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AN INDEX OF STRONGLY CALLIAS OPERATORS ON LORENTZIAN

MANIFOLDS WITH NON-COMPACT BOUNDARY

MAXIM BRAVERMAN†

Abstract. We consider hyperbolic Dirac-type operator with growing potential on a spatially

non-compact globally hyperbolic manifold. We show that the Atiyah-Patodi-Singer boundary

value problem for such operator is Fredholm and obtain a formula for this index in terms of the

local integrals and the relative eta-invariant introduced by Braverman and Shi. This extends

recent results of Bär and Strohmaier, who studied the index of a hyperbolic Dirac operator on

a spatially compact globally hyperbolic manifold.

1. Introduction

Recently Bär and Strohmaier, [5], discovered that a Dirac operator D with Atiyah-Patodi-

Singer (APS) boundary conditions on a spatially compact globally hyperbolic manifold is Fred-

holm. This is quite surprising, since the operator is not elliptic. Bär and Strohmaier showed

that the index of the APS boundary value problem for such operator is equal to the index of the

APS boundary problem for an elliptic operator, obtained from D by a “Wick rotation”. Thus

this index can be computed by the usual APS index theorem [2].

Besides significant contribution to the index theory, the result of Bär and Strohmaier provides

the first mathematically rigorous description of chiral anomaly in quantum field theory, [6], but

only in spatially compact case. It is desirable to extend the results of [5] to spatially non-compact

manifolds, thus, in particular, providing a mathematically rigorous description of anomalies in

more realistic physical situations. The current paper is an attempt to do so by studying so called

strongly Callias-type operators on spatially non-compact globally hyperbolic manifolds.

A systematic treatment of the index of boundary value problems for strongly Callias-type

operators on non-compact manifolds with non-compact boundary was given in [10, 9, 18, 11]. In

particular, in [10, 9] an APS-type index formula is obtained for strongly Callias-type operators

on so called essentially cylindrical manifolds – manifolds, which outside of a compact set look

like a product [0, 1] × Y .

In this paper we consider a (non-compact) manifold M = [0, 1] × Σ and endow it with a

Lorentzian metric 〈·, ·〉, which is product outside of a compact set. Let E = E+ ⊕ E− be

a graded Dirac bundle over M and let D be the corresponding Dirac operator. A strongly

Callias-type operator is the operator D := D + F , where F is a self-adjoint bundle map (called

the Callias potential) which anticommutes with the Cliford multiplication and satisfies certain

growth conditions at infinity. On manifolds without boundary these conditions guarantee that

the spectrum of D is descrete. This implies, in particular, that the spectrum of the restriction

At of D to each space-like hypersurface Σt = {t}×Σ is discrete. We also assume that there exists
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2 MAXIM BRAVERMAN

a compact subset K ⊂ Σ, such that the restriction of all the structures to the complement of

[0, 1]×K are product. The first main result of the paper is that the APS boundary value problem

of D is Fredholm. This extends a result of [5] to our non-compact situation. Next, we show

that the index of this boundary value problem is equal to the APS index of the elliptic strongly

Callias-type operator Ď, obtained from D by Wick rotation. This allows us to compute this

index by an APS-type index formula (with eta-invariant replaced with the relative eta-invariant

introduced in [10, 9]).

Our proof of Fredholmness of the APS boundary value problem for D is quite different from

that in [5], because we need to study the behavior of the solutions of Du = 0 at infinity. Let us

discuss the main steps of the proof.

1.1. The wave evolution operator. In Section 3 we carefully study the behavior of the

solutions of the wave equation Du = f at infinity. This allows us do define spaces of sections

of E, in which the inhomogeneous Cauchy problem for D is well-posed. As a consequence, we

define the unitary wave evolution operator Q : L2(Σ0, E
+
0 ) → L2(Σ1, E

+
1 ), where E

+
t denotes

the restriction of E+ to Σt := {t} × Σ ⊂M .

Let At denote the restriction of D to Σt. Following [5] we decompose the space of L2-sections

over Σt into the direct sum of the spectral subspaces of At corresponding to positive and negative

part of the spectrum. We write Q as a matrix

Q =

(
Q++ Q+−

Q−+ Q−−

)
(1.1)

with respect to this decomposition. A key resut here is that the operators Q++ and Q−− are

Fredholm. The proof is quite different from [5] because of the non-compactness of Σ. In fact,

one of the main steps of the proof is showing the compactness of the “off-diagonal” terms Q+−

and Q−+. In [5] it is done by showing that these operators are Fourier integral operators of

negative order. On a compact manifold this implies compactness. On a non-compact manifold

to establish compactness of an operator one also needs estimates on its “behavior at infinity”.

To obtain such estimates we consider two compactly supported cut-off functions φ,ψ : Σ → [0, 1]

such that support of φ is “much bigger” than K and support of ψ is “much bigger” than support

of φ. We then write

Q−+ = φ ◦Q−+ ◦ ψ + φ ◦Q−+ ◦ (1− ψ) + (1− φ) ◦Q−+ ◦ ψ + (1− φ) ◦Q−+ ◦ (1− ψ),

and proof the compactness of each of the four terms in the right hand side separately. Using the

finite propagation speed property of the wave equation we reduce the study of the first three

terms to a study of the evolution operator on a compact manifold. The last term is supported

on the complement of [0, 1]×K where D is a product. We then show that this term is compact

using an explicit computation of the restriction of Q to the complement of [0, 1] ×K.

Let DAPS denote the operator D with APS boundary conditions. A verbatim repetition of

the arguments in [5, §3] shows that this operator is Fredholm and

indD+
APS = indQ−−. (1.2)

1.2. The index formula. Let Ď be the “Wick rotation” of D. This is an elliptic strongly

Callias-type operator on M . We deform it to a new strongly Callias-type operator Ď0, which is

product near ∂M . Applying the deformation argument of [14] to the index formula of [10, 9] we
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conclude that the APS index of Ď is given by

ind Ď+
APS =

∫

M
αAS(Ď

+) +

∫

Σ1

TαAS(Ď
+, Ď0+) −

∫

Σ0

TαAS(Ď
+, Ď0+)

+
η(A0,A1)− dimkerA0 − dimkerA1

2
, (1.3)

where αAS(Ď
+) is the Atiyah-Singer integrand, TαAS(Ď

+, Ď0+) is the transgression of αAS(Ď
+),

and η(A0,A1) is the relative eta-invariant introduced in [10, 9]. Morally, the relative eta invariant

η(A0,A1) is the difference of the eta-invariants of A1 and A0, but the later invariants might not

be defined in non-compact case. However, it is shown in [9] that, in many respects, η(A0,A1)

behaves like it were the difference. In particular, if A := {At
1}0≤t≤1 is a smooth family of

strongly Callias-type operator, whose restriction to M\
(
[0, 1] × K

)
is indepnedent of t. Then

the spectral flow sf(A) is well defined and

2 sf(A) = η(A1
1,A0) − η(A0

1,A0) −

∫ 1

0

( d
ds
η̄(As

1,A0)
)
ds,

where η̄(As
1,A0)

)
denote the reduction of η(As

1,A0)
)
modulo integers. Using this formula and

the arguments in Sections 4.1-4.2 of [5] we show that

ind Ď+
APS = sf(A) − dimker(A1) = indQ−−.

Combining this equality with (1.2) we conclude that

ind Ď+ = indD+.

In particular, indD+ is given by the APS-type formula (1.3).

Acknowledgments. I would like to thank the Max Plank Institute for Mathematics in Bonn,

where most of this work was conducted. I am also grateful to Christian Bär, Pengshuai Shi,

Matthias Lesch, Werner Ballmann, and Yafet Sanchez Sanchez for valuable discussions.

2. The setting

In this section we introduce our main objects: a spatially non-compact globally hyperbolic

manifold X and a Callias-type operator on it. When possible we use the notation of [5].

2.1. A Dirac bundle over a globally hyperbolic manifold. Let Σ be a (possibly non-

compact) odd-dimensional manifold and set M := [0, 1] × Σ. We endow M with Lorentzian

metric given by

〈·, ·〉 := −N2 dt2 + gΣt , (2.1)

where gΣt (0 ≤ t ≤ 1) is a smooth family of complete Riemannian metrics on Σ and N = N(x, t)

is a smooth function, called the lapse function.

The manifold M is foliated by spacelike (i.e. Riemannian) hypersurfaces Σt := {t} × Σ. We

denote by ν the past-directed timelike vector field on M with 〈ν, ν〉 = −1 which is perpendicular

to all Σt. In coordinates, we have ν = − 1
N

∂
∂t , where N is the lapse function, cf. (2.1).

Definition 2.2. A (graded) Dirac bundle over M is a graded vector bundle E = E+ ⊕ E−

endowed with

(i) a graded Clifford action γ : TM → End(E), such that γ(v)2 = −〈v, v〉 and γ(v) : E± →

E∓ (v ∈ TM); we set β := γ(ν) so that β2 = 1;
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(ii) a positive definite scalar product (·, ·)E such that E+ is orthogonal to E− and the

indefinite inner product

〈·, ·〉E := (·, β·)E (2.2)

satisfies

〈
γ(v)e1, e2

〉
E

+
〈
e1, γ(v)e2

〉
E

= 0, e1, e2 ∈ E, v ∈ TM ; (2.3)

(iii) A connection ∇E which preserves the grading and satisfies the Leibniz rule

∇E
u

(
γ(v)e

)
= γ(∇LC

u v) e + γ(v)∇E
u v, u, v ∈ TM, e ∈ E, (2.4)

where ∇LC is the Levi-Civita connection of the Lorenzian metric 〈·, ·〉.

Note that (2.3) implies that

〈
γ(v)e1, γ(v)e2

〉
E

= 〈v, v〉 · 〈e1, e2〉E . (2.5)

If Σ is a spin manifold, then so isM and the bundle SM of spinors overM is naturally a Dirac

bundle, cf. [4]. More generally, if W is a Hermitian bundle over M endowed with a Hermitian

connection, then SM ⊗W is naturally a Dirac bundle. Any Dirac bundle locally looks like this.

2.3. The Dirac operator. Let D : C∞(M,E) → C∞(M,E) be the Dirac operator associated

to the connection ∇E. Locally, if e0, e1, . . . , en is an orthonormal frame (with respect to the

Lorentzian metric (2.1)) then

D =
n∑

j=0

ǫjγj∇
E
ej ,

where ǫj := 〈ej , ej〉 = ±1. Then D is odd with respect to the grading E = E+ ⊕ E−, i.e, has

the form

D =

(
0 D−

D+ 0

)
.

For a linear operator L : C∞(M,E) → C∞(M,E) we denote by L† its formal adjoint with

respect to the indefinite inner product 〈·, ·〉E . One readily sees thatD† = −D, i.e, (D±)† = −D∓.

2.4. The restriction of D to a hyperserface. Let Et = E+|Σt (0 ≤ t ≤ 1) denote the

restriction of E+ to Σt. We endow Et with the Clifford action

γt(v) := iβγ(v), v ∈ TΣt. (2.6)

Then Et is an ungraded Dirac bundle over Σt. Let At : C
∞(Σt, Et) → C∞(Σt, Et) denote the

Dirac operator on Σt. By [4, Eq. (3.6)] (see also [5, Eq. (3)] and [8, §7.1-7.2]) along Σt we have

D = −β
(
∇E
ν + iAt −

n

2
Ht

)
, (2.7)

where Ht is the mean curvature of Σt with respect to ν. The reason for the term n
2Ht is that

the restriction of the Levi-Cevita connection to Σt is not equal to the Levi-Civita connection of

Σt, cf. [8, §7.1-7.2] for more details.
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2.5. The Callias potential. Let now Φ : E → E be a self-adjoint bundle map. We denote by

Φt the restriction of Φ to Et.

Consider the operator

D := D + iβ Φ : C∞(M,E) → C∞(M,E). (2.8)

Then along Σt (t ∈ [0, 1]) we have

D = −β
(
∇E
ν + iAt −

n

2
Ht

)
(2.9)

where

At := At − Φt (2.10)

is a Dirac-type operator on Σt.

Definition 2.6. We say that At is a strongly Callias-type operator if

(i) the ant-commutator [At,Φt]+ := AtΦt + ΦtAt is a zeroth order differential operator,

i.e. a bundle map;

(ii) for any R > 0, there exists a compact subset KR ⊂M such that

Φ2(x) −
∣∣[At,Φt]+(x)

∣∣ ≥ R (2.11)

for all x ∈ M \KR. In this case, the compact set KR is called an R-essential support

of At.

Remark 2.7. Condition (i) of Definition 2.6 is equivalent to the condition that Φ anticommutes

with the Clifford multiplication:
[
γ(v),Φ

]
+
= 0, for all ξ ∈ T ∗M .

One readily sees that a strongly Callias-type operator has a discrete spectrum, [10, §3.10].

2.8. Assumption. We now formulate the main assumptions under which we study the index

of the operator D.

(A1) There exists a compact set K ⊂ Σ such that gΣt
∣∣
Σ\K

is independent of t.

(A2) The lapse function N = N(x, t) is smooth and satisfies N(x, t) = 1 for x 6∈ K.

(A3) There is a fixed isomorphism

E|
M\
(
[0,1]×K

) ≃ [0, 1] × E0|Σ0\K . (2.12)

Under this isomorphism the connection ∇E is equal to the product of the connection

on E0|Σ0\K and the trivial connection along [0, 1]. In other words, if we write a tangent

vector to M\
(
[0, 1] ×K

)
≃ [0, 1] × (Σ\K) as (aν, v) (a ∈ R, v ∈ TΣ), then

∇E
(aν,v)|M\

(
[0,1]×K

) = −
a

N

∂

∂t
+ ∇E0

v

∣∣
Σ0\K

. (2.13)

(A4) The restriction of Φt to M\
(
[0, 1] ×K

)
is independent of t

(A5) A0 is a strongly Callias-type operator in the sense of Definition 2.6.

Note that Assumption (A3) and the Leibniz rule (2.4) imply that the restriction of the Clifford

action γ toM\
(
[0, 1]×K

)
is independent of t ∈ [0, 1]. Since the inner product 〈·, ·〉E is preserved

by ∇E, its restriction to M\
(
[0, 1] ×K

)
is also independent of t.

It follows from Assumptions (A1)-(A3) that the restriction of At to Σt\
(
{t}×K

)
is indepen-

dent of t. Hence, Assumption (A4) implies that At is a strongly Callias-type operator for all

t ∈ [0, 1].
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2.9. Restriction to M\([0, 1] ×K). We note that, by Assumptions (A1)-(A3) of Section 2.8,

the restriction of D to M\
(
[0, 1] ×K

)
is equal to

D|
M\
(
[0,1]×K

) = −β
(
−
∂

∂t
+ iA0

)
. (2.14)

2.10. The scale of Sobolev spaces. We recall the definition of Sobolev spaces Hs
At
(Σt, Et) of

sections over Σt which depend on the operator At, cf. [10, §3.13].

Definition 2.11. Set

C∞
At
(Σt, Et) :=

{
u ∈ C∞(Σt, Et) :

∥∥(Id+A2
t )
s/2u

∥∥2
L2(Σt,Et)

< +∞ for all s ∈ R

}
.

For all s ∈ R we define the Sobolev Hs
At
-norm on C∞

At
(Σt, Et) by

‖u‖2Hs
At

(Σt,Et)
:=

∥∥(Id+A2
t )
s/2u

∥∥2
L2(Σt,Et)

. (2.15)

The Sobolev space Hs
At
(Σt, Et) is defined to be the completion of C∞

At
(Σt, Et) with respect to

this norm.

3. The Cauchy problem and the evolution operator

In this section we show that the Cauchy problem for the strongly Callias-type operator D is

well-posed in certain spaces closely related to the Sobolev spaces Hs
At
(Σt, Et). We then construct

the evolution operator Q : Hs
A0

(Σ0, E0) → Hs
A1

(Σ1, E1) for the wave equation Du = 0 and

discuss its basic properties. This generalizes the results of [5, §2] to our non-compact situation.

3.1. The compact case. Fix t0 ∈ [0, 1] and let u = Et0(u0; f) denote the solution of the

non-homogeneous Cauchy problem

Du = f ;

u(t0, x) = ut0(x).
(3.1)

In particular, in the case t0 = 0 and f = 0 we define the evolution operator Q as the map from

sections over Σ0 to sections over Σ1, defined by

Q : u0 → E0(u0; 0)|Σ1
.

To make this definition rigorous one needs to define a space of sections over M such that the

wave equation (3.1) has a unique solution in this space. It is also desirable to show that the

operator Q is continuous.

A rigorous construction of the evolution operator in the case when Σ is compact is given by

Bär and Strohmaier in [5, §2]. In this paper the authors considered the collection Hs
At
(Σt, Et)

as an infinite dimensional vector bundle over [0, 1] and defined the space FEs(M,D) of finite

s-energy sections to be the completion of the space of continuous sections of this bundle with

respect to a certain norm.

Let

FEs(M, kerD) :=
{
u : u(t, ·) ∈ Hs

At
(Σt, Et), Du = 0

}
. (3.2)

(note that, if Σ is compact, then Hs
At
(Σt, Et) coincides with the usual Sobolev spaceHs(Σt, Et)).

Bär and Strohmaier proved the following version of well-posedness of the Cauchy problem for

the wave equation: if Σ is compact, then the restriction map

rest : FE
s(M, kerD) → Hs

At
(Σt, Et) (3.3)
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is an isomorphism of topological vector spaces. This allows to define the evolution operator as

Q := res1 ◦ res
−1
0 : Hs

A0
(Σ0, E0) → Hs

A1
(Σ1, E1). (3.4)

3.2. Sketch of the construction in non-compact situation. Let us first briefly explain

where our construction of Q differs from the compact case and sketch our strategy of treating

the problems at “infinity”.

To extend the argument of the previous subsection to our non-compact situation we consider

the collection of spaces Hs
At
(Σt, Et) as an infinite dimensional bundle over [0, 1] and define the

space FEs(M,D) to be a completion of the space of continuous sections of this bundle. We

define the space FEs(M, kerD) as in (3.2). The main result of this section is the well-posedness

of the Cauchy problem (3.1) in these spaces, which means that, for each t0 ∈ [0, 1], the map

rest0 ⊕D : FEs(M,D) → Hs
At0

(Σt0 , Et0)⊕ L2
(
[0, 1],Hs

At
(Σt, Et)

)
(3.5)

is an isomorphism of Banach spaces. In particular,

rest0 : FEs(M, kerD) → Hs
At0

(Σt0 , Et0) (3.6)

is an isomorphism of Banach spaces and we can define the evolution operator by (3.4).

To prove that (3.5) is an isomorphism, we construct the inverse Et0 of this map. So Et0(ut0 ; f)

is the solution of (3.1).

Consider a large compact set K ′ ⊂ M . In particular, we assume that K ′ contains the set K

defined in (A1) of Section 2.8. Let φ be a compactly supported function whose restriction to K ′

is equal to 1. Fix t0 ∈ [0, 1]. Given ut0 ∈ Hs
At
(Σt, Et), f ∈ L

2
(
[0, 1],Hs

At
(Σt, Et)

)
, we decompose

them as ut0 = φut0 + (1− φ)ut0 , f = φu+ (1 − φ)u and construct separately Et0(φut0 , φf) and

Et0((1− φ)ut0 , (1− φ)f).

Since φut0 and φf are compactly supported it follows easily from the finite propagation speed

of the solutions of the wave equation and a result of [5, §2] that there is a unique compactly

supported section u′ = Et0(φut0 , φf) ∈ FEs(M,D) such that rest0(u
′) = φut0 and Du′ = φf .

The supports of (1− φ)ut0 and (1− φ)f are outside of K. Suppose

u′′ = Et0
(
(1− φ)ut0 , (1− φ)f

)
∈ FEs(M,D)

is a solution of the wave equation. If the set K ′ is large enough, then, from the finite propagation

speed property, we conclude that u′′ is supported outside of the set [0, 1] ×K, where K is the

compact set defined in (A1) of Section 2.8. Recall that all our structures are product outside of

[0, 1] ×K. Using this fact, one checks that

u′′(t, x) = ei(t−t0)A0(1− φ)ut0(x) − β

∫ t

t0

eiA0(t−s) (1− φ)f(s) ds.

We now define the extension map

Et0 : Hs
At
(Σt, Et)⊕ L2

(
[0, 1],Hs

At
(Σt, Et)

)
→ FEs(M,D) (3.7)

by Et0(ut; f) = u′+u′′. One easily checks that this map is independent of the choice of the cut-off

function φ. We prove that this map is the inverse of rest0 ⊕D and, hence, is an isomorphism of

Banach spaces. The evolution operator is defined by (3.3).
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3.3. The propagation speed. Many of the arguments in this paper are based on the following

finite propagation speed property of the wave equation, cf., for example, [1, Theorem 7.9].

Definition 3.4. Define a new norm on the tangent space TΣ to Σ by

‖u‖2max :=

max
0≤t≤1

gΣt (u, u)

min
(t,x)∈M

N(t, x)
, u ∈ TxΣ, (3.8)

where N(t, x) is the lapse function, cf. (2.1). For x, y ∈ Σ we denote by dist(x, y) the distance

between x and y defined by the Finsler metric associated to this norm.

Proposition 3.5 (Finite propagation speed). Suppose s > 1/2 and u ∈ Hs
loc(M,E) is a solution

of the equation Du = f . For t0 ∈ [0, 1], we have

suppu ⊂
{
(t, x) : dist

(
x, supput0 ∪ supp f

)
≤ |t− t0|

}
. (3.9)

3.6. The space of finite s-energy sections. We view the family

Hs
At
(Σt, Et) := Hs

At
(Σt, E

+|Σt), t ∈ [0, 1]),

as an infinite dimensional vector bundle over [0, 1]. The space of continuous sections of this

bundle is called the space of finite s-energy sections and is denoted by FEs(M,E). We endow

FEs(M,E) with the norm

‖u‖FEs := max
t∈[0,1]

‖u(t)‖Hs
At

(Σt,Et). (3.10)

We also consider the space of L2
(
[0, 1],Hs

At
(Σt, Et)

)
of sections of Hs

At
(Σt, Et) with finite L2-

norm

‖u‖2L2,Hs
At

(Σt,Et)
:=

∫ 1

0

∥∥(Nu)|Σt

∥∥2 dt. (3.11)

The operator D acts on FEs(M,E) by (cf. (2.9))

Du := −β
(
−

1

N

du

dt
+ iAt u(t)−

n

2
Ht u(t)

)
(3.12)

We define the space FEs(M,D) as the completion of FEs(M,E) with respect to the norm

‖u‖2FEs,D := ‖u‖2FEs + ‖Du‖2L2,FEs. (3.13)

Notice, that for each t ∈ [0, 1] there is a well-defined continuous map

rest : FE
s(M,D) → Hs

At
(Σt, Et). (3.14)

We set

FEs(M, kerD) :=
{
u ∈ FEs(M,D) : Du = 0

}
. (3.15)

3.7. Well-posedness of the inhomogeneous Cauchy problem. The following theorem ex-

tends Theorem 2.1 of [5] to our non-compact situation:

Theorem 3.8. For each t0 ∈ [0, 1] the restriction map

rest0 ⊕D : FEs(M,D) → Hs
At0

(Σt0 , Et0)⊕ L2
(
[0, 1],Hs

At
(Σt, Et)

)
, (3.16)

is an isomorphism of Banach spaces.

The proof of the theorem occupies Sections 3.10-3.15. First, we mention the following direct

corollary:
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Corollary 3.9. For each t0 ∈ [0, 1] the restriction map

rest0 : FEs(M, kerD) → Hs
At0

(Σt0 , Et0), (3.17)

is an isomorphism of Banach spaces.

3.10. Cut-off functions. Let K be the compact set defined in (A1) of Section 2.8. Let K ′ ⋑ K

be a compact subset of Σ such that

dist(K,M\K ′) > 2. (3.18)

Let φ : Σ → [0, 1] be a smooth compactly supported function such that φ|K ′ = 1.

We choose a compact set K ′′ ⋑ suppφ such that

dist(suppφ,M\K ′′) > 2. (3.19)

Let ψ : Σ → [0, 1] be a smooth compactly supported function with ψ|K ′′ = 1.

Finally we choose a compact set K ′′′ ⊂ Σ such that

dist(suppψ,M\K ′′′) > 2. (3.20)

Clearly,

Et0(ut0 , f) = Et0(φut0 , φf) + Et0
(
(1− φ)ut0 , (1 − φ)f

)
. (3.21)

We construct each of the summands in the right hand side separately.

3.11. The case of compact support. Let K ′, K ′′, and K ′′′ be as in the previous subsection.

Lemma 3.12. Let vt0 ∈ Hs
At
(Σt, Et), g ∈ L2

(
[0, 1],Hs

At
(Σt, Et)

)
be sections with support in

K ′′. Then there is a unique solution v = Et0(vt0 ,g) ∈ FEs(M,D) of the wave equation

Dv = g; v(t0, x) = vt0(x). (3.22)

Moreover, supp Et0(vt0 ,g) ⊂ [0, 1] ×K ′′′.

Proof. Choose a compact manifold Σ̃ which contains K ′′′ and consider the product M̃ := [0, 1]×

Σ̃. Let 〈̃·, ·〉 be a Lorenzian metric on M̃ whose restriction to [0, 1]×K ′′ coincides with 〈·, ·〉. Let

Ẽ be a Dirac bundle over M̃ whose restriction to [0, 1] ×K ′′ coincides with E. We then have

a Dirac operator D̃ on Ẽ, whose restriction to [0, 1] ×K ′′ coincides with D. Fix a self-adjoint

bundle map Φ̃ : Ẽ → Ẽ whose restriction to [0, 1] × K ′′ coincides with Φ and consider the

operator D̃ := D̃ + iβΦ̃. Let FEs(M̃, D̃) denote the space of finite s-energy sections on M̃ .

From Theorem 2.1 of [5] we conclude that the map

r̃est0 ⊕ D̃ : FEs(M̃, D̃) → Hs(Σ̃t0 , Ẽt0)⊕ L2
(
[0, 1],Hs

At
(Σt, Et)

)
(3.23)

is an isomorphism of Banach spaces. Denote by Ẽt0 its inverse. It follows from the finite

propagation speed, Proposition 3.5, that supp Ẽt0(vt0 ,g) ⊂ K ′′′ and that Ẽt0(vt0 ,g) does not

depend on the choices of Σ̃, 〈̃·, ·〉, Ẽ, and Φ̃.

For X ⊂ Σ̃ we denote

Hs(X) :=
{
vt0 ∈ Hs(Σ̃t0 , Ẽt0) : suppv0 ⊂ X

}
, (3.24)

and

FEs(X) :=
{
v ∈ FEs(M̃, D̃) : suppv ⊂ [0, 1] ×X

}
. (3.25)

Then
r̃est0 ⊕D : FEs(K ′′) → Hs(K ′′)⊕ L2

(
[0, 1],Hs(K ′′′)

)
,

Ẽt0 : Hs(K ′′)⊕ L2
(
[0, 1],Hs(K ′′′)

)
→ FEs(K ′′′),

(3.26)
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and
r̃est0 ◦ Ẽt0 (vt0 ,g) = vt0 , if suppvt0 ⊂ K ′′; suppg ⊂ K ′′;

Ẽt0 ◦
(
r̃es⊕ D̃

)
(v) = v, if suppv ⊂ [0, 1] ×K ′′.

(3.27)

We view Hs(K ′′) as a subset of Hs
At0

(Σt0 , Et0) and FEs(K ′′), FEs(K ′′′) as subsets of

FEs(M,D). Then

Et0(vt0 ,g) := Ẽt0(vt0 ,g) ⊂ FEs(K ′′′) ⊂ FEs(M,D)

satisfies the wave equation (3.22). The uniqueness of this solution is a direct consequence of

the abstract uniqueness theorem for solutions of differential equations in Banach spaces, [15,

Theorem 1]. �

3.13. Solution in a neighborhood of infinity. Let

wt0 ∈ Hs
At
(Σt, Et), h ∈ L2

(
[0, 1],Hs

At
(Σt, Et)

)

be sections with support in M\K ′.

Lemma 3.14. The unique solution w = Et0(vt0 ,g) ∈ FEs(M,D) of the wave equation

Dw = h; w(t0, x) = wt0(x) (3.28)

is given by Duhamel’s formula

w = Et0(wt0 ,h) := ei(t−t0)A0 wt0 − β

∫ t

t0

eiA0(t−s) h(s) ds. (3.29)

Moreover, supp Et0(wt0 ,h) ⊂ [0, 1] ×M\K.

Proof. Recall that the restriction of D to M\K ⊃ M\K ′ is given by (2.14). By Hille-Yosida

theorem, [16, Theorem X.47a], At0 generates a strongly continuous contraction semigroup eiA0t

and the solution of the non-homogeneous “time independent” wave equation

−β
(
−
∂

∂t
+ iA0

)
w = h;

w(t0, x) = wt0

(3.30)

is given by (3.29).

By the finite propagation speed property the sections ei(t−t0)A0 wt0 and eiA0(t−s) h are sup-

ported inM\K. Hence, it is also a solution of (3.28). As in the proof of Lemma 3.12, the unique-

ness of this solution follows from [15, Theorem 1]. It remains to show that w ∈ FEs(M,D).

Since ei(t−t0)A0 is a strongly continuous family of operators on Hs
A0

(Σ0, E0), the functions

t 7→ eiA0(t−t0)(1− φ)ut0 ∈ Hs
A0

(Σ0, E0),

t 7→ β

∫ t

t0

eiA0(t−s) h(s) ds ∈ Hs
A0

(Σ0, E0)
(3.31)

are norm-continuous. By the finite propagation speed property, the support of ei(t−t0)A0(1 −

φ)wt0 is a subset ofM\K. Since the restrictions of the spacesHs
At
(Σt, Et) toM\K are isometric,

(3.31) are also continuous when viewed as sections of the bundle Hs
At
(Σt, Et). Hence, the right

hand side of (3.29) has finite FEs-norm.

Since Dei(t−t0)A0(1− φ)wt0 = 0, and

D
[
β

∫ t

t0

eiA0(t−s) h(s) ds
]

= h ∈ L2
(
[0, 1],Hs

At
(Σt, Et)

)
,
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we see that the L2-norm of DEt0(wt0 ,h) is also finite. Hence,

∥∥ Et0(wt0 ,h)
∥∥
FEs,D

< ∞.

�

3.15. Proof of Theorem 3.8. Let ut0 ∈ Hs
At0

(Σt0 , Et0), f ∈ L2
(
[0, 1],Hs

At
(Σt, Et)

)
. Set

Et0(ut0 , f) := Et0(φut0 , φf) + Et0
(
(1− φ)ut0 , (1 − φ)f

)

= Ẽt0(φut0 , φf) + ei(t−t0)A (1− φ)ut0(x) − β

∫ t

t0

eiA0(t−s) (1− φ)f(s) ds. (3.32)

Clearly, Et0(ut0 , f) satisfies the wave equation. From Lemmas 3.12 and 3.14 we conclude that

Et0(ut0 , f) ∈ FEs(M,D). Thus E : Hs
At
(Σt, Et) → FEs(M, kerD) is the inverse of rest0 ⊕D. In

particular, rest0 ⊕D : FEs(M,D) → Hs
At0

(Σt0 , Et0)⊕L
2
(
[0, 1],Hs

At
(Σt, Et)

)
is a bijection. Since

by construction rest is a bounded linear map, the theorem follows from the Bounded Inverse

Theorem, [17, Theorem III.11]. �

3.16. The evolution operator. Let E ′
t0 : Hs

At0
(Σt0 , Et0) → FEs(M, kerD) denote the inverse

of the isomorphism rest0 , cf. Corollary 3.9. The isomorphism

Q := res1 ◦ E
′
0 : Hs

A0
(Σ0, E0) → Hs

A1
(Σ1, E1), (3.33)

is called the evolution operator.

Proposition 3.17. For s = 0 the operator Q : L2(Σ0, E0) → L2(Σ1, E1) is unitary.

Proof. The proof is similar to the proof of Lemma 2.4 in [5]. Since the space C∞
c (Σ0, E0) is

dense in L2(Σ0, E0), it is enough to check that

‖Qu0‖L2(Σ1,E1) = ‖u0‖L2(Σ0,E0)

for smooth compactly supported sections u0. Let u0 be such section. Then it belongs to

Hs
A0

(Σ0, E0) for all s. By Theorem 3.8 there is a unique u ∈ FEs(M, kerD) whose restriction to

Σ0 is equal to u0. By the finite propagation speed property the support of u is compact. Since

Du = 0, using equation (3.12) we conclude that

du

dt
= N

(
− iAtu−

n

2
Ht

)
u.

Hence, u is a C1 section of Hs−1
At

(Σt, Et).

Fix s > n
2 + 2. Then, by Sobolev embedding theorem, Hs−1

At
(Σt, Et) ⊂ C1(Σt, Et). We

conclude that u ∈ C1
c (M,E). Using the Green’s formula (cf., for example, [5, Eq. (2)]) we now

obtain

0 =

∫

M

[
(Du,u) + (u,Du)

]
dV

=

∫

Σ1

(βQu0, Qu0) dA −

∫

Σ0

(βu0,u0) dA

= ‖Qu0‖L2(Σ1,E1) − ‖u0‖L2(Σ0,E0).

�
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4. Properties of the evolution operator

In this section we show that most of the properties of the evolution operator Q established

in [5] remain valid in our non-compact setting. Following [5] we decompose the space of L2-

sections over Σt into the direct sum of the spectral subspaces of At corresponding to positive

and negative parts of the spectrum. We write Q as a matrix

Q =

(
Q++ Q+−

Q−+ Q−−

)
(4.1)

with respect to this decomposition. One of the main result of this section is that the op-

erators Q++ and Q−− are Fredholm. Our proofs are quite different from [5] because of the

non-compactness of Σ. In fact, one of the main steps of the proof is showing the compactness

of the “off-diagonal” terms Q+− and Q−+. In [5] it is done by showing that these operators are

Fourier integral operators of negative order. On compact manifold this implies compactness. On

non-compact manifold to establish compactness of an operator one also need to obtain estimates

on its “behavior at infinity”. Most of this section is devoted to such estimates.

4.1. The spectral subspaces. For I ⊂ R we denote by L2
I(Σt, Et) ⊂ L2(Σt, Et) the spec-

tral subspace of At corresponding to the eigenvalues in I. The orthogonal projection P tI :

L2(Σt, Et) → L2
I(Σt, Et) is call the spectral projection of At corresponding to I.

We have L2-orthogonal splittings

L2(Σ0, E0) = L2
[0,∞)(Σ0, E0)⊕ L2

(−∞,0)(Σ0, E0);

L2(Σ1, E1) = L2
(0,∞)(Σ1, E1)⊕ L2

(−∞,0](Σ0, E0),
(4.2)

and write Q as a 2× 2-matrix (4.1) with respect to this decomposition. Thus

Q++ = P 1
(0,∞) ◦Q |

L2
[0,∞)

(Σ0,E0)
,

etc.

As a consequence of the unitarity of Q (Proposition 3.17) we obtain the following

Lemma 4.2. The operator Q+− restricts to an isomorphism kerQ−− → kerQ++. Similarly,

the operator Q−+ restricts to an isomorphism kerQ++ → kerQ−−.

Proof. The proof is a verbatim repetition of the proof of Lemma 2.5 of [5]. �

Lemma 4.3. For every s ≥ 0, we have

Q+− ◦ P 0
(−∞,0) : H

s
comp(Σt0 , SM0 ⊗ E0) → Hs+1

loc (Σ1, SM1 ⊗ E1),

Q−+ ◦ P 0
[0,∞) : H

s
comp(Σt0 , SM0 ⊗ E0) → Hs+1

loc (Σ1, SM1 ⊗ E1).
(4.3)

Proof. It is shown in the proof of Lemma 2.6 of [5] that Q+−◦P
0
(−∞,0) andQ−+◦P

0
[0,∞) are Fourier

integral operators of order -1 whose canonical relation is a canonical graph. The statement of the

lemma follows from the mapping property of Fourier integral operators, [12, Corollary 4.4.5]. �

In exactly the same way as in [5, Corollary 2.7] we obtain the following corollary

Corollary 4.4. The kernels of Q++ and Q−− consist of smooth sections.
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4.5. Compactness of the off-diagonal terms. We are now formulate the main result of this

section:

Proposition 4.6. The operators Q+− and Q−+ are compact.

Before proving the proposition let us mention the following important corollary:

Corollary 4.7. The operators Q++ and Q−− are Fredholm and

indQ++ = − indQ−−. (4.4)

Proof. By Proposition 3.17, Q is a unitary operator. Hence, it is Fredholm with index 0. By

Proposition 4.6,

Q −

(
Q++ 0

0 Q−−

)

is a compact operator. Hence,

0 = indQ = ind

(
Q++ 0

0 Q−−

)
= indQ++ + indQ−−.

�

4.8. Sketch of the proof of Proposition 4.6. It is enough to prove compactness of Q−+.

The proof for Q+− is analogous.

If Σ is a closed manifold, the compactness of Q−+ follows from Lemma 4.3 and the Rellich

lemma. In our non-compact setting we need to study the behavior of Q−+ at infinity. Using the

cut-off functions of Section 3.10 we write

Q−+ = φ ◦Q−+ ◦ψ + φ ◦Q−+ ◦ (1−ψ) + (1−φ) ◦Q−+ ◦ψ + (1−φ) ◦Q−+ ◦ (1−ψ). (4.5)

We study each summand in the right hand side separately.

The first summand. Since supports of φ and ψ are compact, the compactness of the first sum-

mand follows from Lemma 4.3 and the Rellich lemma.

To study the other summands we first prove (Lemma 4.9) that the commutator of the spectral

projections with a compactly supported function is compact. We write A ≡ B if the operators

A and B are equal modulo compacts, i.e., if the operator A−B is compact.

The second summand. By Lemma 4.9, it is enough to show that the second summand in (4.5)

is compact it is enough to show that the operator φ ◦Q ◦ (1−ψ) is compact. But this operator

is equal to 0 because of the finite propagation speed property of Q.

The third summand. Let ψ̃ be a compactly supported function, whose restriction to K ′′′ is

identically equal to 1. By finite propagation speed propery we have Q ◦ ψ = ψ̃ ◦Q ◦ ψ. Using

this fact and Lemma 4.9 it is easy to check (cf. Lemma 4.11) that the third term is equal modulo

compacts to (1 − φ)ψ̃ ◦ Q−+ ◦ ψ. Hence, it is compact by combination of Lemma 4.3 and the

Rellich lemma.
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The forth term. The last term in (4.5) is supported on M\([0, 1] ×K). The restriction of At is

independent of t. It follows, cf. (3.32), that

(1− φ) ◦Q ◦ (1− ψ) = (1− φ) ◦ eiA0 ◦ (1− ψ).

Using Lemma 4.9 it is easy to see that it suffices to prove that the operator

P 0
(−∞,0] ◦ e

iA0 ◦ P 1
[0,∞) ◦ (1− ψ)

is compact. This is done by an explicit computation in the proof of Lemma 4.12.

The rest of this section is occupied with the details of the proof of Proposition 4.6.

Lemma 4.9. If f is a smooth function with compact support on Σ then the commutators

[P 0
(−∞,0), f ] and [P 0

[0,∞), f ] are compact operators. Similar statements hold for the commuta-

tors with P 1
(−∞,0] and P

1
(0,∞).

Proof. We only prove that [P 0
[0,∞), f ] is compact. The proof for the other 3 commutators is

analogous.

Let γ be a contour in complex plane going around the non-negative part of the spectrum of

A0 in counterclockwise direction which is the union of 3 curves: γ1 := {r · eiπ/4 : ǫ ≤ r < ∞},

γ2 := {ǫ · eiψ : π/4 ≤ ψ ≤ 7π/4}, and γ3 := {r · e7iπ/4 : ǫ ≤ r <∞}.

For λ not in the spectrum of A0, let RA0(λ) :=
(
λ − A0

)−1
denote the resolvent. Since the

operator A0 is self-adjoint, we have
∥∥RA0(λ)

∥∥ ≤ | Imλ |−1, (4.6)

Hence, the integral
1

2πi

∫

γ
λsRA0(λ) dλ,

is absolutely convergent for Re s < 0 and, by functional calculus, is equal to
(
P 0
[0,∞)A0

)s
.

We have

[RA0(λ), f ] = RA0(λ) [A1, f ]RA0(λ) = RA0(λ) c(df)RA0(λ). (4.7)

Since df has compact support, it follows from Rellich’s Lemma that c(df)RA0(λ) is compact.

Hence [RA0(λ), f ] is also compact. It follows from (4.7) and (4.6) that
[(
P t0[0,∞)A0

)s
, f
]

=
1

2πi

∫

γ
λs [RA0(λ), f ] dλ

is absolutely convergent for Re s < 1 and compact. Hence,

[
(
P 0
[0,∞), f ] =

[(
P 0
[0,∞)A0

)s
, f
]
∣∣s=0

is compact. �

Lemma 4.10. The second term in the right hand side of (4.5) is compact.

Proof. The finite propagation speed for the solution of the wave equation implies that the support

of Q
(
(1−ψ)u0

)
does not intersect support of φ for all u0 ∈ L2(Σ0, E0). Hence, using Lemma 4.9,

we obtain

φ ◦Q−+ ◦ (1− ψ) ≡ P 1
(0,∞) ◦

(
φ ◦Q ◦ (1− ψ)

)
◦ P(−∞,0) = 0,

where “≡” denote equality modulo compact operators. �

Lemma 4.11. The third term in the right hand side of (4.5) is compact.
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Proof. Recall that the compact set K ′′′ was defined in (3.20). Let ψ̃ be a compactly supported

function on Σ whose restriction to K ′′′ is equal to 1. Then the finite propagation speed for the

solutions of the wave equation implies that Q ◦ ψ = ψ̃ ◦Q ◦ ψ. Hence,

(1− φ) ◦Q−+ ◦ ψ ≡ P 0
(−∞,0] ◦ (1− φ) ◦Q ◦ ψ ◦ P 1

[0,∞)

= P 0
(−∞,0] ◦ (1− φ)ψ̃ ◦Q ◦ ψ ◦ P[0,∞)(t1) ≡ (1− φ)ψ̃ ◦Q−+ ◦ ψ.

The assertion of the lemma follows now from (4.3) and the Rellich lemma. �

Lemma 4.12. The last term in the right hand side of (4.5) is compact.

Proof. Using Lemma 4.9 we obtain

(1− φ) ◦Q−+ ◦ (1− ψ) ≡ P 0
(−∞,0] ◦ (1− φ) ◦Q ◦ (1− ψ) ◦ P 1

[0,∞). (4.8)

By (3.32) and (3.33), for a section u0 supported outside of K ′ we have

Qu0 = eiA0 u0.

Hence, from (4.8) and Lemma 4.9 we obtain

(1− φ) ◦Q−+ ◦ (1− ψ) ≡ P 0
(−∞,0] ◦ (1− φ) ◦ eiA0 ◦ (1− ψ) ◦ P 1

[0,∞)

≡ (1− φ) ◦ P 0
(−∞,0] ◦ e

iA0 ◦ P 1
[0,∞) ◦ (1− ψ). (4.9)

Consider the family of operators

S(t) := P 0
(−∞,0] ◦ e

iA0 ◦ P t[0,∞) ◦ (1− ψ), t0 ≤ t ≤ t1.

Then S(t0) is equal to (1 − ψ) times the projection onto the kernel of At0 . Hence, S(t0) is a

compact (even finite rank) operator. We will show that S(t) is compact for all t. The family

S(t) is not continuous at the points where some eigenvalues of the family At cross 0. However,

since there are finitely many such eigenvalues, S(t) is continuous (and, as we shall see below,

even smooth) modulo compacts. To explore this, for each t∗ ∈ [t0, t1] fix a contour γt∗ as in

the proof of Lemma 4.9 which encloses the non-negative spectrum of At∗ . Then there is ǫ > 0

such that for all t ∈ (t∗ − ǫ, t∗ + ǫ) the spectrum of At is disjoint from γt∗ and there are at most

finitely many positive eigenvalues of At inside γt∗ . Thus

1

2πi

∫

γt∗

λsRAt(λ) dλ ≡
(
P t[0,∞)At

)s
, s < 0, t∗ − ǫ < t < t∗ + ǫ. (4.10)

We now compute the derivative of the left hand side of this equation:

d

dt

(
1

2πi

∫

γt∗

λsRAt(λ) dλ

)
= −

1

2πi

∫

γt∗

λsRAt(λ) ◦
dAt

dt
◦RAt(λ) dλ. (4.11)

The integral in the right hand side is absolutely convergent for Re s < 1. Thus

d

dt
P[0,∞) =

d

dt

(
P t[0,∞)At

)0
≡ −

1

2πi

∫

γt∗

RAt(λ) ◦
dAt

dt
◦RAt(λ) dλ. (4.12)

Since dAt

dt is supported outside of the support of (1 − ψ), we have dAt

dt ◦ (1 − ψ) = 0. Hence,

using Lemma 4.9, we obtain

d

dt
P t[0,∞) ◦ (1− ψ) ≡ −

1

2πi

∫

γt∗

λsRAt(λ) ◦

(
dAt

dt
◦ (1− ψ)

)
RAt(λ) dλ = 0. (4.13)

Hence, S(t) = P t0(−∞,0] ◦e
iA0 ◦P t[0,∞) ◦(1−ψ) is differentiable modulo compacts and its derivative

is 0 modulo compacts. Since S(t0) is compact, it follows that so is S(t1). �
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5. The APS index formula

In this section we show that the Atiyah-Patodi-Singer (APS) boundary value problem for

the Lorentzian strongly Callias-type operator D is Fredholm and that its index is equal to the

index of the operator Q−−, which we studied in the previous section. We then introduce a

Riemanninan Dirac operator Ď, obtained from D by the “Wick rotation”. We show that the

APS index of D is equal to the APS index of Ď. This leads to an explicit formula for the APS

index of D in terms of the relative eta-invariant introduced in [10, 9].

5.1. The Atiyah-Patodi-Singer boundary conditions. We define the space

FEsAPS(M,D) :=
{
u ∈ FEs(M,D) : P 0

[0,∞)u0 = 0 = P(−∞,0]ut2
}

(5.1)

of finite s-energy sections, which satisfy the Atiyah-Patodi-Singer boundary conditions.

We have the following analogue of Theorem 3.3 of [5]:

Theorem 5.2. The operator

DAPS := D|FE0
APS

(M,D) : FE
0
APS(M,D) → L2(M,E) (5.2)

is Fredholm and its index satisfies

ind D+
APS = ind Q−−. (5.3)

Proof. For compact M the theorem is proven in [5, §3]. The proof there only uses the formal

properties of operators D and Q. For non-compact case the same properties are proven in

Sections 3 and 4. A verbatim repetition of the proof in [5] proves the theorem. �

Remark 5.3. As in [5], we can define the anti-APS space:

FEsaAPS(M,D) :=
{
u ∈ FEs(M,D) : P 0

(−∞,0)u0 = 0 = P(0,∞)ut2
}
, (5.4)

and the anti-APS boundary problem:

DaAPS := D|FE0
aAPS

(M,D) : FE
0
aAPS(M,D) → L2(M,E). (5.5)

It was noted in [5] that, if M is compact, quite surprisingly DaAPS is also Fredholm. The same

proof shows that this result remains true in our non-compact situation and, as in [5, Theorem 3.4]

we obtain

ind DaAPS = ind Q++. (5.6)

5.4. The Wick rotation. We define the “Wick rotation” of the Lorentzian metric (2.1) by

ǧ := N2dt2 + gΣt . This is a complete Riemannian metric on M . Endow E with the Clifford

action γ̌ : TM → End(E) such that γ̌(v) = γ(v) for v ∈ TΣt and γ̌(ν) = iγ(ν). Then

γ̌(v)2 = −ǧ(v, v) and γ̌(v) is skew-adjoint with respect to the Hermitian scalar product 〈·, ·〉E

on E.

The bundle E = E+⊕E− endowed with connection ∇E and Clifford action γ̌ is a Dirac bundle

over (M, ǧ). Let Ď : C∞(M, ŠM ⊗E) → C∞(M, ŠM ⊗E) be the Dirac operator associated to

connection ∇E. This is a self-adjoint elliptic operator on M . As in the Lorentzian case we set

β̌ := γ̌(ν) and define

Ď := Ď + iβ̌ ⊗ Φ. (5.7)

This is a self-adjoint strongly Callias-type operator in the sense of Definition 2.2 of [9].
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Since the restriction of ǧ to each hypersurface Σt is equal to g
Σ
t , along Σt we have the following

analogue of (2.9)

Ď = −β̌
(
∇ŠM⊗E
ν + iAt −

n

2
Ȟt

)
. (5.8)

In particular, the restriction At of Ď to Σt coincides with the restriction of D.

As in (2.14), we see that the restriction of Ď to M\
(
[0, 1] ×K

)
is equal to

Ď|
M\
(
[0,1]×K

) = −β
(
−
∂

∂t
+ iA0

)
. (5.9)

5.5. The APS index of the elliptic Callias-type operator. Let Ď+ denote the restriction

of Ď to E+ and let dom Ď+
max denote the domain of the maximal extension of Ď+ (cf. [10, §2.2]

for more details). We denote by ĎAPS the restriction of Ď to the space of sections u ∈ dom Ď+
max,

satisfying the APS boundary conditions: P 0
[0,∞)u0 = 0 = P(−∞,0]ut2

Ď+
APS :

{
u ∈ dom Ď+

max : P 0
[0,∞)u0 = 0 = P(−∞,0]ut2

}
→ L2(M,S−M ⊗ E). (5.10)

If the manifold M is compact, then it is well-known that the opertor Ď+
APS is Fredholm, cf., for

example, [3]. The case of non-compact manifolds was studied in [10, 9]. Using an extension of

the method of [3] it is shown in [10] that Ď+
APS is Fredholm if Ď is a product near the boundary

of M . Combining the arguments in [3] and [10] one immediately sees that Ď+
APS is Fredholm if

Ď is a product outside of a compact set in a neighborhood of the boundary of M . Hence, by

condition (ii) of Subsection 2.1, our operator Ď+
APS is Fredholm.

The main result of this section is the following

Theorem 5.6. indD+
APS = ind Ď+

APS.

The proof of the theorem occupies Sections 5.7-5.11.

5.7. The APS index fromula for an elliptic operator: product caes. Assume, first, that

Ď is a product near the boundary, i.e.,

Ď|[0,ǫ)×Σ = −β
(
−
∂

∂t
+ iA0

)
, Ď|(1−ǫ,1]×Σ = −β

(
−
∂

∂t
+ iA1

)
. (5.11)

Then Ď is an almost compact cobordism between A0 and A1 in the sense of Definition 4.2 of [9].

In particular, A0 and A1 coincide outside of the compact set [0, 1]×K. Hence, by [9, Eq. (4.1)]

we obtain

ind Ď+
APS =

∫

M
αAS(Ď

+) +
η(A0,A1)− dimkerA0 − dimkerA1

2
, (5.12)

where

αAS(Ď) := (2πi)− dimM Â(M, ǧ) · ch(E/S)

is the Atiyah-Singer integrand of Ď and η(A0,A1) is the invariant of the pair (A0,A1) introduced

in Definition 4.4 of [9] and called the relative eta-invariant of (A0,A1). Since Ď is product outside

of the compact set [0, 1]×K, the Atiyah-Singer integrand vanishes outside of this set and, hence,

the integral in the right hand side of (5.12) is well defined.

Morally, the relative eta invariant η(A0,A1) is the difference of the eta-invariants of A1 and

A0 but the later invariants might not be defined in non-compact case. However, it is shown in

[9] that, in many respects, η(A0,A1) behaves like it were the difference. In particular,

η(A0,A1) = − η(A1,A0), η(A0,A1) + η(A2,A1) = η(A0,A2).
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Further, suppose A := {At
1}0≤t≤1 is a smooth family of strongly Callias-type operator, whose

restriction to M\
(
[0, 1] ×K

)
is independent of t. Then the spectral flow sf(A) is well defined,

cf. [9, Definition 5.7]. Then, [9, Theorem 5.10], the mod Z reduction η̄(At
1,A0) of η(At

1,A0)

depends smoothly on t and

2 sf(A) = η(A1
1,A0) − η(A0

1,A0) −

∫ 1

0

( d
ds
η̄(As

1,A0)
)
ds. (5.13)

5.8. The APS index fromula for an elliptic operator: general caes. Consider now the

general case when Ď is not necessary a product near the boundary of M (recall, however, that

we always assume that Ď is a product outside of a compact set). The method of computing

the index of the APS boundary problem in this case is due to Gilkey, [13, 14]. The idea is

to deform all the data (the metric ǧ, the connection ∇E, the potential Φ) to those which are

product near the boundary. Thus we obtain a smooth family of first order elliptic operators Ďs

(0 ≤ s ≤ 1) such that Ď1 = Ď and Ď0 is product near the boundary. Of course, we assume that

the restriction of Ďs to M\([0, 1] ×K) is independent of s.

By Chern-Weil theory there is a transgression differential form TαAS(Ď
+, Ď0+), such that

αAS(Ď
+) − αAS(Ď

0+) = dTαAS(Ď
+, Ď0+). (5.14)

This differential form is given by an explicit formula in terms of ǧs and ∇E,s, cf. [7, Proposi-

tion 1.41] or [8, §6]. In particular, this form vanishs outside of [0, 1] ×K.

By Stokes formula,

∫

M
αAS(Ď) =

∫

M
αAS(Ď

0) +

∫

M
dTαAS(Ď

+, Ď0+)

=

∫

M
αAS(Ď

0) +

∫

Σ1

TαAS(Ď
+, Ď0+) −

∫

Σ0

TαAS(Ď
+, Ď0+). (5.15)

Recall that the forms αAS(Ď
+), αAS(Ď

0+), TαAS(Ď
+, Ď0+) vanish outside of a compact subset

of M . Hence all the integrals in (5.15) are well defined.

Combining (5.15) with (5.12) and using the stability of the index, ind Ď+ = ind Ď0+, we

obtain

ind Ď+
APS =

∫

M
αAS(Ď

+) +

∫

Σ1

TαAS(Ď
+, Ď0+) −

∫

Σ0

TαAS(Ď
+, Ď0+)

+
η(A0,A1)− dimkerA0 − dimkerA1

2
, (5.16)

5.9. Index and the spectral flow. Consider the family of operators A := {At}0≤t≤1 and let

sf(A) denotes its spectral flow.

Proposition 5.10. The following equalities hold

ind Ď+
APS = sf(A) − dimker(A1) = indQ−−. (5.17)

Proof. For the case when M is compact the proposition is proven in Sections 4.1-4.2 of [5]. The

proof there only uses the properties of the right hand side of (5.16). A verbatim repetition of

this proof (using (5.13) instead of corresponding equations for η(A1) and η(A0) in [5]) proves

the proposition. �
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5.11. Proof of Theorem 5.6. Combining Theorem 5.2 with Proposition 5.10 we obtain The-

orem 5.6. �

As an immediate corollary of Theorem 5.6 we obtain

Corollary 5.12. The APS index indD+
APS of the Lorentzian strongly Callias-type operator D+

is given by the right hand side of (5.16).
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