353509062248 - - - 4+-032). (4.87)

where the ellipses are completed by palindrome. Here 9501)57 agrees with the Hilbert series

of reduced one E7-instanton moduli space in [41], while higher order contributions agree
with [37].
The @, expansion of the two-string elliptic genus reads

B (0.2, Qr i) = v°Q /0 Y g3y, (0,0, Qm ) Q5 (4.88)
n=0
Turning off SU(2), and flavours, we have

(n) 1
”U’ 1‘7 m; = 1 =
92,5, (00 Qe = 1) = e 2 (1 40 4 02)

x P2 (v) . (4.89)

(0)

We have computed PT(LQ}E? (v) for n = 0,1 which we put in the appendix F. Indeed, our g B,

agrees with the Hibert series of reduced two Er-instanton moduli space in [42].

We also use the expressions of Eq,Es to extract the BPS invariants N 5 e For this
purpose, we need to use the Kahler moduli ¢7,¢, (I = 0,1,...,7) associated to the Mori cone
generators. The results are tabulated in appendix G. They display the proper checkerboard
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pattern, and reproduce the known genus zero Gopakumar-Vafa invariants [24]. At base
degree one, we notice the interesting pattern that the only non-vanishing BPS invariants
for the curve classes g = (0,0, k,0,0,0,0,0,1), (0,0,0,0,%,0,0,0,1), (0,0,0,0,0,0,0, k, 1),
(0,0,0,k,0,0,0,0,1) are

k 1 0,0,0,0,%,0,0,0,1 0,0,0,0,0,0,0,k,1 0,0,0,%,0,0,0,0,
N {(0:0.£00000.1) _ 7r(0.00,0.k,0,00, ) _ 0000000k, ) _ \(0.00k00, )1 k=12

0,k—1/2 = Yok—1/2 = Vo,k—1/2 = Yo,k+1/2 ’o o

(4.90)
which in fact can be proved from the one-string formula (3.33) with the help of (D.7), (D.8)
and (D.9).

4.6 G =Es

The divisors and curves of the non-compact n = 12 geometry is explained in [53]. There are
nine compact divisors, which are Hirzebruch surfaces of various degrees. We denote them
by Dy (I =0,1,...,8). They intersect with each other like the affine dynkin diagram of eg

@ (8:3)

@O O—O—O—6)

(0:1) (1:2) (2:3) (3:4) (4:5) (5:6) (6:4) (7:2)

In the diagram above we also give the ordering of the nodes I and the associated marks aj
with the notation (I : ay). The Fip denoted by a dashed circle corresponds to the affine
node and it intersects with the base at the P! with normal bundle O(—12) @ O(10) — P*.
There are ten linearly independent curves, which we choose for the moment to be the P!
fibers X7 of the divisors D; and the (—12) curve in the base denoted by Y. Let ¢t; and
tg be their complexified Kahler moduli. The linear combination

8
Za[t] =T (4.91)
I1=0

with a; marks of eg, is the volume of the elliptic fiber. We identify the Mori cone genera-
tors. They include P! fibers X; (I =0,1,...,8) as well as the P! base of the Fy surface in
the center. We denote the latter by X, which is related to ¥ by

[(XB] = [Zp] + 10[X0] + 8[X1] + 6[X2] + 4[X3] + 2[X4] , (4.92)

which implies

tp = tp + 10ty + 8t1 + 6o + 43 + 24 (4.93)
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The C-matrix of intersection between X, ¥, and Dy is

-21 0 0 O
-21 0 O
-21 0
-2 1
-2

_ o O O O

(4.94)

= o O O O O

1 -2

0 1 -2
0 0 1 -2
0

0

_ o O O O O O

0
0
0
0
0
1
0
0

1 0 0 -2
-2 0 0 O

O O O O o o o o
(lelelololelRel S
S O O O O O

o O O o o =

The semiclassical components of the partition function can be computed using the
prescription in section 2.2 with the normalisation scheme in appendix B. We obtain

to th ty ts Bty ts te tr  ts
_Fcls — Y5 6 2
©,0) (24+ 28 6 T2 1" 12+8> b

<5t0 203 3t3 243 5t 2 12 3 2tpty tota tots  tols

12 3 4 3 12 3 3 4 3 2 3 6
t1ts  totsa 2t3ty et
tha | fola 34+637>tb

3 3 3

25t3 16t3  3t3  8t3 5t3 268 4t3 3 1013ty Stity  5tdts 5tit
e R R LA

18 9 2 9 18 9 9 "6 3 2 3 6
Stot?  3tot2 2ot tot> Stotqt 4 2totst
; L ; 2 g 3+%+4t0t1t2+ 01 3+2t0t2t3+§t0t1t4+t0t2t4+ 07374
At t3 tt2  tot3  2tgtT  2tgt2 8t3
3t 124 —2 3+2t2t3+%+27+ ; 4 g +4¢2 2ta At 1ot
A2ty 3tity  4Atit Atqtst t2t
; ! ; & ; Lot toty+ 133 : +2t2t3t4+%7, (4.95)

which is consistent with (2.19). Using the relations (2.4), (4.93), (4.91), we can express
F0.0) (t) in terms of the Kahler moduli tey, 7,m; (1 =1,...,8) and find

1 1
F(O 0) 4 2117_ +

5
. 4.
21 2teu(m m) — 2T(m,m) + (4.96)

up to 73 and terms cubic in m;, where

8
i=1

It is in agreement with the universal expression (2.19), and therefore the analysis in
section 2.3 goes through leading to the elliptic blowup equations (3.4). We also find

41 33 75 45 3 9 11
Fi% = Sl Sttt 1Tty —ota o Sts bt + Str+ Sts 106, (4.98)

— 49 —



fundamental weights

(0,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,0,0,4)
(0,0,0,0,0,0,0,0,0,8)
(0,0,0,0,0,0,0,0,0,12)
(0,0,0,0,0,0,0,0,0, 16)

unity

(0,0,0,0,0,0,0,0,0,2)
(0,0,0,0,0,0,0,0,0,6)
0,0,0,0,0,0,0,0,0,10

0,0,0,0,0,0,0,0,0, 18

( )
(0,0,0,0,0,0,0,0,0, 14)
( )
( )

(0,0,0,0,0,0,0,0,0,20) (0,0,0,0,0,0,0,0,0,22

Table 11. The r-fields of the n = 12 model and the fundamental weights of eg which induce the
same embedding ¢ : Q¥ < P. All the r-fields and all the fundamental weights induce the same
embedding as QV = P for eg.

Imposing the admissibility condition (2.22) and the BPS checkerboard pattern condi-
tion (2.25), which specialises to

r=(0,0,0,0,0,0,0,0,0,0) mod 2, (4.99)

there are in total 12 inequivalent r-fields, and we list their representatives in table 11. All
of them have the same reduced A which induces the same embedding ¢, : Q¥ — P = Q.
In this special case, there is no vanishing blowup equations.

We use (3.33) and (3.36) to compute the one-string and two-string elliptic genera and
convert them to reduced versions. The one-string reduced elliptic genus in (), expansion

reads
oo
By (0, Qr,mi) = vPQ253" g (0, Qun, ) Q2 (4.100)
n=0
where ggngs are rational functions. Turning off flavor fugacities
1 1
9 (0, Qum, = 1) = T < P (v), (4.101)

where the leading orders are

PO

0.5 (V) = (1407) (1418907 4140800 +5621330° +137225990° 42207311500

+24549524000'2 + 1951776278604 + 1136086898710 6 449271828245 7¢ '8
+16128368711680%° +4022154098447v2% +7692605013883v%4 +11332578013712026
+12891341012848v% +11332578013712030 4+ - - +-0°9), (4.102)

pf},;g (v) = 249-+43435v% +2998484v* + 1115879880 +2558096217v° + 389852502630 '
+415090167480v2 +3197400818096v 4 +18281159666407v 6 +790997524693530v 18
+2628725072234580%0 4+ 678620928038790v22 +13724714314315050%4

+2187800775100695026 +2759575276449180v28 +2759575276449180v30 4 - - - + 08,
(4.103)
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PQ(},BJS (v) = 3137444996185v% 43163018530 +10844316461v° +2301091653190°
+3262175735364v'° 4 3248220786592001% +235331998114532014
+1273365718136904v10 +5249113972780491v'8 +167388244448981670>°
+417814470403276050%2 48236081 773651508502 +1290370478327559900126
+16134943636888395002% +1613494363688839500°0 + - - - 4078, (4.104)

where the ellipses are completed by palindome. Note gg%g indeed agrees with the Hilbert
series of reduced one Eg-instanton moduli space in [41]. Higher order contributions agree
with [37].

The two-string reduced elliptic genus in (), expansion reads

o0
By (.2, Qromi) = o™ Q% 37 gy (0,2, Qm, ) Q7 (4.105)
8

n=0

where gggg (v, z, Qm,;) are rational functions. Turning off flavor fugacities and SU(2),,

(n) N 1 (n)
99,135 (0, T, @, = 1) = (1= )8 (1 + 0)2(1 4 v+ 02y Py, (v) . (4.106)

We have computed gé?f)Es which indeed agrees with the Hilbert series of two Eg-instanton
reduced moduli space in [42].

We also use the expressions of Eq,[Es to extract the BPS invariants N ﬁ e For this
purpose, we need to use the Kahler moduli ¢7,t, (I = 0,1,...,8) associated to the Mori
cone generators. The results are tabulated in appendix G. They display the proper checker-
board pattern, and reproduce the known genus zero Gopakumar-Vafa invariants [24]. At
base degree one, we notice a pattern that the only non-vanishing BPS invariants for the
curve classes 8 = (0,0,0,0,%,0,0,0,0,1), (0,0,0,0,0,0,%,0,0,1), (0,0,0,0,0,0,0,0, k, 1),
(0,0,0,0,0,%,0,0,0,1) are

0,0,0,0,%,0,0,0,0,1 0,0,0,0,0,0,%,0,0,1 0,0,0,0,0,0,0,0,k,1 0,0,0,0,0,k,0,0,0,1
(000040000, ) _ \(0.0.0.0,0000, ) _ N(0.0.0.0.0000k, ) _ (000004000, )

0k—1/2 0k—1/2 0k=1/2 = Nokt1/2 =1, k=12...,

(4.107)
which in fact can be proved from the one-string formula (3.33) with the help of (D.7), (D.8)
and (D.9).

5 On the relation with 4d SCFTs of type HY

The purpose of this section is to connect the k-string elliptic genera Eh(k) for the minimal
G

N = (1,0) 6d SCFTs with G = Ag, D4, Fy, Eg 78 discussed above to the superconfor-

mal indices of the A/ = 2 4d SCFTs of rank k denoted by H((;k). The simplest series of

N = 2 SCFTs namely Hg ) can be obtained by geometric engineering on non-compact
del Pezzo geometries and contains the Minahan-Nemeschansky theories. The main re-
sult is an extension of a surprising conjecture by Del Zotto-Lockhart from the rank one
case [37] to the higher rank cases. To be precise [37] recognised that the one-string elliptic
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genus Eh(l) (Qr,v) can be decomposed in terms of a seemingly more fundamental function
G

Lg(Qr,v), which for special choices of Q; and v specialises to the Hall-Littlewood index
or the Schur index of the H, C(;l ) theories. With the two string elliptic genera computed in
our previous sections, we are able to study this conjectural relation at rank two and in
principle at arbitrary rank, and find indeed that similar striking relations exist.

We first review some basic properties of 4d rank k type ch ) and ﬁ((;k) theories,
including their class § theory construction, and then review the superconformal indices
of 4d SCFTs in various physically motivated limits as well as the methods to compute
them. Next we state the conjectural relation at rank one from [37], and explain in some
detail the new relations at rank two for all G. We also extend the analysis to some rank
three cases. For all choices of rank and G we analysed, the surprising relation between
elliptic genera and superconformal indices exists. We define an intermediate function at
rank k called Lgf).?’?’ This function is on the one hand the ingredient of k-string elliptic
genus, on the other hand gives the Hall-Littelwood index and Schur index of H, gc ) theories
at special choices of parameters. This general structure allows us to calculate the latter
indices efficiently from the Ehg@) that are determined from the elliptic blowup equations.

5.1 Rank k Hg theories

The 4d N/ = 2 SCFTs H((;k) are well known to exist for G = 0, A1, A, D4, Eg 78 and
k=1,2,3... [62-66].3* In type IIB superstring theory, they are realized as the world-
volume theory for k multiple D3-branes probing a stack of exotic seven-branes. Such
seven-branes in F-theory are defined as codimension one singularities with Kodaire type
II111,1IV, 15, IV*, IIT*, and II*, which give the gauge symmetries G for the low energy
8d SYM theories. The number k is usually called the rank of Hg theories. For example, the
rank one Hy 4, 4, theories appear as certain limit of SU(2) gauge theory with Ny =1,2,3
respectively [62]. The rank one Hp, theory is well known to be the SU(2) gauge theory with
Ny = 4, while the higher rank cases with k > 1 are equivalent to USp(2k) gauge theories
with four fundmental hypermultiplets and one antisymmetric hypermultiplet, which are all
Lagrangian theories. The rank one Hgy , , are also known as the Minahan-Nemeschansky
theories [65, 66], where the simplest example rank one Eg theory is in S-duality with SU(3),
Ny = 6 theory [67].

All Hék) theory can be coupled with a free hypermultiplet associated to the center
of mass motion of the instantons. We follow [37] and denote these theories as f[gc ). As
was observed in [45], for higher rank cases, I:TG are sometimes more natural than Hg
theories. One major difference between rank one and higher rank Hg theories is the
flavour symmetry. Besides the flavour G given by the strings stretched between D3-branes
and exotic seven-brane, for £ > 1 there is one more SU(2) symmetry coming from the
transverse space in the seven-brane. By coupling a free hypermultiplet, all fl((;k) theories
share flavour symmetry G x SU(2).

33The L function in [37] becomes L(Gl) here.
34The G = (), A1, As type theories are also traditionally denoted as Hp 12 theories. Here we follow the
notations in [37].
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The H, gﬁ ) theories of interest in this paper are G = Ag, Dy, Fg 75 as they are directly
related to 6d minimal (1,0) SCFTs with corresponding gauge group G. To be precise, the
RR elliptic genus is identified as the S-twisted T2 x S? partition function of the 4d SCFTs:

k
E,0 = Zrxso), (HZ). (5.1)

Adding the “tildes”, one can also obtain the equality with the free hypermultiplet coupled.
Here the S-twist was introduced by Kapustin in [68] to preserve half of the supersymmetries
on the backgrounds such as 72 x S2. See a good description of such twist in for example
section 3.2 of [37]. The identification (5.1) makes it sometimes possible to compute the
elliptic genus from 4d setting, in which cases the S-duality with a Lagrangian theory is
invoked and one can use certain analogy of Spiridonov-Warnaar inverse formula [69] to
compute the T2 x S? partition function. This was indeed achieved for one string elliptic
genus with G = Dy, Eg 7 [37, 46-48]. For example, the elliptic genus of one E7 instanton
string was obtained in [48] via SU(4) gauge theory Ny = 8 and appropriate Higgsing as

1) Er 2 E; 4 E 6 E 8
Z(T2x52), (Hp,) = 14 X1330" + X73719" + Xagg6020" + Xsoas7500° T - -

B E E E
+ QT(l + X133 + (14 2x035 + X931 + Xsgas) V"
(5.2)
B E E B B 4
+ (X193 + 2X7371 + Xadas + Xo3se02 T X573440) V" + - - )

+ Q2 (3 + 2145 + Xitg0 + Xogry + - - ) +0(Q%),

which completely agrees with our universal expansion formula (4.5), (4.6) and (4.7).3% We
also checked for Dy and Fg, where the agreement holds to all known orders.

Another important feature of H (Gk) theories is that they all admit 6d construction. It
is well known all rank k Hp, g, ;s theories can be realized by compactifying a 6d An_1
(2,0) SCFT on some punctured sphere with regular singularities [70], i.e. they are class S
theories. The regular singularities are classified by embeddings of SU(2) in SU(N), thus can
be denoted as Young diagrams. Such punctures with associated Young diagram represent
how the SU(N) decomposes and what is the residual flavour symmetry. For example, the
rank one Hgq gy theory is obtained by compactifying 6d A; (2,0) SCFT on a sphere with
four full punctures {12}, i.e. the residual flavour symmetry is SU(2). Thus the resulting
4d theory has gauge symmetry SU(2) and four fundamentals, as was mentioned already
above. We summarize the gauge algebras and punctures for the 6d construction of all H, C(;k)
theories with G = Dy, Eg 75 in table 12. The 6d construction for rank k H,, theories
however involves irregular punctures. For example, they can be realized by compactifying
6d Agj_1 theory on a sphere with one regular puncture with Young diagram {k?} and one
irregular puncture of form

L.
(p: ;dlag(17-.-71]{,‘th7_17...7_1kth)+... (5-3)

35Tn the coefficients of Q2, one also need to use the Joseph relation Sym2133 = 1+ 133+ 7371 to obtain
the identification.
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G | 6d (2,0) Ay—q punctures A;

D, A1 four {k?}

Eg Asp_1 three {£3}

E; Agp—1 {(2k)?} and two {k*}
Eg Agk—1 {(3k)%},{(2k)"} and {k°}

Table 12. 6d construction for rank k£ Hg theory.

where the coefficients of 272 and z~! have the same type of matrix [71]. In particular,
the rank one Hy, theory coincides with (Ay, Dy) Argyres-Douglas theory. See also the 6d
construction involving irregular punctures in [72].

Class S 4d SCFTs are also known to be connected to 2d vertex operator algebra, i.e.
chiral algebra [73, 74]. This correspondence relies directly on the class S construction and
can be understood from certain generalized TQFT structure on the punctured Riemann
surface. This relation sometimes gives a new approach to compute the indices of 4d SCFT
by realizing them as the vacuum character of associated chiral algebra. For example, the
chiral algebras associated to rank one Hp, and Hp, theories are identified as so(8) affine
Lie algebra at level kog = —2 and ¢(6) affine Lie algebra at level ko = —3 in [73]. See
some recent works trying to explain VOA /SCFT correspondence [75-79]. Besides, the rank
one Hp, g g, theories are also connected with the curved [+ systems on cones over the
complex Grassmannian Gr(2,4), the complex orthogonal Grassmannian OG™(5,10), and
the complex Cayley plane OP? respectively in [80].

5.2 Hall-Littlewood and Schur indices
The superconformal index of 4d N' =2 SCFT is defined as [81, 82]

t\" L A
Z(p,q,t) = Tr (=) <> A || A (5.4)

pq ;

7
where j1o2 = jo + j1 and j34 = jo — j1 denote the rotation generators in C? with J1,2
representing each SU(2) Lorentz symmetry, and r and R denote the U(1), and SU(2)gr
generators respectively. Besides, a; are the fugacities for the flavour generators f; which
sometimes are set to be zero for simplicity. For generic 4d SCF'T, the full superconformal

indices with (p,q,t) are difficult to compute. For example, among all Hg )

theories, the
full superconformal indices to our knowledge are only computable so far for Hggg) with
arbitrary rank owing to their Lagrangian nature and Hp, g, for rank one owing to the
existence of certain N' = 1 Lagrangian flow [47, 48].

Certain limits of superconformal index are particularly interesting due to symmetry en-
hancement. The name of limit comes from the observation that the resulting indices involve
corresponding symmetric polynomial known in mathematics literature. Following [44], we

list three of them here:

e (Macdonald) p — 0. Superconformal index when taking the Macdonald limit is
computable for all class S theory with regular punctures. For a genus g theory with
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s punctures compactified from 6d Ay_; (2,0) SCFT, the Macdonald index is given
in [44] as

N k—1)(1—g)+s A ,

M _ 2g—2+s (; Q)( IT;- 1’CA (aZ) P (az( i)lg,t)
Tas(a,a,t) = I [(¥:0% (¢: ) D00 > %5275 -
=2 > [ s g, )}

(5.5)
Here P*(a;(A;)|q,t) are Macdonald polynomials and the summation is over all pos-
sible Young diagrams A = {A1, A2,...,Any_1,0}. The Pochhammer symbol (a;b) is
defined by

(a;0) = J](1 - ab?). (5.6)
i=0
The Ky, factors are defined by
A row(A) I, aé'dz
Ka(a) = PE 1 , (5.7)
=1 jk=1 ~ Uaig

with the coefficients a}; associated to the Young diagram as

i Al Gi — ol Mkt
a; = cjv’ and @), = ¢ v , (5.8)

with v? = t. Here these c¢; parameterize the residual flavour symmetry and are subject
)H? ¢;j = 1 to preserve the traceless condition of SU(N). The

association of the ﬂavour fugacities for a puncture a(A) in Macdonald polynomial is

T'Ow
to constraint [[,7;

defined similarly as c;v —142i Some good figures to visualize these definitions can
be found in [44, 45].

(Hall-Littlewood) p,q — 0. By taking limit in (5.5), it is easy to obtain the Hall-
Littlewood index for all class S theories. As only genus zero theories are of concern
in this paper, we only write down the formulas with g = 0. For example, the Hall-
Littlewood index of 4d SCFT compactified from 6d Ayx_1 theory is

15, Ka,(as) 9 (ai(A)|v)
NNSZ ’l/JA lel oN— 3 ) .,Ul_N‘U)]S_2 ) (59)
where
N
Ny = (1= o)M o T =), (5.10)
=2

and ¢* is the Hall-Littlewood polynomials defined as

2
Pl anly) = M) Y 2, 2 )HM’ (5.11)

et iy Tol) ~ To())
with

oo m(i) 2 1/2
1 — 2
M) =T] (1_1;2> , (5.12)
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where m(7) is the number of rows in the Young diagram A = (A1,...,An) of length
i. Here we have made the substitution ¢ = v? for convenience.

It is argued in [44] that for linear quiver theories the HL index is equivalent to the
Hilbert series of the Higgs branch. In particular, this is true for all Hg theories.
It is well-known the Higgs branch of ch) theories are the reduced moduli space of
k G-instantons, which can be understood from the probing picture that the k£ D3-
branes dissolving into the seven-branes resemble & instantons in the transverse space.
Thus the HL index of ch ) theory are supposed to be equal to the Hilbert series of
reduced moduli space of k G-instantons. On the other hand, the Hilbert series can
also be obtained from the 5d Nekrasov partition function with pure gauge group G,
which are just the 5d limit of elliptic genus of 6d minimal (1,0) SCFT with type G.
Therefore, we arrive at the relation:

. 0
Iggk) = Hilbf, = g}, (5.13)

where g,(coé as we defined previously in (4.3) is the coefficient of leading @, order of
k-string élliptic genus Ehgf)’ One can also add “tildes” to get the equality with a
free hypermultiplet coupled, in which situation one encounters the full Hilbert series
other than the reduced. We have checked relation (5.13) for k = 1,2 for all possible
G and k = 3 for SU(3).%6

e (Schur) ¢ = t with p arbitrary. In fact, it can be shown in such specialization the
index is independent of p. Thus, taking p — 0, Schur index is actually a limit of
Macdonald index. Using (5.5), the Schur index for a class S theory is given by

g8chur _ Ary | Ka,(ai) x*(ai(As))

— (5.14)
' [XA(UN—lij—?)V”701—N)]5 2
where3”
N .
NN,S — (02; ’02)8 H(UZJ; 1)2)8_2, (515)
=2
and x* is the Schur polynomials defined as
Aj+k—j
det(a;’
xa(a) = detla;” 7 (5.16)

det(a¥7)
At last, one replaces back v — q.

The Schur indices in some sense are more interesting than the Hall-Littlewood indices.
For instance, for class S theories, Schur indices equal the g-deformed topological 2d

36For SU(3) and Fy, we are not aware how to compute the HL indices directly. Still, the Hilbert series
are well-defined and computed in [41, 42], which are in perfect agreement with our computation for elliptic
genus from blowup equations.

37 As in this paper we only deal with the cases with three or four punctures, we also shorten Ny 3 as N
and NN,4 as N} in the latter subsections, and same for those with hat.
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Yang-Mills partition function on the punctured Riemann surface [83], and also equal
the vacuum character of the associated chiral algebra [73, 74]. Furthermore, Schur
indices can be computed in IR via wall crossing for theories even beyond class S,
such as certain Argyres-Douglas theories [84] including rank one Hy4, theory.

The full superconformal indices of rank one Hp, Fe.7 theories have been computed
in [46, 48, 85]. The Schur index of rank one Hp, was given in [37] and the Schur index
of rank one Hy, was given in [84]. To compute the Hall-Littlewood indices and Schur
indices of higher rank Hp, g ., theories one will encounter certain subtle issues. Directly
using the general formulas (5.9) and (5.14) fails to give correct results, because at a given
order of v infinite number of Young diagrams A contribute. To cure such divergence, it
was suggested in [45] that one reduces the flavor symmetry “one box at a time”, that is to
change one specific puncture by moving one box down in the associated Young diagram.
The physical meaning of such operation is interpreted as coupling a free hypermultiplet to

)

Hék) theory, which in our notation is just ﬁg theory. In the terminology of [45], Hék)

are “bad” theories, while Z:TgC ) are “good” theories. One can directly use (5.9) and (5.14)

to compute the indices of %

, then divide by the index of a free hypermultiplet which is
well defined, finally one will obtain the finite indices of H, ((;k). Following this procedure, the
Hall-Littlewood indices of rank two Hp, g, theories were computed in [45]. Similarly,
we computed the Schur indices of rank two and three Hp,, Ee7s theories which will be
shown in details in later sections. For higher rank H 4, we are not aware how to compute
its Schur indices due to the irregular punctures of 6d construction. Although there exist
no H, é theory for G = Fy, we suspect certain analogy can be constructed such that Hall-
Littlewood indices still make sense as the Hilbert series of moduli space of k Fj instantons,
and the Schur indices can be associated with affine 4 algebra. One support for such
speculation is that the Hilbert series for arbitrary k Fj instantons has been constructed
from certain folding from Eg [43]. Thus we sometimes informally denote the analogy as
HI(;IZ) theories.

5.3 Rank one: Del Zotto-Lockhart’s conjecture

In [37], Del Zotto-Lockhart found an intriguing structure of one string elliptic genera of
6d mininal (1,0) SCFTs and a surprising relation between the elliptic genera and the
supersymmetric indices of rank one Hg theories. Let us rephrase their conjecture here:

Conjecture (Del Zotto-Lockhart). There exists a function Lg) (v,me, Qr) =370 bfj Qivd
such that

1. bZ-Gj can be written as the sum of characters of irreducible representations of G with
integral coefficients.

2. L(Gl)(v,mg, 0) is the Hilbert series of the reduced moduli space of one G-instanton,
i.c. the Hall-Littlewood index of the H3 theory.

3. Lg)(ql/Q,mg,q2) is the Schur index of the Hg) theory.
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ijl o 2 4 6 8 10 12 14
0| 1 28 300 1925 8918 32928 102816 282150
110 0 29 707 6999 42889 193102 699762
2 -1 0 0 2.1 4634+1 9947 92391 544786
310 -28 -29 1-1 2.29 5280 +29+2-28 101850
410 0 —300 -707 -—463—1 29 —29 2.463+2-1
510 0 0  —1925 —6999  —9947 —5280 — 29
610 0 0 0 —8918  —42889 —92391 —101850
710 0 0 0 0 —32028 ~193102 —544786
810 0 0 0 0 0 —~102816 —699762
910 0 0 0 0 0 0 —282150

Table 13. Expansion coeflicients c ( ) for one SO(8) instanton string.

4. The reduced one-string elliptic genus Eh8> (v) can be generated from Lg)(v) by the

following formula in which the symmetry (4.26) is manifest:3

Eh(l)( ) 2h 1@1/GZQ2n|: 4hLG(Qn )_( )Qh —4hL (Qn+1/2/v)

n>0

+ (14 (—1))QE+1/2 (uQLG(Q?“/2 v) — u_2LG(QZ+1/U)) (5.17)

+ QQ <( )2h A(1-h) G(QZ“U) _ u—4(1—h)LG(QZ+3/2/U)>}

where h = h}, /6, u—v/Q1/4.

The conjectural formula (5.17) is quite intricate. Roughly speaking, it means the
coefficient matrix of reduced one-string elliptic genus contains several “blocks”, overlapping
or non-overlapping, and each block contains infinite copies of the L(Gl) function. The number
of blocks turns out to be 2 for SU(3), 4 for Fy and 6 for the other G. In the following
we show the coefficient matrix of one-string elliptic genus of SO(8) in a way consistent
with our later higher rank discussion. The coefficient matrix of elliptic genus and the L(Gl)

functions for other G' can be found in [37]. Let us denote

B, (0,Qr,m;=0)=0"Q; " Z v (Qro™ ), (5.18)

SO(8) 320

Then we have table 13 for the coefficients 62-87?(8) where each “block” is colored differently:
the coefficients coming from the first term in the square bracket in (5.17) is colored red,
the second black, the third blue, the forth orange, the fifth cyan and the last magenta. As
we can see from the table, the reduced one-string elliptic genus indeed depends on v?. One
can also see the symmetry (4.26) on the two sides of the ray with slop —1/2. Here the

38Here the dependence on Q, and Q,, are implied.
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Lél(%(g) (v, Q) function can be defined by all the red numbers in table 13 with the red +1

and +29 moving out, as they come from n =1 term in the summation. Thus we have

Lo s (1, Q)
= (1+28v%+300v* 4192505 + 891818 + 32928010 4102816012 428215001 + O (v1°))
+ (29470702 469990 +428890° +1931020° +69976201° + O (v12)) Q-
+(463+9947v? + 923910 4+ 54478615 + O (v®)) Q2
+(5280+1018500? ++0(v*) Q2 +O(Q2). (5.19)

Clearly, the first row in table 13 gives the well-known Hilbert series for the reduced moduli
space for one SO(8) instanton, i.e. the Hall-Littlewood index for rank one Hggg) theory:

o0
ng(g) (0,00=3 x50 v = 14280 +3000" 419250+ 89180° 4 329280'0 4+ 10281602 + O (v'4)
n=0

(5.20)

(v, Q7) in each column of table 13 together, one expects
1/2

Adding the red numbers from L(Sl(%(S)

to obtain the Schur index of rank one Hgg) theory. Indeed, by making v — ¢/< to make

contact with the literature, we obtain

Lsos) (a/%.6%) = 1+28¢+329¢% +2632¢° + 16380¢* +85764¢° +393589¢° +1628548¢" +O(¢®).

(5.21)
Such series was actually already obtained by a lot of methods. For example, from the view-
point of VOA/SCFT correspondece, it equals the vacuum character of affine Lie algebra
50(8)k=—2 [73]. From the nature that rank one Hgq ) theory is actually just SU(2) gauge
theory with Ny = 4, the Schur index can be computed both from UV Lagrangian and IR
wall-crossing formula [86]. See the Schur series from vacuum character up to ¢'* in the end
of the appendix of [86].

Such comparison between the reduced elliptic genus and Schur index for all other rank
one Hg theory except G = Fy has been done in [37]. In particular, all L(Gl)(v7 Qr,mg =0)
functions are identified, and the conjectural formula (5.17) holds to substantial orders.
Similarly, one can also couple a free hypermultiplet to establish the relation between original
one-string elliptic genus EES) (v) and the Hall-Littlewood and Schur indices of H C(;k) theory.

Indeed, the Schur index of a 4d hypermultiplet is known to be [86]

g1/

1—g¢q

Zpchur PE[ (z+ x_l)] : (5.22)
which can also be obtained by taking limit Eep (v, 2, Qr) — Eem(¢'/2,z,¢?). The Hall-
Littlewood index of a 4d hypermultiplet i.e. the Hilbert series of C? is well-known to be

1

HL __
. = (T = gg#1)’

(5.23)

which can also be obviously obtained by taking limit E¢, (v,z,Qr — 0), with a factor
vQr 1/6 absorbed into the overall factor of (4.3). This makes the whole story consistent.
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In the viewpoint of pure 4d, this intriguing conjecture indicates there exists certain
precise relation between the B-twisted partition function on 72 x S? and the partition
function on S3 x S'. We suspect the connection may be established by realizing one S' of
T? as the Hopf fibration over S? to get S x S'. To find the consequence of such realization

one has to go into the details of localization which is beyond the scope of current paper.3’

5.4 Rank two

We would like to generalize Del Zotto-Lockhart’s conjecture to the rank two cases, where
there exist more flavour symmetry that is SU(2), in Hg theories. To be precise, we want

to find some functions Lg) (v,z,ma, Qr) = Y750 bijivj such that

1. bfj can be written as the sum of products between the characters of irreducible
representations of SU(2),, and the characters of irreducible representations of G with
integral coefficients.

2. Lg) (v, z,mq,0) is the Hilbert series of the reduced moduli space of two G-instanton,
i.e. the Hall-Littlewood index of the H, (GQ ) theory.

3. Lg) (¢*/2, 2, mq, ¢%) is the Schur index of the Hg) theory.

4. The reduced two-string elliptic genus Eh(z) (v,x,mg, Q) can be generated from
G

L(Gz)(v,x,mg, Q-) and Lg)(v,m,mg,QT) functions.

It turns out the rank two cases are much more complicated than the rank one cases, one
reason for which is that we can not rely on the additional symmetry (4.27). Although we
have not achieved an exact formula to generate the two string elliptic genus, we successfully
manage to identify the Lg) functions to substantial orders, which we will elaborate on later

for each example. In fact, the leading and subleading @, order of L(G2) (v,z,ma, Qr) are

just given by géo();(v,x,mg) in (4.8) and gé%(v,x,mg) in (4.9), while the subsubleading

order is given by

(x5+ (X0 +2)X3+ Xsym20 +2X0+3) + ((X9+1)X4+((X0+1)2+(2X9+1))X2)v+. .., (5.24)

which differs from gé%(v, x,mg) in (4.10) by 1+ xov + .... Such difference is recognized

as what we call “blue” series in contrast to the red L(GQ) functions. Indeed, the reason we
also include Lg) in the last condition is that we observe a “blue” series appearing multiple

times in the coefficient matrix of E, :
G

o

2),blue n L 0
Mé) (”796)221} Z XiXjo = (1—vx)(1—v/x)g§’)0(v)
n=0 i4+2j=n+1

= 14+x20+ (x3+X0)v? 4+ (xa+ X0 x2)v> + (X5 + X0 X3+ X20)v* + (X6 + X6 X4+ X20X2)V" +. . . .
(5.25)

39Guglielmo Lockhart came up independently with a similar idea (private communication).
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il -2 -1 o0 2 3 4 5 6 7 8
olo o 1 o0 11 16 65 142 335 700 1542
0 0 1 2 11 20 12456 18492 143+192 3564292 10914517
21-1 0 1 -2 2 0 51 150 473 1032 90+2225
ij 9 10 11 12
0 2788 5350 9288 16184
2676+742 6387+1183 13476+1624  28204-+2408
2 | 23244024 8589 15552 30469

Table 14. Unrefined coefficients cf 7 for the elliptic genus of two SU(3) instanton strings.

For example, the blue series always appears at (), order hé /3 with leading v order —2hé /3
(comparing to the leading @), order). The reason for such phenomenon is yet not clear to us.
On the other hand, from the technique of class S theory, we can compute the Schur

index of H g ) theories for G = Dy, Eg78. All of them are in agreement with our expectation

from elliptic genera up to quite high orders. For example, from the L(GQ) functions, we are

able to write down the following general formula for the Schur indices up to ¢7/2:

IO =IO/ Thon™ = 1+ (xa+x0)a+xox20"* + (X5+ (Xe+1)><3+><sym29+><e+1)q2
G G

+ (X9X4+ (X2e+xsymze+1)><2) ¢+ (X7+ (Xo+1)x5+ (X260 +Xsym20T2X0+3)X3
+Xsymig+ (Xo+1)? _CG(G)> 7+ (XBXG+(X26+XA1t29+2X0+1)X4

+(x30+2x20+ (X0 +1)*+ Xgym20+ Xan2e + B2(G) +C7(G))X2) P+ (5.26)

In the following, we show the striking comparison between elliptic genus and indices at
rank two for all symmetry group G.

SU(3). For SU(3), let us denote the two-string elliptic genus as

oo
E, e (0,2, Qr, Qm) = Q7O e (w, Q)T Qv (5.27)
2 i,j=0

Then we have the unrefined coefficients cf; (r =1,Qnm = 1) listed in table 14. Keeping in
mind that all such numbers can be refined to incorporate SU(2),, we show the unrefined
coefficients just to make them look clearer. The red numbers give the definition of Lg)
functions. In particular, they are in agreement with the universal expansion (4.8), (4.9)
and (5.24). Note the red numbers in the first row agrees with the Hilbert series for reduced
moduli space of two Ay instantons in [42]. The two red numbers in the ¢ = 2 rows are
predicted from (5.24). Besides, the blue numbers agree with our proposal (5.25). Adding
the red numbers in each column together, we expect to obtain a series that is equal to the

Schur index of rank two H4, 4d SCFT.
The construction of H1(422) theory from 6d involves irregular punctures. We are not
aware how to directly compute its indices. We write our prediction from elliptic genus
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here: the Hall-Littlewood index of rank two H 4, theory is

Titly = 14 (x3+8)q+8x20" + (x5+8x3+36)¢” + (8xa+55x2)q”
Az
+(xX7+8x5+63x3 +119)¢° + (8x6+ 5514 +216x2)¢™/?

+(xo+8x7+63x5-+280x3+322)* + (8 X8 +55x6+280xa+637x2)¢” 2 +O(¢°) ,
(5.28)
which agrees with the Hilbert series of reduced moduli space of two SU(3) instantons [42],
and the Schur index of rank two H 4, theory is

IO =1+ (3 +8)a+8x24” >+ (x5 +-9x3+45)¢% + (8xa +64x2)*?
Ag
+(x7+9x5+82x3+200) g% + (8x6+72x4+360x2)q"/?
+(x9+9X7+83x5+479x3+799)¢* + (88 +T2x6 +496 x4+ 1608x2)¢” > +O(¢°).
(5.29)
Taking z = 1 in (5.29), we have the unrefined Schur index as

1+11¢+16¢%2+77¢° +160¢°/ > +498¢> + 1056472 +2723¢* +5696¢” >+ O(¢°) . (5.30)

This is in complete agreement with Beem-Rastalli’s to appear computation from chiral
algebral?’

SO(8). The H1(324) theory can be constructed by compactifying As (2,0) 6d SCFT on a
sphere with four square punctures {22}, i.e. 2222 theory, which is expected to be a usp(4)
gauge theory with four fundamental hypermultiplets and one anti-fundamental. On the
other hand, the f[gz theory can be constructed as a 222L theory, i.e. we replace one
{22} puncture to {2,1%}. In [45], the Hall-Littlewood indices of both 222L theory and
usp(4) + 4f 4 la theory were computed, which are in relation

1
Tooor (v, x,m;) = mzusp(4)+4f+la(vvxami)' (5.31)

We expect and indeed checked to high orders

2
Iusp(4)+4f+1a(v7xami) = g((),D4(Tvavmi)' (532)

For example, one can directly see the series coefficients in (A.12) of [45] agree with the QO
entries in table 15.

The Schur index of 222L theory can be obtained in a similar manner. Following the
general formula in [44], we obtain

I . . . vb,v b, b7 a, b~ a !
TS c.d,esa.b) = N} K (0) K (d) K €) Kby 32 A0 Db b )
A X,\(U ,U ,’U,U)
xxa(ve,v e, v ol Yo (vd, v d vd T v d T o (ve, v e, ve T v e T

(5.33)

4OWe thank Beem and Rastelli for providing us their unpublished results on the unrefined Schur index of
rank two SU(3) theory.
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where (by = b, be = 1/b). The summation is over Young diagrams A = (A1, A2, A3,0). The
N and K factors are given by

4
R Ui

X (2 v (V2 + 7% +2) (5.34)
b) = PE :
K1(b) [ o ,
R 2 4 31+2 +1 2 +2
Kala,b) = E[3v +v Hiﬁv‘j +v7a ]

1/2 {6 make contact with literature. From the above

20

At last, one usually replaces v — ¢

formula, we computed the Schur index up to v*" as

TS — 1 yxou+(2x3428) 02+ (2x4+58x2)v> + (3x5+87x3+465)v* +. .. . (5.35)
Decoupling the free hypermultiplet, we obtain the Schur index of ng theory
ISC(}%?Y Toopthragsio = oot [T (5.36)

up to q'%. The first 12 terms with full SU(2), fugacity are
ISC(E‘?‘” =1+ (x3+28)q+28%2¢%/ 2+ (x5 +293 +435) g2 + (28 x4+ T07x2) " 2
+(x7+29x5+765x3+4845) ¢ + (286 + 735 x4+9947x2)q /2
+ (X9 +29x7+766x5+12337x3+43353)¢"
+(28x8+735x6+12607x4+1018782) "/
+(X11+29x9+766x7+12667x5+141518x3+330360)q5
+(28x10+735x8 4126356+ 1554494 +845225x2) ¢/ 2+ O (¢%) .

(5.37)

We can compare this with elliptic genus up to ¢*Y/2. Let us denote the SO(8) two-string
elliptic genus as
E o (v,z,7,m;=0)= v1tQ-1Y/6 Z ) (Qrv~ ). (5.38)
D4
,j=0
Then we have table 15 for the coefficients cz?(g)(x = 1). Here the red numbers are from
the Lg)i series. Add the red numbers in each column together, we expect to obtain a series
that is equal to the Schur index of rank two Hp, 4d SCFT. Indeed, we have
L) (q"%,2 =1,mp, =0,¢%) = 1+31q+564> > +527¢° +1526¢°/> 4 7292¢° + 230024 /2
+844064° +258818¢°/% +823883¢° +2394216¢/? +
(5.39)
On the other hand, by taking the unrefined limit = 1 in (5.36), we obtain the unrefined
Schur series
1+431g+56¢%2+527¢> +1526¢° 2 +7292¢% +23002¢"/? +844064° +258818¢°/ % +823883¢°
+2394216¢"/2+6943434¢° +19082748¢"3/2 +51665849¢" + 134888730¢ /% +345764537¢°
+862482876¢"7/2+2112344321¢° +5061362222¢/% +11921262927¢'°+ O(¢*'/?) . (5.40)

One can see the two series match perfectly up to ¢*'/2!
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iwjlo 1 2 3 4 5 6 7 8

0|1 0 31 56 495 1468 6269 19680 64768
1|0 o o 0o 32 58 1023 3322 19078
2 | -1 —2 —31 —60 —380 -—718 —2972+2-1 —5226+2-2 560—16398+2-31+1
ij 9 10 11
0 187792 537021 1424526
69114 266799 886104
2 | 1912—27570+2-60+2 20063—71670 4 2- 389 + 31  83586—115770 + 2 - 718 + 60

Table 15. Series coefficients Cis’(j)(s) for the elliptic genus of two SO(8) instanton strings.
,j|0 1 2 3 4 5 6 7 8 9
0 |1 0 55 104 1539 4966 32091 119340 542109 1973088
1 {0 0 O 0 56 106 3135 10900 97125 405480
210 0 O 0 0 0 0 0 165241 604042
3 |1 2 55 108 1214 2320 15802 29284  143542—1 257800—2

ij 10 11 12

0 | 7460100 25288640 84766812

1 | 2210027 9075756 38900537

2 | 99611455  466860+108  3399668+1214
3 | 999970—55 1742140—108 5704242

Table 16. Series coefficients cf 5 for the elliptic genus of two F} instanton strings.

F4. Let us denote the two-string elliptic genus with gauge symmetry F} as

oo
Eh%) (v,x=1,7,m; =0) =0 7Q-'7/® Z c%vj Qv (5.41)
i,j=0

Then we have table 16 for the unrefined coefficients cf ;. The red numbers in the first row
agree with the Hilbert series for reduced moduli space of two Fj instantons in [42]. By
summing over the red numbers in each column, we obtain certain analogy of Schur index

11/2

of rank two Hg theory for Fy up to ¢**/“. The unrefined version is

1+ 55q + 104¢%/2 + 1595¢% + 5072¢°%/2 + 35226¢° + 130240¢"/% + 6408864" + 2384608¢"/2
+9769738¢° + 348312564/ + O(¢°) . (5.42)

This is in complete agreement with Beem-Rastalli’s to appear computation from chiral
algebral*!

41'We thank Beem and Rastelli for providing us their unpublished results on the unrefined Schur index of
rank two Fj theory.

— 64 —



Eg. The Hg(j) theory can be constructed by compactifying As (2,0) 6d SCFT on a sphere
with three {23} punctures, which is a “bad” theory. One can change one of the punctures
to {22,12} to add a decoupled hypermultiplet, i.e. the ﬁgg theory. The Hall-Littlewood
index of this theory was computed in [45]. We expect and indeed checked

IH(Q)(U x mEG) g[())E (U,l‘,mE(j). (543)

EG

The Schur index can be obtained in a similar manner. Following the general formula
in [44], we obtain

-1

—1 —1 x T
~ A ~ ~ X)\(UCLE,,U a5,va6,v ~0ag, ) )
ISChur _N K K K a5a6’ a5a6
<2) 6 K1(a1,a2) K1 (as, as) Ka(as, ag, ) E/\ a(v=3, 073 v~ vl v3 05)

-1 -1 1 1 -1 -1 1 1 1
XxXx\vay,v “ai,vaz,v "a2,v—-,V xalvas,v "as,va4,v a4, v—,0V .
aiag aiag aza4 aza4

(5.44)
Here A = (A1,---, )5,0) and (b3 = 1)

6
N = (v?v 31_[ (v*;0?)
71=2
2 3 20
v bz/bj
K1(by,b2) HHPE[ T }

(=14,5=1

2 2 2£b, b 9 2 2 +2 37192 141 3 9 41vil
Ka(b1,bs,2)=]] ] PE [v i/ J}xpE[ Ve 0 407 (bbox™ )T v (b1b3a ™)

1—v?2 1—v2
(=14,5=1

(5.45)

1/2

At last, one needs to replace v — ¢'/2. We computed the Schur index up to ¢:

ISC};;“ = 14 (x34+78)q+78x2¢* %+ (x5 + T9x3+3160)¢* + (784 +5512x2) />

- +(x74+T79x5+5670x3+87751)¢> + (78x6+5590x4 +201292x2) ¢/ 2+ (xo +T79x7
+5671x54248290x3+1871196 )¢ 4 (788 +5590x6 4250640y 4 +5048654 2 ) ¢*/?
+ (X114 79x9+5671x7 42504005+ 72489753+ 32615793 ) ¢°
+(78x10+ 55908 +250718 s+ 79002434 +97665932x2)q' />
+ (X134 79x11 456719 +250801 7+ 79499115+ 157280287 34483480405)¢°
+ (78X 124+5590X 104250718 x5+ 7949591 ¢ + 186447755 4+ 1552411211 x5)¢*>/2
+(x154+79x13+ 567111 +250801 x9+ 7952421 7+ 193661181 x5+ 2725694921 x 3
+6263699772)¢" +... . (5.46)

Note the leading terms up to ¢7/2 agree with our general proposal (5.26).
Let us denote the two-string elliptic genus as

Eh(2>( x=1,7,m; =0) = U23Q 23/6 Z CEG’U] Qv (5.47)
Eg
1,j=0
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Wil o 1 2 3 4 5 6 7 8 9
0] 1 0 8 156 3320 11178 98440 401280 2344619 9785226
10 0 0 0 82 158 6723 24132 296879 1335694
2 10 0 0 0 0 0 0 3485+1 1311242
310 0 0 0 0 0 0 0 ~1 -2
4 | -1 -2 —81 —160 —2669 —5178 —51445 —97712 —681945 —1266178
i g 10 11 12 13
0 45870686 182872426 746229150 2782158570
1 9484963 44112702 236141466 1042037420
2 301488+81 1497516+160 1440564342669 75613998+5178
3 —81 ~160 102090—2669+83 563580—5178+322
4 | —6819518 +2-1 —12372858 +2-2 —54611704+2-81—83 —96850550 + 2 - 160—322
ij 14 15
0 10261780870 35695088906
1 4709271558 19202312882
2 486421964+51445 2415319754+97712
3 9603627—51445+7039 58071366—97712+24620
4 | —365050846 + 2 - 2669—7039 —633251142+2 - 5178—24620

Table 17. Series coefficients cfj for the unrefined elliptic genus of two Eg instanton strings.

Then we have table 17 for the coefficients cf; Here the red numbers are from the L(L?G)

series. Add the red numbers in each column together, we expect to obtain a series that is
equal to the Schur index of rank two Hg, 4d SCFT. Indeed, we have

L2 (¢ 2=1,mp, =0,¢%)
=1+81g+156¢%2+3402¢>+11336¢°/?+105163¢° +425412¢"/>
+2644983¢* +11134032¢"/ 2 +55655137¢° +228482644¢" /% +996878349¢°
+3900373568¢"%/2+15467078019¢ +57370792908¢ %% + ... .

(5.48)

On the other hand, taking z = 1 in (5.46), the unrefined Schur index is

14+81q+156¢%2+3402¢>+11336¢°/2 +105163¢> +425412¢7/% +2644983¢* +11134032¢°/>
+55655137¢° 4228482644¢"/%2 +996878349¢° +3900373568¢"%/% +15467078019¢" +. ... .

(5.49)
We can see the two series match perfectly up to ¢7!

E;. The HJ(EQ?) theory can be constructed by compactifying A7 (2,0) 6d SCFT on a sphere
with one {42} puncture and two {2} punctures, which is a “bad” theory. One can change
one of the {2*} punctures to {23,12} to add a decoupled hypermultiplet, i.e. the ]?Ig)
theory. The Hall-Littlewood index of this theory was computed in [45]. We find it agrees

with our computation for g((fg? (t,z,mp,). The Schur index can be obtained in a similar
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iwjlo 1 2 3 4 5 6 7 8 9
0 |1 0 136 266 9315 32830 449050 2026080 17179809 84195608
10 0 0 0 137 268 18768 69544 1349005 6575250
210 0 0 0 0 0 0 0 9590+1  36982+2

Table 18. Series coefficients cf 7 for the unrefined elliptic genus of two E7 instanton.

manner. Following the general formula in [44], we obtain
ISC(}?)H Ns Ki(ar, az, as) Ko(as, as, ag, x) Ks(ar)
Eq

3 -3 —1 3,—-1 ,-3 —1 -1 -1 —1
sz)\(v ar, v ar,var, v ar, var v ar ,va; LU as )

X)\(v_’?? v_57 v_37 v_17 v? UB? v57 11)7)

(5.50)

-1 -1 -1 1 -1 1
X XA | vai,v “ai,va,v “az,vaz,v "~as,v , U
a1a20a3 a1a2a3

1
-1 -1 -1 T T
XXX | vag,v "a4,vas,v "as,vae, vV "ag, ) .
40506 Q40506

Here
2(v vt 405 4+08)

4 207 +2
b
o e
207 4?2 S PE v?b; /b; : V3 (@7 bi/ba)E 03 (2 by /ba)
1—v2 H H 1—v2 ’H 1—92 )

(=1i,j=1 i=1

Ks(b) =PE

Iag(bl,bg,bg,l’) =PE

2 4 20

~ bz b

,Cl(blvb27b3) :H H PE I:v1_1{23:| . (551)
l=11,5=1

/2 We computed the Schur index up to ¢ order.

After decoupling the free hypermultiplet, the Schur index of Hg)

At last, one needs to replace v — ¢

theory is given by

IZC(};“_ C(I;‘;r/ISChur—1+(x3+133)q+133><2q5/2 (x5+(133+1)x3+Sym?133+133+1)¢* +...

(5.52)
Let us denote the two-string elliptic genus as
Eh(z) (v, =1,7,m; = 0) = v3Q3/° Z cE7vJ Qv (5.53)
1,j=0
Then we have table 18 for the coefficients c Here the red numbers are from the L(2)

J
series. Add the red numbers in each column together, we expect to obtain a series that is

equal to the Schur index of rank two Hg, 4d SCFT. Thus, we predict the unrefined Schur
index as

14 136¢ + 266¢°/% + 9452¢° + 33098¢°/% + 467818¢> + 2095624¢"/ + 185384944*
+90807840¢"% + O(¢°) .

— 67 —



Indeed, taking =1 in (5.52), the unrefined Schur index is given by
1+ 1364 + 266¢>/% + 94524 + O(¢*/?). (5.55)
We can see the two series match perfectly!

Eg. The Hgg) theory can be constructed by compactifying A;; (2,0) 6d SCFT on a
sphere with three {62}, {43} and {26}, which is a “bad” theory. One can change the {20}

puncture to {2°,12} to add a decoupled free hypermultiplet, i.e. the ﬁgg)

theory. Following
the general formula in [44], we obtain its Schur index as

21

1 z
. . N xx(var,v"tay,.. . vas,v"tas, —2—, )
78hur — Afo Ky (ay,as,as,a4,as,2) Ke(ag, a7) Ks(a E 4195 41a5
H(z) 12 1( 1,42,43,04,05, ) 2( 65 7) 3( 8) - XA(U_Hv'U_g . ,UQ Ull)
_ _ _ _ 1 _ 1 1 _ 1
XX (1130,6,1} 3&6,’0&6,’1] 1a6503a77v 3&7,’()&7,’1] 1a77f03 U 8 yU——,0V ! )
agaz asar’ asar agar
-5 -3 3 5 -5 -1 -3 -1 3 -1 ,5 —1
X XA (v as, v as,..., v as,v°ag, v "ag v Cag ,...,v%ag v ag ) (5.56)

Here A = (A1, ,A11,0) and

21)24 120y E2
1— 0?2 ’

4 3 201 ]
Kalbr. ) =H g B2y

2 5 (5.57)
C 20 4 v? 2* v¥e;/c;
K1(01,02,63704,C5’$) = PE |:1_02 H H PE : _17/)23
(=11i,j=1
y ﬁPE [vi%(ggl ci/%)lil —|—21}3($ ci/%)il] |
: —v

1

——ooo- At last, one needs to replace v — ¢*/2. As the leading
1C2€3¢4C5

where b3 = ﬁ and cg =

terms up to ¢*/2 are contributed from rank one theory, the Schur index is given by
Isf(‘;‘;f = 14 x2¢"? + (2x3 + 248)q + (2x4 + 2(248 + 1)x2)* > + ... . (5.58)
After decoupling the free hypermultiplet, the Schur index of Hgg) theory is
IIS{C};;” Z5chur jSchur — 4 4 (g + 248)q + 248x2¢>% + ... . (5.59)
E
Let us denote the two-string elliptic genus as
E (2>(v z=1,7,m; =0)=>Q /0 Z cEng Qv (5.60)
i,j=0
Then we have table 19 for the coefficients cl ;- Here the red numbers are from the ng)

series. Add the red numbers in each column together, we expect to obtain a series that is
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ijlo 1L 2 3 4 5 6 7
1 0 251 496 31625 116248 2747875 13624000
100 0 0 252 498 63503 241742

Table 19. Series coefficients CZEJS for the unrefined elliptic genus of two Fg instanton strings.

equal to the Schur index of rank two Hg, 4d SCFT. Thus, we predict from the general
formula (5.26) for the unrefined Schur index as

1+ 251q 4 496¢>/% + 31877¢% + 116746¢°/% + 2811378¢° + 13865742¢"/% + O(¢*) . (5.61)
Indeed, taking x = 1 in (5.59), the unrefined Schur index is given by
1+ 251q + 496¢°/% + O(¢?) . (5.62)
Indeed, the two series match perfectly!

5.5 Rank three and higher

We expect the Del Zotto-Lockhart’s conjecture can be generalized to rank three and higher.
From the universal leading expansion for three-string elliptic genus (4.11) and (4.12), we
are able to predict the Schur index of rank three Hg SCFT up to order ¢

T3 = 14 (xa+x0)a+ (xa+xox2)g” >+ <X5+(Xe+1)X3+Xsym2e+X9+2) ¢’
G

+ (o + (2x0+2) X4+ Xm0 + X0 +1) g7

+ (2X7+ (3xo+1)x5+ (Xze+3xsym29+3><9+5)><3+Xsymse+3xsymze+><e+2) ¢’
+0(¢"?). (5.63)

This is actually because (4.11) and (4.12) are also the definition of leading and subleading
@, order of Lg’) functions. Besides, we observe in the coefficient matrix of reduced three
string elliptic genus, other than the Lg’) function that appears as expected, the blue series
also appears as in the rank two. The difference is that here the blue series is generated
from the leading @) order of two string elliptic genus!

(3),blue o 1 (2)
Mg (v,2) = 1o = U/z)go’c(v,:c). (5.64)

Note gé%(v, x) is also the leading @, order of Lg). In the following, we show the relation

®3)

between reduced elliptic genus of three strings and the Schur index of HG3
each G.

theories for

SU(3). The formula for the elliptic genus of three SU(3) string has been written down
via Jeffrey-Kirwan residues in [34], using which we computed Eh<3) up to Q% order. Denote
Az

oo
B, (v,2,mmi = 0) = "Q; " ) &V (@) (Qro ). (5.65)
? i,j=0
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j 0 1 2 3 4 5 6 7
0|1 0 11 20 90 218 693 1618
1 2 14 22 135412 370422 960+171 22504502

Table 20. Coefficients cig(s) for the unrefined elliptic genus of three SU(3) instanton strings.

Then the unrefined Lg’) function is shown red in the coefficient matrix of E, @ in table 20.
Az
Note the red numbers are in agreement with our universal expansion (4.11) and (4.12),
while the blue numbers are in agreement with our proposal (5.64).
The construction for rank three H 4, theory from 6d involves certain irregular punctures

as the rank two case. We are not aware how to compute its indices directly. We write down
our prediction for the Schur index of rank three H 4, theory here:

Ifl‘i}é?r 1+ (x3+8)q+ (xa+8x2)@* 2+ (x5 +17x3+46) g% + (x6+ 18x4+81x2) g2

(5.66)
+(2x7+25x54164x3+248) ¢+ (x8+27x6+209x4 +557x2)q" 2+ O(¢") .
The unrefined limit is
3" (¢ =1) = 14+11¢+20¢%* +102¢* +240¢° > +869¢"+21204"/*+ O(g").. (5.67)

Az

SO(8). We can use class S theory technique to compute the HL and Schur index of rank
three Hp, 4d SCFT. The H} (3 ) theory can be constructed by compactifying As (2,0) 6d

SCFT on a sphere with four {32} punctures, which is a “bad” theory. We need instead to

73 )

consider H;,’ theory obtained from three {3%} punctures and one {3,2,1} puncture. We

compute the Schur index as

Sch .
7z C(31)Jr(cl>027 C3; T, b)

en . - 5 xa(v?b, b, v=2b, vb~ta, v b e, b2 2)
= Ng K1(c) K1(d) K1 (e) Ka(z,b) z)\: X2 (05,03, 01, v, v3, 1) (5.68)

2 -2 2 -1 -1, -2 —1
X H X/\(’U ¢, Ci, U G,V ¢, ,C ,V C )7

i=1,2,3

with (b1 =b, by = 1/b)

6
H ot
A~ 2 ) 9
K1(b) = PE [( o )(b2+b +2) | (5.69)
1—-w
Ka(a,b) = PE |:3’U2+2U4+U6—|—(U3+v5)1(bjav—21):t1+U3a:|:3+v4(b2a2):|:1
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i.,j |0 1 2 3 4 5 6
0 |1 0 31 60 530 1858 9457
110 0 0 0 32 62 1111

Table 21. Expected coefficients c (8) for the unrefined elliptic genus of three SO(8) instanton
strings.

From the above formula, we compute the Schur index up to ¢'*/2. After decoupling the

free hypermultiplet, we obtain

Ilsﬁgur = Schur ur/gehur — 9 4 (3 4+28) g+ (xa+28x2)¢> 2+ (x5 +57x3+436) ¢
+(X6+58X4+841X2)q5/ 2 4 (2x7+85x5+1607x3+5308)¢>
+ (X8 +87x6+2042x4+14135x2) ¢/ 2+ (20 + 115y 742806 x5 +29042x 3+55871)¢"
+(2x10+115x8+3242x6+43166 4+ 177896 2)¢"/>
+(2x11+ 1449 +4008 7 +60673 x5 +392233x3+527217)¢°
+(2x12+ 1451044441 g+ 75128 x6+649112x4+1857119x2)¢" /2 +0O(¢%) . (5.70)

The unrefined limit is
zgv;gglr(g; =1) =1+ 31g+ 60¢*? + 612¢° + 1920¢°/? + 10568¢> + 36968¢"/% + 1578504
+ 54884842 + 2036655¢° + 6798456¢"/% + O(¢°).. (5.71)

Let us denote the reduced three-string elliptic genus as

SO8 _ANg
Eh(g) (v,2,7,m; = 0) = v7Q- 17/6 Z (®) g Qv (5.72)
1,j=0
Then from (4.11) and (4.12), we expect to have table 21 for the unrefined coefficients
CZ-S?(S). Here the red numbers are from the L(D?)i series. Add the red numbers in each

column together, we expect to obtain a series that is equal to the Schur index of rank three
Hp, 4d SCFT. Indeed, we have

LY (q% 2 =1,Qm = 1,¢%) = 1 + 31¢ + 606> + 612¢> + 1920¢°/2 + 10568¢° +
(5.73)
One can see the two series match perfectly up to ¢3!

Eg. The formula to compute the Hall-Littlewood index of rank three Hg, SCFT has been
written down in [45]. Similarly, we compute the Schur index as

ISNC(};)H = /\79 161 ((11, a’2) 161 ((13, (14) K?(afn ag, l‘) X

-2 2 —2 T -1 =z x 2
XA (U as,v ~as,as5,v"ae,vV ~ag, a6,V -, U ) )

Z as5a6 asae’ a5ae6
— — —4 ,,—2 2 4
N XA(’U 87,0 67v y U 717’0 , U 71)67”8)
1 1 1
2 —2 2 —2 2 —2
XXx{va,v ~ai,ai;,v-az,v “az,a2,v y U 3
a1az2 aiaz apaz
1 1 1
2 —2 2 —2 2 -2
XX\ (’U a3, v "a3,a3,v a4,V "04, 04,0 » U ) .
azay a3a4 aza4
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5,710 1 2 3 4 ) 6
1 0 81 160 3555 12958 121447
110 0 O 0 82 162 6961

Table 22. Coefficients ¢ 6 for the unrefined elliptic genus of three Ejg instanton strings.

with

3 2 4 6\, /7.
ICl(bl,bQ):PE Z (U + v +v )bz/bj

2
(v? + vt 4+ 05) Z bi/b; | +20% + ot + 32F3
ij=1

Iég(bl, bQ, x) =PE

1—02

+(by 4 bo) (v + v°) (bgz) ! + vt (b3 2)) | |

where bibybs = 1. From the above formula, we computed the Schur index up to ¢>. After
decoupling the free hypermultiplet, we obtain

Ifﬁ%“— Ch“r/ TSN 1 4 (33 78) g+ (xa+T8%2)a® 2+ (x5 + 1573 +3161)¢2
+(x6+158x446241x2)¢* 2+ (2x7+235x5+11912x34+91483) ¢>
+(x8+237x6+15072x4 +260821x2)q"/ >+ O(g*) . (5.74)

The unrefined limit is

5B (1 = 1) = 14-81¢+160¢%/2 4+ 3637¢> +13120¢°/2 +1284084¢° + 58336042+ O(¢*) .

HE)
(5.75)
On the other hand, the universal leading expansion (4.11) and (4.12) indicate the
following table 22 for the coefficients of reduced three-string elliptic genus for Eg. By
adding the red numbers in each column together, one can indeed obtain the same unrefined
Schur series as (5.75) up to ¢>.

F4, E7, Eg. The Schur indices with generic SU(2), fugacity for rank three Hq theories
can be predicted from (5.63) up to ¢* order. Let us just mark the unrefined series here:

IO = 1+ 55¢ + 108¢°/% + 1752¢° + 6048¢°/* + 45835¢" + O(¢"/?)

F4

Isigg“ = 14 136¢ + 270¢>/% 4 9852¢> + 36990¢°/2 + 533401¢° + O(¢"/?) (5.76)
E7
X" = 1+4251g + 500¢%/ + 32622¢% + 126000¢°/% + 3030748¢> + O(¢"/?) .

Es

Note for F, we always mean the analogy for Hg theories.
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In summary, we arrive at the final conjecture for arbitrary rank:

Conjecture. There exists an infinite series of functions L(C? ) (v, 2, ma, Qr) =275 bgj’-"inj ,
n=1,2,... such that

1. bZG]n can be written as the sum of products between the characters of irreducible
representations of SU(2), and the characters of irreducible representations of G with
integeral coefficients.

2. L(Gn) (v, x,mg,0) is the Hilbert series of the reduced moduli space of n G-instantons,
i.e. the Hall-Littlewood index of the H (Gn) theory.

3. LgL) (¢"/?, z,mq, ¢%) is the Schur index of the H((;") theory.

4. The n-string elliptic genus E, () (v, 2, mgG,Qr) can be generated from the first n Lg
G
functions, i.e. Lg)(v,x,mg,QT), r=12...,n.

6 Conclusion and outlook

In this paper we study the elliptic blowup equations for minimal 6d (1,0) SCFTs with all
six possible gauge groups G = SU(3),SO(8), F4, Eg75. The study is twofold, topological
string partition function on elliptic non-compact Calabi-Yau and elliptic genera for 6d (1, 0)
SCFTs. From the viewpoint of Calabi-Yau, we use the geometric construction in [8] and
the generalized blowup equations in [15] to solve the refined BPS invariants to high base
degrees, which in turn serve as numerous nontrivial checks for the blowup equations, both
unity and vanishing ones. From the viewpoint of 6d SCFTs, we use the de-affinisation
procedure to derive some elegant functional equations for the elliptic genera, from which
we obtain an exact and universal recursion formula for the elliptic genera of arbitrary
number of strings and arbitrary gauge group. In particular, we explicitly compute the
one and two-string elliptic genera for all G, which recover all previous partial results from
refined topological string, modular bootstrap, Hilbert series, 2d quiver gauge theories and
the B-twisted partition function of N' = 2 superconformal H¢ theories. We also prove the
modularity of the elliptic blowup equations which is a strong support that they hold for
arbitrary number of strings.

The elliptic genera we solve from blowup equations could be useful in many aspects.
For example, they would help to identify the 2d quiver description of the 6d minimal SCFT
with exceptional gauge symmetry, see some attempts for G = E7 in [87]. They also serve
as the calibration to determine modular ansatz for higher-string elliptic genus and the web
of topological vertex for the associated non-toric Calabi-Yau threefolds [40]. The elliptic
genera of 2d (0,4) SCFTs we studied also play a role in the context of certain compact
elliptic Calabi-Yau threefolds [88, 89]. For example, the SO(8) and Eg minimal SCFT
serve as the constituents of the 2d quiver gauge theories associated to the T°/Zy x Zs
and T°/Z3 x 73 geometries respectively, and their elliptic genera are useful to compute
the degeneracies of 5d spinning BPS black holes in the dual gravity picture, as suggested
in [89]. We hope our exact formulas of the elliptic genera for exceptional minimal SCFTs
would contribute to this subject.
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It is also interesting to investigate the K-theoretic blowup equations for all possible
5d SYM theories. The K-theoretic blowup equations are quite different from the elliptic
ones in that they exist for all simple Lie groups. Part of the unity K-theoretic blowup
equations were already conjectured by Nakajima-Yoshioka [28] and explicitly checked by
Keller-Song [30]. One may suggest to use dimensional reduction i.e. @, — 0 to obtain
the K-theoretic blowup equations for the six gauge groups G. However, intriguingly we
find that the 5d reduction of elliptic blowup equations does not produce all non-equivalent
K-theoretic blowup equations for these six gauge groups. We leave these issues and the
complete set of K-theoretic blowup equations for all simple Lie group to future work.

The elliptic blowup equations for 6d (1,0) minimal SCFTs allow us to further study
more complicated examples. Some immediate models are the non-Higgsable clusters with
matters which we will investigate in a subsequent paper [51]. There are four of them:
one belongs to minimal (1,0) SCFT with n = 7, and the other three have more than one
dimensional tensor branch. See some primary results on the elliptic genera for such theories
in [8, 38, 87]. One can also use blowup equations to study elliptic Calabi-Yau with multi-
sections. See some discussion on such geometries in [90, 91]. Our final goal is to find an
exact, explicit and universal formula for the elliptic genera of all 6d (1,0) SCFTs in the
atomic classification [6], see also a good review on the classification in [92]. It is known
there are two approaches to classifying 6d (1,0) SCFTs: top down and bottom up. We
expect blowup equations make sense in both settings. In the top down approach, given the
explicit description of a elliptic non-compact Calabi-Yau, i.e. base and elliptic fibration, one
should be able to use the generalized blowup equations in [15] to solve the partition function
of refined topological strings. On the other hand, in the bottom up approach, given the
explicit content of 6d multiplets which satisfy the anomaly cancellations, one should also be
able to directly write down the elliptic blowup equations for the elliptic genera of such 6d
SCFT, as a generalization of the current paper. The two pictures are related by geometric
engineering, as the two formalism of blowup equations are related by de-affinisation.

The K-theoretic Nekrasov partition function inspired the study on K-theoretic invari-
ants for general 4-manifolds, specially complex surfaces [17]. Since the elliptic genus of 6d
(1,0) SCFTs in 5d limit gives K-theoretic Nekrasov partition function, naturally one won-
ders if elliptic genus can be used to construct some elliptic version of 4-manifold invariants,
such as Donaldson invariants. Besides, the Nekrasov partition function is known to relate
to W-algebras. In 4d, the equality between the universal one-instanton Nekrasov partition
function and the norm of Gaiotto-Whittaker vectors in W-algebra has been checked in [59].
See proof in [93]. In 5d, the relation between K-theoretic SU(N) Nekrasov partition func-
tion and g-deformed W y-algebra was also studied in [94]. It seems natural to extend such
relation to 6d where the elliptic genus should be related to the elliptic W-algebras. The
elliptic W-algebra associated to general Lie algebras is very difficult to study. We hope
our exact formula on the elliptic genus could shed some new light. For example, it would
be nice to see if one can use elliptic W-algebra to make comparison with our universal
one-string elliptic genus formula (3.33) like those comparison done in [59]. One can even
ask whether the structure of blowup equations itself can find some origin in pure algebras.
See a possible direction [95].

74—



One major remaining question is of course how to prove the elliptic blowup equations,

or more general, the blowup equations for all local Calabi-Yau in [15, 23, 29]. As the refined
BPS invariants for non-compact Calabi-Yau threefolds have been rigorously defined via
refined stable pairs in [11], these functional equations for the partition functions are indeed
well-formulated mathematical conjectures. See also the definition of refined invariants
n [12]. The proof of Gottsche-Nakajima-Yoshioka K-theoretic blowup equations [18] relies
deeply on the structure of gauge theories, which may not be exactly suitable for Calabi-Yau
setting, as the latter does not necessarily engineer a gauge theory. As emphasized before,
the formalism of generalized blowup equations is not sensitive to additional structures of
non-compact Calabi-Yau threefolds, be they toric or elliptic. Let us also point out there is
even no physical proof for the generalized blowup equations in [15, 23, 29]. In particular,
it would be good to see if one can connect the blowup equations with refined holomorphic
anomaly equations. Specializing to elliptic blowup equations studied in this paper, we
suspect by using the Kac-Weyl character formulas and following the 4d derivation in [59],
one may be able to derive the universal E; formulas (3.33) and the identities from the
leading degree of vanishing blowup equations (3.48). We leave these for future studies.

Another major question is how to explain the surprising relation between the elliptic
genera of 6d (1,0) SCFT and the Schur indices of 4d N' = 2 H¢ theories. Despite the
striking relation for rank two cases and even some rank three cases shown in this paper, we
do not find the exact formulas connecting the two and three-string elliptic genera and those
L functions like (5.17) in rank one cases found in [37]. To obtain such fascinating formulas
for arbitrary rank, it seems one has to answer some questions first. For example, what is
the physical meaning for the L(Gk) functions?*?> How to interpret and make use of those
nonpertubative symmetries (4.27)7 In 4d SCFT Hg, precisely how should the S-twisted
partition function on T2 x S? be related to the superconformal indices on S$® x S'? And
how should the SCFT/VOA correspondence be put in this picture? One possible direction
is to look into the localization on the 4d backgrounds following the recent works [75-79].

“2Naively one may tempt to identify Lg functions as Macdonald indices, since they both have two
parameters, and both serve as an unification of Hall-Littlewood indices and Schur indices. However, this
seems not ture. For example, the Macdonald index of rank one Hg, can be easily obtained by taking limit
in the full superconformal index in [48] as

T 0y (q,t) = 1+ 133t + (134t + 7371¢%) + (134t¢” + 16149¢°q + 238602t°)

(1)
Eq

+ (134tq® + 25193t°¢° + 819413t°q + 5248750t") + . .. (6.1)
While the ng function is determined in [37] as

Ly)(Qr,v) = 1+ 133v% + 73710 + 2386020° + 52487500° + . ..
+ Q- (134 + 16283v> 4 835562v" +...) + Q2 (31373 +...) + ... (6.2)

One can see they are indeed not the same, albeit IIIf(E“ (0,v%) = LS;(O, v) and I]I:IS) (q,q) = LE,517)((127 2.
7 7
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A Lie algebraic convention

We collect some definitions in (affine) Lie algebras and fix our convention used throughout
the paper. Given a simple Lie algebar g of rank rk(G), there are four rk(G)-dimensional
lattices of importance, the root and coroot lattices @Q,Q", the weight and coweight lattices
P, PV. They satisfy

QY C P Cbc, (A1)
QC PV Cht. (A.2)

Here bc, b = C'¥ are the complexified Cartan subalgebra and its dual. They are isomor-
phic to each other via the natural inner product

<070> : f)&k: X bhe — C. (A3)
The Cartan matrix is then defined by

Agj = (g, af), (A.4)

where «; are simple roots. Consider the invariant bilinear form (e, ®) on the coroot lattice
Q" normalized so that the norm square of the shortest coroot 0 is two. It can be gen-
eralized to a bilinear form on h¢ in which @V is embedded. By the isomorphism between
bc and b, it induces also an invariant bilinear form with the same notation on the latter
vector space. With our normalization, the bilinear form satisfies

1
(k) = 5 2A<a,k>2, keb, (A.5)
ac

where hg/ is the dual Coxeter number, and A the set of all roots.
We also define the fundamental weights w; € P and fundamental coweights w) € PV
(t=1,...,1k) through
(g, wj) = (w!, a}/> = 0ij - (A.6)

They are related to roots and coroots by

rk rk
a; = Z Aijwj\/ y Oéz\-/ = ijAji . (A7)
j=1 j=1
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Most of these definitions can be generalized to the affine Lie algebra g. We add an
additional simple root «q satisfying

ag=qay, (ag,a)=(af,af)=2. (A.8)
The affine Cartan matrix is defined to be
A1J2<a[,a\}), I,J:O,l,...,rk, (Ag)

where ay,aY are the marks and the comarks of the affine Lie algebra § respectively. The
affine Cartan matrix satisfies

rk rk
ZGIAIJ:ZAIJUJ\}:O~ (A.10)
I=0 J=0

Note that ag can be written in terms of the longest root § and the imaginary root §, which
annihilates anything in h or h* and has a vanishing norm square, by

ag=03-10. (A.11)

Similarly we can also define the fundamental weights &; and coweights @) in the affine
Lie algebra g by
(af, &) = (@), o)) =615, I,J=0,...,1k. (A.12)

For i = 1,...,rk the fundamental (co-)weights in § are related those in g by
W; = w; + a;Wo , (A.13)
o) =w +a)dy, (A.14)
while &g = @ is imaginary, and it satisfies

(i, @) = (@o, 'y =0, (6,@0) =1. (A.15)

Using these relations together with (A.7), we find the affine version of (A.7)

rk rk
ar=» Ap@y+68-6r0, of = ©sjA;+5-6r0. (A.16)
J=0 J=0

B Mirror symmetry for elliptic non-compact Calabi-Yau three-folds

The prescription in section 2.2 can determine all the triple intersection numbers in the
non-compact Calabi-Yau X associated to a minimal 6d SCFT except for the number x ..
Given the non-compactness of X we do not expect all the triple intersection numbers to
be computable, and the number x,,, is irrelevant for the blowup equations in any case.
Nevertheless we propose here a reasonable normalisation scheme for k,-, which involves
a local version of mirror symmetry. We use this normalisation scheme in the example
section 4.
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For the compact Calabi-Yau X where X is embedded, one can define for every toric
charge () a Picard-Fuchs operator L£; which annihilates the homogeneous periods wy, H(l),
f[l( ). In the decompactification limit zqe — 0, the Picard-Fuchs (PF) operator associated
to the (0)-curve in the base vanishes, while the other operators £; remain well-defined
and non-trivial, and they annihilate all the finite homogeneous periods®? wq, wotr, woFy
of the resulting local Calabi-Yau. These operators, however, do not form a PF complete
system, in the sense that they have extra independent solutions. To cure this problem,
we define in addition the PF operator £, from the toric charge of the elliptic fiber 7 :
(—6,2,3,0,...,1,...).** Tt annihilates all the finite homogeneous periods, but not the
other superfluous solutions, thus making the PF system complete.

The number k.- is contained in the homogeneous B-period wgF; = wo0; F (0,0) which
corresponds to the zero section. We find that it is completely fixed by the normalisation
condition

,CT(woa,-F(o,O)) =0. (B.l)

Note that the resulting homogeneous B-period is not a solution to the complete PF system.
When it is acted upon by the other PF operators it does not vanish but produces wy up
to a scaling factor, which may have some open string interpretation.

There are several ways to understand this normalisation scheme. Once all the triple
intersection numbers are known, the normalised Euler characteristic can be computed by*?

1 Ny
X = /X c3(X) = 3 Z’Qijklg)lg)lgk) ) (B.2)

ijk

we list the results of all the minimal 6CFT's except for the cases of n = 3,7 in table 23. Note
that the calculation of the normalised Euler characteristic for the case n > 3 is different
from that for the first three cases. For n > 2 the elliptic singularity is constant over the
—n curve in the base. Except for the n = 3 case, the resolved geometry can be described
as configuration of Hirzebruch surfaces inside the compact CY-3-fold with only even Betti
numbers and x(X) = 1+ by + by. The case of n = 3, G = SU(3) is special as the reduction
from the compact geometry to the non-compact geometry also involves a flop operation.
The geometry of n = 2 has more supersymmetry and odd Betti numbers by = by = 1,
b1 = by = bg = 2. In the case n = 1 we normalise the Euler characteristic using the formula
for the compact threefold [96] with Eg elliptic fibre type X(Xcomp) = —2- 30 x [ c}(M
The effect of blowing up a C? = —n = 1 curve decreases [ c(M) by one. Hence the
contribution of the non-compact geometry should be x(M) = 60.

The Euler characteristics thus computed for the theories with a pure gauge bulk agree
with the naive definition in terms of the numbers b, of compact n-cycles x = (—1)"b,,.

43For these elliptic Calabi-Yau threefolds decompactified in the horizontal direction, the fundamental
period wo does not become a constant but remains a non-trivial holomorphic function wp.

“4The charge 1 corresponds to the zero section of the elliptic fibration.

“*Here it is understood that we omit the toric charge of the (0)-curve in the summation. If one wishes
the charge entry associated to the pullback of the base curve (denoted by S in table 2) can also be ignored
as it is only nonzero for the (0)-curve. See for instance table 2 for the model with G = F}.
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n 1 2 4 5 6 8 12
— - SO() F, E; E; Fx

by 1 6 6 8 9 10
by 10 5 5 7 8 9
x(X) 60 0 12 12 16 18 20

Table 23. The normalised Euler characteristics of the non-compact elliptic Calabi-Yau threefolds
associated to minimal 6d SCFTs.

Furthermore, by integrating the B-period 0; F{q o) we can compute the genus 0 GW invari-
ants in the 7 direction, which should be the same as the Euler characteristics. We checked
this for the n = 1,2, 5,6 models.*6

In the following, we illustrate this idea with two examples.

n=1.
D v 12 B
Dy O 0O 0] -6 0 0
Dy -1 0 0 2 0 0
D, 0 -1 0 0 3 0 0
s 2 3 0 -1 0 -1 1 (B.3)
K 2 3 0 0 1 -1 -2
F 2 3 -1 -1 0 1 0
S 2 3 0 1 0 0 1
F 2 3 1 0 0 1 0

The Picard-Fuchs operators of the compact geometry are

ﬁl =0 (91 — 0Oy — 293) — 12z (691 + 1) (691 + 5) ,
EQ = 9% — Z9 (91 — 92 — 293) (93 — 92) y (B4)
23:93(93—92)—23(91—92—203—1)(01—92—293),

where 6; := z;— a . Denote Fy the compact genus zero free energy, we have the periods:

=do, X1 =ot1, Xo = dots,
Xa = (3/)28,03 28/)3) “0(p)lp=o-
%i= (<33~ 5o ) @m0 (B.5)
%5 = (307 = g ) 0l

46For the remaining models the first non-vanishing invariants appear at very high degree and we fail to
obtain them within a reasonable period of time.
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and another period with triple logarithmic singularity. Here @y(p) is the deformed funda-
mental period

~ _ P(x1+1) Il T2 T3

o= D T(z1+ 1) (21 + 1) (21 — 22— 223+ DT (—z2 + 23+ 1) (23 1) (w1 1)2 L 2 73
n1,n2,n3€%L>q
Ti=ni+pi

(B.6)

and wy = wp(0). The non-compact geometry is related to the compact geometry by setting
Zge := z3 — 0. Then the Picard-Fuchs operator ﬁg vanishes while the other two become:

L1 =0 (91 — 92) — 12z (691 + 1) (691 + 5) ,

9 (B.7)
Lo =05+ 2 (91 — 92) 0.

The deformed fundamental period wo(p) becomes wy(p) = wo(p)|z3—0. There are one period
Xo = wp = Wo|z3—0 without singularity, two periods with logarithmic singularities

X1 = Xilss50, Xo = Xa|zs0, (B.8)

one with double logarithmic singularities

10 0 0 A
Xsg=-=2————|w —0=wy—Fy =X , B.9
3 ( 207 0,018p2> 0(p)lp=0 05, 70 3] 230 (B.9)
and no solution with triple logarithmic singularities.

The reason we cannot fix the 7 terms is because we do not know the 7 = t; derivative
of the free energy, however, there is an interesting “period” X4 = wq %F (0,0) Which satisfies
(up to all the orders we have checked)

£1X4 = 0, £2X4 = 2LUO. (BlO)

Note that L£; is precisely the PF operator in the 7-direction. If X, is a special period, we
can integrate both X3, X4 and fix the full triple intersection ring

R=—J} — JoJi — J2Jy , (B.11)

and then proceed to compute the Euler number xy = 60 as well as [cpJ; = —10,
[ ¢aJi1 = —12 using (B.2) and (2.11).

Note that X4 indeed descends from a period of the compact geometry. In the non-
compact geometry it is the properly normalised integral over a non-compact cycle in the
mirror Calabi-Yau.

n = 5. The computation for the geometry with n = 1 is kind of trivial. Let us now
consider a more complicated model with n = 5. Notice in the compact cases, we embed
our elliptic Calabi-Yau 3-fold into a toric variety described by a reflexive polytope and
its star triangulation. Then the Mori cone generators {9, which are also known as toric
charges, are related to the star triangulation directly. In the de-compactification limit, a
point of the polytope is missing, leaving a non-reflexive polytope. The dual polytope now
in principle have infinite size. As depicted in section 2.2, the limit happens to take the
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variable z4. to 0. This is equivalent to deleting one Mori generator, and keeping the others.
From the polytope point of view, we delete a sub-polytope from it, and keep the same
triangulation on the remaining part. We may assume that the standard method of mirror
symmetry for a compact hyper-surface embedded in a compact toric variety still holds.

For now, we try to triangulate the non-reflexive polytope, it has 16 star triangulations.
For one of them, the toric charges are {(),i = 1,2, 3,4, 6,7 in table 2, we say the associated
curves form the toric basis of compact curves. One can in principle write down the Picard-
Fuchs equations, and then try to find solutions. For this model, it is possible to change the
variables of complex structure parameters z; so that the solutions do not change, and the
mirror maps have expansions with positive powers of z;. The charges of the new basis lgi
can be found in table 2, which correspond exactly to nodes in the Dynkin diagram. Then
the complete Picard-Fuchs operators are given in (B.12). There are five B-periods solved
from these operators, and an extra one X %F(o,o) annihilated by all the operators except
for Ly, with £b(w08%F (0,0)) ~ wo. The Euler number can be predicted from the 7 direction
genus zero invariant as 12.

Lo=01 (01 —205+03—05)— 21 (201 —05) (201 —62+1) ,
L1=—(201—05) (02—205+04—05) — 25 (1 — 205 +03—05—1) (61 — 202 +03—0)
Lo = (203—204+05—1) (203—20,+05) (01 —209+63—05)
—223(203+1) (02— 203-+0,—06—1) (02 —205+604,—05) ,
L3=(04—205) (02—203+0,—0) — 24 (203 —204+05—1) (205 —20,+05)
L4=05(203—20,+05)— 25 (01 —205—1) (04— 205) ,
Ly, = 02— 26 (01 —205+03—0g) (02 —203+04—05) ,
L =01 (05—1)05—821 25252122 (20341) (203+3) (203+5) .

(B.12)

C Geometric data

We express here the Mori cone generators of the elliptic non-compact Calabi-Yau threefolds
X associated to the minimal 6d SCFTs in terms of the Mori cone generators 19 of the
compact Calabi-Yau X given in [8].

G = SO(8). 1) is the direction of decompactification.

Y = 1(4)’ Yo =109, vy = 21M 470 4 2,
g =20 410 35 = 1) 41O 5, = 1D @) L 91D (C.1)

G = Fy. 10 is the direction of decompactification.
S =10, 2o =1®), £, =1® 410 LD %, =1V 5, =10 v, =1 (C2)
G = Eg. 1) is the direction of decompactifiction.

v, =10, 5o =1W, ¥, =1M 4706 4 21N 4 970 Yo = 1) 470

Yy =10 421N 1 ®)  x, =@ (D 1 ®) v =10 v =D 4O (C.3)
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G = E7. 1™ is the direction of decompactification.

5, =10, $,=10), =10, 5y =1 1M1 1® 1O 5y = W) 414 (10),
Y= v =1® 100 5Oy = (D) 91®) 1) (C.4)

G = Eg. 1@ is the direction fo decompactification.

Y, =1®, $o=1®, $,=10, $,=10  w,=1" x,=104;2)4;00) 901
$5=10), $e=119 », =100 ye—= 147004901 (C.5)

D Useful identities

Jacobi theta functions with characteristics are defined as

017, 2) = =iy (~1)FreQU I zr ) 2k /2,

kEZ
6[“ (1, 2) Z QU (k+1/2+a) /2Qk+1/2+a
la] l; (k+a)2/2 ~k+ (D-1)
05 QUrrar2Qhta,
keZ
0 (r,2) = Y (~DFreQ gk
keZ
which satisfy the well-known addition formulas
ay+ag ajl—ag
9:[3 }(T 2’1 9[ 7' 22 Z 9[ . ] 27’, 21 + ZQ)QZ[ 2 (27‘, 21 — 22),
- 3 ay+a a]—a (D2)
[a1] [az] _ [ 12 2] ( 12 2] -
0, (1,21)0, 2 (1, 22) = Z 9; (27, 21 + 22)0, (27, 21 — 29).
i=1,4
Jacobi theta function 67 can be defined as triple products
oo Qn
01(7,2) = (1-Q.Q" 1Y (1— D.3
() i % 03
which satisfies the quasi-periodicity
91(7-’ z+ 1) - _01(7—7 Z)v (D4')
01(1, 2 + 1) = —Q712Q7 161 (7, 2), (D.5)
0r(r,2 = 7) = —Q7'/*Q.01(7, 2). (D-6)

For a cluster of refined BPS invariants IV ("6 k) = 1 for all k£ > 0, the total contribution
to BPS partition function is

. Q xont1 ((1g2)'?) 1+Q

s (cﬁ/2 @ 1/2) <q§/2—q;1/2) - (q}/Z—qflﬂ) (q;/z_q;ﬂ) (1-Qaig2) (1-Qqi 'y ")
(D.7)
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Similiarly, for a cluster of refined BPS invariants N(k0 kt1/2) = —1 for all £ > 0, the total
contribution to BPS partition function is

= Q" xan+2 ((112)1/?) (0102)"%+ (q1q2) /2

12 —1/2\ [ 1/2  —1/2 2 —1/2 2 —1/2 1 -
=0 (ql/ —q /)<q2/ —q, /) (qi/ —q ”)(q%/ —q " )(1—Qq1qz)(1—Qq11q21)
(D.8)
We also often encounter the case where a cluster of refined BPS invariants N (ko K—1/2) =

—1 for all £ > 0 are combined with a “zero” degree invariants N, (00 1/2) = —1. In such case,
the total contribution is

1 N i Q*xar, ((1192)Y?)
(q%/z _ qfl/2> <q;/2 _ q;1/2> - (qi/2 _ qfl/Z) (q;/Q _ q;/z)

B ((CJ1Q2)1/2 + (Q1Q2)_1/2)(1 +R+Q - (1e2+4'e")Q)
(q%/z B qu) (Q;/z B q;/z) (1- Qi) (1 qu_1qz—1) ’

In the computation of vector multiplets, we often encounter the following expressions:

PE[ @ }—ﬁ ! (D.10)

(D.9)

1-Q-] 14 1-QQp’
and ) )
Q- 1 _ Q7 Q= (1)
PE[(QZ+QZ)<1—QT” Y — (D.11)

In counting the total index quadratic form of the contribution from vector multiplets, we
often encounter the following expression:

R
PE <— (Bl(o,l/Q,R) (91,42)Q= + Blo,1/2,— ) (Q17Q2)g> <1 0 >) : (D.12)

Here

Blg, in.r) (@1, 92) = fi,50) (a1, @/q)a + fGign a1/ a2, 32)q8 — fGign(a,q2),  (D.13)

e (a2)x;. (qr)
X5 \4L ) Xjr-\4dR
f(jlyjr)(ql’qQ) = 1/2 ]_l1/2 z 1/2 _1/2 . (D.14)

Supposing R > 2, the expression (D.12) can be written as

11 iQr n(Q-qyay)1/? 11 QY Pn(Qaqy gyt 12
01(z+me1+ne2) 01(z+(m+1)e1+(n+1)e2)
m,n>0 m,n>
m+n<R—1 m+n<R—2
w2 (R—1)R(R+1)
_ (\0l/12H-1/2 S e— n n
(lQT Q: ) (2142) H 01(z+me1+nez) H 01(z+(m+1)er+(n+1)e2)
m,n>0 m,n>0
m4+n<R—1 m4+n<R—2

(D.15)
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We normally denote the modular part of (D.12), i.e. those #; and 7 functions in the above
expression together as 0. The index quadratic form of 0 can be computed as

R?2> (R—1)R(R+1
Indy(z, R) = — . ( )3( + )Z(€1+62)_

which actually holds for all R € Z. See more details in the appendix A in [25].

(R-—1)R*(R+1)
12

(e% + €169 + eg), (D.16)

E Relation with modular ansatz

In this appendix, we show how the modular ansatz, or its denominator to be specific, for
the elliptic genus emerges from our exact formulas. Simply speaking, the denominator
of the modular ansatz comes from suming over all o with a fixed norm square in the
recursion formula.

It was proposed in [24, 37] the k-string elliptic genus satifies the following ansatz
NG i (T, €1,€2,m4) (El)

DGJC(T7 617 627 mo‘) ’

E~<k> (T,€1,€2,mq) =

where both the numerator and the denominator are Weyl invariant Jacobi forms. Fur-
thermore the denominator has the following unique structure as a Weyl invariant Jacobi
form which reproduces the poles of the Hilbert series of the moduli space of k G-gauge
instantons [43] and the correct leading order of Q:

Dg . = n(r)**hé H‘P (e _, 1(ie2)Dg (E2)

[\

with the gauge group related factor

k i—1

DGk—HHHgo B! ((14+1)er + (1 —1—=20e- +my), (E.3)

acAi=1/¢=0

multiplying over the set of roots. Later [97] claims that Ej has actually fewer poles and as

a consequence the denominator is smaller (see also [59]). It can be written as*’
Vv
DG = n(r)he H ey alie)e 1 | (i€2) D5k (E.4)
with the gauge group related factor
a SU(2 SU(2)
Dt = [ D, m) [ Dy o(mm) (E.5)

acAl acAs
where Al, A% are the set of long roots and short roots respectively, the constants ¢, are

ca =2 if G=Sp(N),SO2N +1),Fy,

(E.6)
ca=3 ifG =Gy,

4THere “red” means “reduced”, i.e. the number of poles reduces. The “tilde” and “reduced” in this section
should not be confused with them in the main text where them mean a free hypermultiplet is coupled or
decoupled.
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and that

SU(2
Dk: o H © e ae1 + bey + ma) . (E7)
2
a,b<k
a,b>0

To see that DrGe .. is actually smaller than D¢ 1, we spell out explicitly the components of

Dg,k,DrGef}c for some small values of k. To be concrete, we take the model of n = 5 with
G = F4. On the one hand,

’Dl = H (‘071 l(el + €9 + ma) , (ES)
2
aEA
H %) 41 61 + e+ ma)cp 1 (261 + e + ma)tp_l 1(61 + 2¢9 + ma) , (Eg)
aEA 2 2
Dy=]]¢_, 1€1+@%ﬂmﬁw11@q+fr+m@¢41@r+%2+mﬁ
acA '2
¢, 1(3e1 + €2+ ma)go_1 1(2€1 + 2e2 + ma)go_l 1(e1 4+ 3ea +my) . (E.10)
12 2 2
On the other hand,
Dred H ¢ 1 (€1 + €2 +my), (E.11)
acAl '2
Dyd = H v (€1 + €2 + mg) X
aEAS
H o . (e1+ €2 + ma)gpi 1(2€1 + €2+ ma)SO,l 1(e1+2e2+mg), (E.12)
acAl 2 2
red H9011 51—|—€2+ma)><
aEAS 2
H ¢ 1 (e1 + €2+ mqa)p . 1(2€1 + €2 +ma)<,0_1 1(e1 + 2e2 +mg)
acal 2 & 2
©_, 1(3e1 +e2+ ma)<p_1 1(e1 4+ 3e2 +my) . (E.13)
2 D)

We will demonstrate that our recursion formulas (3.32) are consistent with (E.4) and (E.5)
rather than (E.2), (E.3).
Let us first take a look at the case of k& = 1 where the recursion formulas (3.32)
simply read
Dy
Er= Yy (-~ (E.14)

Dy
llav[]2=2

We consider the poles contributed by each component. Suppose we choose three unity
r fields with a1 3, which differ from each other by a; — a; = s;;/n. According to the
requirement for a; 23, we know that all s;; are intergers and 0 < [s;;| < n. Using (D.2),
it is not difficult to show that both Df’(vm and D; contain the zero ¢; — €3 = 0 of order
min(|s;j|,n — |s;;|). For example, the minor

05" (n7, —261 + (n — 2)ea) 05 (7, (n — 2)er — 2€) ) (E.15)

ALQ = det [a2] [GQ}
057 (nT, —2€1 + (n — 2)ea) 057 (n7, (n — 2)er — 2€2)
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can be rewritten as

ap — a2 ap —asz

Ajg = Z 9£ 2 ](2m',n(62 —€1)) — 05 2 ](2n7',n(61 —€)), (E.16)

i=2,3

which clearly contain zeros e; — ez = 0 of order min(|s;;|,n —|si;|). Now by the universality
argument in section 3.2, we can choose arbitrary three a1 23 in recursion formulas. Let us
choose three successive ones with a3 — az = ag —a; = 1/n. Both Di(vw and D; have the
simple zero €; — €5 = 0. In fact, more is true, the determinant

01 (n7,nz1) 01 (n7nzy) 01" (n7, nzg)
D(z1, 22, z3) = det Oz[aﬂ (n7,n21) 91[”](117', nzo) 92[.&2](117', nzs) (E.17)
02[%} (n7,nz1) 9?3] (n7,nz) 91[-“3] (n7,n23)

with characteristics aj 23 chosen as above and ¢ = 3,4 always has simple zeros at z; — 2o =
\Y
29 — z3 = 23 — 21 = 0. Therefore D{'( /D1 has zeros/poles

(e1 — e2)(ma — €1)(Ma — €2) (E.18)

(61 — 62)6162 ’

which can be boosted to the modular object

Ql(ma — 61)91(ma — 62)
Tl (&) ) (E.19)

The other component in (E.14) for E; is

4

_ n n
Aav (my) o 01 (ma)el (ma — 61)01(ma — 62)91(ma — €1 — 62) ,Br[A 91 (mB) ) (E20)
€
B-aV=1

where a = o -2/||a"||? in the root associated to the coroot . The components 61 (mg —
€1)01(mq — €2) cancel with corresponding components in the numerator of D%,o /D;. Thus
naively A,v should contribute poles®® mg = 0 for B € A and m, — €1 — €3 = 0 for
a € Al to Ey. The former poles, however, get canceled with some factors in the numerator
after performing the summation over short coroots in (E.14), which can either be seen in

49 or be argued formally from the Hilbert series of gauge instanton

explicit calculations,
moduli space [43] as well as from W-algebra via AGT correspondence [59]. The remaining
genuine poles are my — €1 — €2 = 0 for a € Al which are consistent with the slimmer
expression (E.11) rather than (E.8).

The discussion above indicates that the recursion formulas (3.32) for Ej naively contain
both genuine poles and spurious poles, while the cancellation of the latter is not obvious.
Nevertheless, all true poles should already be visible in the recursion formulas, which allows
us to distinguish (E.4) from (E.2). In the following, we will argue in favor of (E.4) by point-

ing out that extra poles indicated in (E.2) are not present in the recursion formulas (3.32),

48There are also poles at positions shifted by 1 or 7 of course.
49This cancellation can be checked in all the minimal models, not only in the n = 5 model.
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and assume along the way that the spurious poles not consistent with either (E.2) or (E.4)
cancel automatically. With this comment in mind, let us now look at the denominators
of Eo,E3 from the recursion formulas, and consider only relevant poles, the poles which
appear also in either (E.2) or (E.4).

The right hand side of (3.32) for E5 has three sectors with

(||aV)?, dy, ds) = (4,0,0),(2,1,0)/(2,0,1),(0,1,1) (E.21)

respectively. With an explicit calculation in the n = 5 models, we find the following relevant

poles in each of the three sectors®®

(||aV|?,d1,d2) relevant poles
(4,0,0) me — €1 — €3, & € A

(2,1,0)/(2,0,1)  mgy — €1 — €2,Mq — 261 — €2, Mg — €] — 262, o € Al
(0,1,1) -

They are clearly consistent with (E.12). Likewise, for E3 there are five sectors on the right
hand sie of (3.32), and we find the relevant poles as follows

(||aV||?,d1,d2) relevant poles
(670a0) Mo — €] — €2, O € A7

Mea — 2€1 — €2, My — €1 —262, « EAI

(4,1,0)/(4,0,1) My — €1 — €2, Mg — 261 — €2, Mg — €1 — 269, a € Al
(2,2,0)/(2,0,2) mq —€1 — €2, a € A;

Mo — 261 — €2, My, — €1 — 2€9,

Ma — 3€1 — €2, Mg — €1 — 3€2, a € Al

(2,1,1) Ma — €1 — €2, Mo — 261 — €2, Mo — €] — 262, o € Al

(0,2,1) Mo — €1 — €2, a € Al

which are consistent with (E.13).

F Elliptic genera

We record some high @, order results for the reduced elliptic genus here. Recall the k-string
elliptic genus when expanded with respect to (), can be written as

V_1 ~—(khY%t—1)/6 s n (n
Eh(cé@)(vaIE?QTani) = Uth IQT( &1/ ZQT g](g,C)J(U’:L"Qmi)‘
n=0

We are interested in the v-expansion of g,i%(v,x,@mi). Usually, the leading v power
becomes more and more negative when @, order n goes up. When n is enough high, we

50We also suppress the poles e; = e; = 0, which are guaranteed by the D{O‘dvoydl,dﬂ/Dd structure similar
to the previous discussion.

— &7 —



observe some patterns for the leading v-expansion behavior. For two-strings elliptic genus,
we observe for i > 2(n — 2),

95,2@)(% 2, Qm,) = —v DT (Vi oayeXio(nog)) — O3 L (F.1)

As high as the @, order we have reached, this is true. It is nice to see how to explain this
phenomenon.

As. For the reduced two-string elliptic genus for G = SU(3) model, recall

n 1 n
(0,2 =1,Qm, = 1) = x P (v).

(
92 (1) 1 0)0 (L+ o+ 02)°

We have

P, (v) =07 (= 1—v+60"+9v° — 100" —33v° +410° +2560" +4280° +2200° — 34700 —823v"" — 131"
+26520"% + 77210 +14419v"° 4218260 +271250" 7 +289660'° +271250" ++ - +0%°)

PP (0) =07 (—16—28v+500% +198v° +138v* —3990° —9630° —4190” +17160° +4316v" +50140"°
+21740™ —41100"2 — 107010 — 125830 — 21280 + 270730 ¢ +754260v"" + 1360890 % + 1987230 "°
+2443360v°° +-260628v>" +24433607 +- - +v?),

P, (0) =07 (=81 -2230—5v” +8800° + 16950 +5770° — 31100° — 67350" —58030° +25820” +170190"°
+317350" 4+ 3809602 + 257830 — 114620 —68637v'° —118109v*® — 1163000 " —111020*®
+231810v"° +6054250°° + 10543750 +1497688v°° +18161450°* +19305140™** +- - +0%),

PP, (v) =07 (~256 —874v—8100” +14320° + 55100 + 75530° 4 24830° — 10671v" — 266440° — 34874v°
—236000"" +166200"" +903160"2 + 1859640 +2602500* +241846v"° 4629880 "¢ — 2797281
—6928660"% —963287v"" —815649v°° +30457v>! +17297600% +4189517v* +70446150>* +97774940°
+117271510°° + 1242841407 + 117271510 +- - - +0°),

P (v)(v) =v ™ (—6561—31129v —723350° —120018v° — 168868v* —206886v° —2222500° —170936v" +984410°
+773013v" 419597120 436125630 4541013802 466336910 459944780 * +1510639v'°
—9064153v"° —27314880v"" —52091127v"'® — 77137569v"? —896460120°° —69861741v>" +5587892v>°
+1547377050°% +-3776693870v>* +6412195840° +8684253620>° +9402144120%7 +718317837v>°
+93293293v*° —9511709690°° —22759802080°" —35457196300v°% — 42505927361 — 3785597548v>*
—1612094548v%° +25697109100°° +-86594465000°7 + 1607582830503 +23808502207v>°
+306252210950"° +353021363400"! 4369655920320 +353021363400 "% +- - +0°?).

Note that the leading power of v in PQ(TQQ (v) becomes more and more negative as n increases.
In fact, we notice for n > 2,

P2(’Tj4)2 (v) = 2173"*4( —(n—1)* = -+ + palindrome up to UG(”+4)). (F.2)

With generic z, we also observe the following general expansion: for n > 2,
A A A
7)3"+4g£22 (0,2,Qm;) = _X(77,2—2)9Xn_1 — (X(n2—3)0X”+' . )U— (X(i_4)9Xn+1 +... )v2—i—. .
(F.3)
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For the reduced elliptic genus of three-strings, recall

(n) _ 1) 1 (n)
95,4, (v, @ = 1,0, = 1) = (L= o)1+ )10 (1 +02)° (1 + v+ 02)° P3,4,(v). (F.4)

We obtain

P2 (v) =07 (=120 5v” —40° + 110" +300° +740° + 840" +2670° +880v” +2718v"* +61300"!
+115120"2 4175940 + 247740 +353060"° +644040"° +1339600" " +290609v"® + 5698460
+10203640°° +16283760v>" +2376984v°2 + 31455820 + 38489550 +4318298v%° +45016760v>°
+43182980%" 4. - - 4-0°%),

PP () =07 (2-100° - 9v° + 120" +440° — 480° — 3670 —6220° —183v” +17400"° +43360" ' +44880"°
—11160v" —12504v"* — 174240 "° + 457606 +77007v" " +199630v"® + 3373660 ° +4173620%°
+3820800°" +2559461> +2659620>° +8394461>* +2662413v>° +63681240° +125249570>7
+210347340>® + 3140582407 4421596 74v°° + 518034510 4+583518340%* + 607851740
4583518340 +.. . +0°%),

P, (v) = v (324400 —84v° — 3390° — 426" +487v° +22420° +2876v" —15000° — 128170° —234400"°
—168310v"" 4+256300"2 +974930" + 1504940 +1030120"° — 1125820 —448583v' " — 7009380 '®
—495362v" +51247602° 4241183502 + 4741886122 4+ 646112302 +62545860>* +33100350>°
—16726840%° — 544791307 —21952700°° +1617791 70" +571711700°° +1262283820°" +222042686v>>

43376203930 +4571675120>* + 5631291240 +635332178v% +-6616258720° +6353321780°% +- - +0™),

P, (v) =072 (162+4120+2760° —12950° — 4518v* — 57710° +12920° +2179307 +447120° + 380300
—38688v"" —192767v' ' —341004v" — 3098980 % +1019100"* +9274110"° +18626260"° +2189163v" "
+10013400"® —22101830"? —6887108v%° —10727974v>" —10030208v°* — 7031450>* +191333520°*
+4671928002° + 7287621607 483251991027 46344424807 + 75299261 — 72005488v°° — 1369507730
—1246391340°% +437522330% +-4386695580°* 411030162080 +2019390168v° +311188280107
442349304280 452206659280 +5892000612v"° + 61335308280 +58920006120*% +- - - +v%?),

PO, (v) = v (512416900 +3044v° +7660° — 105960 —311910° —469300° — 1928807 +89188v° +2745110°
+4191760"° +2881400"" —3747220" —1614464v"* —29631320"* —33474730"° —1280918v"°
+42471410"" +12688484v"® +20686636v"? +220015620%° +91842100%" —224976460°% — 690624330
—113553734v>* —124631077v>° —6539511202% +91413273v>" 4-339731228v°° +6224774420>°
+828007584v°° 48139521510 +4632112260>° — 2412803130 — 11402974360 — 18579271170
—18297596860°° — 3982712110 429946405440 +86369156640° +163328765220"° +253974714320*"
4346422931360 +42690290417v** + 481575932580 +-50110832268v*° +48157593258v" 4-- - - 4+-0).

For n > 3, we notice the following universal leading behavior

9D (0,2) = v (g X(ngpe + O(V)). (F.5)

Dy4. For the reduced two-string elliptic genus of SO(8) 6d SCFT, recall

(n) _ _1) — L (n)
92,0, % = 1, Qmy = 1) = I—02A+0)2 (1 +o+02)" F2.p,(v)-
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We have

P (v) = —v™®(1+3v+220” +470° +108v* +29v° — 184v° — 8610 — 17620° — 33050° — 139650 '° — 652100
—260932v"? —884324v"% —2589008v"* —6645978v"® — 15280924+ ¢ — 316730460 " — 595066261
— 10187175202 —159566189v2° — 229273231v%' — 303095099022 — 36946013002 — 41578726612
—4324097800°° —4157872660°° 4- - -+0°°),

PP (v) =0 (14+0%)(2+3v—23v% —281v° — 1338v" — 37860° — 5794v° — 384v” +224100° 4571060
+652000"° —8878v"! —148110v'2 —82859v'3 49118210 +44735540v"° +14488449v"° 43984761207
4979089910 +217119419v"° + 43406767407 + 7821583410 412743321930 + 18859169540
+2545465687v>* +-31447198150%° +3566407238v2° + 371870324807 + 356640723805 +- - - +0°%),

P (v) = 07" (2420220 — 420° +88v* +3290° — 110 — 141107 — 19300° +18770° +121490"°
+388430v" +1139040"% +2402200"° +2269320"* — 364906v"° — 1770622v"® — 30674850 " — 19744390 '®
432627970 +102724900° +103045500°" —10767498v>* — 742270390% — 2285119510
—601571798v%° —1479273049v2% — 33761850230 —7028420238v>* —1325194614812°
—226563117660°° —352816000400°" —50298462814v° —65951082224v°% — 798268006941 >*
—894240372620°° —928564368620°° —894240372620°" +- - - +0v"?),

P (v) = —v7 2 (14+0%)(84+146v—831v” — 24950° +-2027v* + 168740° +128440° — 552300" — 1180230°
+452510° +4126580"° 430696 10"t — 7476060 — 10850750 +2514527v™* + 89558620 +76771320"°
—13638464v"" —481537540"® —58843606v"° —316662502° +114419603v>" +211444789v>>
+1645483020%° —98377407v>* —542911427v2° —1148224939v%° — 2306012154027 —54452773310%®
—13585439053v° —31372682848v° — 641799000270 —1162213631350°% — 1882008534720
—2754323402760v°* — 3674117228520 —4495067113760>° — 5065177731120 — 5269507999640

—5065177731120°7 4. +07%),

P%, (v) = —v7°(1200+ 33740 — 6724v° — 40296v° — 314360* +1593280° +4106820° +155920" — 14672240
—22798050” +10880190"° +80072110"" +8314028v"% — 90900840 " — 329182540 —197267130"°
+67719233v"% +186559606v" " +183703487v® — 1075791940 —661966959v°° —1107115384v>!
—8329561210% +5578415300° +2672286699v°* +4109758618v>° +30460563450>° — 148324134907
—86230407020%° —16826056321v°° —28634625983v*° — 590274152910 — 1444633900061
—347331281609v3% — 7497972566330 —14339096220020°° — 2450540661913 — 378629289031 717
—5341633935638v>® — 6932828077068 —8322655072044v*° —9274316155458v*" —96129920920640*>
—92743161554580*% +- . 4-0*).

For n > 4, we observe the following general leading order behavior
v3n+79§72)4 (Ua x, le) = _X514,4)9Xn—2($) + O(’U) (FG)

Fy. For the reduced two-string elliptic genus of Fy 6d SCFT, recall

(n) _ — 1) — 1 (n)
92,F4(U7x - ]‘?sz - 1) - (1 _1})34(1 +’U)22 (1 +U+U2)17 X P2,F4(/U) : (F7)
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We have

P{?), (v) = 1653+14307v+1183050° +770928v° +4293754v" +20938534v° +-90874761v° +3543781370"

+12541816000° 440571538170 +120680002410"° + 331733180840 +-84638789902v"' 2 4+201171570880v "
+446852450528v"* +9301773533300"° +1818950197662v"° 4 3348446417048v" 7 +5813458948881v"®
+9534395062259v " +147919749538290°° 4-21734938030680v>" +30278882934513v> + 40026 7450864530
+50246339190488v°* +59931545438647v>° +-679513000406370°° +73260270949890v>"
+75118982210308v2% 4 73260270949890v%° +- - - +-v°¢,

PP (v) = v (14 To+580% +2770° + 10710 +29760° +59640° + 583207 —9266v° — 574180” — 1355520

P(4)

2,Fy

(5)
P2,F4

—1691100* +554320"2 + 95748403 +4373263v* 4+ 213742650"° + 1117642090 + 54653807207
+2392703794v"® +9374157248v"° +331931237300° +1071768643960>" + 3177844709850
+8700424144250% +2209544249477v°* +-5224968453408v>° +115430894553360° +238931047531320°"
+464552275310260>° +-850298243406120% +1468006956921910°° +2394667590247690°"
+3696312016858330v° 4+-5405785671585900°° 4+ 749891181508407v* +9876345584441810°°
+1235929372818009v°° +14705017931619160°” 4 16642706963904660°° +17923348593111060>°
+1837134386523548v*" +17923348593111060*" +- - - 4+-0%°)

(v) = —v ¥ (24110 — 90 —7290° — 67400 —376120° —1462420° —4113220" — 7864240° —6831230°

+15199910"° +7863641v " +17299644v"% +19396808v"> — 75747160 * —81039308v"° —177701238v"¢

— 22889324107 —328644969v'® — 1704624732v"° — 10239254139v° — 48437902734v>" —1931653287410v>2
—683657580163v>® —2198459381202v>* —6491341536008v2> —17700027945928v2° —44757889196479v>"
—1053454301842550°° —2315573739684300v>7 —476759190688969v°° —9219162130484461°"
—1678228390978831v°% —28818321018517760°* — 46765428132413210>* — 71829561560027591>°
—10456822688468996v°° —14445439874041454v°” —18955600691329352v° —23647746652092629v>°
—280664644984943850v"° —31707630617443838v*" —34110133094328607v"? —34949875241183086v**
—34110133094328607v** +- - - +05%) |

(v) = v ¥ (14v—187v° —19420° —8588v™* +388v° +2565830v° +1875127v" +-80976800° +2399551 10"

+477432040"° +454030310" — 776395090 — 4417680920 —9906563650"* —1141697391v"°
+3149123560"° 4432286253 70" +94132294430"® +9932344114v"° —13690974450%° — 220286145370
—15689824140v2% + 1439945707050 4+ 8539832347940 +3391440788051v%° +117303770381841>°
+37232002426385v>7 +1093117737738710% +2970844358951120>° +748700764659463v>°
+1754971776388633v>" +38393414675483160° +7864675977003847v™° +151282656613420100>*
+273942043684706770°° +46797420093685421v>° +-75560202097716654v°” +1155016963183703220°°
+167393226212698984v° +-2302994695347891750° +301112810847585121v*! +3744970861210443310*2
+443382800033202476v* +-500006416441373208v** +537304885313273980v"° +5503306803235720960*°
+5373048853132739800" " + - - - 4+07%).

For n > 6, we observe the following general leading order behavior

Es.

P0G (0,2, Qm,) = —X[_ggxn-3(z) + O). (F.8)

For the reduced two-string elliptic genus of Eg 6d SCFT, recall

1

(n) 1) — (n)
92,55 (0% Qi = 1) = (1= 0)(1 +0)2 (1 + v+ 02)* Py (v) -

~9] —



We have

P (v) = (1+0%)(82+8960+9129v° +738250° + 515477v" +31763940° + 1756 73850° +880825270"
+4041225990° +17079969100° + 66870396060 ° +243656736560" " +82957003626v "2
+264812209428v"% 7949253092930 +2249848989493v " +6017588149603v"® +15241390482586v"”
+366231487514590"° 4+83623554563863v " +1817120205045950>° +376267731853770v°"
+7433407205493390% +14025707538533990>° +2530053857442778v>* +4367001323365453v>°
+7218179887542376v>° +11433257908228549v°" +17365401325615558v>° +25305594210396 7590
+35398201343930359v%° +475519315622005520>" +613679400715656260°>
+76109936363599780v>° +90737018750916024v* 4+1040077214909845000°°
+1146456342653695180°° +1215379981011314520°" 41239253546943944720° + . . . 4+07°).

P (v) = 3486+ 44488v+464913v° +3873323v° +27606333v" +1727315060° +9666307270° +48947219950"
+226426098330v"° +96385144324v° + 3798098984320 ° 4 1392335683050v +4768406721146v"2
+15311706805952v"% +46244599549903v"* +-131729726893973v"° 4-354773291170080v "
+905322588772629v" 7 4+21932171328866740v"® +50528833935497850" +110880201534278710°
+232079492954526540>" +463915964575034710v°% +88666687652950697v>° +1622002256468830460°*
+284262935556020849v°° 4 477678248920949928v2° + 7702463057080251 750>
+1192619227946678339v>° +17742715495382562540>° +253760221226 759058 7v>°
+3490792045588793343v>! +4620696016056616197v* +58875589706417416440°
+7223464858978994614v>* +85359848177035952600>° +97174637416485881961°°
+10658977913348459838v°7 4 11266596547576 74250408 +114766483642873713620>°
+112665965475767425040*° + - - . 40",

Pfgﬁ (0) =v"(—=1—11v—1120° = 7690> +97959v" +14651460° +159498360° +136827854v" +9922700360°
+6276463714v" 4353472381840 + 1796028782960 +-831787432544v "2 +-35387779892640 "
+13918341585911v"* +-508730871489450"° +1735712886303150"° +5548845159821560" "
+16675912192247450"® +4724849885190467v"° +12653182331604747v>° 4-320998329429771060°"
+77298235563217848v%% +1770035429467469520° + 386049290828201197v>*
+8031294458511935490°° +15958152157476379140v°° +-30321556539553250450>7
+5515192004170661557v>° +9612446692952872376v>° +160677383417151884250°°
+257791827790414155190" +39727277739048609244v°2 +588428099382091243050°
+838171032454497043300>* +1148756618862597029010°° +1515563999818446045070°°
+192548720900049944088v°" +-2356523927332346637761>° +277900332002367574858v>°
+315856987228959670753v"° +346060446910493617699v"*" 4-3655336612134634735010v*2
+372262200765577638648v* +- - - +1°%).

P () =v (=1 11v—1120> ~769v° — 4214v" — 183130° —641970° — 1775940" — 3644310° — 4216070°
+4207510'° 437224440 4107374600 + 1819165202 +11206753v"* — 384876650
—147892027v"° —2355670500" 7 +2042329190"® +4014329887v" % +287471165550>°
+177469181418v>" 499462405026 7v>* + 5061754204737 4+-234751759553260°*
+99852192764195v%° +392058843196059v>° +1428966813600884v>7 +4857570355921361v>°
+15462381593811917v>° +46247090390273044v°° +1303589846431187950°"
+347206472133377093v°% 4+ 8758644411379431760°% +2096960972906450647v*
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+477371014518140832103° +103504717556323653520>° +21407072068973867721v"
+422901201781036898220°° +79898824171145741885v>° 4+ 144526191934600175231v*°
+2505513367535036038320"" +416666541458353995971v*2 +665245395666408218767v ™
+1020471334680763094257v** +15050014255010163299340*° +2135260459421424616916v*°
+2915910779649516764294v"" +3834519574899765264582v"% +4857787518331415856898v™°
+5930740363027659407709v°° +69799051031204984971970°! +79207026372125732647540°>
+86682490615731976113910°° +9149752299658818747593v°* +93160444706238221605480°° + - - -+ 19).

E7. For the reduced two-string elliptic genus of F7 6d SCFT, recall

(n) _ _ 1 2)
927,1E7('U,$7Qm¢ =1)= (1= o)1 1 o) (1101 o8 x P, g (v) (F.9)

We have

P (v) = 14+170+237v" +26280° +25193v" +2138190° +16386660° + 114768710 +741522330°
+4450709800° 424956714320 % +13133928036v" ' +65121712327v"? 4 3052155052750 "2
+1356033968529v"* +5725284334978v"° +23021851542594v'° +-88338636956104v*”
+324035139906700v"® +1138031848052668v " 4-38323413912410460°° +123906214137854400>"
+38509222288582663v>> +1151756034082081750>° +331836472263902521v>* +-921861932483495244v%°
+2471530433876763846v>° +6399961693050532054v>" 4+160187453674711426800>"
+387815600684968181421°° +-908768210662750286950°C +2062427198994194637910°
+4535769637938725847120%2 +967171231109021529977v>% +200057129156223259051 30>
+4016126507767354504238v>° 4-7828073649219480743672v>¢ +148209472893122463497400°"
+27267076918737091016348v°% +48764087264312469202730v> +848023267927989683897320™°
+143449590902653729399624v*" +236104043071240448693797v "2 4-378216261606533139497461v*3
+589822792928957883073617v"* +895677339869346647226824v"° +1324728639658651633703727v*°
+1908697079658876873038411v"*7 +2679565476854052143878502v*® +3665936157860425562998541v*°
+48884144794650627578311700°° +-63544351586839246343962710°" +80532065533978594553830031°>
+9951646269406905770095206v°° +11992251412402642586454948v°*
+140937344067680426178605460°° +161549397552331699172498150°°
+180620652648846586099278250°7 +196986208906065018339350550°°
+20956986683280640928389866v°° +21750009714684524653667914v°%°
+220209202108504845610940120°" 4+-217500097146845246536679140°% +- - - 4022 .

P{%) (v) = (1+0°)(137+259Tv+37024v° +419921v° +4077137v" +34901534v° 4 268811177v° 418872554970
+12196657853v° +730943002140v° +408614442098v*° +2140990474296v* ! +10556715862964v 2
+49151597538306v"° 4+2167309045338650"* +-907396069059573v"° +36153749246365450 "¢
+13736293007916068v"7 +498579262563181380"® +173164585658174276v" +5763547153410791260>°
+1840835604225541174v>" +5649018624246617909v> +16674709176092326437v%3
+47394303096706259811v>* +1298365956562342917900>° +343131359707453293583v>°
+8755420399363996235150°7 4-2158650362542725175948v>° +51462210027183467350550°°
+11870970192394860758359v°° 4 26512271515436823962474v>" 4+573619489991254576861020°>
+1202967120685662520091200°% 4-244657061843538883914723v>* +482772800850075541856889v>°
+924703269912581018952608v>¢ +17199568744461618487892950°" 4-31078321071724754926888900°
+5457334614794588632799143v°% +-9316106764452824593797657v"° +15465256039202958794051688v™"
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+24973370386295921380753761v*% +-39238673033178891558314265v*> +60003949644181883287996554v
+89325800153382434388949763v*° 4 129479490500199449940430040v* +182784785431420765743008945v*7
+251347720581234682951528991v*® +336728327510605097378060508v"° +439563294320255738140535927v°°
+559192119429259737303598283v°" +693350791574808124298361559v° +838003231433873171234645238v°°
+987373409206497489976018270v°* +1134218396741161783456978908v°°
+1270346407634715071774123344v°% 4 1387339824356009883032251758v°7
+1477400106011059794784293700v°% 4 1534199301083129786878770830v°°
+15536102627020544254073103200%° 4+ - - +0"2%) .

Note 9822& agree with the two-instanton E7 Hilbert series in [42].

G Refined BPS invariants

The refined BPS invariants are solved from the generalised blowup equations with the
following initial input: the triple intersection numbers r;j; of divisors, the intersection
numbers b$Y of divisors with co(X) (these are two ingredients of Z¢), the curve-divisor
intersection matrix C, one unity r field with nonzero rp, as well as the one-loop partition
function Z'71°°P and the bounds jln}f’x

In the case of n = 5,12 models, there is no vanishing r-fields, the unity r do not
have enough constraints on Z'"1°°P. On the other hand, as seen in (2.36), Z11°°P is easily
computed, we simply input Z1°°P for all the models.

The input of Jiy is strictly speaking also not necessary, as the bounds can be generated
from the blowup equations with the other input data, but the inclusion of the bounds in
the program makes the computation much faster. In any case, for dy > 1, we observe an
experimental formula for gy For Fy, we observed for d+d, < 14

Jr(d, dy) = d(dp + 1) — dp(dp — 1) /2,
M (d, dy) = (d = 1)(dp — 1) — dp(dy — 1)/2 + da,,1 |d/(1 + d7)],

where d is the total degree of the fibers, d is the degree of the base, and d, is the first
total degree of fibers when 7 appears. For Eg 73, we observed for d + d, <12 < d,

(G.1)

Jr % (d, dy) = dy + d(dy + 1),

. (G.2)
g (dy dy) = (d — 1) (dp — 1).

For Fy model, we compute all the refined BPS invariants up to total degree 14, with 4777
non-vanishing. For Eg7g, we compute all the BPS invariants up to total degree 12, with
10383, 10491, 10068 non-vanishing respectively. We list part of the refined BPS invariants
in the affine Lie algebra bases in tables 24-31, for complete lists, one can find them at [31].
It is worthwhile to point out that unlike the elliptic genus [24], the Weyl symmetry of gauge
group G is not manifest in the refined BPS invariants. This is simply because the Weyl
symmetry will change the sign of some Kéahler parameters, while the refined BPS expansion
is always in positive degrees. Note this should not be confused with the situation where
the refined BPS invariants of E-strings do have manifest Eg symmetry, in which case the
FEjs is a global symmetry other than the gauge symmetry G we considered in this paper.
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B ONL (i, jr) B &N; o (i jr)

(0,0,0,0,0,1) | (0,0) (0,0,1,0,0,1) ] (0,1)

(0,0,1,1,0,1) | (0,0)®(0,1) (0,0,1,1,1,1) | (0,0)& (0,

(0,0,1,2,0,1) [ (0,1) (0,0,1,2,1,1) | (0,0)®(0,

(0,0,1,2,2,1) [ (0,1) (0,0,2,0,0,1) [ (0,2)

(0,0,2,1,0,1) [ (0,1)®(0,2) (0,0,2,1,1,1) | (0,1)®(0,2)

(0,0,2,2,0,1) | (0,0)(0,1)&(0,2) (0,0,2,2,1,1) [ (0,0)®2(0,1)6(0,2)

(0,0,2,3,0,1) [ (0,1)®(0,2) (0,0,3,0,0,1) | (0,3)

(0,0,3,1,0,1) | (0,2)®(0,3) (0,0,3,1,1,1) | (0,2)®(0,3)

(070737270’1) (071)@(072)69(073) (07074’07071) (0’4)

(0,0,4,1,0,1) | (0,3)®(0,4) (0,0,5,0,0,1) | (0,5)

(0,1,0,0,0,1) | (0,1) (0,1,1,0,0,1) | (0,0)&(0,1)

(0,1,1,1,0,1) | (0,0)®(0,1) (0,1,1,1,1,1) | (0,0)®(0,1)

(0,1,1,2,0,1) [ (0,0)®(0,1) (0,1,1,2,1,1) | (0,0)®(0,1)

(0,1,2,0,0,1) [ (0,1)®(0,2) (0,1,2,1,0,1) [ (0,0)®2(0,1)(0,2)

(0,1,2,1,1,1) | (0,0)®2(0,1)&(0,2) (0,1,2,2,0,1) [ 2(0,0)®3(0,1)®(0,2)

(0,1,3,0,0,1) [ (0,2)®(0,3) (0,1,3,1,0,1) [ (0,1)®2(0,2)&(0,3)

(0,1,4,0,0,1) | (0,3)®(0,4) (0,2,0,0,0,1) ] (0,2)

(0,2,1,0,0,1) | (0,1)®(0,2) (0,2,1,1,0,1) [ (0,1)®(0,2)

(0,2,1,1,1,1) [ (0,1)®(0,2) (0,2,1,2,0,1) | (0,1)®(0,2)

(0,2,2,0,0,1) | (0,0)®(0,1)®(0,2) (0,2,2,1,0,1) | (0,0)®2(0,1)&(0,2)

(0,2,3,0,0,1) | (0,1)®(0,2)®(0,3) (0,3,0,0,0,1) ] (0,3)

(0,3,1,0,0,1) [ (0,2)®(0,3) (0,3,1,1,0,1) | (0,2)®(0,3)

(0,3,2,0,0,1) | (0,1)®(0,2)®(0,3) (0,4,0,0,0,1) | (0,4)

(0,4,1,0,0,1) [ (0,3)®(0,4) (0,5,0,0,0,1) [ (0,5)

(1,1,0,0,0,1) [ (0,0)®(0,1) (1,1,1,0,0,1) | (0,0)&(0,1)

(1,1,1,1,0,1) | (0,0)&(0,1) (1,1,1,1,1,1) ] (0,0)&(0,1)

(1,1,1,2,0,1) | (0,0)®(0,1) (1,1,2,0,0,1) [ (0,1)®(0,2)

(1,1,2,1,0,1) [ (0,0)®2(0,1)(0,2) (1,1,3,0,0,1) | (0,2)®(0,3)

(1,2,0,0,0,1) | (0,1)®(0,2) (1,2,1,0,0,1) | (0,0)®2(0,1)&(0,2)

(1,2,1,1,0,1) [ (0,0)$2(0,1)&(0,2) (1,2,2,0,0,1) | (0,0)®2(0,1)&(0,2)

(1,3,0,0,0,1) [ (0,2)®(0,3) (1,3,1,0,0,1) | (0,1)®2(0,2)&(0,3)

(1,4,0,0,0,1) [ (0,3)®(0,4) (2,1,0,0,0,1) [ (0,1)

(2,2,0,0,0,1) | (0,0)(0,1)&(0,2) (2,2,1,0,0,1) | (0,0)®2(0,1)6(0,2)

(2,3,0,0,0,1) | (0,1)(0,2)&(0,3) (3,1,0,0,0,1) [ (0,2)

(3,2,0,0,0,1) [ (0,1)(0,2) (4,1,0,0,0,1) ] (0,3)

(0,0,2,0,0,2) [ (0,5/2) (0,0,2,1,0,2) | (0,3/2)®(0,5/2)

(0,0,2,1,1,2) | (0,3/2)(0,5/2) (0,0,2,2,0,2) | (0,1/2)&®(0,3/2)®(0,5/2)

(0,0,3,0,0,2) | (0,5/2)(0,7/2)®(1/2,4) (0,0,3,1,0,2) | (0,3/2)®3(0,5/2)®2(0,7/2)&(1/2,3) @
(1/2,4)

(0,0,4,0,0,2) [ (0,5/2)®(0,7/2)®2(0,9/2)&(1/2,4)& | (0,1,2,0,0,2) | (0,3/2)(0,5/2)

(1/2,5)®(1,11/2)

(0,1,2,1,0,2) | (0,1/2)82(0,3/2)&(0,5/2) (0,1,3,0,0,2) | (0,3/2)®3(0,5/2)2(0,7/2)®(1/2,3)®
(1/2,4)

(0,2,0,0,0,2) | (0,5/2) (0,2,1,0,0,2) | (0,3/2)(0,5/2)

(0,2,1,1,0,2) | (0,3/2)(0,5/2) (0,2,2,0,0,2) | 2(0,1/2)®2(0,3/2)®2(0,5/2)(0,7/2)

(0,3,0,0,0,2) | (0,5/2)®(0,7/2)(1/2,4) (0,3,1,0,0,2) | (0,3/2)®3(0,5/2)2(0,7/2)®(1/2,3)®
(1/2,4)

(0,4,0,0,0,2) | (0,5/2)(0,7/2)®2(0,9/2)®(1/2,4)® |(1,1,2,0,0,2) | (0,3/2)®(0,5/2)

(1/2,5)®(1,11/2)
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ﬂ GBNJZQ (.]leT) ﬂ @N],] (]th‘)
(1,2,0,0,0,2) | (0,3/2)®(0,5/2) (1,2,1,0,0,2) | (0,1/2)®2(0,3/2)@&(0,5/2)
(1,3,0,0,0,2) [ (0,3/2)®3(0,5/2)®2(0,7/2)®(1/2,3)® | (2,2,0,0,0,2) | (0,1/2)®(0,3/2)®(0,5/2)

(1/2,4)
(0,0,3,0,0,3) [ (0,3)®(1/2,9/2) (0,3,0,0,0,3) [ (0,3)®(1/2,9/2)
Table 24. Refined BPS invariants of 6d F; minimal SCFT.

B &N} (i gr) B &N}, (jidr)
(0,0,0,0,0,0,0,1) | (0,1/2) (0,1,0,0,0,0,0,1) | (0,1/2)
(0,2,0,0,0,0,0,1) | (0,3/2) (0,3,0,0,0,0,0,1) | (0,5/2)
(0,4,0,0,0,0,0,1) | (0,7/2) (0,5,0,0,0,0,0,1) | (0,9/2)
(0,0,0,0,0,1,0,1) | (0,1/2) (0,0,0,0,0,1,1,1) | (0,1/2)
(0,0,0,0,0,2,0,1) | (0,3/2) (0,0,0,0,0,2,1,1) | (0,1/2)®(0,3/2)
(0,0,0,0,0,2,2,1) | (0,1/2)®(0,3/2) (0,0,0,0,0,2,3,1)] (0,3/2)
(0,0,0,0,0,3,0,1) [ (0,5/2) (0,0,0,0,0,3,1,1) | (0,3/2)®(0,5/2)
(0,0,0,0,0,3,2,1) | (0,1/2)&(0,3/2)&(0,5/2) (0,0,0,0,0,4,0,1) | (0,7/2)
(0,0,0,0,0,4,1,1) | (0,5/2)&(0,7/2) (0,0,0,0,0,5,0,1) | (0,9/2)
(0,0,0,0,1,0,0,1) | (0,3/2) (0,1,0,0,1,0,0,1) | (0,1/2)&(0,3/2)
(0,2,0,0,1,0,0,1) | (0,1/2)&(0,3/2) (0,3,0,0,1,0,0,1) | (0,3/2)®(0,5/2)
(0,4,0,0,1,0,0,1) | (0,5/2)&(0,7/2) (0,0,0,0,1,1,0,1) | (0,1/2)&(0,3/2)
(0,1,0,0,1,1,0,1) [ 2(0,1/2)&(0,3/2) (0,2,0,0,1,1,0,1) [ (0,1/2)®(0,3/2)
(0,3,0,0,1,1,0,1) | (0,3/2)®(0,5/2) (0,0,0,0,1,1,1,1) [ (0,1/2)®(0,3/2)
(0,1,0,0,1,1,1,1) ] 2(0,1/2)®(0,3/2) (0,2,0,0,1,1,1,1) [ (0,1/2)®(0,3/2)
(0,0,0,0,1,2,0,1) | (0,1/2)®(0,3/2) (0,1,0,0,1,2,0,1) | (0,1/2)®(0,3/2)
(0,0,0,0,1,2,1,1) [ 2(0,1/2)®(0,3/2) (0,1,0,0,1,2,1,1) [ 2(0,1/2)®(0,3/2)
(0,0,0,0,1,2,2,1) | (0,1/2)&(0,3/2) (0,0,0,0,1,3,0,1) | (0,3/2)®(0,5/2)
(0,1,0,0,1,3,0,1) | (0,3/2)&(0,5/2) (0,0,0,0,1,3,1,1) | (0,1/2)&2(0,3/2)&(0,5/2)
(0,0,0,0,1,4,0,1) | (0,5/2)&(0,7/2) (0,0,0,0,2,0,0,1) | (0,5/2)
(0,1,0,0,2,0,0,1) | (0,3/2)&(0,5/2) (0,2,0,0,2,0,0,1) | (0,1/2)&(0,3/2)&(0,5/2)
(0,3,0,0,2,0,0,1) | (0,1/2)&(0,3/2)6(0,5/2) (0,0,0,0,2,1,0,1) | (0,3/2)&(0,5/2)
(0,1,0,0,2,1,0,1) | (0,1/2)®2(0,3/2)®(0,5/2) (0,2,0,0,2,1,0,1) | 2(0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,0,2,1,1,1) | (0,3/2)®(0,5/2) (0,1,0,0,2,1,1,1) [ (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,0,2,2,0,1) ] (0,1/2)®(0,3/2)®(0,5/2) (0,1,0,0,2,2,0,1) [ 2(0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,0,2,2,1,1) | (0,1/2)a2(0,3/2)&(0,5/2) (0,0,0,0,2,3,0,1) | (0,1/2)&(0,3/2)&(0,5/2)
(0,0,0,0,3,0,0,1) | (0,7/2) (0,1,0,0,3,0,0,1) | (0,5/2)&(0,7/2)
(0,2,0,0,3,0,0,1) | (0,3/2)(0,5/2)&(0,7/2) (0,0,0,0,3,1,0,1) | (0,5/2)®(0,7/2)
(0,1,0,0,3,1,0,1) ] (0,3/2)®2(0,5/2)&(0,7/2) (0,0,0,0,3,1,1,1) | (0,5/2)&(0,7/2)
(0,0,0,0,3,2,0,1) | (0,3/2)®(0,5/2)®(0,7/2) (0,0,0,0,4,0,0,1) | (0,9/2)
(0,1,0,0,4,0,0,1) | (0,7/2)&(0,9/2) (0,0,0,0,4,1,0,1) | (0,7/2)&(0,9/2)
(0,0,0,0,5,0,0,1) | (0,11/2) (0,0,0,1,0,0,0,1) ] (0,1/2)
(0,0,0,1,1,0,0,1) | (0,1/2)®(0,3/2) (0,1,0,1,1,0,0,1) [ 2(0,1/2)&®(0,3/2)
(0,2,0,1,1,0,0,1) | (0,1/2)®(0,3/2) (0,3,0,1,1,0,0,1) | (0,3/2)®(0,5/2)
(0,0,0,1,1,1,0,1) [ 2(0,1/2)®(0,3/2) (0,1,0,1,1,1,0,1) [ 3(0,1/2)®(0,3/2)
(0,2,0,1,1,1,0,1) | (0,1/2)®(0,3/2) (0,0,0,1,1,1,1,1) ] 2(0,1/2)(0,3/2)
(0,1,0,1,1,1,1,1) | 3(0,1/2)&(0,3/2) (0,0,0,1,1,2,0,1)| (0,1/2)(0,3/2)
(0,1,0,1,1,2,0,1) | (0,1/2)®(0,3/2) (0,0,0,1,1,2,1,1) [ 2(0,1/2)®(0,3/2)
(0,0,0,1,1,3,0,1) | (0,3/2)®(0,5/2) (0,0,0,1,2,0,0,1) | (0,3/2)&(0,5/2)
(0,1,0,1,2,0,0,1) | (0,1/2)&2(0,3/2)&(0,5/2) (0,2,0,1,2,0,0,1) | 2(0,1/2)&2(0,3/2)&(0,5/2)
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EBNJZ e ()

1,1,0,0,1,2,0,1)

(0,1/2)&(0,3/2)

1,1,0,0,2,0,0,1

0,3/2)®(0,5/2)

1,2,0,0,2,0,0,1)

(0,1/2)92(0,3/2)®(0,5/2)

1,1,0,0,2,1,0, 1

(
(0,1/2)#2(0,3/2)®(0,5/2)

(0,0,0,1,2,1,0,1) | (0,1/2)®2(0,3/2)®(0,5/2) (0,1,0,1,2,1,0,1) [ 4(0,1/2)®4(0,3/2)®(0,5/2)
(0,0,0,1,2,1,1,1) | (0,1/2)®2(0,3/2)&(0,5/2) (0,0,0,1,2,2,0,1) [ 2(0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,1,3,0,0,1) | (0,5/2)®(0,7/2) (0,1,0,1,3,0,0,1) | (0,3/2)®2(0,5/2)®(0,7/2)
(0,0,0,1,3,1,0,1) | (0,3/2)®2(0,5/2)&(0,7/2) (0,0,0,1,4,0,0,1) | (0,7/2)®(0,9/2)
(0,0,0,2,0,0,0,1) | (0,3/2) (0,0,0,2,1,0,0,1) | (0,1/2)&(0,3/2)
(0,1,0,2,1,0,0,1) | (0,1/2)&(0,3/2) (0,0,0,2,1,1,0,1) | (0,1/2)&(0,3/2)
(0,1,0,2,1,1,0,1) | (0,1/2)&(0,3/2) (0,0,0,2,1,1,1,1) | (0,1/2)@®(0,3/2)
(0,0,0,2,2,0,0,1) | (0,1/2)&(0,3/2)&(0,5/2) (0,1,0,2,2,0,0,1) | 2(0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,2,2,1,0,1) | 2(0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,2,3,0,0,1) [ (0,3/2)&(0,5/2)&(0,7/2)
(0,0,0,3,0,0,0,1) ] (0,5/2) (0,0,0,3,1,0,0,1) | (0,3/2)@®(0,5/2)
(0,1,0,3,1,0,0,1) | (0,3/2)®(0,5/2) (0,0,0,3,1,1,0,1) | (0,3/2)&(0,5/2)
(0,0,0,3,2,0,0,1) | (0,1/2)&(0,3/2)&(0,5/2) (0,0,0,4,0,0,0,1) | (0,7/2)

(0,0,0,4,1,0,0,1) | (0,5/2)&(0,7/2) (0,0,0,5,0,0,0,1) | (0,9/2)

(0,0,1,1,0,0,0,1) | (0,1/2) (0,0,1,1,1,0,0,1) | (0,1/2)®(0,3/2)
(0,1,1,1,1,0,0,1) | 2(0,1/2)&(0,3/2) (0,2,1,1,1,0,0,1) | (0,1/2)@®(0,3/2)
(0,0,1,1,1,1,0,1) | 2(0,1/2)®(0,3/2) (0,1,1,1,1,1,0,1) | 3(0,1/2)&(0,3/2)
(0,0,1,1,1,1,1,1) ] 2(0,1/2)&(0,3/2) (0,0,1,1,1,2,0,1) | (0,1/2)@®(0,3/2)
(0,0,1,1,2,0,0,1) | (0,3/2)&(0,5/2) (0,1,1,1,2,0,0,1) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,1,1,2,1,0,1) | (0,1/2)®2(0,3/2)®(0,5/2) (0,0,1,1,3,0,0,1) | (0,5/2)&®(0,7/2)
(0,0,1,2,0,0,0,1) | (0,1/2)®(0,3/2) (0,0,1,2,1,0,0,1) | 2(0,1/2)&(0,3/2)
(0,1,1,2,1,0,0,1) | 2(0,1/2)&(0,3/2) (0,0,1,2,1,1,0,1) | 2(0,1/2)&(0,3/2)
(0,0,1,2,2,0,0,1) | (0,1/2)&2(0,3/2)&(0,5/2) (0,0,1,3,0,0,0,1) | (0,3/2)®(0,5/2)
(0,0,1,3,1,0,0,1) | (0,1/2)&2(0,3/2)&(0,5/2) (0,0,1,4,0,0,0,1) | (0,5/2)&(0,7/2)
(0,0,2,2,0,0,0,1) | (0,1/2)&(0,3/2) (0,0,2,2,1,0,0,1) | (0,1/2)@®(0,3/2)
(0,0,2,3,0,0,0,1) | (0,1/2)@(0,3/2)®(0,5/2) (0,0,3,2,0,0,0,1) | (0,3/2)

(1,1,0,0,0,0,0,1) | (0,1/2) (1,2,0,0,0,0,0,1) | (0,1/2)®(0,3/2)
(1,3,0,0,0,0,0,1) | (0,3/2)&(0,5/2) (1,4,0,0,0,0,0,1) | (0,5/2)&®(0,7/2)
(1,1,0,0,1,0,0,1) | (0,1/2)®(0,3/2) (1,2,0,0,1,0,0,1) | 2(0,1/2)&(0,3/2)
(1,3,0,0,1,0,0,1) | (0,1/2)®2(0,3/2)®(0,5/2) (1,1,0,0,1,1,0,1) | 2(0,1/2)&(0,3/2)
(1,2,0,0,1,1,0,1) | 2(0,1/2)&(0,3/2) (1,1,0,0,1,1,1,1) | 2(0,1/2)&(0,3/2)

( ( )

( ( )

( ( )

( ( )

( ( )

( ( )

( ( )

( ( )

( ( )

( ( )

( ( )

( ( )

1,1,0,0,3,0,0,1) | (0,5/2)&(0,7/2) 1,1,0,1,1,0,0,1) | 2(0,1/2)®(0,3/2)
1,2,0,1,1,0,0,1) | 2(0,1/2)®(0,3/2) 1,1,0,1,1,1,0,1) | 3(0,1/2)®(0,3/2)
1,1,0,1,2,0,0,1) | (0,1/2)&2(0,3/2)&(0,5/2) 1,1,0,2,1,0,0,1) [ (0,1/2)&(0,3/2)
1,1,1,1,1,0,0,1) | 2(0,1/2)®(0,3/2) 2,2,0,0,0,0,0,1) | (0,1/2)&(0,3/2)
2,3,0,0,0,0,0,1) | (0,1/2)@®(0,3/2)@®(0,5/2) 2,2,0,0,1,0,0,1) | (0,1/2)&(0,3/2)
3,2,0,0,0,0,0,1) | (0,3/2) 0,3,0,0,0,0,0,2) | (0,5/2)
0,4,0,0,0,0,0,2) | (0,5/2)®(0,7/2)®(1/2,4) 0,0,0,0,0,3,0,2) | (0,5/2)
0,0,0,0,0,3,1,2) | (0,3/2)&(0,5/2) 0,0,0,0,0,4,0,2) | (0,5/2)®(0,7/2)®(1/2,4)
0,0,0,0,1,0,0,2) | (0,5/2) 0,1,0,0,1,0,0,2) | (0,3/2)&®(0,5/2)
0,2,0,0,1,0,0,2) | (0,1/2)®(0,3/2)®(0,5/2) 0,3,0,0,1,0,0,2) | (0,1/2)®2(0,3/2)®2(0,5/2) &
(0,7/2)
(0,0,0,0,1,1,0,2) | (0,3/2)®(0,5/2) (0,1,0,0,1,1,0,2) | (0,1/2)®2(0,3/2)&(0,5/2)
(0,2,0,0,1,1,0,2) | 2(0,1/2)®2(0,3/2)&(0,5/2) (0,0,0,0,1,1,1,2) | (0,3/2)®(0,5/2)
(0,1,0,0,1,1,1,2) ] (0,1/2)®2(0,3/2)&(0,5/2) (0,0,0,0,1,2,0,2) | (0,1/2)&(0,3/2)&(0,5/2)
(0,1,0,0,1,2,0,2) ] 2(0,1/2)#2(0,3/2)&(0,5/2) (0,0,0,0,1,2,1,2) ] (0,1/2)®2(0,3/2)&(0,5/2)
(0,0,0,0,1,3,0,2) | (0,1/2)®2(0,3/2)®2(0,5/2) (0,0,0,0,2,0,0,2) | (0,5/2)@(0,7/2)®(1/2,4)

(0,7/2)
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B &Ny (G, dr) B &Ny (i,dr)
(0,1,0,0,2,0,0,2) [ (0,3/2)®3(0,5/2)©2(0,7/2) ® (0,2,0,0,2,0,0,2) | (0,1/2)®3(0,3/2)®4(0,5/2) &
(1/2,3)®(1/2,4) 2(0,7/2)®(1/2,2)®(1/2,3)®(1/2,4)
(0,0,0,0,2,1,0,2) | (0,3/2)®3(0,5/2)©2(0,7/2) & (0,1,0,0,2,1,0,2) | (0,1/2)®5(0,3/2)®7(0,5/2)
(1/2,3)®(1/2,4) 3(0,7/2)®(1/2,2)®2(1/2,3)®
(1/2,4)
(0,0,0,0,2,1,1,2) | (0,3/2)®3(0,5/2)®2(0,7/2)® (0,0,0,0,2,2,0,2) | (0,1/2)®3(0,3/2)®4(0,5/2) @
(1/2,3)®(1/2,4) 2(0,7/2)®(1/2,2)(1/2,3)@®(1/2,4)
(0,0,0,0,3,0,0,2) | (0,5/2)&(0,7/2)82(0,9/2) & (0,1,0,0,3,0,0,2) | (0,3/2)®3(0,5/2)®5(0,7/2) &
(1/2,4)®(1/2,5)@(1,11/2) 3(0,9/2)®(1/2,3)®3(1/2,4) @
2(1/2,5)®(1,9/2)®(1,11/2)
(0,0,0,0,3,1,0,2) | (0,3/2)®3(0,5/2)®5(0,7/2) ® (0,0,0,0,4,0,0,2) | (0,5/2)@®(0,7/2)©2(0,9/2) @
3(0,9/2)6(1/2,3)®3(1/2,4) & 2(0,11/2)&(1/2,4)®(1/2,5)@®
2(1/2,5)®(1,9/2)®(1,11/2) 2(1/2,6)@®(1,11/2)®(1,13/2)@®
(3/2,7)
(0,0,0,1,1,0,0,2) | (0,3/2)@®(0,5/2) (0,1,0,1,1,0,0,2) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,2,0,1,1,0,0,2) | 2(0,1/2)#2(0,3/2)®(0,5/2) (0,0,0,1,1,1,0,2) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,1,0,1,1,1,0,2) [ 3(0,1/2)&3(0,3/2)&(0,5/2) (0,0,0,1,1,1,1,2) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,1,1,2,0,2) | 2(0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,1,2,0,0,2) | (0,3/2)®3(0,5/2)#2(0,7/2)&
(1/2,3)®(1/2,4)
(0,1,0,1,2,0,0,2) | (0,1/2)®5(0,3/2)&7(0,5/2) & (0,0,0,1,2,1,0,2) | (0,1/2)®5(0,3/2)®7(0,5/2)
3(0,7/2)d(1/2,2)®2(1/2,3)® 3(0,7/2)®(1/2,2)D2(1/2,3)®
(1/2,4) (1/2,4)
(0,0,0,1,3,0,0,2) | (0,3/2)®3(0,5/2)©5(0,7/2) & (0,0,0,2,1,0,0,2) | (0,1/2)&(0,3/2)&(0,5/2)
3(0,9/2)6(1/2,3)®3(1/2,4) &
2(1/2,5)®(1,9/2)®(1,11/2)
(0,1,0,2,1,0,0,2) | 2(0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,2,1,1,0,2) [ 2(0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,2,2,0,0,2) | (0,1/2)®3(0,3/2)®4(0,5/2) ® (0,0,0,3,0,0,0,2) | (0,5/2)
2(0,7/2)®(1/2,2)®(1/2,3)®(1/2,4)
(0,0,0,3,1,0,0,2) | (0,1/2)®2(0,3/2)®2(0,5/2) ® (0,0,0,4,0,0,0,2) | (0,5/2)&(0,7/2)®(1/2,4)
(0,7/2)
(0,0,1,1,1,0,0,2) | (0,3/2)®(0,5/2) (0,1,1,1,1,0,0,2) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,1,1,1,1,0,2) | (0,1/2)®2(0,3/2)®(0,5/2) (0,0,1,1,2,0,0,2) | (0,3/2)®3(0,5/2)®2(0,7/2) ®
(1/2,3)®(1/2,4)
(0,0,1,2,1,0,0,2) | (0,1/2)®2(0,3/2)®(0,5/2) (0,0,1,3,0,0,0,2) | (0,3/2)®(0,5/2)
(1,3,0,0,0,0,0,2) | (0,3/2)&(0,5/2) (1,1,0,0,1,0,0,2) | (0,3/2)&®(0,5/2)
(1,2,0,0,1,0,0,2) | (0,1/2)®2(0,3/2)®(0,5/2) (1,1,0,0,1,1,0,2) | (0,1/2)®2(0,3/2)®(0,5/2)
(1,1,0,0,2,0,0,2) | (0,3/2)®3(0,5/2)52(0,7/2) & (1,1,0,1,1,0,0,2) | (0,1/2)&2(0,3/2)®(0,5/2)
(1/2,3)®(1/2,4)
(0,0,0,0,1,0,0,3) | (0,7/2) (0,1,0,0,1,0,0,3) | (0,5/2)&®(0,7/2)
(0,2,0,0,1,0,0,3) | (0,3/2)&(0,5/2)&(0,7/2) (0,0,0,0,1,1,0,3) | (0,5/2)&(0,7/2)
(0,1,0,0,1,1,0,3) | (0,3/2)#2(0,5/2)&(0,7/2) (0,0,0,0,1,1,1,3) [ (0,5/2)&(0,7/2)
(0,0,0,0,1,2,0,3) | (0,3/2)&(0,5/2)&(0,7/2) (0,0,0,0,2,0,0,3) | (0,5/2)&(0,7/2)82(0,9/2) &
(1/2,4)®(1/2,5)@(1,11/2)
(0,1,0,0,2,0,0,3) | (0,3/2)®3(0,5/2)&5(0,7/2) & (0,0,0,0,2,1,0,3) | (0,3/2)®3(0,5/2)&5(0,7/2) &
3(0,9/2)6(1/2,3)®3(1/2,4) & 3(0,9/2)®(1/2,3)B3(1/2,4) &
2(1/2,5)®(1,9/2)®(1,11/2) 2(1/2,5)®(1,9/2)®(1,11/2)
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B ONL 5 (ji.jr) B ONL ., (ji,jr)
(0,0,0,0,3,0,0,3) | (0,3/2)®(0,5/2)®3(0,7/2) D (0,0,0,1,1,0,0,3) | (0,5/2)®(0,7/2)
3(0,9/2)®4(0,11/2)®(1/2,3)®
2(1/2,4)®3(1/2,5)®3(1/2,6)®
(1/2,7)@(1,9/2)®2(1,11/2)®
3(1,13/2)®(3/2,6)®(3/2,7)®
(2,15/2)
(0,1,0,1,1,0,0,3) | (0,3/2)®2(0,5/2)®(0,7/2) (0,0,0,1,1,1,0,3) | (0,3/2)®2(0,5/2)®(0,7/2)
(0,0,0,1,2,0,0,3) | (0,3/2)®3(0,5/2)®5(0,7/2)® (0,0,0,2,1,0,0,3) | (0,3/2)®(0,5/2)8(0,7/2)
3(0,9/2)®(1/2,3)®3(1/2,4)®
2(1/2,5)®(1,9/2)®(1,11/2)
(0,0,1,1,1,0,0,3) | (0,5/2)&(0,7/2) (1,1,0,0,1,0,0,3) | (0,5/2)@(0,7/2)
(0,0,0,0,1,0,0,4) | (0,9/2) (0,1,0,0,1,0,0,4) | (0,7/2)@(0,9/2)
(0,0,0,0,1,1,0,4) | (0,7/2)®(0,9/2) (0,0,0,0,2,0,0,4) | (0,5/2)®(0,7/2)®2(0,9/2)®
2(0,11/2)®(1/2,4)®(1/2,5)%
2(1/2,6)®(1,11/2)®(1,13/2)@
(3/2,7)
(0,0,0,1,1,0,0,4) | (0,7/2)®(0,9/2) (0,0,0,0,1,0,0,5) | (0,11/2)

Table 25. Refined BPS invariants of 6d Fg minimal SCFT.

B &Ny . (Gi,jr) B &Ng o (isdr)
(0,0,0,0,0,0,0,0,1) | (0,1/2) (0,0,0,0,0,0,0,1,1) | (0,1/2)
(0,0,0,0,0,0,0,2,1) | (0,3/2) (0,0,0,0,0,0,0,3,1) | (0,5/2)
(0,0,0,0,0,0,0,4,1) | (0,7/2) (0,0,0,0,0,0,0,5,1) | (0,9/2)
(0,0,0,0,1,0,0,0,1) | (0,1/2) (0,0,0,0,1,1,0,0,1) | (0,1/2)
(0,0,0,0,1,1,1,0,1) | (0,1/2) (0,0,0,0,2,0,0,0,1) | (0,3/2)
(0,0,0,0,2,1,0,0,1) | (0,1/2)®(0,3/2) (0,0,0,0,2,1,1,0,1) | (0,1/2)®(0,3/2)
(0,0,0,0,2,2,0,0,1) | (0,1/2)®(0,3/2) (0,0,0,0,2,2,1,0,1) | 2(0,1/2)®(0,3/2)
(0,0,0,0,2,3,0,0,1) | (0,3/2) (0,0,0,0,3,0,0,0,1) | (0,5/2)
(0,0,0,0,3,1,0,0,1) | (0,3/2)®(0,5/2) (0,0,0,0,3,1,1,0,1) | (0,3/2)®(0,5/2)
(0,0,0,0,3,2,0,0,1) | (0,1/2)®(0,3/2)(0,5/2) (0,0,0,0,4,0,0,0,1) | (0,7/2)
(0,0,0,0,4,1,0,0,1) | (0,5/2)®(0,7/2) (0,0,0,0,5,0,0,0,1) | (0,9/2)
(0,0,0,1,0,0,0,0,1) | (0,3/2) (0,0,0,1,0,0,0,1,1) | (0,1/2)®(0,3/2)
(0,0,0,1,0,0,0,2,1) | (0,1/2)®(0,3/2) (0,0,0,1,0,0,0,3,1) | (0,3/2)®(0,5/2)
(0,0,0,1,0,0,0,4,1) | (0,5/2)®(0,7/2) (0,0,0,1,1,0,0,0,1) | (0,1/2)®(0,3/2)
(0,0,0,1,1,0,0,1,1) | 2(0,1/2)®(0,3/2) (0,0,0,1,1,0,0,2,1) | (0,1/2)®(0,3/2)
(0,0,0,1,1,0,0,3,1) | (0,3/2)®(0,5/2) (0,0,0,1,1,1,0,0,1) | (0,1/2)®(0,3/2)
(0,0,0,1,1,1,0,1,1) | 2(0,1/2)®(0,3/2) (0,0,0,1,1,1,0,2,1) | (0,1/2)®(0,3/2)
(0,0,0,1,1,1,1,0,1) | (0,1/2)®(0,3/2) (0,0,0,1,1,1,1,1,1) | 2(0,1/2)®(0,3/2)
(0,0,0,1,2,0,0,0,1) | (0,1/2)®(0,3/2) (0,0,0,1,2,0,0,1,1) | (0,1/2)®(0,3/2)
(0,0,0,1,2,1,0,0,1) | 2(0,1/2)®(0,3/2) (0,0,0,1,2,1,0,1,1) | 2(0,1/2)®(0,3/2)
(0,0,0,1,2,1,1,0,1) | 2(0,1/2)®(0,3/2) (0,0,0,1,2,2,0,0,1) | (0,1/2)®(0,3/2)
(0,0,0,1,3,0,0,0,1) | (0,3/2)®(0,5/2) (0,0,0,1,3,0,0,1,1) | (0,3/2)®(0,5/2)
(0,0,0,1,3,1,0,0,1) | (0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,1,4,0,0,0,1) | (0,5/2)®(0,7/2)
(0,0,0,2,0,0,0,0,1) | (0,5/2) (0,0,0,2,0,0,0,1,1) | (0,3/2)®(0,5/2)
(0,0,0,2,0,0,0,2,1) | (0,1/2)®(0,3/2)®(0,5/2) (0,0,0,2,0,0,0,3,1) | (0,1/2)®(0,3/2)®(0,5/2)
(0,0,0,2,1,0,0,0,1) | (0,3/2)®(0,5/2) (0,0,0,2,1,0,0,1,1) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,2,1,0,0,2,1) | 2(0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,2,1,1,0,0,1) | (0,3/2)®(0,5/2)
(0,0,0,2,1,1,0,1,1) | (0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,2,1,1,1,0,1) | (0,3/2)®(0,5/2)
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B ONL 5 (ji.jr) B ONL (i, jr)
(0,0,0,2,2,0,0,0,1) | (0,1/2)®(0,3/2)8(0,5/2) (0,0,0,2,2,0,0,1,1) | 2(0,1/2)®2(0,3/2)(0,5/2)
(0,0,0,2,2,1,0,0,1) | (0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,2,3,0,0,0,1) | (0,1/2)®(0,3/2)8(0,5/2)
(0,0,0,3,0,0,0,0,1) | (0,7/2) (0,0,0,3,0,0,0,1,1) | (0,5/2)®(0,7/2)
(0,0,0,3,0,0,0,2,1) | (0,3/2)®(0,5/2)®(0,7/2) (0,0,0,3,1,0,0,0,1) | (0,5/2)®(0,7/2)
(0,0,0,3,1,0,0,1,1) | (0,3/2)®2(0,5/2)®(0,7/2) (0,0,0,3,1,1,0,0,1) | (0,5/2)&(0,7/2)
(0,0,0,3,2,0,0,0,1) | (0,3/2)®(0,5/2)5(0,7/2) (0,0,0,4,0,0,0,0,1) | (0,9/2)
(0,0,0,4,0,0,0,1,1) | (0,7/2)4(0,9/2) (0,0,0,4,1,0,0,0,1) | (0,7/2)(0,9/2)
(0,0,0,5,0,0,0,0,1) | (0,11/2) (0,0,1,0,0,0,0,0,1) | (0,1/2)
(0,0,1,1,0,0,0,0,1) | (0,1/2)&(0,3/2) (0,0,1,1,0,0,0,1,1) | 2(0,1/2)®(0,3/2)
(0,0,1,1,0,0,0,2,1) | (0,1/2)®(0,3/2) (0,0,1,1,0,0,0,3,1) | (0,3/2)®(0,5/2)
(0,0,1,1,1,0,0,0,1) | 2(0,1/2)®(0,3/2) (0,0,1,1,1,0,0,1,1) | 3(0,1/2)&(0,3/2)
(0,0,1,1,1,0,0,2,1) | (0,1/2)®(0,3/2) (0,0,1,1,1,1,0,0,1) | 2(0,1/2)®(0,3/2)
(0,0,1,1,1,1,0,1,1) | 3(0,1/2)&(0,3/2) (0,0,1,1,1,1,1,0,1) | 2(0,1/2)&(0,3/2)
(0,0,1,1,2,0,0,0,1) | (0,1/2)®(0,3/2) (0,0,1,1,2,0,0,1,1) | (0,1/2)®(0,3/2)
(0,0,1,1,2,1,0,0,1) | 2(0,1/2)®(0,3/2) (0,0,1,1,3,0,0,0,1) | (0,3/2)®(0,5/2)
(0,0,1,2,0,0,0,0,1) | (0,3/2)4(0,5/2) (0,0,1,2,0,0,0,1,1) | (0,1/2)®2(0,3/2)4(0,5/2)
(0,0,1,2,0,0,0,2,1) | 2(0,1/2)$2(0,3/2)&(0,5/2)  |(0,0,1,2,1,0,0,0,1) | (0,1/2)®2(0,3/2)&(0,5/2)
(0,0,1,2,1,0,0,1,1) [ 4(0,1/2)®4(0,3/2)®(0,5/2)  |(0,0,1,2,1,1,0,0,1) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,1,2,2,0,0,0,1) | 2(0,1/2)®2(0,3/2)®(0,5/2)  |(0,0,1,3,0,0,0,0,1) | (0,5/2)&(0,7/2)
(0,0,1,3,0,0,0,1,1) | (0,3/2)®2(0,5/2)®(0,7/2) (0,0,1,3,1,0,0,0,1) | (0,3/2)®2(0,5/2)®(0,7/2)
(0,0,1,4,0,0,0,0,1) | (0,7/2)®(0,9/2) (0,0,2,0,0,0,0,0,1) | (0,3/2)
(0,0,2,1,0,0,0,0,1) | (0,1/2)®(0,3/2) (0,0,2,1,0,0,0,1,1) [ (0,1/2)®(0,3/2)
(0,0,2,1,1,0,0,0,1) | (0,1/2)®(0,3/2) (0,0,2,1,1,0,0,1,1) | (0,1/2)®(0,3/2)
(0,0,2,1,1,1,0,0,1) | (0,1/2)&(0,3/2) (0,0,2,2,0,0,0,0,1) | (0,1/2)®(0,3/2)8(0,5/2)
(0,0,2,2,0,0,0,1,1) | 2(0,1/2)$2(0,3/2)&(0,5/2)  |(0,0,2,2,1,0,0,0,1) | 2(0,1/2)&2(0,3/2)&(0,5/2)
(0,0,2,3,0,0,0,0,1) | (0,3/2)&(0,5/2)&(0,7/2) (0,0,3,0,0,0,0,0,1) | (0,5/2)
(0,0,3,1,0,0,0,0,1) | (0,3/2)&(0,5/2) (0,0,3,1,0,0,0,1,1) | (0,3/2)&(0,5/2)
(0,0,3,1,1,0,0,0,1) | (0,3/2)®(0,5/2) (0,0,3,2,0,0,0,0,1) | (0,1/2)®(0,3/2)®(0,5/2)
(0,0,4,0,0,0,0,0,1) | (0,7/2) (0,0,4,1,0,0,0,0,1) | (0,5/2)®(0,7/2)
(0,0,5,0,0,0,0,0,1) | (0,9/2) (0,1,1,0,0,0,0,0,1) | (0,1/2)
(0,1,1,1,0,0,0,0,1) | (0,1/2)&(0,3/2) (0,1,1,1,0,0,0,1,1) | 2(0,1/2)&(0,3/2)
(0,1,1,1,0,0,0,2,1) | (0,1/2)®(0,3/2) (0,1,1,1,1,0,0,0,1) | 2(0,1/2)®(0,3/2)
(0,1,1,1,1,0,0,1,1) | 3(0,1/2)®(0,3/2) (0,1,1,1,1,1,0,0,1) [ 2(0,1/2)®(0,3/2)
(0,1,1,1,2,0,0,0,1) | (0,1/2)&(0,3/2) (0,1,1,2,0,0,0,0,1) | (0,3/2)4(0,5/2)
(0,1,1,2,0,0,0,1,1) | (0,1/2)#2(0,3/2)&(0,5/2) (0,1,1,2,1,0,0,0,1) | (0,1/2)®2(0,3/2)&(0,5/2)
(0,1,1,3,0,0,0,0,1) | (0,5/2)&(0,7/2) (0,1,2,0,0,0,0,0,1) | (0,1/2)&(0,3/2)
(0,1,2,1,0,0,0,0,1) | 2(0,1/2)®(0,3/2) (0,1,2,1,0,0,0,1,1) | 2(0,1/2)®(0,3/2)
(071,2,1717070,071) 2(0,1/2)@(073/2) (071,2,2,0,070,0,1) (071/2)692(073/2)69(0,5/2)
(0,1,3,0,07070,0,1) (0,3/2)@(0 5/2) (0,1,3,1,07070,0,1) (071/2)692 073/2)@(0,5/2)
(0,1,4,0,0,0,0,0,1) (0,5/2)@(0 7/2) (0,2,2,0,0,0,0,0,1) (0,1/2)69(0,3/2)
(0,2,2,1,0,0,0,0,1) | (0,1/2)(0,3/2) (0,2,3,0,0,0,0,0,1) | (0,1/2)®(0,3/2)®(0,5/2)
(0,3,2,0,0,0,0,0,1) | (0,3/2) (1,1,1,0,0,0,0,0,1) | (0,1/2)
(1,1,1,1,0,0,0,0,1) (0,1/2)@(0 3/2) (1,1,1,1,0,0,0,1,1) 2(0,1/2)@(0,3/2)
(1,1,1,1,1,0,0,0,1) 2(0,1/2) (0,3/2) (1,1,1,2,0,0,0,0,1) (0,3/2)@(0,5/2)
(1,1,2,0,0,0,0,0,1) (0,1/2)@(0 3/2) (1,1,2,1,0,0,0,0,1) 2(0,1/2)@(0,3/2)
(1,1,3,0,070,0,0,1) (0,3/2)@(0 5/2) (1,2,2,0,0,070,0,1) 2(0,1/2)@(073/2)
(0,0,0,0,0,0,0,3,2) | (0,5/2) (0,0,0,0,0,0,0,4,2) | (0,5/2)®(0,7/2)D(1/2,4)
(0,0,0,0,3,0,0,0,2) | (0,5/2) (0,0,0,0,3,1,0,0,2) | (0,3/2)®(0,5/2)
(0,0,0,0,4,0,0,0,2) | (0,5/2)®(0,7/2)®(1/2,4) (0,0,0,1,0,0,0,0,2) | (0,5/2)
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B ONL 5 (ji.jr) B ONL (i, jr)
(0,0,0,1,0,0,0,1,2) | (0,3/2)@(0,5/2) (0,0,0,1,0,0,0,2,2) | (0,1/2)&(0,3/2)5(0,5/2)
(0,0,0,1,0,0,0,3,2) | (0,1/2)®2(0,3/2)®2(0,5/2)® | (0,0,0,1,1,0,0,0,2) | (0,3/2)®(0,5/2)

(0,7/2)
(0,0,0,1,1,0,0,1,2) | (0,1/2)®2(0,3/2)®(0,5/2) | (0,0,0,1,1,0,0,2,2) | 2(0,1/2)®2(0,3/2)&(0,5,/2)
(0,0,0,1,1,1,0,0,2) | (0,3/2)@(0,5/2) (0,0,0,1,1,1,0,1,2) | (0,1/2)©2(0,3/2)@(0,5/2)
(0,0,0,1,1,1,1,0,2) | (0,3/2)&(0,5/2) (0,0,0,1,2,0,0,0,2) | (0,1/2)&(0,3/2)(0,5/2)
(0,0,0,1,2,0,0,1,2) | 20, 1/2)@2(0,3/2)0(0,5/2) | (0,0,0,1,2,1,0,0,2) | (0,1/2)®2(0,3/2)@(0,5/2)
(0,0,0,1,3,0,0,0,2) | (0,1/2)&2(0,3/2)®2(0,5/2)@® | (0,0,0,2,0,0,0,0,2) | (0,5/2)@ (0,7/2)® (1,2, 4)
(0,7/2)
(0,0,0,2,0,0,0,1,2) | (0,3/2)®3(0,5/2)@2(0,7/2)& | (0,0,0,2,0,0,0,2,2) | (0,1/2)®3(0,3/2)B4(0,5/2)®
(1/2,3)®(1/2,4) 2(0,7/2)®(1/2,2)®(1/2,3)®
(1/2,4)
(0,0,0,2,1,0,0,0,2) | (0,3/2)®3(0,5/2)®2(0,7/2)& | (0,0,0,2,1,0,0,1,2) | (0,1/2)®5(0,3/2)B7(0,5/2)®
(1/2,3)@(1/2,4) 300,7/2)@ (1/2,2)52(1/2,3)
(1/2,4)
(0,0,0,2,1,1,0,0,2) | (0,3/2)®3(0,5/2)®2(0,7/2)& | (0,0,0,2,2,0,0,0,2) | (0,1/2)®3(0,3/2)B4(0,5/2)®
(1/2,3)®(1/2,4) 2(0,7/2)@(1/2,2)@(1/2,3)@
(1/2,4)

(0,0,0,3,0,0,0,0,2) | (0,5/2)6(0,7/2)®2(0,9/2)& | (0,0,0,3,0,0,0,1,2) | (0,3/2)®3(0,5/2)©5(0,7/2)
(1/2,4)®(1/2,5)@(1,11/2) 3(0,9/2)®(1/2,3)®3(1/2,4) &
2(1/2,5)®(1,9/2)®(1,11/2)
(0,0,0,3,1,0,0,0,2) | (0,3/2)®3(0,5/2)®5(0,7/2)& |(0,0,0,4,0,0,0,0,2) | (0,5/2)&(0,7/2)2(0,9/2) &
3(0,9/2)@(1/2,3)®3(1/2,4)& 2(0,11/2)&(1/2,4)®
2(1/2,5)8(1,9/2)&(1,11/2) (1/2,5)@2(1/2,6)&(1,11/2)®
(1,13/2)&(3/2,7)
(0,0,1,1,0,0,0,0,2) | (0,3/2)&(0,5/2) (0,0,1,1,0,0,0,1,2) | (0,1/2)&2(0,3/2)&(0,5/2)
(0,0,1,1,0,0,0,2,2) | 2(0,1/2)82(0,3/2)®(0,5/2) | (0,0,1,1,1,0,0,0,2) | (0,1/2)&2(0,3/2)&(0,5/2)
(0,0,1,1,1,0,0,1,2) | 3(0,1/2)®3(0,3/2)®(0,5/2) | (0,0,1,1,1,1,0,0,2) | (0,1/2)&2(0,3/2)®(0,5/2)
(0,0,1,1,2,0,0,0,2) | 2(0,1/2)®2(0,3/2)®(0,5/2) | (0,0,1,2,0,0,0,0,2) | (0,3/2)®3(0,5/2)®2(0,7/2) &
(1/2,3)®(1/2,4)
(0,0,1,2,0,0,0,1,2) [ (0,1/2)®5(0,3/2)&7(0,5/2)@ | (0,0,1,2,1,0,0,0,2) | (0,1/2)®5(0,3/2) ®7(0,5/2)®
3(0,7/2)6(1/2,2)82(1/2,3)& 3(0,7/2)6(1/2,2)82(1/2,3)&
(1/2,4) (1/2,4)
(0,0,1,3,0,0,0,0,2) | (0,3/2)®3(0,5/2)®5(0,7/2)& |(0,0,2,1,0,0,0,0,2) | (0,1/2)®(0,3/2)®(0,5/2)

2(1/2,5)®

)B5(
3(0,9/2)(1/2,3)®3(1/2,4)®
)

(0,0,2,1,0,0,0,1,2)

2(0,1/2)®2(0,3/2)(0,5,/2

(0,0,2,1,1,0,0,0,2)

2(0,1/2)®2(0,3/2)®

(0,5/2)

)
)
(1,9/2)®(1,11/2)
)
)

(0,0,2,2,0,0,0,0,2) | (0,1/2)®3(0,3/2)®4(0,5/2)® |(0,0,3,0,0,0,0,0,2) | (0,5/2)
2(0,7/2)®(1/2,2)®(1/2,3)®
(1/2,4)
(0,0,3,1,0,0,0,0,2) | (0,1/2)$2(0,3/2)®2(0,5/2)& |(0,0,4,0,0,0,0,0,2) | (0,5/2)(0,7/2)&(1/2,4)
(0,7/2)
(0,1,1,1,0,0,0,0,2) | (0,3/2)®(0,5/2) (0,1,1,1,0,0,0,1,2) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,1,1,1,1,0,0,0,2) | (0,1/2)®2(0,3/2)®(0,5/2) (0,1,1,2,0,0,0,0,2) | (0,3/2)93(0,5/2)B2(0,7/2)D
(1/2,3)®(1/2,4)
(0,1,2,1,0,0,0,0,2) | (0,1/2)®2(0,3/2)®(0,5/2) (0,1,3,0,0,0,0,0,2) | (0,3/2)®(0,5/2)
(1,1,1,1,0,0,0,0,2) | (0,3/2)®(0,5/2) (0,0,0,1,0,0,0,0,3) | (0,7/2)
(0,0,0,1,0,0,0,1,3) | (0,5/2)®(0,7/2) (0,0,0,1,0,0,0,2,3) | (0,3/2)®(0,5/2)&(0,7/2)
(0,0,0,1,1,0,0,0,3) | (0,5/2)®(0,7/2) (0,0,0,1,1,0,0,1,3) | (0,3/2)®2(0,5/2)&(0,7/2)
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B ONL 5 (ji.jr) B ONL (i, jr)
(0,0,0,1,1,1,0,0,3) | (0,5/2)®(0,7/2) (0,0,0,1,2,0,0,0,3) | (0,3/2)(0,5/2)®(0,7/2)
(0,0,0,2,0,0,0,0,3) | (0,5/2)(0,7/2)®2(0,9/2)® |(0,0,0,2,0,0,0,1,3) | (0,3/2)®3(0,5/2)D5(0,7/2) D

(1/2,4)®(1/2,5)®(1,11/2) 3(0,9/2)®(1/2,3)®3(1/2,4)®
2(1/2,5)®(1,9/2)®(1,11/2)
(0,0,0,2,1,0,0,0,3) | (0,3/2)®3(0,5/2)®5(0,7/2)® |(0,0,0,3,0,0,0,0,3) | (0,3/2)®(0,5/2)®3(0,7/2)®

3(0,9/2)®(1/2,3)®3(1/2,4)® 3(0,9/2)®4(0,11/2)&
2(1/2,5)6(1,9/2)&(1,11/2) (1/2,3)@2(1/2,4)®3(1/2,5)®
3(1/2,6)@(1/2,7)8(1,9/2)&
2(1,11/2)®3(1,13/2) @
(3/2,6)@(3/2,7)®(2,15/2)
(0,0,1,1,0,0,0,0,3) | (0,5/2)(0,7/2) (0,0,1,1,0,0,0,1,3) | (0,3/2)62(0,5/2)®(0,7/2)
(0,0,1,1,1,0,0,0,3) | (0,3/2)®2(0,5/2)®(0,7/2) (0,0,1,2,0,0,0,0,3) | (0,3/2)63(0,5/2)®5(0,7/2) &
3(0,9/2)@(1/2,3)®3(1/2,4)&
2(1/2,5)6(1,9/2)&(1,11/2)
(0,0,2,1,0,0,0,0,3) | (0,3/2)(0,5/2)®(0,7/2) (0,1,1,1,0,0,0,0,3) | (0,5/2)(0,7/2)
(0,0,0,1,0,0,0,0,4) | (0,9/2) (0,0,0,1,0,0,0,1,4) | (0,7/2)c(0,9/2)
(0,0,0,1,1,0,0,0,4) | (0,7/2)6(0,9/2) (0,0,0,2,0,0,0,0,4) | (0,5/2)6(0,7/2)®2(0,9/2) &
2(0,11/2)&(1/2,4)&

(1/2,5)®2(1/2,6)(1,11/2)®
(1,13/2)@®(3/2,7)

(0707 17 17070707074)

(0,7/2)®(0,9/2)

(0,0,0,1,0,0,0,0,5)

(0,11/2)

Table 26. Refined BPS invariants of 6d E7 minimal SCFT.

B ONL . (ji,jr) B ONL . (ji,jr)
(0,0,0,0,0,0,0,0,0,1) | (0,1/2) (0,0,0,0,0,0,0,0,1,1) | (0,1/2)
(0,0,0,0,0,0,0,0,2,1) | (0,3/2) (0,0,0,0,0,0,0,0,3,1) | (0,5/2)
(0,0,0,0,0,0,0,0,4,1) | (0,7/2) (0,0,0,0,0,0,0,0,5,1) | (0,9/2)
(0,0,0,0,0,0,1,0,0,1) | (0,1/2) (0,0,0,0,0,0,1,1,0,1) | (0,1/2)
(0,0,0,0,0,0,2,0,0,1) | (0,3/2) (0,0,0,0,0,0,2,1,0,1) | (0,1/2)®(0,3/2)
(0,0,0,0,0,0,2,2,0,1) | (0,1/2)®(0,3/2) (0,0,0,0,0,0,2,3,0,1) | (0,3/2)
(0,0,0,0,0,0,3,0,0,1) | (0,5/2) (0,0,0,0,0,0,3,1,0,1) | (0,3/2)®(0,5/2)
(0,0,0,0,0,0,3,2,0,1) | (0,1/2)®(0,3/2)®(0,5/2) (0,0,0,0,0,0,4,0,0,1) | (0,7/2)
(0,0,0,0,0,0,4,1,0,1) | (0,5/2)®(0,7/2) (0,0,0,0,0,0,5,0,0,1) | (0,9/2)
(0,0,0,0,0,1,0,0,0,1) | (0,3/2) (0,0,0,0,0,1,0,0,1,1) | (0,1/2)®(0,3/2)
(0,0,0,0,0,1,0,0,2,1) | (0,1/2)®(0,3/2) (0,0,0,0,0,1,0,0,3,1) | (0,3/2)®(0,5/2)
(0,0,0,0,0,1,0,0,4,1) | (0,5/2)®(0,7/2) (0,0,0,0,0,1,1,0,0,1) | (0,1/2)®(0,3/2)
(0,0,0,0,0,1,1,0,1,1) | 2(0,1/2)®(0,3/2) (0,0,0,0,0,1,1,0,2,1) | (0,1/2)®(0,3/2)
(0,0,0,0,0,1,1,0,3,1) | (0,3/2)®(0,5/2) (0,0,0,0,0,1,1,1,0,1) | (0,1/2)®(0,3/2)
(0,0,0,0,0,1,1,1,1,1) | 2(0,1/2)®(0,3/2) (0,0,0,0,0,1,1,1,2,1) | (0,1/2)®(0,3/2)
(0,0,0,0,0,1,2,0,0,1) | (0,1/2)®(0,3/2) (0,0,0,0,0,1,2,0,1,1) | (0,1/2)®(0,3/2)
(0,0,0,0,0,1,2,1,0,1) [ 2(0,1/2)®(0,3/2) (0,0,0,0,0,1,2,1,1,1) [ 2(0,1/2)®(0,3/2)
(0,0,0,0,0,1,2,2,0,1) | (0,1/2)®(0,3/2) (0,0,0,0,0,1,3,0,0,1) (0,3/2)@(0 5/2)
(0,0,0,0,0,1,3,0,1,1) | (0,3/2)®(0,5/2) (0,0,0,0,0,1,3,1,0,1) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,0,0,1,4,0,0,1) | (0,5/2)®(0,7/2) (0,0,0,0,0,2,0,0,0,1) | (0,5/2)
(0,0,0,0,0,2,0,0,1,1) | (0,3/2)®(0,5/2) (0,0,0,0,0,2,0,0,2,1) | (0,1/2)®(0,3/2)®(0,5/2)
(0,0,0,0,0,2,0,0,3,1) | (0,1/2)®(0,3/2)P®(0,5/2) (0,0,0,0,0,2,1,0,0,1) | (0,3/2)®(0,5/2)
(0,0,0,0,0,2,1,0,1,1) | (0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,0,0,2,1,0,2,1) | 2(0,1/2)®2(0,3/2)®(0,5/2)
(0,0,070,0,27171,0,1) (073/2)69(0 5/2) (070,0,07072,1,1,1,1) (0,1/2)@2(0,3/2)@(075/2)
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B @NJZ,JT(]ZJT) B GBNJLJT(]Z’JT)
(0,0,0,0,0,2,2,0,0,1) | (0,1/2)@(0,3/2)a(0,5/2) (0,0,0,0,0,2,2,0,1,1) | 2(0,1/2)&2(0,3/2)&(0,5/2)
(0,0,0,0,0,2,2,1,0,1) | (0,1/2)®2(0,3/2)&(0,5/2) | (0,0,0,0,0,2,3,0,0,1)| (0,1/2)&(0,3/2)®(0,5/2)
(0,0,0,0,0,3,0,0,0,1) | (0,7/2) (0,0,0,0,0,3,0,0,1,1) | (0,5/2)&(0,7/2)
(0,0,0,0,0,3,0,0,2,1) | (0,3/2)@(0,5/2)®(0,7/2) (0,0,0,0,0,3,1,0,0,1) | (0,5/2)@(0,7/2)
(0,0,0,0,0,3,1,0,1,1) | (0,3/2)®2(0,5/2)&(0,7/2) _ (0,0,0,0,0,3,1,1,0,1) | (0,5/2)&(0,7/2)
(0,0,0,0,0,3,2,0,0,1) | (0,3/2)®(0,5/2)&(0,7/2) (0,0,0,0,0,4,0,0,0,1) | (0,9/2)
(0,0,0,0,0,4,0,0,1,1) | (0,7/2)®(0,9/2) (0,0,0,0,0,4,1,0,0,1) | (0,7/2)®(0,9/2)
(0,0,0,0,0,5,0,0,0,1) | (0,11/2) (0,0,0,0,1,0,0,0,0,1) | (0,1/2)
(0,0,0,0,1,1,0,0,0,1) | (0,1/2)®(0,3/2) (0,0,0,0,1,1,0,0,1,1) | 2(0,1/2)®(0,3/2)
(0,0,0,0,1,1,0,0,2,1) | (0,1/2)&(0,3/2) (0,0,0,0,1,1,0,0,3,1) | (0,3/2)®(0,5/2)
(0,0,0,0,1,1,1,0,0,1) | 2(0,1/2)&(0,3/2) (0,0,0,0,1,1,1,0,1,1) | 3(0,1/2)®(0,3/2)
(070,0,0,1,1,170,2,1) 01/2)@(0,3/2) (0,0,0,0,17171,1,0,1) 2(0,1/2)@(0,3/2)
(0,0,0,0,1,1,1,1,1,1) | 3(0,1/2)®(0,3/2) (0,0,0,0,1,1,2,0,0,1) | (0,1/2)@(0,3/2)
(0,0,0,0,1,1,2,0,1,1) | (0,1/2)®(0,3/2) (0,0,0,0,1,1,2,1,0,1) | 2(0,1/2)®(0,3/2)
(0,0,0,0,1,1,3,0,0,1) | (0,3/2)®(0,5/2) (0,0,0,0,1,2,0,0,0,1) | (0,3/2)®(0,5/2)
(0,0,0,0,1,2,0,0,1,1) | (0,1/2)®2(0,3/2)@(0,5/2) _ |(0,0,0,0,1,2,0,0,2,1) | 2(0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,0,1,2,1,0,0,1) | (0,1/2)®2(0,3/2)@®(0,5/2) | (0,0,0,0,1,2,1,0,1,1) | 4(0,1/2)®4(0,3/2)®(0,5,/2)
(0,0,0,0,1,2,1,1,0,1) | (0,1/2)®2(0,3/2)@(0,5/2) | (0,0,0,0,1,2,2,0,0,1) | 2(0,1/2)®2(0,3/2)®(0,5,/2)
(0,0,0,0,1,3,0,0,0,1) | (0,5/2)&(0,7/2) (0,0,0,0,1,3,0,0,1,1) | (0,3/2)®2(0,5/2)&(0,7/2)
(0,0,0,0,1,3,1,0,0,1) | (0,3/2)®2(0,5/2)&(0,7/2) | (0,0,0,0,1,4,0,0,0,1) | (0,7/2)&(0,9/2)
(0,0,0,0,2,0,0,0,0,1) | (0,3/2) (0,0,0,0,2,1,0,0,0,1) | (0,1/2)@(0,3/2)
(0,0,0,0,2,1,0,0,1,1) | (0,1/2)@(0,3/2) (0,0,0,0,2,1,1,0,0,1) | (0,1/2)@(0,3/2)
(0,0,0,0,2,1,1,0,1,1) | (0,1/2)@(0,3/2) (0,0,0,0,2,1,1,1,0,1) | (0,1/2)®(0,3/2)
(0,0,0,0,2,2,0,0,0,1) | (0,1/2)@(0,3/2)®(0,5/2) (0,0,0,0,2,2,0,0,1,1) | 2(0,1/2)@2(0,3/2)@(0,5/2)
(0,0,0,0,2,2,1,0,0,1) | 2(0,1/2)®2(0,3/2)@(0,5/2) |(0,0,0,0,2,3,0,0,0,1) | (0,3/2)®(0,5/2)®(0,7/2)
(0,0,0,0,3,0,0,0,0,1) | (0,5/2) (0,0,0,0,3,1,0,0,0,1) | (0,3/2)®(0,5/2)
(0,0,0,0,3,1,0,0,1,1) | (0,3/2)®(0,5/2) (0,0,0,0,3,1,1,0,0,1) | (0,3/2)®(0,5/2)
(0,0,0,0,3,2,0,0,0,1) | (0,1/2)@(0,3/2)&(0,5/2) (0,0,0,0,4,0,0,0,0,1) | (0,7/2)
(0,0,0,0,4,1,0,0,0,1) | (0,5/2)&(0,7/2) (0,0,0,0,5,0,0,0,0,1) | (0,9/2)
(0,0,0,1,1,0,0,0,0,1) | (0,1/2) (0,0,0,1,1,1,0,0,0,1) | (0,1/2)@(0,3/2)
(0,0,0,1,1,1,0,0,1,1) | 2(0,1/2)@(0,3/2) (0,0,0,1,1,1,0,0,2,1) | (0,1/2)@(0,3/2)
(0,0,0,1,1,1,1,0,0,1) | 2(0,1/2)(0,3/2) (0,0,0,1,1,1,1,0,1,1) | 3(0,1/2)®(0,3/2)
(0,0,0,1,1,1,1,1,0,1) | 2(0,1/2)®(0,3/2) (0,0,0,1,1,1,2,0,0,1) | (0,1/2)®(0,3/2)
(0,0,0,1,1,2,0,0,0,1) | (0,3/2)®(0,5/2) (0,0,0,1,1,2,0,0,1,1) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,1,1,2,1,0,0,1) | (0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,1,1,3,0,0,0,1) | (0,5/2)®(0,7/2)
(0,0,0,1,2,0,0,0,0,1) | (0,1/2)®(0,3/2) (0,0,0,1,2,1,0,0,0,1) | 2(0,1/2)®(0,3/2)
(0,0,0,1,2,1,0,0,1,1) | 2(0,1/2)®(0,3/2) (0,0,0,1,2,1,1,0,0,1) | 2(0,1/2)®(0,3/2)
(0,0,0,1,2,2,0,0,0,1) | (0,1/2)®2(0,3/2)®(0,5/2) (0,0,0,1,3,0,0,0,0,1) | (0,3/2)®(0,5/2)
(0,0,0,1,3,1,0,0,0,1) | (0,1/2)®2(0,3/2)&(0,5/2) (0,0,0,1,4,0,0,0,0,1) | (0,5/2)®(0,7/2)
(0,0,0,2,2,0,0,0,0,1) | (0,1/2)®(0,3/2) (0,0,0,2,2,1,0,0,0,1) | (0,1/2)®(0,3/2)
(0,0,0,2,3,0,0,0,0,1) | (0,1/2)®(0,3/2)®(0,5/2) (0,0,0,3,2,0,0,0,0,1) | (0,3/2)
(0,0,1,1,1,0,0,0,0,1) | (0,1/2) (0,0,1,1,1,1,0,0,0,1) | (0,1/2)(0,3/2)
(0,0,1,1,1,1,0,0,1,1) | 2(0,1/2)®(0,3/2) (0,0,1,1,1,1,1,0,0,1) | 2(0,1/2)®(0,3/2)
(0,0,1,1,1,2,0,0,0,1) | (0,3/2)®(0,5/2) (0,0,1,1,2,0,0,0,0,1) | (0,1/2)®(0,3/2)
(0,0,1,1,2,1,0,0,0,1) | 2(0,1/2)®(0,3/2) (0,0,1,1,3,0,0,0,0,1) | (0,3/2)®(0,5/2)
(0,0,1,2,2,0,0,0,0,1) | 2(0,1/2)®(0,3/2) (0,1,1,1,1,0,0,0,0,1) | (0,1/2)
(0,1,1,1,1,1,0,0,0,1) | (0,1/2)®(0,3/2) (0,1,1,1,2,0,0,0,0,1) | (0,1/2)®(0,3/2)
(1,1,1,1,1,0,0,0,0,1) | (0,1/2) (0,0,0,0,0,0,0,0,3,2) | (0,5/2)
(0,0,0,0,0,0,0,0,4,2) | (0,5/2)@(0,7/2)®(1/2, 4) (0,0,0,0,0,0,3,0,0,2) | (0,5/2)
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B ONL 5 (ji.jr) B ONL . (ji,jr)
(0,0,0,0,0,0,3,1,0,2) | (0,3/2)®(0,5/2) (0,0,0,0,0,0,4,0,0,2) | (0,5/2)®(0,7/2)®(1/2,4)
(0,0,0,0,0,1,0,0,0,2) | (0,5/2) (0,0,0,0,0,1,0,0,1,2) | (0,3/2)®(0,5/2)
(0,0,0,0,0,1,0,0,2,2) | (0,1/2)®(0,3/2)®(0,5/2) (0,0,0,0,0,1,0,0,3,2) | (0,1/2)®2(0,3/2)®2(0,5/2)®

(0,7/2)
(0,0,0,0,0,1,1,0,0,2) | (0,3/2)®(0,5/2) (0,0,0,0,0,1,1,0,1,2) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,0,0,1,1,0,2,2) [ 2(0,1/2)®2(0,3/2)®(0,5/2) | (0,0,0,0,0,1,1,1,0,2) | (0,3/2)®(0,5/2)
(0,0,0,0,0,1,1,1,1,2) | (0,1/2)®2(0,3/2)%(0,5/2) (0,0,0,0,0,1,2,0,0,2) | (0,1/2)8(0,3/2)8(0,5/2)
(0,0,0,0,0,1,2,0,1,2) | 2(0,1/2)2(0,3/2)®(0,5/2) {(0,0,0,0,0,1,2,1,0,2) | (0,1/2)82(0,3/2)®(0,5/2)
(0,0,0,0,0,1,3,0,0,2) | (0,1/2)2(0,3/2)42(0,5/2)& | (0,0,0,0,0,2,0,0,0,2) | (0,5/2)(0,7/2)B(1/2,4)

0,7/2

(0,0,0,0,0,2,0,0,1,2)

(

(0,7/2)
(0,3/2)®3(0,5/2)®2(0,7/2) &
(1/2,3)(

(0,0,0,0,0,2,0,0,2,2)

(0,1/2)®3(0,3/2)®4(0,5/2) @

1/2,3)®(1/2,4) 2(0,7/2)(1/2,2)®(1/2,3) &
(1/2,4)
(0,0,0,0,0,2,1,0,0,2) | (0,3/2)®3(0,5/2)®2(0,7/2)@ | (0,0,0,0,0,2,1,0,1,2) [ (0,1/2)®5(0,3/2)®7(0,5/2)®
(1/2,3)@(1/2,4) 3(0,7/2)@(1/2,2)®2(1/2,3)@®
(1/2,4)
(0,0,0,0,0,2,1,1,0,2) | (0,3/2)®3(0,5/2)&2(0,7/2)@ | (0,0,0,0,0,2,2,0,0,2) | (0,1/2)&3(0,3/2)®4(0,5/2)&
(1/2,3)@(1/2,4) 2(0,7/2)®(1/2,2)(1/2,3)&
(1/2,4)
(0,0,0,0,0,3,0,0,0,2) | (0,5/2)®(0,7/2)®2(0,9/2)& | (0,0,0,0,0,3,0,0,1,2) | (0,3/2)&3(0,5/2)®5(0,7/2)&
(1/2,4)®(1/2,5)@(1,11/2) 3(0,9/2)(1/2,3)®3(1/2,4)®
2(1/2,5)(1,9/2)®(1,11/2)
(0,0,0,0,0,3,1,0,0,2) [ (0,3/2)®3(0,5/2) ®5(0,7/2)& | (0,0,0,0,0,4,0,0,0,2) | (0,5/2)®(0,7/2) ®2(0,9/2) &
3(0,9/2)@(1/2,3)®3(1/2,4)& 2(0,11/2)&(1/2,4)®
2(1/2,5)@(1,9/2)&(1,11/2) (1/2,5)92(1/2,6)&(1,11/2)&
(1,13/2)®(3/2,7)
(0,0,0,0,1,1,0,0,0,2) | (0,3/2)&(0,5/2) (0,0,0,0,1,1,0,0,1,2) | (0,1/2)®2(0,3/2)&(0,5/2)
(0,0,0,0,1,1,0,0,2,2) | 2(0,1/2)®2(0,3/2)&(0,5/2) | (0,0,0,0,1,1,1,0,0,2) | (0,1/2)&2(0,3/2)®(0,5/2)
(0,0,0,0,1,1,1,0,1,2) | 3(0,1/2)®3(0,3/2)&(0,5/2) | (0,0,0,0,1,1,1,1,0,2) | (0,1/2)&2(0,3/2)&(0,5/2)
(0,0,0,0,1,1,2,0,0,2) | 2(0,1/2)®2(0,3/2)&(0,5/2) | (0,0,0,0,1,2,0,0,0,2) | (0,3/2)&3(0,5/2)®2(0,7/2)&
(1/2,3)®(1/2,4)
(0,0,0,0,1,2,0,0,1,2) | (0,1/2)®5(0,3/2)&7(0,5/2)& | (0,0,0,0,1,2,1,0,0,2) | (0,1/2)&5(0,3/2)®7(0,5/2)&
3(0,7/2)8(1/2,2)@2(1/2,3)& 3(0,7/2)®(1/2,2)®2(1/2,3)&
(1/2,4) (1/2,4)
(0,0,0,0,1,3,0,0,0,2) | (0,3/2)®3(0,5/2)&5(0,7/2)& | (0,0,0,0,2,1,0,0,0,2) | (0,1/2)&(0,3/2)®(0,5/2)
3(0,9/2)®(1/2,3)®3(1/2,4)@®
2(1/2,5)®(1,9/2)®(1,11/2)
(0,0,0,0,2,1,0,0,1,2) | 2(0,1/2)®2(0,3/2)&(0,5/2) | (0,0,0,0,2,1,1,0,0,2) | 2(0,1/2)62(0,3/2)&(0,5/2)
(0,0,0,0,2,2,0,0,0,2) | (0,1/2)®3(0,3/2)®4(0,5/2)® | (0,0,0,0,3,0,0,0,0,2) | (0,5/2)
2(0,7/2)(1/2,2)8(1/2,3)&
(1/2,4)
(0,0,0,0,3,1,0,0,0,2) | (0,1/2)®2(0,3/2)&2(0,5/2)® | (0,0,0,0,4,0,0,0,0,2) [ (0,5/2)&(0,7/2) & (1/2,4)
(0,7/2)
(0,0,0,1,1,1,0,0,0,2) | (0,3/2)®(0,5/2) (0,0,0,1,1,1,0,0,1,2) | (0,1/2)®2(0,3/2)®(0,5/2)
(0,0,0,1,1,1,1,0,0,2) | (0,1/2)®2(0,3/2)®(0,5/2) | (0,0,0,1,1,2,0,0,0,2) | (0,3/2)®3(0,5/2)®2(0,7/2)®
(1/2,3)®(1/2,4)
(0,0,0,1,2,1,0,0,0,2) | (0,1/2)®2(0,3/2)®(0,5/2) | (0,0,0,1,3,0,0,0,0,2) | (0,3/2)&®(0,5/2)
(0,0,1,1,1,1,0,0,0,2) | (0,3/2)®(0,5/2) (0,0,0,0,0,1,0,0,0,3) | (0,7/2)
(0,0,0,0,0,1,0,0,1,3) | (0,5/2)®(0,7/2) (0,0,0,0,0,1,0,0,2,3) | (0,3/2)®(0,5/2)®(0,7/2)
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B @NJZJ (.717]7‘) B ®le ]T(]lva)
(0,0,0,0,0,1,1,0,0,3) | (0,5/2)&(0,7/2) (0,0,0,0,0,1,1,0,1,3) ] (0,3/2)®2(0,5/2)&(0,7/2)
(0,0,0,0,0,1,1,1,0,3) | (0,5/2)&(0,7/2) (0,0,0,0,0,1,2,0,0,3) | (0,3/2)®(0,5/2)&(0,7/2)
(0,0,0,0,0,2,0,0,0,3) | (0,5/2)®(0,7/2)&2(0,9/2)& |(0,0,0,0,0,2,0,0,1,3) | (0,3/2)®3(0,5/2)®5(0,7/2)&

(1/2,4)@(1/2,5)®(1,11/2) 3(0,9/2)®(1/2,3)®3(1/2,4)&
2(1/2,5)&(1,9/2)&(1,11/2)
(0,0,0,0,0,2,1,0,0,3) | (0,3/2)®3(0,5/2)@5(0,7/2)& | (0,0,0,0,0,3,0,0,0,3) | (0,3/2)&(0,5/2)&3(0,7/2)&
3(0,9/2)(1/2,3)®3(1/2,4)® 3(0,9/2)@4(0,11/2)@
2(1/2,5)@(1,9/2)@®(1,11/2) (1/2,3)®2(1/2,4)®3(1/2,5)&

3(1/2,6)®(1/2,7)®(1,9/2)®
2(1,11/2)®3(1,13/2) @
(3/2,6)®(3/2,7)®(2,15/2)

(0,0,0,0,1,1,0,0,0,3)

(0,5/2)®(0,7/2)

(0,0,0,0,1,1,0,0,1,3)

(0,3/2)®2(0,5/2)®(0,7/2)

(0,0,0,0,1,1,1,0,0,3)

(0,3/2)92(0,5/2)8(0,7/2)

(0,0,0,0,1,2,0,0,0,3)

3(0,9/2)&(1/2,3)®3(1/2,4)®

)@
(0,3/2)®3(0,5/2)®5(0,7/2)®
)3
2(1/2,5)®(1,9/2)®(1,11/2)

(0,0,0,0,2,1,0,0,0,3)

(0,3/2)#(0,5/2)®(0,7/2)

(0,0,0,1,1,1,0,0,0,3)

(0,5/2)®(0,7/2)

(0,0,0,0,0,1,0,0,0,4)

(0,9/2)

(0,0,0,0,0,1,0,0,1,4)

(0,7/2)®(0,9/2)

(0,0,0,0,0,1,1,0,0,4)

(0,7/2)®(0,9/2)

(0,0,0,0,0,2,0,0,0,4)

(0,5/2)®(0,7/2)®2(0,9/2) &
2(0,11/2)&(1/2,4)&
(1/2,5)®2(1/2,6)&(
(1,13/2)®(3/2,7)

1,11/2)®

(0,0,0,0,1,1,0,0,0,4)

(0,7/2)®(0,9/2)

(0,0,0,0,0,1,0,0,0,5)

(0,11/2)

Table 27. Refined BPS invariants of 6d Eg minimal SCFT.
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Eg

2jf\2jr (01 234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 3 7 13 21 27 28 17 4 1
1 1 4 10 19 28 31 19 4
2 1 4 1 20 25 15 2
3 1 4 10 15 9 1
4 1 4 8 5
5 1 3 2
6 1 1
8 =(1,1,1,1,1,3,0,0,0,4)
2it\2jr|0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 17 44 79 91 63 23 2
1 |1 6 22 51 68 50 17 1
2 1 6 20 31 25 9
3 1 5 9 8 3
4 1 2 2 1

8=1(0,1,1,1,1,3,0,0,2,3)

Table 31. Refined BPS invariants for selected degrees of 6d Eg minimal SCFT.
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