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BUILDING BLOCKS OF AMPLIFIED ENDOMORPHISMS OF

NORMAL PROJECTIVE VARIETIES

SHENG MENG

Abstract. Let X be a normal projective variety. A surjective endomorphism f : X →
X is int-amplified if f∗L − L = H for some ample Cartier divisors L and H . This is a

generalization of the so-called polarized endomorphism which requires that f∗H ∼ qH

for some ample Cartier divisor H and q > 1. We show that this generalization keeps all

nice properties of the polarized case in terms of the singularity, canonical divisor, and

equivariant minimal model program.
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1. Introduction

We work over an algebraically closed field k which has characteristic zero.

Let f be a surjective endomorphism of a projective variety X . We say that f is

polarized if f ∗L ∼ qL for some ample Cartier divisor L and integer q > 1. We say that f

is int-amplified if H := f ∗L− L is ample for some ample Cartier divisor L.
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2 SHENG MENG

We refer to [19, §2] for the definitions and properties of the numerical equivalence

(≡) of R-Cartier divisors and the weak numerical equivalence (≡w) of r-cycles with R-

coefficients. Denote by N1(X) := NS(X) ⊗Z R where NS(X) is the Néron-Severi group

of X . Denote by Nr(X) the quotient vector space of r-cycles modulo the weak numerical

equivalence. Any surjective endomorphism f , via pullback, induces invertible linear maps

on N1(X) and Nr(X), denoted by f ∗|N1(X) and f ∗|Nr(X). We first give the following

criterion for int-amplified endomorphisms. From this, one can easily see that it is very

natural to define and study such kind of endomorphisms. We refer to [19, Proposition

2.9] for a criterion for polarized endomorphism.

Theorem 1.1. Let f : X → X be a surjective endomorphism of a projective variety X.

Then the following are equivalent.

(1) The endomorphism f is int-amplified.

(2) All the eigenvalues of ϕ := f ∗|N1(X) are of modulus greater than 1.

(3) There exists some big R-Cartier divisor B such that f ∗B −B is big.

(4) If C is a ϕ-invariant convex cone in N1(X), then ∅ 6= (ϕ− idN1(X))
−1(C) ⊆ C.

Remark 1.2. The approach towards Theorem 1.1 is purely cone theoretical. Therefore,

it also applies to the action f ∗|Nn−1(X); see Theorem 3.3 for the precise argument.

One advantage of studying int-amplified endomorphisms is that, with it, the category

of polarized endomorphisms is largely extended to include taking the product. Note

that, in general, an int-amplified endomorphism may not split as a product of polarized

endomorphisms; see Example 10.3. For the compositions of maps, X. Yuan and S. Zhang

asked the following question. Unfortunately, it has a negative answer; see Example 10.4.

However, we are able to show in Theorem 1.4 that the composition of sufficient iterations

of int-amplified endomorphisms is still int-amplified. The proof essentially uses Theorem

1.1.

Question 1.3. (cf. [30, Question 4.15]) Let f and g be polarized endomorphisms of a

projective variety X such that Prep(f) = Prep(g) where Prep is the set of preperiodic

points. Is f ◦ g polarized ?

Theorem 1.4. Let f and g be surjective endomorphisms of a projective variety X. Sup-

pose f is int-amplified. Then f i ◦ g and g ◦ f i are int-amplified when i≫ 1.

In the rest of this paper, we focus on showing that int-amplified endomorphisms keep

all the nice properties of polarized endomorphisms concerning the canonical divisor, sin-

gularity and equivariant minimal model program (MMP). The main technique required
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for this generalization is in Section 3 which applies the intersection theory. We refer to

[19] and [7] for the details about the polarized case.

Let f : X → X be a surjective endomorphism of a normal projective variety X .

When f is polarized and X is smooth, Boucksom, de Fernex and Favre [5, Theorem C]

showed that −KX is pseudo-effective. Cascini, Zhang and the author [7, Theorem 1.1

and Remark 3.2] used a different method to show further that −KX is weakly numerically

equivalent to an effective Weil Q-divisor without the assumption ofX being smooth. Now

applying Theorem 1.1 to the ramification divisor formula KX = f ∗KX + Rf where Rf

is the ramification divisor for f , this result can be easily generalized to the int-amplified

case.

Theorem 1.5. Let X be a normal projective variety admitting an int-amplified endomor-

phism. Then −KX is weakly numerically equivalent to some effective Weil Q-divisor. If

X is further assumed to be Q-Gorenstein, then −KX is numerically equivalent to some

effective Q-Cartier divisor.

We refer to [16, Chapters 2 and 5] for the definitions and the properties of log canonical

(lc), Kawamata log terminal (klt), canonical and terminal singularities. Let f : X → X

be a non-isomorphic surjective endomorphism of a normal projective variety X . Wahl

[28, Theorem 2.8] showed that X has at worst lc singularities when dim(X) = 2. Broustet

and Höring [6, Corollary 1.5] generalized this result to the higher dimensional case with

additional assumptions that f is polarized and X is Q-Gorenstein. We generalize their

result to the int-amplified case in the following.

Theorem 1.6. Let X be a Q-Gorenstein normal projective variety admitting an int-

amplified endomorphism. Then X has at worst lc singularities.

Let f : X → X be a surjective endomorphism of a normal projective variety X . We

consider typical f -equivariant morphisms; see [23, §4] or Definition 6.4 for the special

maximal rationally connected (MRC) fibration, and see also [10, Remark 9.5.25], [18,

Chapter II.3] and [7, §5] for the Albanese morphism and the Albanese map (cf. Section

7).

The result below is a generalization of [19, Proposition 1.6]. A normal projective variety

X is said to be Q-abelian if there is a finite surjective morphism π : A → X étale in

codimension 1 with A being an abelian variety.

Theorem 1.7. Let f : X → X be an int-amplified endomorphism of a normal projective

variety X. Then there is a special MRC fibration π : X 99K Y in the sense of Nakayama

[23] (which is the identity map when X is non-uniruled) together with a (well-defined)

surjective endomorphism g of Y , such that the following are true.
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(1) g ◦ π = π ◦ f ; g is int-amplified.

(2) Y is a Q-abelian variety with only canonical singularities.

(3) Let Γ̄X/Y be the normalization of the graph of π. Then the induced morphism

Γ̄X/Y → Y is equi-dimensional with each fibre (irreducible) rationally connected.

(4) If X has only klt singularities, then π is a morphism.

The following result answers Krieger - Reschke [17, Question 1.10] when f is int-

amplified. For the polarized case (especially in arbitrary characteristic), see [19, Corollary

1.4] and [7, Theorem 1.2].

Theorem 1.8. Let f : X → X be an int-amplified endomorphism of a normal projective

variety X. Then we have the following.

(1) The Albanese morphism albX : X → Alb(X) is surjective with (albX)∗OX =

OAlb(X) and all the fibres of albX are irreducible and equi-dimensional. The in-

duced morphism g : Alb(X) → Alb(X) is int-amplified.

(2) The Albanese map albX : X 99K Alb(X) is dominant and the induced morphism

h : Alb(X) → Alb(X) is int-amplified.

By Theorems 1.7 and 5.2, we have the following result.

Theorem 1.9. Let f : X → X be an int-amplified endomorphism of a normal projective

variety X. Suppose either X is klt and KX is pseudo-effective or X is non-uniruled.

Then X is Q-abelian.

Finally, we generalize the result of equivariant MMP [19, Theorem 1.8] to the int-

amplified case. Note that we need the key observation Lemma 9.2 to show (3) below.

Theorem 1.10. Let f : X → X be an int-amplified endomorphism of a Q-factorial

klt projective variety X. Then, replacing f by a positive power, there exist a Q-abelian

variety Y , a morphism X → Y , and an f -equivariant relative MMP over Y

X = X1 99K · · · 99K Xi 99K · · · 99K Xr = Y

(i.e. f = f1 descends to fi on each Xi), with every Xi 99K Xi+1 a divisorial contraction,

a flip or a Fano contraction, of a KXi
-negative extremal ray, such that we have:

(1) If KX is pseudo-effective, then X = Y and it is Q-abelian.

(2) If KX is not pseudo-effective, then for each i, fi is int-amplified and Xi → Y

is an equi-dimensional morphism with every fibre irreducible. All the fibres are

rationally connected if the base field is uncountable. The Xr−1 → Xr = Y is a

Fano contraction.

(3) f ∗|N1(X) is diagonalizable over C if and only if so is f ∗
r |N1(Y ).
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The following theorem is an application of Theorem 1.10 and generalizes [19, Theorem

1.10(1)].

Theorem 1.11. Let f : X → X be an int-amplified endomorphism of a smooth rationally

connected projective variety X. Then there exists some s > 0, such that (f s)∗|N1(X) is

diagonalizable over Q with all the eigenvalues being positive integers greater than 1. In

particular, f ∗|N1(X) is diagonalizable over C.

When f : X → X is a polarized endomorphism of a projective variety X , the action

f ∗|N1(X) is always diagonalizable over C and all the eigenvalues are of the same modulus

(cf. [19, Proposition 2.9]). However, Theorem 1.11 fails without the assumption of rational

connectedness due to Example 10.1 given by Najmuddin Fakhruddin.

Remark 1.12 (Differences with early papers). In the papers of [19] and [7], for a polarized

f : X → X with f ∗H ∼ qH where q > 1 and H is ample, the nice eigenvector H of f ∗

is frequently used. For example, by taking top self-intersection of H and the projection

formula, one can easily see that deg f = Hdim(X). However, for the int-amplified case,

there is no such simple way. A rough bound is given in Lemma 3.7 and it is precisely

characterized in the proof of Lemma 9.2. On the other hand, the pullback action of a

polarized f on Nr(X) is clearly characterized (cf. [31, Lemma 2.4] and [33, Theorem 1.1]).

For the int-amplified case, we are only able to give a “limit” version in Lemma 3.8. Due

to these difficulties, all the generalizations as shown in the previous main theorems are

required to adjust the old proofs in [19] and [7] accordingly based on the new methods

in Section 3. Finally, we highlight that the int-amplified criteria in Theorem 1.1 by the

cone analysis are the keys to making all the subsequent methods and results possible.

The proofs of Theorems 1.1, 1.4, 1.5 and 1.6 are in Section 3. The proof of Theorem

1.7 is in Section 6. The proof of Theorem 1.8 is in Section 7. The proofs of Theorems

1.10 and 1.11 are in Section 9.

Acknowledgement. The author would like to thank Professor De-Qi Zhang for many

inspiring discussions, Professor Najmuddin Fakhruddin for providing Example 10.1, and

the anonymous colleague for the suggestion of Example 10.2. He thanks the referee for

very careful reading and many useful suggestions to revise this paper. He also thanks Max

Planck Institute for Mathematics for providing an impressive acadamic environment. The

author is supported by a Research Assistantship of the National University of Singapore.

2. Preliminaries

2.1. Notation and terminology.
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Let X be a projective variety. We use Cartier divisor H (always meaning integral,

unless otherwise indicated) and its corresponding invertible sheaf O(H) interchangeably.

Let f : X → X be a surjective endomorphism. A subset Z ⊆ X is said to be f -

invariant (resp. f−1-invariant) if f(Z) = Z (resp. f−1(Z) = Z). We say that Z ⊆ X is

f -periodic (resp. f−1-periodic) if f s(Z) = Z (resp. f−s(Z) = Z) for some s > 0.

Denote by Per(f) the set of all f -periodic closed points.

Let n := dim(X). We can regard N1(X) := NS(X) ⊗Z R as the space of numerically

equivalent classes of R-Cartier divisors. Denote by Nr(X) the space of weakly numerically

equivalent classes of r-cycles with R-coefficients (cf. [19, Definition 2.2]). When X is

normal, we also call Nn−1(X) the space of weakly numerically equivalent classes of Weil

R-divisors. In this case, N1(X) can be regarded as a subspace of Nn−1(X). We recall the

following f ∗-invariant cones:

• Amp(X): the cone of ample classes in N1(X),

• Nef(X): the cone of nef classes in N1(X),

• PE1(X): the cone of pseudo-effective classes in N1(X), and

• PEn−1(X): the cone of pseudo-effective classes in Nn−1(X).

We refer to [19, §2] for more information.

Given a finite surjective morphism π : X → Y of two normal projective varieties.

There is a ramification divisor formula

KX = π∗KY +Rπ

where Rπ is the ramification divisor of π which is an integral effective Weil divisor of X .

We say that π is quasi-étale if π is étale in codimension 1, i.e., Rπ = 0. The purity of

branch locus tells us that if π is quasi-étale and Y is smooth, then π is étale.

The inspiration for studying int-amplified endomorphisms comes from the so-called

amplified endomorphisms which were first defined by Krieger and Reschke (cf. [17]). Re-

call that a surjective endomorphism f is amplified if f ∗L−L = H for some Cartier divisor

L and ample Cartier divisor H . Clearly, “int-amplified” is “amplified” and Fakhruddin

showed the following very motivating result.

Theorem 2.2. (cf. [9, Theorem 5.1]) Let f : X → X be an amplified endomorphism of

a projective variety X. Then the set of f -periodic points Per(f) is Zariski dense in X.

Fakhruddin’s result can be applied to give a rough characterization of projective vari-

eties admitting amplified endomorphisms by the Kodaira dimension. First, we give the

following two simple but useful results.
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Lemma 2.3. Let f : X → X be an amplified (resp. int-amplified) endomorphism of a

projective variety X. Let Z be a closed subvariety of X such that f(Z) = Z. Then f |Z
is amplified (resp. int-amplified).

Proof. Let i : Z → X be the inclusion map. Suppose f ∗L − L = H for some Cartier

divisors L and H . Let L|Z := i∗L and H|Z := i∗H . Then (f |Z)∗(L|Z)−L|Z = H|Z . Note
that the restriction of an ample Cartier divisor is still ample. So the lemma is proved. �

Lemma 2.4. Let f : X → X be an amplified endomorphism of a projective variety X.

Then Per(f) is countable.

Proof. Suppose Per(f) is uncountable. Then there exists some s > 0, such that the set

S of all f s-fixed points is infinite. Let Z be an irreducible component of the closure of

S in X with dim(Z) > 0. Then f s|Z = idZ , a contradiction to f s|Z being amplified by

Lemma 2.3. �

Theorem 2.5. Let f : X → X be an amplified endomorphism of a projective variety X.

Then the Kodaira dimension κ(X) ≤ 0.

Proof. We may assume X is over the field k which is uncountable by taking the base

change. Suppose κ(X) > 0. Let π : X 99K Y be an Iitaka fibration. Then dim(Y ) =

κ(X) > 0 and f descends to an automorphism g : Y → Y of finite order by [24, Theorem

A]. Replacing f by a positive power, we may assume g = idY . Let U be an open

dense subset of X such that π is well-defined over U . Let W be the graph of π and

p1 : W → X and p2 : W → Y the two projections. For any closed point y ∈ Y ,

denote by Xy := p1(p
−1
2 (y)) and Uy := U ∩ Xy. Note that Uy1 ∩ Uy2 = ∅ if y1 6= y2.

Since π ◦ f = π, f−1(Xy) = Xy. Then for some sy > 0, f−sy(X i
y) = X i

y for every

irreducible component X i
y of Xy, and f

sy |Xi
y
is amplified by Lemma 2.3. If Uy 6= ∅, then

Per(f) ∩ Uy = Per(f |Xy
) ∩ Uy =

⋃
i Per(f

sy |Xi
y
) ∩ Uy 6= ∅ by Theorem 2.2. Note that

Per(f) ⊇ ⋃y∈Y (Per(f) ∩ Uy) and there are uncountably many y ∈ Y such that Uy 6= ∅.
Then Per(f) is uncountable, a contradiction to Lemma 2.4. �

Remark 2.6. There do exist amplified automorphisms (eg. automorphisms of positive

entropy on abelian surfaces), while the degree of an int-amplified endomorphism is al-

ways greater than 1 (cf. Lemma 3.7). Unlike the polarized case (cf. [19, Corollary 3.12]),

it is in general impossible to preserve an amplified automorphism via a birational equi-

variant lifting (cf. [17, Lemma 4.4] and [26, Theorem 1.2]). On the other hand, we do

not know whether “amplified” can be preserved via an equivariant descending (cf. [17,

Question 1.10]). However, we shall show in the first half of Section 3 that int-amplified

endomorphisms have all these nice properties like the polarized case (cf. [19, §3]). They
are necessary for us to set up the equivariant MMP later in Section 8.
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Remark 2.7. In general, even after taking an equivariant lifting, an amplified endomor-

phism may not split into a product of an amplified automorphism and an int-amplified

endomorphism; and an int-amplified endomorphism may not split into a product of two

polarized endomorphisms; see Section 10 for the precise argument and examples.

3. Properties of int-amplified endomorphisms

We refer to [19, Definition 2.6] for the notation and symbols involved below.

Lemma 3.1. Let ϕ : V → V be an invertible linear map of a positive dimensional real

normed vector space V . Let C be a convex cone of V such that C spans V and its closure

C contains no line. Assume ϕ(C) = C and ϕ(ℓ) − ℓ = h for some ℓ and h in C◦ (the

interior part of C). Then all the eigenvalues of ϕ are of modulus greater than 1.

Proof. Note that C
◦
= C◦ since C is a convex cone. So we may assume C is closed. Let

1
r
be the spectral radius of ϕ−1. Note that ϕ±(C) = C and C spans V and contains no

line. By a version of the Perron-Frobenius theorem (cf. [3]), ϕ(v) = rv for some nonzero

v ∈ C. Suppose r ≤ 1. Since ℓ ∈ C◦ and v 6= 0, ℓ − av ∈ ∂C := C\C◦ for some a > 0.

Then ϕ(ℓ−av)− (ℓ−av) = h+a(1−r)v ∈ C◦. So ϕ(ℓ−av) ∈ C◦ and hence ℓ−av ∈ C◦,

a contradiction. �

Proposition 3.2. Let ϕ : V → V be an invertible linear map of a positive dimensional

real normed vector space V . Assume ϕ(C) = C for a convex cone C ⊆ V . Suppose

further all the eigenvalues of ϕ are of modulus greater than 1. Then (ϕ− idV )
−1(C) ⊆ C.

Proof. Suppose e := ϕ(v) − v ∈ C. If e = 0, then v = 0 since no eigenvalue of ϕ is 1.

Next, we assume e 6= 0.

For m ≥ 1, let Em be the convex cone generated by {ϕ−1(e), · · · , ϕ−m(e)}. Let E∞

be the convex cone generated by {ϕ−i(e)}i≥1. Let E be the convex cone generated by

{ϕ−i(e)}i∈Z. Then all the above cones are subcones of C. Note that ϕ±(E) = E and

ϕ−1(E∞) ⊆ E∞. Let W be the vector space spanned by E. Since e 6= 0, dim(W ) > 0.

We claim that E∞ spans W . Let W ′ be the vector space spanned by E∞. Then

ϕ−1(W ′) ⊆W ′ and hence ϕ(W ′) = W ′ since W ′ is finite dimensional and ϕ is invertible.

In particular, ϕi(e) ∈ W ′ for any i ∈ Z and hence W ⊆ W ′. So the claim is proved.

Now we may assume Em spans W for m ≫ 1. This implies E◦
m ⊆ E

◦
. Therefore,

sm :=
m∑
i=1

ϕ−i(e) ∈ E◦
m ⊆ E

◦
. Note that lim

n→+∞
ϕ−n(v) = 0 since all the eigenvalues

of ϕ are of modulus greater than 1. Then v = lim
n→+∞

v − ϕ−n(v) = lim
n→+∞

n∑
i=1

ϕ−i(e) =

sm + lim
n→+∞

n∑
i=m+1

ϕ−i(e) ∈ E
◦
= E◦. In particular, v ∈ E ⊆ C. �
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Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. Let V := N1(X) and ϕ := f ∗|N1(X). It is clear that (1) implies

(3), and (4) implies (1) by letting C = Amp(X).

Suppose all the eigenvalues of ϕ are of modulus greater than 1. Then ϕ − idV is

invertible. By Proposition 3.2, (2) implies (4).

Suppose f ∗B − B is big for some big R-Cartier divisor B. Let C := PE1(X) the cone

of all classes of pseudo-effective R-Cartier divisors in N1(X). By applying Lemma 3.1 to

C, (3) implies (2). �

Let X be a normal projective variety of dimension n and D a Weil-R divisor. Recall

that D is big if its class [D] ∈ PEn−1(X); see [13, Theorem 3.5] for equivalent definitions.

Considering the action f ∗|Nn−1(X) and the cone PEn−1(X), we have similar criteria as

follows.

Theorem 3.3. Let f : X → X be a surjective endomorphism of an n-dimensional normal

projective variety X. Then the following are equivalent.

(1) The endomorphism f is int-amplified.

(2) All the eigenvalues of ϕ := f ∗|Nn−1(X) are of modulus greater than 1.

(3) There exists some big Weil R-divisor B such that f ∗B−B is a big Weil R-divisor.

(4) If C is a ϕ-invariant convex cone in Nn−1(X), then ∅ 6= (ϕ−idNn−1(X))
−1(C) ⊆ C.

The following lemmas are easy applications but indispensable for us to run equivariant

MMP step by step.

Lemma 3.4. Let π : X → Y be a surjective morphism of projective varieties. Let

f : X → X and g : Y → Y be two surjective endomorphisms such that g ◦ π = π ◦ f .
Suppose f is int-amplified. Then g is int-amplifed.

Proof. By Theorem 1.1, all the eigenvalues of f ∗|N1(X) are of modulus greater than 1 and

hence so are all the eigenvalues of g∗|N1(Y ) since π∗ : N1(Y ) → N1(X) is injective. By

Theorem 1.1 again, g is int-amplified. �

Lemma 3.5. Let π : X 99K Y be a generically finite dominant rational map of projective

varieties. Let f : X → X and g : Y → Y be two surjective endomorphisms such that

g ◦ π = π ◦ f . Then f is int-amplified if and only if so is g.

Proof. Let Γ be the graph of π and denote by pX : Γ → X and pY : Γ → Y be

two projections. Then there exists a surjective endomorphism h : Γ → Γ such that

pX ◦ h = f ◦ pX and pY ◦ h = g ◦ pY . Note that pX and pY are generically finite surjective
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morphisms. Therefore, it suffices for us to consider the case when π is a well-defined

morphism.

One direction follows from Lemma 3.4. Suppose H := g∗L−L is ample for some ample

Cartier divisor L on Y . Then π∗L is big and f ∗(π∗L)− π∗L = π∗H is big. By Theorem

1.1, f is int-amplified. �

Proof of Theorem 1.4. Fix a norm on N1(X). Denote by ϕf := f ∗|N1(X) and ϕg :=

g∗|N1(X). Since f is int-amplified, all the eigenvalues of ϕ−1
f are of modulus less than 1

by Theorem 1.1. Then lim
i→+∞

||ϕ−i
f || 1i < 1 and hence there exists some i0 > 0, such that

||ϕ−i
f || < 1

||ϕ−1
g ||

for i ≥ i0. Denote by h = f i◦g with i ≥ i0 and ϕh := h∗|N1(X). Let
1
r
be the

spectral radius of ϕ−1
h . By a version of the Perron-Frobenius theorem (cf. [3]), ϕh(v) = rv

for some nonzero v ∈ N1(X). Note that r||v|| = ||ϕh(v)|| = ||ϕg(ϕ
i
f(v))|| > ||v||. So r > 1

and hence h is int-amplified by Theorem 1.1 again. The similar argument works for

g ◦ f i. �

Proof of Theorem 1.5. Denote by ϕ := f ∗|Nn−1(X) and C the cone of classes of effective

Weil-R divisors in Nn−1(X). Then ϕ(C) = C. By the ramification divisor formula, we

have the class [f ∗(−KX)−(−KX)] = [Rf ] ∈ C. So Theorem 3.3 implies that [−KX ] ∈ C.

When KX is Q-Cartier, the proof is similar. �

Let f : X → X be a surjective endomorphism of a projective variety X of dimension

n > 0. Denote by

NC
i (X) := Ni(X)⊗R C

and

Nk
C(X) := {

∑
ax1 · · ·xk | a ∈ C, x1, · · · , xk are Cartier divisors}/ ≡w,

where
∑
ax1 · · ·xk ≡w 0 if (

∑
ax1 · · ·xk) · xk+1 · · ·xn = 0 for any Cartier divisors

xk+1, · · · , xn. When k = 1, N1
C(X) = N1(X) ⊗R C by [32, Lemma 3.2]. Note that

f ∗ naturally induces an invertible linear map on Nk
C(X).

The following result gives a useful bound on the spectral radius of f ∗|Nk
C
(X) for int-

amplified f which allows us to discuss the dynamics on the subvarieties later.

Lemma 3.6. Let f : X → X be an int-amplified endomorphism of a projective variety

X of dimension n. Assume that 0 < k < n. Then all the eigenvalues of f ∗|Nk
C
(X) are of

modulus less than deg f . In particular, lim
i→+∞

(f i)∗x
(deg f)i

= 0 for any x ∈ Nk
C(X).

Proof. We show by induction on k from n− 1 to 1. Suppose f ∗x ≡w µx for some µ 6= 0

and 0 6= x ∈ Nk
C(X). Let V := {v ∈ N1

C(X) | x · v ≡w 0} be a subspace of N1
C(X). By

the projection formula, f ∗(V ) = V and V ( N1
C(X). So there exists some y ∈ N1

C(X)\V ,
such that f ∗y − λy ∈ V , where λ is an eigenvalue of f ∗|N1

C
(X). Then f

∗(x · y) ≡w µλx · y
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and hence µλ is an eigenvalue of f ∗|Nk+1

C
(X). By Theorem 1.1, |λ| > 1. If k = n− 1, then

µλ = deg f and hence |µ| < deg f . If k < n − 1, then |µλ| < deg f by induction and

hence |µ| < deg f .

The last statement is clear. �

As an easy application, we can show that int-amplified endomorphisms are always

non-isomorphic.

Lemma 3.7. Let f : X → X be an int-amplified endomorphism of a positive dimensional

projective variety X. Then deg f > 1.

Proof. It is trivial when dim(X) = 1. Assume that dim(X) > 1. By Theorem 1.1, all the

eigenvalue of f ∗|N1(X) are of modulus greater than 1. Therefore, deg f > 1 by applying

Lemma 3.6 for k = 1. �

Another application is the following lemma concerning the action f ∗|Nk(X) which plays

an essential role in our generalization about the singularity and equivariant MMP.

Lemma 3.8. Let f : X → X be an int-amplified endomorphism of a projective variety

X of dimension n > 0. Let Z be a k-cycle of X with k < n. Let H be an ample Cartier

divisor on X. Then lim
i→+∞

Z · (f i)∗(Hk)
(deg f)i

= 0.

Proof. We may assume Z is effective. If k = 0, lim
i→+∞

Z · (f i)∗(Hk)
(deg f)i

= lim
i→+∞

|Z|
(deg f)i

= 0 by

Lemma 3.7. Suppose k > 0. Let xi :=
(f i)∗(Hk)
(deg f)i

∈ Nk
C(X). By Lemma 3.6, lim

i→+∞
xi = 0 in

Nk
C(X). Since H is ample, xi · we ≥ 0 for any effective k-cycle we. So the lemma follows

from Lemma 3.9. �

Lemma 3.9. Let X be a projective variety of dimension n. Suppose xi ∈ Nk
C(X) with

0 < k < dim(X) such that x · we ≥ 0 for any non-zero effective k-cycle we. Suppose

further lim
i→+∞

xi = 0 in Nk
C(X). Then for any w ∈ NC

i (X), lim
i→+∞

xi · w = 0.

Proof. We may assume that w represents the class of some irreducible closed subvariety.

By Lemma 3.10, w + w′ = y1 · · · yn−k for some effective k-cycle w′ and hypersurfaces

y1, · · · , yn−k. So 0 ≤ lim
i→+∞

xi · w ≤ lim
i→+∞

xi · (w + w′) = lim
i→+∞

xi · y1 · · · yn−k = 0. �

Lemma 3.10. Let X be a projective variety of dimension n. Let W be an m-dimensional

closed subvariety of X with m < n. Then there exist hypersurfaces H1, · · · , Hn−m such

that
⋂n−m

i=1 Hi is of pure dimension m and W is an irreducible component of
⋂n−m

i=1 Hi.

In particular, the intersection H1 · · ·Hn−m =W +W ′ for some effective m-cycle W ′.

Proof. Let X be a closed subvariety of PN for some N > 0. Let I be the homogeneous

ideal of W in PN .
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Let Y1, · · · , Ys be irreducible closed subvarieties of PN such that W does not contain

Yi for each i. We first claim that there exists a homogenous polynomial f ∈ I such that

Z(f) (zeros of f , not necessarily irreducible or reduced) does not contain Yi for each i.

Since W does not contain Y1, there exists some homogenous polynomial f1 ∈ I such that

Z(f1) does not contain Y1. Suppose we have found some homogenous polynomial ft ∈ I

such that Z(ft) does not contain Yi for i ≤ t. Since W does not contain Yt+1, there

exists some homogenous polynomial gt+1 ∈ I such that Z(gt+1) does not contain Yt+1.

We may assume ft and gt+1 have the same degree by taking suitable powers. If Z(ft)

does not contain Yt+1, we set ft+1 = ft. Suppose Yt+1 ⊆ Z(ft+1). Let k be the base field.

Consider Si := {a ∈ k | Yi ⊆ Z(ft + agt+1)} for i ≤ t + 1. Note that Si has at most one

element for each i ≤ t + 1. Since k is infinite, there exists some a 6∈ ⋃t+1
i=1 Si and we set

ft+1 = ft + agt+1. So the claim is proved.

By the above claim, we may first find some homogenous polynomial h1 ∈ I such that

Z(h1) does not contain X . Set H1 := Z(h1)|X the pullback of Z(h1) via the inclusion map

X → PN . Then H1 is a hypersurface of X . Suppose that we have found hypersurfaces

H1 := Z(h1)|X , · · · , Ht := Z(ht)|X such that
⋂

i≤tHt is of pure dimension n − t and

contains W . If m = n − t, then W is an irreducible component of
⋂

i≤tHt and hence

we are done. If m < n − t, then we may continue applying the above claim to all the

irreducible components of
⋂

i≤tHt. �

Applying Lemma 3.8 to the f−1-invariant closed subvariety, we have

Lemma 3.11. Let f : X → X be an int-amplified endomorphism of a projective variety

X. Let Z be an f−1-invariant closed subvariety of X such that deg f |Z = deg f . Then

Z = X.

Proof. Let m := dim(Z) and d := deg f . Suppose m < dim(X). Let A be an ample

Cartier divisor on X . Then Z · f ∗(A)m = f∗Z ·Am = dZ ·Am by the projection formula.

By Lemma 3.8, we have 1 ≤ Z · Am = lim
i→+∞

Z · (f i)∗(Am)
di

= 0, a contradiction. �

Now we are able to apply [6, Theorem 1.2] and show the singularity.

Proof of Theorem 1.6. Suppose the contrary that X is not lc. Let Z be an irreducible

component the non-lc locus ofX . Since f is int-amplified, deg f > 1 by Lemma 3.7. Then

f−1(Z) = Z and deg f |Z = deg f > 1 by [6, Theorem 1.2]. By Lemma 3.11, Z = X ,

absurd. �

4. Q-abelian case

In this section, we will deal with the case of Q-abelian varieties admitting int-amplified

endomorphisms. Recall that a normal projective variety X is Q-abelian if there exist
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an abelian variety A and a finite surjective morphism π : A → X which is étale in

codimension 1. As stated in Theorem 1.10, Q-abelian varieties are the end products of

the equivariant MMP and this will be proved in the next section. The results discussed

in this section will be used to show many rigidities, eg., Theorem 1.7, Theorem 1.8 and

Theorem 1.10(2).

First, we observe in the following two lemmas that there is no f−1-periodic subvarieity

except itself.

Lemma 4.1. Let f : A → A be an int-amplified endomorphism of an abelian variety A.

Let Z be a (non-empty) f−1-periodic closed subvariety of A. Then Z = A.

Proof. We may assume Z is irreducible and f−1(Z) = Z. Note that f is étale by the

ramification divisor formula and the purity of branch loci. Then deg f |Z = deg f and

hence Z = A by Lemma 3.11. �

Lemma 4.2. Let f : X → X be an int-amplified endomorphism of a Q-abelian variety.

Let Z be a (non-empty) f−1-periodic closed subset of X. Then Z = X.

Proof. Note that X has only quotient singularities and KX ∼Q 0. Then f is quasi-étale

by the ramification divisor formula. By [7, Corollary 8.2], there exist a quasi-étale cover

π : A → X and a surjective endomorphism fA : A → A such that f ◦ π = π ◦ fA. By

Lemma 3.5, fA is int-amplified. Note that f−s
A (π−1(Z)) = π−1(Z) for some s > 0. By

Lemma 4.1, π−1(Z) = A and hence Z = X . �

Now we state several rigidities. The proof of the following lemma is the same as the

proof of [19, Lemma 5.2] except that we apply Lemma 4.2 instead of [19, Lemma 4.7].

We rewrite it here for the reader’s convenience.

Lemma 4.3. Let π : X → Y be a surjective morphism between normal projective varieties

with connected fibres. Let f : X → X and g : Y → Y be two int-amplified endomorphisms

such that g ◦ π = π ◦ f . Suppose that Y is Q-abelian. Then the following are true.

(1) All the fibres of π are irreducible.

(2) π is equi-dimensional.

(3) If the general fibre of π is rationally connected, then all the fibres of π are rationally

connected.

Proof. First we claim that f(π−1(y)) = π−1(g(y)) for any y ∈ Y . Suppose there is

a closed point y of Y such that f |π−1(y) : π−1(y) → π−1(g(y)) is not surjective. Let

S = g−1(g(y)) − {y}. Then S 6= ∅ and U := X − π−1(S) is an open dense subset

of X . Since f is an open map, f(U) is an open dense subset of X . In particular,
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f(U) ∩ π−1(g(y)) is open in π−1(g(y)). Note that f(U) = (X − π−1(g(y))) ∪ f(π−1(y)).

So f(U) ∩ π−1(g(y)) = f(π−1(y)) is open in π−1(g(y)). Since f is also a closed map,

the set f(π−1(y)) is both open and closed in the connected fibre π−1(g(y)) and hence

f(π−1(y)) = π−1(g(y)). So the claim is proved.

Let

Σ1 := {y ∈ Y | π−1(y) is not irreducible}.
Note that f(π−1(y)) = π−1(g(y)). Then g−1(Σ1) ⊆ Σ1 and hence g−1(Σ1) ⊆ Σ1. Since

Σ1 is closed and has finitely many irreducible components, g−1(Σ1) = Σ1. By Lemma

4.2, Σ1 = ∅. So (1) is proved.

Let

Σ2 := {y ∈ Y | dim(π−1(y)) > dim(X)− dim(Y )},
and

Σ3 := {y ∈ Y | π−1(y) is not rationally connected}.
By (1), π is equi-dimensional outside Σ2. Since f is finite surjective, g−1(Σ2) ⊆ Σ2.

By (1), all the fibres of π outside Σ3 are rationally connected. Note that the image of

a rationally connected variety is rationally connected. So g−1(Σ3) ⊆ Σ3. Now the same

reason above implies that Σ2 = ∅. Similarly, Σ3 = ∅ if the general fibre of π is rationally

connected. �

We recall the following rigidity without dynamics.

Lemma 4.4. (cf. [19, Lemma 5.3]) Let π : X 99K Y be a dominant rational map between

normal projective varieties. Suppose that (X,∆) is a klt pair for some effective Q-divisor

∆ and Y is Q-abelian. Suppose further that the normalization of the graph ΓX/Y is equi-

dimensional over Y (this holds when k(Y ) is algebraically closed in k(X), f : X → X is

int-amplified and f descends to some int-amplified fY : Y → Y ). Then π is a morphism.

Proof. Note that the lemma is the same with [19, Lemma 5.3] except the argument

in brackets. Let W be the normalization of ΓX/Y and denote by pX : W → X and

pY : W → Y be the two projections. So we are left to prove that the argument in

brackets implies that pY is equi-dimensional. In this situation, there exists a surjective

endomorphism h : W →W such that pX ◦ h = f ◦ pX and pY ◦ h = fY ◦ pY . By Lemma

3.5, h is int-amplified. So pY is equi-dimensional by Lemma 4.3. �

5. KX pseudo-effective case

In this section, we reduce KX pseudo-effective case to the Q-abelian case. In this way,

we are only left to deal with the case when KX is not pseudo-effective and the equivariant

MMP; see Section 8.
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We first recall the result below.

Lemma 5.1. (cf. [21, Lemma 3.3.1], [25, Lemma 2.5] and [14, Theorem 1.1]) Let f :

X → X be a non-isomorphic surjective endomorphism of a normal projective variety X.

Let θk : Vk → X be the Galois closure of fk : X → X for k ≥ 1 and let τk : Vk → X be

the induced finite Galois covering such that θk = fk ◦ τk. Then there exist finite Galois

morphims gk, hk : Vk+1 → Vk such that τk ◦ gk = τk+1 and τk ◦ hk = f ◦ τk+1. Suppose

further that X is klt and f is quasi-étale. Then gk and hk are étale when k ≫ 1.

For the result below, we follow the idea of [25, Theorem 3.3] and rewrite the proof here.

Theorem 5.2. Let f : X → X be an int-amplified endomorphism of a klt normal pro-

jective variety X with KX being pseudo-effective. Then X is Q-abelian.

Proof. By Theorem 1.5, −KX is pseudo-effective and hence KX ≡ 0. Therefore, f is

quasi-étale by the ramification divisor formula. We then apply Lemma 5.1 and use the

notation there. Note that deg hk = d(deg gk) where d := deg f > 1 by Lemma 3.7. Let A

be an ample Cartier divisor on X . Denote by Ak := τ ∗kA and (f ∗A)k := τ ∗k (f
∗A). In the

rest of the proof, we always assume k ≫ 1.

We first claim that Vk is smooth. Denote by Sing(Vk) the singular locus of Vk. Note

that gk and hk are étale and Galois. So we may assume Sing(Vk+1) = g−1
k (Sing(Vk)) =

h−1
k (Sing(Vk)). Suppose the contrary Sing(Vk) 6= ∅. Let m := dim(Sing(Vk)) < dim(X).

Let Sk be the union of the m-dimensional irreducible components of Sing(Vk). We may

assume Sk+1 = g−1
k (Sk) = h−1

k (Sk) and Sk+1 = g∗kSk = h∗kSk as cycles. By the projection

formula, we have

Sk+1 · (f ∗A)mk+1 = Sk+1 · g∗k((f ∗A)k)
m = (deg gk)Sk · (f ∗A)mk

and

Sk+1 · (f ∗A)mk+1 = Sk+1 · h∗k(Ak)
m = (deg hk)Sk · Am

k .

Then Sk · (f ∗A)mk = dSk · Am
k . Let Zk := (τk)∗Sk. By the projection formula, we have

Zk · (f ∗Am) = dZk · Am. Therefore, 1 ≤ Zk · Am = lim
i→+∞

Zk · (f i)∗Am

di
= 0 by Lemma 3.8,

a contradiction. So the claim is proved.

Let n := dim(X). Next, we claim that c2(Vk) · An−2
k = 0. Note that c2(Vk+1) =

g∗k(c2(Vk)) = h∗k(c2(Vk)). By a similar argument, we have

c2(Vk+1) · (f ∗A)n−2
k+1 = (deg gk)c2(Vk) · (f ∗A)n−2

k = (deg hk)c2(Vk) · An−2
k .

Let Wk := (τk)∗c2(Vk). By the projection formula, c2(Vk) · (f ∗A)n−2
k = Wk · (f ∗An−2) =

dc2(Vk) ·An−2
k = dWk ·An−2. Therefore c2(Vk) ·An−2

k =Wk ·An−2 = lim
i→+∞

Wk · (f
i)∗An−2

di
= 0

by Lemma 3.8.
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Since fk is quasi-étale, its Galois closure θk is quasi-étale and hence so is τk. In

particular, c1(Vk) is numerically trivial. Therefore, Vk is Q-abelian by [29] (cf. [1]) and

hence so is X . �

6. Special MRC fibration and the non-uniruled case

In this section, we apply Theorem 5.2 to reduce the non-uniruled case to the Q-abelian

case and prove Theorem 1.7.

We slightly generalize [15, Lemma 2.4] to the following.

Lemma 6.1. Let X be a non-uniruled normal projective variety such that −KX is pseudo-

effective. Then KX ∼Q 0 (Q-linear equivalence) and X has only canonical singularities.

Proof. Let π : Y → X be a resolution of X . Since Y is non-uniruled, KY is pseudo-

effective by [4, Theorem 2.6]. Thus, we have the σ-decompositionKY = Pσ(KY )+Nσ(KY )

in the sense of [22]: Nσ(KY ) is an effective R-Cartier divisor determined by the following

property: Pσ(KY ) = KY −Nσ(KY ) is movable, and if B is an effective R-Cartier divisor

such that KY −B is movable, then Nσ(KY ) ≤ B. Here, an R-Cartier divisor D is called

movable if: for any ample R-Cartier divisor H ′ and any prime divisor Γ, there is an

effective R-Cartier divisor ∆ such that ∆ ∼ D + H ′ and Γ 6⊂ Supp∆ (cf. [22, Chapter

III, §1.b]).
Note that KX = π∗KY ∼ π∗Pσ(KY ) + π∗Nσ(KY ) and −KX is pseudo-effective. We

have KX ≡w 0 (weak numerical equivalence, cf. [19, §2]). Then π∗Pσ(KY ) ≡w 0. Let H

be an ample Cartier divisor on X and n := dim(X). Then Pσ(KY ) · (π∗H)n−1 = 0 by

the projection formula. Since Pσ(KY ) is movable and π∗H is nef and big, Pσ(KY ) ≡ 0

by Lemma 6.2. In particular, the numerical Kodaira dimension κσ(Y ) of Y , in the sense

of [22, Chapter V], is zero. By [22, Corollary 4.9], the Kodaira dimension κ(Y ) = 0.

Therefore, KY ∼Q E for some effective Q-Cartier divisor E. Note that π∗E ∼Q π∗KY ≡w

0. Then E is π-exceptional and hence KX ∼Q 0.

Note that KY ∼Q π
∗KX + E. So X has canonical singularities. �

Lemma 6.2. Let X be a smooth projective variety of dimension n. Let D be a movable

R-Cartier divisor such that D ·Hn−1 = 0 for some nef and big Cartier divisor H. Then

D ≡ 0.

Proof. Since D is movable, we may writeD ≡ lim
i→+∞

Di wheremiDi is Cartier and effective

for some mi and the base locus of |miDi| is of codimension at least 2. Then for any

prime divisor G, Di|G is effective and hence D|G ≡ lim
i→+∞

Di|G is pseudo-effective. So

D ·G ·Hn−2 = D|G · (H|G)n−2 ≥ 0. By [25, Lemma 2.2], D ≡ 0 . �
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Theorem 6.3. Let f : X → X be an int-amplified endomorphism of a non-uniruled

normal projective variety X. Then X is Q-abelian with only canonical singularities.

Proof. By Theorem 1.5, −KX is pseudo-effective. So KX ∼Q 0 and X has only canonical

singularities by Lemma 6.1. In particular, KX is pseudo-effective and hence X is Q-

abelian by Theorem 5.2. �

We recall the following definition for the reader’s convenience.

Definition 6.4 (Special MRC fibration). Let X be a normal projective variety. A special

MRC fibration for X is a dominant rational map π : X 99K Y into a normal projective

variety Y such that

(1) Y is non-uniruled,

(2) the second projection p2 : Γ → Y for the graph Γ ⊆ X×Y of π is equi-dimensional,

(3) a general fiber of p2 is rationally connected,

(4) π is a Chow reduction.

The special MRC fibration always exists and π is uniquely determined up to isomorphism

(cf. [23, Theorem 4.18]). Moreover, any surjective endomorphism f : X → X descends

to some surjective endomorphism g : Y → Y equivariantly via π (cf. [23, Theorem 4.19]).

Proof of Theorem 1.7. (1) follows from [23, Theorem 4.19] (cf. [19, Lemma 4.1]) and

Lemma 3.4. (2) follows from Theorem 6.3. (3) follows from Lemma 4.3. (4) follows from

Lemma 4.4. �

7. Albanese morphism and Albanese map

In this section, we prove Theorem 1.8.

We recall the notion of Albanese morphism and Albanese map of a normal projective

variety (cf. [7, §5]).

Definition 7.1. Let X be a normal projective variety.

There is an Albanese morphism albX : X → Alb(X) such that: Alb(X) is an abelian

variety, albX(X) generates Alb(X), and for every morphism ϕ : X → A from X to an

abelian variety A, there exists a unique morphism ψ : Alb(X) → A such that ϕ = ψ◦albX

(cf. [10, Remark 9.5.25]).

In the birational category, there is an Albanese map albX : X 99K Alb(X) such that:

Alb(X) is an abelian variety, albX(X) generates Alb(X), and for every rational map ϕ :

X 99K A fromX to an abelian variety A, there exists a unique morphism ψ : Alb(X) → A

such that ϕ = ψ ◦ albX (cf. [18, Chapter II.3]). If albX is a morphism, then albX and

albX are the same.
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Let f : X → X be a surjective endomorphism of a normal projective variety X over

k. By the above two universal properties, f descends to surjective endomorphisms on

Alb(X) and Alb(X).

Lemma 7.2. Let f : A → A be a surjective endomorphism of an abelian variety A. Let

Z be an f -invariant subvariety of A such that f |Z is amplified. Then Z is an abelian

variety.

Proof. By Theorem 2.5, κ(Z) ≤ 0. Therefore, Z is an abelian variety by [27, Theorem

3.10]. �

Lemma 7.3. Let f : X → X be an int-amplified endomorphisms of a normal projective

variety X. Then the Albanese morphism albX is surjective.

Proof. Let Z := alb(X) and g := f |Alb(X). Then g(Z) = Z. By Lemma 3.4, g|Z is int-

amplified and hence amplified. By Lemma 7.2, Z is an abelian variety. By the universal

property of albX , we have Z = Alb(X). �

Lemma 7.4. Let f : X → X be an int-amplified endomorphism of a normal projective

variety X. Suppose albX is finite. Then albX is an isomorphism and X is an abelian

variety.

Proof. By Lemma 7.3, albX is surjective. By the ramification divisor formula, KX =

(albX)
∗KAlb(X) +RalbX

= RalbX , where RalbX is the effective ramification divisor of albX .

By Theorem 1.5, −KX is pseudo-effective. So RalbX = 0 and hence albX is étale by the

purity of branch loci. Therefore, X is an abelian variety (cf. [20, Chapter IV, 18]). By

the universal property, albX is an isomorphism. �

Proof of Theorem 1.8. Let g := f |Alb(X). By Lemmas 7.3 and 3.4, albX is surjective and

g is int-amplified. Taking the Stein factorization of albX , we have ϕ : X → Y and

ψ : Y → Alb(X) such that ϕ∗OX = OY and ψ is a finite morphism. Then f descends

to an int-amplified endomorphism fY : Y → Y by [7, Lemma 5.2] and Lemma 3.4. By

the universal property, ψ = albY . So ψ is an isomorphism by Lemma 7.4, and we can

identify albX : X → Alb(X) with ϕ : X → Y . By Lemma 4.3, all the fibres of albX are

irreducible and equi-dimensional. So (1) is proved.

For (2), let W be the normalization of the graph of albX . Then Alb(W ) = Alb(W ) =

Alb(X). Note that f lifts to an int-amplified endomorphism fW : W → W by Lemma

3.5. Therefore by (1), the induced endomorphism h : Alb(X) → Alb(X) is int-amplified.

Since albW is surjective by (1), albX is dominant. �
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8. Minimal model program for int-amplified endomorphisms

In this section, we apply Lemma 3.8 and generalize the theory of equivariant MMP to

the int-amplified case. We refer to [19, Section 6] for all technical details involved.

We rewrite the proof of [19, Lemma 6.1] by highlighting the differences for the reader’s

convenience.

Lemma 8.1. Let f : X → X be an int-amplified endomorphism of a projective variety.

Suppose A ⊆ X is a closed subvariety with f−if i(A) = A for all i ≥ 0. Then M(A) :=

{f i(A) | i ∈ Z} is a finite set.

Proof. We may assume n := dim(X) ≥ 1. Set M≥0(A) := {f i(A) | i ≥ 0}.
We first assert that if M≥0(A) is a finite set, then so is M(A). Indeed, suppose

f r1(A) = f r2(A) for some 0 < r1 < r2. Then for any i > 0, f−i(A) = f−if−sr1f sr1(A) =

f−if−sr1f sr2(A) = f sr2−sr1−i(A) ∈M≥0(A) if s≫ 1. So the assertion is proved.

Next, we show that M≥0(A) is a finite set by induction on the codimension of A in X .

We may assume k := dim(A) < dim(X). Let Σ be the union of Sing(X), f−1(Sing(X))

and the irreducible components in the ramification divisor Rf of f . Set Ai := f i(A) (i ≥
0).

We claim that Ai is contained in Σ for infinitely many i. Otherwise, replacing

A by some Ai0 , we may assume that Ai is not contained in Σ for all i ≥ 0. So we have

f ∗Ai+1 = Ai. Let H be an ample Cartier divisor. By the projection formula, Ai+1 ·Hk =

Ai · (1df ∗(Hk)) ≥ 1. By Lemma 3.8, 1 ≤ lim
i→+∞

Ai+1 ·Hk = lim
i→+∞

A1 · ( 1
di
(f i)∗(Hk)) = 0, a

contradiction. So the claim is proved.

If k = n−1, by the claim, f r1(A) = f r2(A) for some 0 < r1 < r2. Then |M≥0(A)| < r2.

If k ≤ n − 2, assume that |M≥0(A)| = ∞. Let B be the Zariski-closure of the union

of those Ai1 contained in Σ. Then k + 1 ≤ dim(B) ≤ n − 1, and f−if i(B) = B for

all i ≥ 0. Choose r ≥ 1 such that B′ := f r(B), f(B′), f 2(B′), · · · all have the same

number of irreducible components. Let X1 be an irreducible component of B′ of maximal

dimension. Then k + 1 ≤ dim(X1) ≤ n − 1 and f−if i(X1) = X1 for all i ≥ 0. By

induction, M≥0(X1) is a finite set. So we may assume that f−1(X1) = X1, after replacing

f by a positive power and X1 by its image. Note that f |X1
is still int-amplified by

Lemma 2.3. Now the codimension of Ai1 in X1 is smaller than that of A in X . By

induction, M≥0(Ai1) and hence M≥0(A) are finite. �

Theorem 8.2. Let f : X → X be an int-amplified endomorphism of a Q-factorial lc

projective variety X. Let π : X 99K Y be a dominant rational map which is either a

divisorial contraction or a Fano contraction or a flipping contraction or a flip induced by
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a KX-negative extremal ray. Then there exists an int-amplified endomorphism g : Y → Y

such that g ◦ π = π ◦ f after replacing f by a positive power.

Proof. Replacing [19, Lemma 6.1] by our new Lemma 8.1, then the theorem follows by

the same argument and proofs of [19, Lemma 6.2 to Lemma 6.6]. �

9. Proof of Theorems 1.10 and 1.11

Let X be a Q-factorial lc projective variety. Let π : X → Y be a contraction of a KX-

negative extremal ray RC := R≥0C generated by some curve C. Then NS(X)/π∗NS(Y ) is

a Z-module of rank 1 by the exact sequence (cf. [12, Theorem 1.1(4)iii], or [16, Corollary

3.17]) below

0 → NS(Y )
π∗

−→ NS(X)
·C−→ Z → 0.

Tensoring with R, N1(X)/π∗N1(Y ) is a 1-dimensional real vector space. Let D ∈
N1(X). Then D · C = 0 implies D ∈ π∗N1(Y ); D · C > 0 implies D is π-ample; and

D · C < 0 implies −D is π-ample.

Let f : X → X be an int-amplified endomorphism. By Theorem 8.2, there exists some

int-amplified endomorphism g : Y → Y such that g ◦ π = π ◦ f . In particular, we have

an induced map f ∗ : NS(X)/π∗NS(Y ) → NS(X)/π∗NS(Y ). Tensoring with R, we have

an induced invertible linear map f ∗ : N1(X)/π∗N1(Y ) → N1(X)/π∗N1(Y ). Note that all

the eigenvalues of f ∗|N1(X) are of modulus greater than 1 by Theorem 1.1. So we have

the following.

Lemma 9.1. Let X be a Q-factorial lc projective variety. Let π : X → Y be a contrac-

tion of a KX-negative extremal ray. Let f : X → X and g : Y → Y be int-amplified

endomorphisms such that g ◦ π = π ◦ f . Then f ∗|N1(X)/π∗ N1(Y ) = q id for some positive

integer q > 1.

Lemma 9.2. Let X be a Q-factorial lc projective variety. Let π : X → Y be a Fano

contraction of a KX-negative extremal ray. Let f : X → X and g : Y → Y be surjective

endomorphisms such that g ◦ π = π ◦ f . Suppose g∗|N1
C
(Y ) is diagonalizable. Then so is

f ∗|N1
C
(X).

Proof. Let m := dim(X), n := dim(Y ) and a := m − n. Consider W := N1
C(Y ) as a

subspace of V := N1
C(X) via the pullback π∗. Denote by VR := N1(X) and WR := N1(Y ).

Let ϕ := f ∗|N1
C
(X). Then g∗|N1

C
(Y ) = ϕ|N1

C
(Y ). Suppose ϕ is not diagonalizable. Since
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dim(V/W ) = 1, the Jordan canonical form of ϕ is




λ1 1 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
...

...
...

...
...

0 0 0 · · · λk




where λ1 = λ2 > 0 by Lemma 9.1. So we may find some x1 ∈ VR\W such that x2 :=

ϕ(x1) − λ1x1 ∈ WR is a (non-zero) eigenvector of λ2. We may further assume x1 is

π-ample. Let x3 ∈ W, · · · , xk ∈ W be the eigenvectors of λ3, · · · , λk, where k = dimV .

We first claim that the intersection number xa11 · xa22 · · ·xakk is non-zero for a1 = a and

suitable a2 > 0, a3 ≥ 0 · · · , ak ≥ 0 such that
k∑

i=1

ai = m. Note that x2, · · · , xk spans W .

Let H =
∑
i≥2

bixi be an ample divisor class on Y . Since 0 6= x2 ∈ WR, either x2 ·Hn−1 or

x22 ·Hn−2 is non-zero (cf. [19, Lemma 2.3]). In particular, the intersection xa22 · · ·xakk 6= 0

on Y for some a2 > 0. So we may assume xa22 · · ·xakk = cF on X for some general fibre

F of π and non-zero complex number c. Since x1 is π-ample, xa1 · F = (x1|F )a 6= 0 and

hence xa1 · xa22 · · ·xakk 6= 0. So the claim is proved.

We next claim that deg f =
k∏

i=1

λaii and deg g =
∏
i≥2

λaii . Applying the projection formula

for g on Y , we have

(deg g)(xa22 · · ·xakk ) = g∗(xa22 · · ·xakk ) = (
∏

i≥2

λaii )(x
a2
2 · · ·xakk ).

Given non-negative integers s1, · · · , sk with
k∑

i=1

si = m and s1 < a, one has
k∑

i=1

si > n and

hence xs22 · · ·xskk = 0. Applying the projection formula for f on X , we have

(deg f)(xa11 · · ·xakk ) = f ∗(xa11 · · ·xakk ) = (λ1x1 + x2)
a1 · · · (λkxk)ak = (

k∏

i=1

λaii )(x
a1
1 · · ·xakk ).
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Now we have

(
k∏

i=1

λaii )(x
a1+1
1 · xa2−1

2 · · ·xakk ) = deg f(xa1+1
1 · xa2−1

2 · · ·xakk )

= (f ∗x1)
a1+1 · (f ∗x2)

a2−1 · · · (f ∗xk)
ak

= (λ1x1 + x2)
a1+1 · (λ2x2)a2−1

∏

i≥3

(λixi)
ak

= (λa1+1
1 · λa2−1

2 ·
∏

i≥3

λaii )(x
a1+1
1 · xa2−1

2 · · ·xakk ) + (a1 + 1)(

k∏

i=1

λaii )(x
a1
1 · · ·xakk )

= (

k∏

i=1

λaii )(x
a1+1
1 · xa2−1

2 · · ·xakk ) + (a1 + 1)(

k∏

i=1

λaii )(x
a1
1 · · ·xakk )

since λ1 = λ2. So x
a1
1 · · ·xakk = 0, a contradiction. �

With all the preparation work settled, we now prove our main theorems.

Proof of Theorem 1.10. If KX is pseudo-effective, then (1) follows from Theorem 5.2 and

(3) is then trivial. Next, we consider the case where KX is not pseudo-effective.

By [2, Corollary 1.3.3], since KX is not pseudo-effective, we may run MMP with scaling

for a finitely many steps: X = X1 99K · · · 99K Xj (divisorial contractions and flips) and

end up with a Mori’s fibre space Xj → Xj+1. Note that Xj+1 is again Q-factorial (cf. [16,

Corollary 3.18] with klt singularities (cf. [11, Corollary 4.5]). So by running the same

program several times, we may get the following sequence:

(∗) X = X1 99K · · · 99K Xi 99K · · · 99K Xr = Y,

such that KXr
is pseudo-effective. Replacing f by a positive power, the sequence (∗) is

f -equivariant by Theorem 8.2. Since KXr
is pseudo-effective, Y = Xr is Q-abelian by

(1).

By Lemma 4.4, the composition Xi 99K Y is a morphism for each i. If Xi 99K Xi+1 is

a flip, then for the corresponding flipping contraction Xi → Zi, the pair (Zi,∆i) is klt for

some effective Q-divisor ∆i by [11, Corollary 4.5]. Hence Zi 99K Y is also a morphism by

Lemma 4.4 again. Together, the sequence (∗) is a relative MMP over Y .

By [19, Lemma 2.16] and Lemma 4.3, Xi → Y is equi-dimensional with every fibre

being (irreducible) rationally connected. Note that KXi
is not pseudo-effective for any

i < r by (1). Then the final map Xr−1 → Xr is a Fano contraction. So (2) is proved.

We show (3) by induction on i from r to 1. It is trivial when i = r. Suppose f ∗
i+1|N1(Xi+1)

is diagonalizable over C. Let π : Xi 99K Xi+1 be the i-th step of the sequence (∗). If π is

a flip, then N1(Xi) = π∗N1(Xi+1) and hence f ∗
i |N1(Xi) is diagonalizable over C. If π is a

divisorial contraction with E being the π-exceptional prime divisor, then f ∗
i E = λE for
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some integer λ > 1 by Lemma 9.1. Note that −E is π-ample by [16, Lemma 2.62]. Its

class [E] ∈ N1(Xi)\π∗N1(Xi+1). Note that π∗N1(Xi+1) is a 1-codimensional subspace of

N1(Xi). Then f
∗
i |N1(Xi) is diagonalizable over C. If π : Xi → Xi+1 is a Fano contraction,

then f ∗
i |N1(Xi) is diagonalizable over C by Lemma 9.2. So (3) is proved. �

Proof of Theorem 1.11. We apply Theorem 1.10 and use the notation there. Replacing

f by a positive power, there is an f -equivariant equi-dimensional morphism π : X → Y

with all the fibre being irreducible such that Y is Q-abelian.

We claim that Y is a point. Suppose dim(Y ) > 0. Then there is a quasi-étale cover

A→ Y of degree greater than 1. Let X ′ := X ×Y A. Since π is equi-dimensional and has

irreducible fibres, then the induced cover X ′ → X is quasi-étale and hence étale of degree

greater than 1 by the purity of branch loci, a contradiction to X being simply connected

by [8, Corollary 4.18].

Since Y is a point, f ∗|N1(X) is diagonalizable over C by Theorem 1.10. Let λ be an

eigenvalue of f ∗|N1(X). Then λ is an eigenvalue of f ∗
i |N1(Xi)/π∗ N1(Xi+1) for some i, where

π : Xi → Xi+1 is either a divisorial or Fano contraction. By Lemma 9.1, λ > 1 is an

integer. In particular, f ∗|N1(X) is diagonalizable over Q. �

10. Some examples

Let f : X → X be an int-amplified endomorphism of a projective variety X . Then

f ∗|N1(X) may not be diagonalizable over C.

Example 10.1 (N. Fakhruddin). Let X = E×E where E is an elliptic curve admitting a

complex multiplication. Then dim(N1(X)) = 4. Let σ : X → X be an automorphism via

(x, y) 7→ (x, x + y). Then σ is of null-entropy and σ∗|N1(X) is not diagonalizable over C.

Let nX be the multiplication endomorpphism of X . Note that n∗
X |N1(X) = n2 idN1(X). By

Theorem 1.1, f := σ◦nS is int-amplified for n > 1. Clearly, f ∗|N1(X) is not diagonalizable

over C.

Let f : X → X be an amplified endomorphism of a projective variety X . In general,

there do not exist projective varieties Y and Z, an int-amplified endomorphim g : Y → Y ,

an amplified automorphism h : Z → Z, and a dominant rational map π : Y × Z 99K X

such that π ◦ (g × h) = f ◦ π.

Example 10.2. Let X = E × E where E is an elliptic curve. There is an action of

SL2(Z) on X by automorphisms. Take M ∈ SL2(Z) such that some eigenvalue of M is

greater than 1. Let f1 : X → X an automorphism determined by M . Then f1 is of

positive entropy and we may assume that the spectral radius of f ∗
1 |N1(X) is greater than

4 after replacing f1 by some positive power. Let f = 2X ◦ f1 where 2X : X → X is
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the multiplication endomorphism of X . Note that (2X)
∗|N1(X) = 4 idN1(X). So all the

eigenvalues of f ∗|N1(X) are of modulus not equal to 1. In particular, f is amplified and

not int-amplified by Theorem 1.1. Suppose the contrary that the above g and h exist.

By Theorem 2.2, we may assume g(y) = y and h(z) = z for some y ∈ Y and z ∈ Z after

replacing g and h by some positive power. In particular, (g × h)({y} × Z) = {y} × Z.

Clearly, {y}×Z does not dominate X and {y}×Z is not contracted to a point in X by

taking a general y. So we may have a curve C in X such that f(C) = C and f |C is an

automorphism. This is impossible since f |C is amplified and hence non-isomorphic.

Let f : X → X be an int-amplified endomorphism of a projective variety X . In general,

there do not exist projective varieties Y and Z, polarized endomorphims g : Y → Y ,

h : Z → Z, and a dominant rational map π : Y × Z 99K X such that π ◦ (g × h) = f ◦ π.

Example 10.3. Let X = E × E where E is an elliptic curve admitting a complex

multiplication. Let f : X → X be an int-amplified endomorphism such that f(a, b) =

(na, na + nb) for some integer n > 1 as constructed in Example 10.1. Then all the

eigenvalues of f ∗|N1(X) are of modulus n2. Suppose the contrary that the above g and h

exist. By a similar argument in Example 10.2, we have two different curves E1 and E2 in

X such that E1 ∩E2 6= ∅ and f s(E1) = E1, f
s(E2) = E2 for some s > 0. Note that f s|E1

and f s|E2
are both amplified and hence polarized. So E1 and E2 are elliptic curves. We

may assume that f s|E1∩E2
= id. By choosing an identity element in E1 ∩ E2, E1 and E2

can be regarded as subgroups of X and we may assume f s, f s|E1
and f s|E2

are isogenies.

Then we have f s-equivariant fibrations X → X/E1 and X → X/E2. So (f s)∗E1 ≡ n2sE1

and (f s)∗E2 ≡ n2sE2. Since E1 · E2 > 0, f s|E1
and f s|E2

are both n2s-polarized (cf. [7,

Introduction]). Let f̃ := f s|E1
× f s|E2

. Then f̃ is also an n2s-polarized isogeny. Let

τ : E1 ×E2 → X such that τ(a, b) = a+ b. Then τ is an isogeny such that f ◦ τ = τ ◦ f̃ .
Therefore f s is n2s-polarized (cf. [19, Lemma 3.10 and Theorem 3.11]). However, by

Example 10.1, (f s)∗|N1(X) is not diagonalizable over C. So we get a contradiction by [19,

Proposition 2.9].

We construct two polarized endomorphisms with the same set of preperiodic points

such that their composition is not int-amplified and hence not polarized.

Example 10.4. Let X = E × E where E is an elliptic curve admitting a complex

multiplication. Let f : X → X be a surjective endomorphism corresponding to the

matrix

(
1 −5

1 1

)
, i.e., f(a, b) = (a−5b, a+ b). Then f ∗|H1,0(X) is diagonalizable with two

eigenvalues being of the same modulus
√
6. Note that f ∗|H1,1(X) = f ∗|H1,0(X) ∧ f ∗|H1,0(X)

and N1
C(X) = H1,1(X). So f ∗|N1

C
(X) is diagonalizable with four eigenvalues of the same
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modulus 6. Therefore, f is polarized by [19, Proposition 2.9]. Let σ : X → X be an

automorphism corresponding to the matrix

(
1 −10

0 1

)
. By the same argument, g := σ−1◦

f ◦σ is polarized corresponding to the matrix

(
11 −105

1 −9

)
. Denote by h := f ◦g. Then h

corresponds to the matrix

(
6 −60

12 −114

)
. Note that this matrix has a real eigenvalue with

modulus less than 1. So h∗|N1
C
(X) has an eigenvalue with modulus less than 1. Therefore,

h is not int-amplified by Theorem 1.1. Finally, note that both f and g are polarized

isogenies. Then Prep(f) = Prep(g) is the set of torsion points of X by [17, Proposition

2.5]. So the answer to Question 1.3 is negative.
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