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Employing a new approach toward thermodynamic phase space, we investigate the phase tran-
sition, critical behavior and microscopic structure of higher dimensional black holes in an Anti-de
Sitter (AdS) background and in the presence of Power-Maxwell field. In contrast to the usual ex-
tended P −V phase space where the cosmological constant (pressure) is treated as a thermodynamic
variable, we fix the cosmological constant and treat the charge of the black hole (or more precisely
Qs) as a thermodynamic variable. Based on this new standpoint, we develop the resemblance be-
tween higher dimensional nonlinear black hole and Van der Waals liquid-gas system. We write
down the equation of state as Qs = Qs(T, ψ), where ψ is the conjugate of Qs, and construct a
Smarr relation based on this new phase space as M = M(S, P,Qs), while s = 2p/(2p − 1) and p
is the power parameter of the Power-Maxwell Lagrangian. We obtain the Gibbs free energy of the
system and find a swallowtail behaviour in Gibbs diagrams, which is a characteristic of first-order
phase transition and express the analogy between our system and van der Waals fluid-gas system.
Moreover, we calculate the critical exponents and show that they are independent of the model
parameters and are the same as those of Van der Waals system which is predicted by the mean
field theory. Finally , we successfully explain the microscopic behavior of the black hole by using
thermodynamic geometry. We observe a gap in the scalar curvature R occurs between small and
large black hole. The maximum amount of the gap increases as the number of dimensions increases.
We finally find that character of the interaction among the internal constituents of the black hole
thermodynamic system is intrinsically a strong repulsive interaction.

PACS numbers:

I. INTRODUCTION

The study of black holes thermodynamics is one of the most important subject in gravitational physics, which was
anticipated by Bekenstein in 1973 [1]. In complete analogy with known non-gravitational thermodynamic systems,
black hole spacetime obeys a version of first law of thermodynamics.[1, 2]. It can be specified by an entropy S
proportional to the horizon area and temperature T proportional to the surface gravity.
Furthermore, after the advent of AdS/CFT correspondence, phase transition has gained more attention as a ther-

modynamical property of black holes in asymptotically AdS spaces.
A seminal investigation in this relevance was reported in Hawking and Page’s paper [3], where it was demonstrated

that in the phase space of AdS-Schwarzchild black hole, phase transition certainly exists. Through the AdS/CFT
(gage/gravity) duality the Hawking-Page phase transition can correspond to the confinement/deconfinement phase
transition in the dual quark gluon plasma [4]. In view of this duality, the thermodynamic phase space of charged AdS
black holes exhibits first order SBH/LBH (small black hole/large black hole) phase transition suggestive of a Van der
Waals liquid/gas phase transition (see e.g [5–8]).
In most treatments of phase transition in black hole thermodynamics, in an extended phase space, negative cos-

mological constant Λ is treated as a thermodynamic variable. In fact, Λ is physically thought of as a pressure and
its conjugate variable is considered as a thermodynamic variable proportional to a volume V [9–11]. In the past few
years the various class of black hole phase transition such as Multiple reentrant phase transition [12], superfluid-like
phase transition [13], zero order phase transition [14] and so on have been studied in an extended phase space (see
e.g.[15–22]).
The authors of [23], by using of the Smarr formula, concluded that the mass M of AdS black hole should be

identified as enthalpy H rather than internal energy of the spacetime . Therefor, regarding the cosmological constant
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as a pressure P , for a non rotating charged black hole, the first law of thermodynamics should read,

dM ≡ dH = T dS +ΦdQ+ V dP,

where Q and Φ are charge and electrical potential respectively.
Although, there are some reasons to suppose the cosmological constant as a variable, but it is more reasonable to hold

it as a constant parameter. In fact, from the physical standpoint it is difficult to consider the cosmological constant
as a thermodynamic variable which can take an arbitrary value. Also, in general relativity the cosmological constant
is understood as a constant related to the zero point energy of the background spacetime. By these motivations, the
authors of [24] proposed the cosmological constant as a fixed parameter and consider the charge of the black hole as
a thermodynamic variable. They indicated a phase transition similar to Van der Waals liquid-gas in the black hole
system in this manner. In this alternative view, the SBH/LBH phase transition of black hole in Q2 −ψ plane exactly
correspond to the Van der Walls fluid phase transition, whereas ψ is thermodynamic variable conjugate to the Q2.
Recently, the universality class and critical properties of any AdS black hole in this alternative approach toward the
phase space have been addressed in [25].
Besides, the study of the nonlinear electrodynamic field on the thermodynamic and phase transition of the black

holes has been attracted a lot of attentions in the literature in the past decade [26–35]. The first one of the nonlinear
electromagnetic field models is Born-Infeld electrodynamics introduced in 1930’s. Nonlinear behavior in strong elec-
tromagnetic field such as the field in region near a point-like charge, is suggested by Dirac in 1964 [37]. Moreover,
nonlinear electromagnetics can be due to the nonlinear effects of quantum electrodynamics [38–40].
Power-Maxwell invariant field as an important class of the nonlinear electrodynamics, was introduced in [41–45] .

It is worth mentioning that the Lagrangian of the power Maxwell invariant fields are invariant under the conformal
transformation gµν −→ Ω2gµν , where gµν is the metric tensor. In the special case linear electromagnetic can be
generated by reducing of the power Maxwell invariant field. the authors of [43] have investigated the effect of power
Maxwell field on the P − V criticality of black holes and phase transitions in the extended phase space.
In the present work, we would like to study the critical behavior of the AdS black hole in the presence of power-

Maxwell field via an alternative viewpoint. It means we keep the cosmological constant as a fixed parameter and
instead treat the charge of the black hole (or more precisely Qp) as a thermodynamic variable which can vary. The
advantages of this approach is that we do not need to extend the thermodynamical phase space to see the critical
behavior of the system. On the other side, absorbing or emitting charged particles may cause the change in the
charge of the black hole in reasonable manner which is more logical than varying the cosmological constant. Phase
structure and critical behavior of AdS balck holes with linear [14], and nonlinear [22] electrodynamics, Lifshitz dilaton
black holes [46], where the charge of the system can vary and the cosmological constant (pressure) is fixed have been
investigated. Recently, it was argued that this method also indeed works for investigating the phase transition of
Gauss-Bonnet black holes [47], which further supports the viability of this alternative approach.
The outline of this paper is as follows. In the next section we investigate thermodynamics of the higher dimensional

AdS black hole with considering of the effects of the nonlinear power- Maxwell field and obtain Smarr relation by the
well-known usual thermodynamic quantities. Moreover we introduce a new phase space and thermodynamic variables
ψ,Qp and find the appropriate Smarr relation in terms of this new variables. In Sec.III, we write down the equation
of state according to the offered variables and calculate the critical points and critical exponent. Also, the analogy
of the system with Van der Waals liquid gas system is showed in this section. The Gibbs free energy diagrams are
investigated in section IV. The swallowtail behavior of the Gibbs free energy represents a first-order phase transition
in the system. Finally, in section V, we explore microscopic structure of thermodynamic system and calculate the
Ruppeiner scalar curvature in 4, 5 and 6 dimensional spacetime.

II. THERMODYNAMIC OF HIGHER DIMENSIONAL ADS BLACK HOLE WITH A POWER
MAXWELL FIELD

The action of Einstein gravity in (n + 1)-dimensional spacetime coupled to a power Maxwell field can be written
as [42]

I = − 1

16π

∫

dn+1x
√−g [R− 2Λ + (−FµνFµν)p] , (1)

where R is the Ricci scalar, p is a constant determining the nonlinearity of the electromagnetic field, Fµν = ∂[µAν] is
the electromagnetic field tensor and Aµ is the electromagnetic potential. Here, Λ is the cosmological constant related
to the AdS radius as l2 = −n(n− 1)/ (2Λ).
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We apply a spherically symmetric and static metric of (n+ 1)-dimensional spacetime

ds2 = −f(r) dt2 + dr2

f(r)
+ r2 dΩ2

n−1, (2)

where dΩ2
n−1 denotes the metric of spherical hypersurface with volume ωn−1 and f(r) is given by [42]

f(r) = 1− m

rn−2
+
r2

l2
+

2p (2 p− 1)2 q2 p

(n− 1) (n− 2 p)
r[(6−2n)p−2]/[2p−1]. (3)

The quantity q is an integration constant related to the charge Q of the black hole per unite volume ωn−1 and one
can find it by applying the Gauss law

Q =
1

4π

∫

rn−1(−FµνFµν)p−1Fµνn
µuν dr, (4)

where nµ = f(r)−1/2dt and uν = f(r)1/2dr are the unit space like and time like normal to the surface, respectively,
and Maxwell invariant is FµνF

µν = −2Ftr
2. Directly from the generalized Maxwell equation, nonzero electromagnetic

field is Ftr = q r(1−n)/(2p−1) [42]. Thus, Gauss law relation Eq. (4) reads

Q =
2p−1q2p−1

4π
. (5)

The parameter m is known as the geometrical mass parameter which it can be expressed in term of the largest
horizon radius r+ (the largest root of f(r+) = 0)

m = rn−2
+ +

rn+
l2

+
2p (2 p− 1)2 q2 p

(n− 1) (n− 2 p)
r
(n−2p)/(1−2p)
+ . (6)

Using Brown-York method [48], the total mass of the black hole per unit volume ωn−1 can be read as follows

M =
(n− 1)m

16π
. (7)

The electric potential Φ, measured at infinity with respect to the horizon radius r+, is obtained as (details is referred
to [49])

Φ =
p (2 p− 1) (πQ)1/(2p−1)

(n− 2 p) 2(p−3)/(2p−1)
r
(2p−n)/(2p−1)
+ . (8)

In the case p = 1, the metric function Eq. (3) and the electric potential Eq. (8) reduce to n + 1-dimensional
Reissner-Nordstrom (RN)-AdS black holes [7].

According to the so-called area law of the entropy, the entropy of the black hole is a quarter of the event horizon
erea. Using this, one can obtain the entropy of the black hole per unit volume ωn−1 as

S =
rn−1
+

4
. (9)

The Hawking temperature can be calculated as

T =
f ′(r+)

4π
=

(n− 2)

4πr+
+
nr+
4πl2

− 2p−2 (2 p− 1) q2 p

(n− 1)π
r
−[2(n−2)p+1]/[2p−1]
+ . (10)

One may obtain the generalized Smarr relation for the black hole in the extended phase space by using the definition
of total mass M (7), chrge of the black hole Q (5) and the entropy S (9). It is a matter of calculation to show the
Smarr formula is

M (S,Q, P ) =
(n− 1)S(n−2)/(n−1)

22n/(n−1)π
+
PSn/(n−1)

n22n/(1−n)
+

(2p− 1)
2
Q2p/(2p−1)S(2p−n)/[(n−1)(2p−1)]

(n− 2p)π1/(1−2p)2[n(3p−2)−7p+4]/[(n−1)(2p−1)]
, (11)
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where P = −Λ/ (8π).
One can then define the variables conjugate to Q, S and P . As mentioned before, the cosmological constant

parameter is treated as pressure P . So, its conjugate variable from the thermodynamic viewpoint should be volume
V

V =
∂M

∂P

∣

∣

∣

∣

S,Q

. (12)

Likewise, the corresponding conjugate quantity of S and Q are interpreted as a temperature T and electric potential
Φ respectively

T =
∂M

∂S

∣

∣

∣

∣

P,Q

, Φ =
∂M

∂Q

∣

∣

∣

∣

S,P

. (13)

It is easy to show that the usual Smarr mass formula can be written as

M =
n− 1

n− 2
T S +

(n− 3) p+ 1

(n− 2) p
QΦ− 2

n− 2
V P . (14)

Obviously if we set n = 3 and p = 1, Eq.(14) reduces to the well-known Smarr relation for the 4-dimensional
Einstein-Maxwell black holes [7]

M = 2(T S − V P ) + Φ Q. (15)

As expected, the obtained thermodynamic quantities satisfy the usual first law of thermodynamics

dM = T dS +Φ dQ+ V dP. (16)

It is notable that the electric potential Φ must have a finite value at infinity. This leads to the following restriction
on the parameter p

1

2
< p <

n

2
, (17)

which obtained it from (2p− n) / (2p− 1) < 0 [42].

A. Alternative phase space

The Van der Waals like critical behavior of various types of AdS black holes has been studied by considering
the cosmological constant as a thermodynamical pressure in the extended phase space[7, 9]. Also, Q-Φ plane-phase
transitions of charged AdS black hole are investigated by [5, 6]. Although the authors claimed that the phase
transition is similar to the Van der Waals fluid system, but the phase transition behavior exhibits unusual Van der
Waals isotherms. In this approach, a thermodynamic response function (∂Q/∂Φ)T does not lead to physically relevant
quantity. For more details, we refer to Ref. [24].
The most recent work that indicates a complete similarity between the charged AdS black hole and Van der

Waals fluid system is important to highlight [24]. In this work, the cosmological constant has been thought as a fixed
parameter and instead, the square of the charge of black hole Q2 has been considered as a thermodynamic independent
variable, where Ψ = 1/(2r+) is the conjugate of Q

2 [24]. It allows the definition of new response function
(

∂Q2/∂Ψ
)

T
which is clearly characterized stable-unstable region by its sign [24].
According to this viewpoint, we would like to offer the thermodynamic variables allowing us to complete the analogy

of higher dimensional power Maxwell-AdS black hole with Van der Waals fluid system. Hence, we consider the mass
of the black hole as a function of Qp where Qp ≡ Q2p/(2p−1) instead of the standard Q. Our motivation is that the
charge of the black hole appears as Qp in the expressions of M Eq.(11) and T 10. Another advantage of this choice
is to achieve a physically meaningful response function

(

∂Qp/∂Ψ
)

T
. Thus, with the use of (11) the conjugate of Qp

is directly written as

Ψ =
∂M

∂Qp

∣

∣

∣

S,P
(18)

=
(2p− 1)22(4−3p)/(2p−1)

(n− 2p)π1/(1−2p)
r
(n−2p)/(1−2p)
+ .
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FIG. 1: The behavior of isothermal Q
p
− Ψ diagrams of power-Maxwell black holes for the case l = 1. The critical points are

indicated by block spot.

Now we can rewrite the corresponding Smarr mass formula in this new phase space

M =
n− 1

n− 2
T S +

2 ((n− 3) p+ 1)

(2 p− 1) (n− 2)
QpΨ− 2

n− 2
V P . (19)

A simple calculation shows that for p = 1 and n = 3, relation (19) is reduced to the Smarr formula obtained by the
authors of [24]

M = 2 (T S +Q2 Ψ− V P ). (20)

Finally, the first law of thermodynamics in this new picture becomes

dM = T dS +Ψ dQp + V dP. (21)

In what follows, we examine the critical behavior of power Maxwell black hole in alternative phase space where the
AdS radius (or Λ) is fixed and the electric charge of black hole can vary.

III. EQUATION OF STATS AND CRITICAL POINT

In order to determine the critical point, we need to have the equation of state Qp (T, r+). Using (5) and (10) one
may write the equation of state as a function of the temperature and horizon radius

Qp =
(n− 1) 25p/(1−2p)

(2p− 1)π2p/(2p−1)

(

n− 2− 4πT +
nr2+
l2

)

r
n−3+(n−1)/(2p−1)
+ . (22)

The behavior of the black hole electric charge Qp versus Ψ are plotted for fixed l = 1 and different sets of parameter
values in Fig. 1. In Fig. 1, isothermal diagrams show that, for T = Tc, a second-order phase transition (critical point)
occurs in the point with the following conditions (inflection point):

∂Qp

∂Ψ

∣

∣

∣

Tc

= 0,
∂2Qp

∂Ψ2

∣

∣

∣

Tc

= 0. (23)

Solving the above equations yields the coordinates of the critical point as

Qpc =
n (2 p− 1) (n− 1) 25p/(1−2p)ln−3+(n−1)/(2p−1)

(2p (n− 2) + 1) (p (n− 3) + 1)π2p/(2p−1)

[

(n− 2) (p (n− 3) + 1)

np(n− 1)

]p(n−1)/(2p−1)

,

Ψc =
(2p− 1)22(3p−4)/(2p−1)

(n− 2p)π1/(2p−1)

[

(n− 2) (p (n− 3) + 1) l2

(n− 1)np

]−[n−2p]/[2(p−1)]

,

Tc =

√

np (n− 1) (n− 2) (p (n− 3) + 1)

(2p (n− 2) + 1)π l
. (24)
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FIG. 2: The relation Q
pc

and Tc and p for different values of dimensions. In (b), as p increases the black hole follows direction
of arrows.

Following the new definition ρc = ΨcQpc Tc in [24, 46], the universal number for black hole at the critical point is

ρc = ΨcQpc Tc

=
n(n− 1)(n− 2)(2p− 1)3l−3+n

16(n− 2p)(2p(n− 2) + 1)2π2

[

(n− 2) (p(n− 3) + 1)

np(n− 1)

](n−1)/2

, (25)

according to constrain condition Eq.(17), ρc is a positive quantity. Also, it is independent of the AdS radius l only
when n = 3. In the conformally invariant case p = (n+ 1) /4, the critical quantities of the black hole are

Qc
c =

(n− 1)(n−1)/2ln−1

2[n+9]/[2(n−1)]π(n+1)/(n−1)

[

(n− 2)

n(n+ 1)

](n+1)/2

, Ψcc =
25/(n−1)−5/2

lπ2/(n−1)

√

n(n2 + 1)

n− 2
.

T cc =
1

2π l

√

(n+ 1)(n− 1)(n− 2)

n
, ρcc =

(n+ 2/n− 3)
(n+1)/2

ln−3

16π2 (n+ 1)
(n−1)/2

. (26)

It is remarkable to note that in 3-dimensional space for a linear Maxwell (p = 1), these critical quantities reduce
to those of RN-AdS black holes [24]. To see the effect of p in the range of 1/2 < p < n/2 on the critical value of
black hole, we show the behavior of Qpc and Tc for different dimension n in Fig. 2. Figure 2(a) shows, Qpc vanishes
near p = 1/2 in the different dimension. Also, increasing p makes Qpchigher. According to Fig. 2(b), the critical
temperature is not almost influenced by the change of p.
The existence of oscillating isotherms in Fig. 1 are a consequence of physically unstable feature which are remedied

by the Maxwell equal area construction [24]

∮

ΨdQ2 = 0. (27)

A. Critical exponent

In the investigation of phase transition phenomena, it is important to study the scaling behavior of thermodynamic
system near the critical point and find the corresponding universality class. In particular, the behavior of physical
quantities in the vicinity of the critical point can be characterized by the critical exponents. Hence, we would like to
calculate these exponents for the new approach in this subsection.
In order to calculate the critical exponents, it is convenient to define the reduced thermodynamic variables

Tr =
T

Tc
, Ψr =

Ψ

Ψc
, Qpr =

Qp

Qpc

.

Also, since the critical exponents should be studied near the critical point, we rewrite the reduced variables in the
form of

t = Tr − 1, ψ = Ψr − 1, φ = Qp − 1, (28)
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where t, ψ and φ point out to the deviation from critical point. Now, we approximate the equation of state (22)
around the critical point as

φ = At+Btψ + Ctψ2 +Dψ3 +O(tψ3, ψ4), (29)

where A,B and C are constant quantities depend on n and p, as follows

A = −4p(n− 1) (p(n− 3) + 1)

(2p− 1)2
, B =

4p(n− 1) (p(n− 3) + 1) (2p(n− 2) + 1)

(2p− 1)2 (n− 2p)
,

C = −2p(n− 1)(p(n− 3) + 1)(2p(n− 2) + 1)(2p(n− 3) + n+ 1)

(2p− 1)
2
(n− 2p)

2 , D = −2p(n− 1)(p(n− 3) + 1)(2p(n− 2) + 1)

3(n− 2p)3
.(30)

Due to the fact that during phase transition the charge (Qp) remains constant, we have from Eq.(29)

Btψs + Ctψ2
s +Dψ3

s = Btψl + Ctψ2
l +Dψ3

l , (31)

where ψs, ψl stand for the small and gas black hole, respectively. On the other hand, by applying the Maxwell
construction Eq.27, one obtains

∫ ψl

ψs

ψ(Bt+ 2Ctψ + 3Dψ2) dψ = 0. (32)

Equation (31) and (32) have a non-trivial solution given by

ψl,s =
−Ct±

√

3t(C2t− 3BD)

3D
. (33)

So, the corresponding expression for the order parameter near the critical point becomes

|ψs − ψl| ∼ t1/2 ⇒ β =
1

2
.

This equations yields to the order parameter near the critical point

|ψs − ψl| ∼ t1/2 ⇒ β =
1

2
.

The critical exponent γ determines the behavior of the parameter XT as

χ
T
=

∂Ψ

∂Qp

∣

∣

∣

T
∼ |t|−γ ,

thus from (29),

χ
T
∼ Ψc
BQpct

=⇒ γ = 1. (34)

The behavior of charge on the critical isotherm t = 0 is also explained by exponent δ. Hence using (29) one can write
φ = Dψ3 and so δ = 3.
To find the specific heat behavior, one needs to find the critical exponent α such that,

CΨ = T
∂S

∂T

∣

∣

∣

Ψ
∼ |t|α.

Since the entropy (9) is independent of t, CΨ = 0 and we can conclude α = 0. The values we have found for the set
of critical exponents coincide with those obtained for Van der Waals fluid [7].
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FIG. 3: The behavior of G versus Q
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for power-Maxwell black holes corresponding to Fig. 1 with l = 1. Note curves are shifted

for clarity.
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FIG. 4: The transition line of the phase transition between small and large black holes for various values of n, p and fixed
l = 1. The critical points are indicated by block spot.

IV. GIBBS FREE ENERGY

Now, we investigate the black hole thermodynamics by studying the thermodynamic potential. In particular,
the Gibbs free energy as a thermodynamic potential characterizes the globally stable state at equilibrium process.
Hence, to find the phase transition and classification of its type, we explore the Gibbs free energy of power Maxwell
black holes. In fixed the AdS radius l (Λ) regime, the Gibbs free energy is calculated by Legendre transformation
G =M − TS [24]. Using (5)-(7) and (9) the Gibbs free energy per unit volume ωn−1 is obtained as

G = G(Qp, T ) =
rn−2
+

16π
− rn−2

+

16πl2
+

(2p− 1) (2p(n− 2) + 1)π1/(2p−1)Qp

(n− 1) (n− 2p) 24+5p/(1−2p)
, (35)

where r+ = r+(Qp, T ). The behavior of the Gibbs free energy G is depicted in Fig. 3. As it is clear from Fig. 3,
for T < Tc, the Gibbs free energy is single value and monotonically increasing function of Qp. While for T > Tc, it
becomes multivalued which means that a first-order phase transition occurs between the small and large black holes.
The corresponding phase diagrams represented as Qp versus T are shown in Fig. 4. Here, the small and large black
holes are distinguished by transition line (blue line). As one can see from Fig. 4(a), for conformal case p = (n+1)/4,
the slope of transition line increases with increasing dimension n. In Figs. 4(b) and 4(c), when we increase p, slope
of transition line increases too.

V. THERMODYNAMIC GEOMETRY AND MICROSCOPIC STRUCTURE

In this section, we turn to study phase transition structure of power-Maxwell black holes in AdS space from point
of view of thermodynamic state space geometry. The Ruppeiner geometry has been proposed as new approach to
insight into underlying structure of thermodynamic system from the thermodynamic fluctuation theory [50]. Indeed,
Ricci scalar which is obtained from Ruppeiner metric, indicates the dominant interaction between possible molecules
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FIG. 5: (a) The behavior of reduced Ruppeiner scalar curvature (R/Rc) along the transition line for large and small black
holes for p = (n+ 1) /4. (b) The dependence of the critical Ruppeiner scalar curvature Rc on the parameter p is depicted for
different values of dimension.

by its sign [51, 52]. In fact, the Ruppeiner (Ricci) curvature vanishes for the ideal gas, while for attractive (repulsive)
dominant interaction is negative (positive) [53–55]. Recently, various studies on Ruppeiner geometry have been carried
out in [56–58].
The components of the Ruppeiner metric in the energy representation are defined as [50]

gµν =
1

T

∂2M

∂Xµ∂Xν
, (36)

where Xµ = (S,Qp). With Eqs. (10), (11) and (36) at hand, one can calculate the Ruppeiner scalar curvature

R =
8p(n+1)/2

[

(n−2)(p(n−3)+1)
n(n−1)

](1−n)/2 [

1 + (Ψ/Ψc)
2(2p−1)/(n−2p)

]

(Ψ/Ψc)
(n+1)(2p−1)/(n−2p)

(2p− 1)

[

1 + (n−1)
p(n−3)+1 (Ψ/Ψc)

2(2p−1)/(n−2p) − (2p−1)2(Qp/Qpc)
(p(n−3)+1)(2p(n−2)+1) (Ψ/Ψc)

2p(n−1)/(n−2p)

] , (37)

here l = 1. As can be seen in Table I, the positive sign of R is allowed due to positive temperature, i.e. there is
always repulsive interaction. Figure 5(a) shows Ruppeiner curvature R/Rc, for conformal case p = (n + 1)/4, along
the transition line in both the small and large black holes. According to Fig. 5(a), the value of Ruppeiner curvature
in both small and large black holes is the same at the critical point. Also, there is a gap in Ruppeiner curvature
between small and large black holes that is increased in higher dimension. The dependence of the critical Ruppeiner
curvature on the allowed range of p is illustrated in Fig. 5(b). In Fig. 5(b) for arbitrary values of dimension, the
critical value of Ruppeiner curvature diverges close to p = 1/2.

TABLE I: The allowed ranges of R.

R R

T Positive Negative

validity allowed not allowed

VI. SUMMARY AND CONCLUSION

In this paper, we have investigated the critical behavior of higher dimensional AdS black holes with power-Maxwell
nonlinear electrodynamics via an alternative approach toward the phase space. We have kept the cosmological constant
as a fixed quantity and treated the charge of black hole as thermodynamic variable. To show the complete analogy
between the liquid/gas phase transition of the Van der Waals fluid and small/large black hole phase transition, we
have investigated the phase space and critical behaviour in Qp − ψ plane.
We have suggested an algorithmic method to find the charge-independent thermodynamic variable ψ as a conjugate

quantity to f(Q) = Qp where s = 2p/(2p− 1). We have also rewritten the Smarr mass formula in according to the
new phase space and emphasized on its correspondence with standard Smarr relation. Furthermore, we have shown
the behavior of coexistence curve of SBH and LBH in 4, 5 and 6 dimensional spacetime. We have calculated the
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main characteristic properties of the phase transition such as critical points and critical exponent for all dimensional
cases with power Maxwell field. It was already observed that while the critical quantities depend on the dimensions
of spacetime and nonlinearity parameter p, the critical exponents are independent of the details of the system and
have the same values as those of Van der Waals system. Also, first order phase transitions are concluded from the
swallow tail behaviors of the Gibbs free energy in the (n+1)-dimensional systems. It is interesting to note that with
increasing the dimensionality of the system, the amount of transition lines gradient (∂Qp/∂T ) is increasing.
Finally, we have studied the microscopic properties of higher dimensional AdS black holes by considering the

effects of the conformal invariant power Maxwell field. From the viewpoint of the thermodynamic geometry we have
figured out that the interaction between two micromolecules of black hole is a strong repulsive interaction. Actually
transition from small to large (n+1)-dimensional black hole is due to this repulsive force. Similar to zero temperature
thermodynamic in Fermi gas, we have introduced a temperature T0. We have seen that at T > T0, when R = 0, large
black hole can be stable and its size is a function of temperature only. Finally, as a result, the maximum amount of
the scalar curvature gap Fig. 5(a)microscopic structur has been increased by increasing the number of dimensions.
The advantage of the approach presented in this paper is that we do not need to extend the thermodynamical

phase space to see the Van der Wasls behaviour for black hole systems. The results obtained here further support the
argument given in [24, 46]. Our study indicates that the approach here is helpful to investigate the critical behaviour of
other gravity theories such as Gauss-Bonnet black hole [47] and other different electromagnetic fields without needing
to consider the cosmological constant (pressure) as a thermodynamic variable.
Our investigation on thermodynamical properties and microscopic structure of the asymptotically AdS black holes

with power Maxwell field further supports the viability of this new approach and confirms that this approach is enough
powerful to explore the phase transition of higher dimensional black holes.
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