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ON ERROR ESTIMATION FOR REDUCED-ORDER MODELING OF LINEAR

NON-PARAMETRIC AND PARAMETRIC SYSTEMS

Lihong Feng1 and Peter Benner2

Abstract. Motivated by a recently proposed error estimator for the transfer function of the reduced-
order model of a given linear dynamical system, we further develop more theoretical results in this
work. Moreover, we propose several variants of the error estimator, and compare those variants with the
existing ones both theoretically and numerically. It is shown that some of the proposed error estimators
perform better than or equally well as the existing ones. All the error estimators considered can be
easily extended to estimate the output error of reduced-order modeling for steady linear parametric
systems.
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1. Introduction

Many model order reduction (MOR) methods have been proposed during the last decades [1,2,4,5,7–12]. For
many problems, especially parametric time-dependent problems, efficient error estimation of the reduced-order
model (ROM) is still critical.

It is well-known that many a-posteriori error bounds/estimators [15, 22, 26, 30, 31] need compute the inf-sup
constant, which appears as the denominator of the error estimator. In the numerically discretized space, the
inf-sup constant corresponds to the smallest singular value of a large matrix. For many models arising from, e.g.,
circuit simulation or Micro-Electro-Mechanical Systems (MEMS) simulation, the smallest singular value can be
zero at some samples of the parameter due to resonances [21], making the error bound unavailable at those
samples. Besides, computing the smallest singular value at many samples of the parameter is time-consuming
for large-scale problems. Although some algorithms are proposed to compute a lower bound of the inf-sup
constant [24], they are found to be inefficient for many problems [29]. The error bound often overestimates
the true error, especially for those systems whose smallest singular values are close to zero at many parameter
values. Often, the residual of the solution to the ROM is simply used to form a heuristic error indicator, see,
e.g., [13, 14,18,25] to name a few.

In recent work [17], a new estimator for the transfer function error, as well as for the output error of MOR for
steady parametric systems, is proposed. The proposed error estimator avoids computing the singular values of
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any matrix, and depends mainly on the ROM. It is applicable to any system whose ROMs are computed using
a projection based MOR method. It is illustrated by the numerical results that the error estimator is much
sharper than the error bound in [15] for those systems with small inf-sup constants. Using the proposed error
estimation, the adaptive greedy algorithm converges much faster than using the error bound from [15]. The error
estimator was used in the greedy algorithm to select expansion/sampling points for MOR in frequency domain.
Searching good expansion/sampling points can also be tackled by optimization with respect to system-theoretic
measures, such as the H2-norm and H2 × L2-norm, see, e.g., [6, 19,23].

Error estimation based on randomized residual for parametric steady systems is proposed in [29]. The output
error estimation proposed there is also free of computing the inf-sup constant and can be used to estimate the
transfer function error in frequency domain. We will show in this work that the error estimator in [29] more likely
underestimates the true error as compared with the error estimators in [17] and the proposed error estimators.

Another error estimation, which is independent of the inf-sup constant, is proposed in [20]. This error
estimation is used to estimate the error of the state (solution vector). It simply uses the error between two
approximate solutions computed from two ROMs divided by a saturation constant as the error estimator. As for
estimation of the transfer function error or output error, trivially multiplying the output matrix norm ‖C(µ)‖
(C(µ) will be defined precisely in the next section) with the error estimator could also estimate the output error,
but may lead to slow error decay if ‖C(µ)‖ is large. Moreover, a saturation constant needs to be estimated for
the error estimator in [20], which needs extra computations and may cause inefficiency of the error estimator if
computed without sufficient accuracy.

The error bound in [28] is proposed for nonlinear systems and also requires the computation of the inf-sup
constant or its lower bound. Numerical issues concerning computing these quantities remain. Moreover, some
assumptions on the magnitude of the inf-sup constant is needed in order to derive the error estimator. For
problems whose inf-sup constants are close to zero, e.g. O(10−12), as for the examples presented in this work,
the error bound might not be tight anymore. From Lemma 2 in [28], it is not difficult to check that for linear
problems, the error bound in [28] is an upper bound of the error estimator ∆pr

1 (will be detailed in Section 4.2)
proposed in this work when the output matrix satisfies C(µ) = I, the identity matrix. The residual system
needed for computing ∆pr

1 is called error equation in [28], where a ROM of the error equation needs also to be
constructed. This ROM is constructed by running a separate greedy algorithm at each iteration of the main
greedy algorithm. In contrast, we simultaneously construct the ROM of the residual system (error equation)
and that of the original system in one greedy algorithm.

In this work, we further explore the property of the error estimator in [17] and propose some variants of
it. Sensitivity analyses are presented to show that the proposed error estimators may behave as error bounds
when influenced with a small constant. The proposed variants are theoretically and numerically analyzed, and
compared with the existing ones. Furthermore, the more general MOR framework based on Petrov-Galerkin
projection is used to analyze the error estimators and to explore the corresponding theoretical and numerical
properties. In the next section, we first review the error estimator in [17] and develop more theoretical results.
Variants of the error estimator and corresponding theoretical analyses are provided in Section 4. Section 5
theoretically compares the new error estimators with the existing ones. Section 6 provides greedy algorithms
for constructing the ROMs based on the error estimators. Numerical results of all the error estimators for
various problems are presented and compared in Section 7. Conclusions are drawn in the end.

2. Preliminaries and Notation

We use the following form of a linear system (with or without parameters) as an example to introduce
projection based MOR,

E(µ) ddtx(t, µ) = A(µ)x(t, µ) +B(µ)u(t),
y(t, µ) = C(µ)x(t, µ)

(1)

Here x(t, µ) ∈ Rn is the state vector, n is often referred to as the order of the system. The vector µ :=
(µ1, . . . , µm) ∈ R1×m includes all of the geometrical and physical parameters. The system matrices E(µ), A(µ) ∈
Rn×n, and B(µ) ∈ Rn×nI , C(µ) ∈ RnO×n may depend on the parameters.
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The reduced-order model (ROM) of the original system can be obtained via Petrov-Galerkin projection and
can be written as

Ê(µ) ddtz(t, µ) = Â(µ)z(t, µ) + B̂(µ)u(t),

ŷ(t, µ) = Ĉ(µ)z(t, µ),
(2)

where Ê(µ) = WTE(µ)V ∈ Rr×r, Â(µ) = WTA(µ)V ∈ Rr×r, B̂(µ) = WTB(µ̃) ∈ Rr×nI , Ĉ(µ) = C(µ̃)V ∈
RnO×r, and z(t, µ) ∈ Rr with r � n. Then x(t, µ) can be recovered by x(t, µ) ≈ V z(t, µ). Here, range(V ) and
range(W ) are the trial space and the test space for Petrov-Galerkin projection, respectively.

The transfer function of the original system is defined as

H(µ̃) = C(µ)Q(µ̃)−1B(µ), (3)

where Q(µ̃) = sE(µ) − A(µ) and µ̃ := (µ, s) with s ∈ C, the Laplace variable in frequency domain. Similarly,
the transfer function of the ROM is

Ĥ(µ̃) = Ĉ(µ)Q̂(µ̃)−1B̂(µ),

where Q̂(µ̃) = sÊ(µ)− Â(µ).
Note that the error estimators discussed in this work does not require that the transfer function must be

derived from the linear system given in (1). In fact, the proposed error estimators apply to any system with
transfer function in the form of H(µ̃) = C(µ̃)Q(µ̃)−1B(µ̃) [2,3]. For example, the parametric model in Section 7
has a transfer function H(µ̃) = CQ(µ̃)−1B, with Q(µ̃) = s2M(µ) + sD(µ) + T (µ) being derived from a second-
order parametric system. Time-delay systems have transfer functions with Q(µ̃) = Q(s) being a non-rational
matrix function of s. Many systems in computational electromagnectics need to compute output quantities
y(µ̃) = C(µ̃)Q(µ̃)−1B(µ̃), where µ̃ = (f1(s), . . . , fl(s))

T and fi(s), i = 1, . . . , l, are (rational) functions of s.
The error of the reduced output ŷ(µ̃) can also be estimated by the proposed error estimators. Therefore,
in the following parts of the paper, our discussions are based on the transfer function in the general form
H(µ̃) = C(µ̃)Q(µ̃)−1B(µ̃). The corresponding reduced transfer function is given as Ĥ(µ̃) = Ĉ(µ̃)Q̂(µ̃)−1B̂(µ̃).

We define a primal system and a dual system, whose solutions depict the right part Q(µ̃)−1B(µ̃) and the left
part C(µ̃)Q(µ̃)−1 of the transfer function H(µ̃), respectively. A primal system in frequency domain is defined
as

Q(µ̃)xpr(µ̃) = B(µ̃). (4)

The reduced primal system is then defined as

Q̂(µ̃)zpr(µ̃) = B̂(µ̃), (5)

where Q̂(µ̃) = WTQ(µ̃)V , which is Q̂(µ̃) = sÊ(µ)− Â(µ) for the ROM of (1). Define a dual system

QT (µ̃)xdu(µ̃) = CT (µ̃), (6)

where xdu(µ̃) solves the dual system. The ROM of the dual system is

Q̂du(µ̃)zdu(µ̃) = Ĉdu(µ̃), (7)

where Q̂du(µ̃) = WT
duQ

T (µ̃)Vdu, Ĉdu(µ̃) = WT
duC

T (µ̃), such that x̂du(µ̃) := Vduzdu(µ̃) well approximates xdu(µ̃).
Analogously, range(Vdu) and range(Wdu) are the trial space and the test space for Petrov-Galerkin projection
of the dual system (6), respectively. The ROMs of the primal and the dual systems introduce two residuals,
respectively, i.e., the primal residual

rpr(µ̃) = B(µ̃)−Q(µ̃)x̂pr(µ̃) (8)

and the dual residual

rdu(µ̃) = CT (µ̃)−QT (µ̃)x̂du(µ̃). (9)
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Here, x̂pr(µ̃) := V zpr(µ̃) is obtained from the reduced primal system (5) and approximates xpr(µ̃). In the
following, we first review the error estimator in [17], then develop more theoretical results. Several variants of
the error estimator and corresponding theoretical analyses are proposed afterwards. We only consider single-
input single-output (SISO) systems. Extension of the error estimator to multiple-input multiple-output (MIMO)
systems as well as to output error estimation for steady linear parametric systems is detailed in [17] and will
not be repeated in this work. | · | denotes the absolute value of a scalar.

3. Error estimator in [17] and extensions

It is not difficult to obtain the following proposition, based on which several error estimators are proposed.

Proposition 3.1. The error of the reduced transfer function Ĥ(µ̃) satisfies

|H(µ̃)− Ĥ(µ̃)| = |xTdu(µ̃)rpr(µ̃)|,

where xdu(µ̃) solves the dual system in (6) and rpr(µ̃) is defined in (8).

Proof. It follows from the definition of Ĥ(µ̃) and the reduced primal system (5) that

|H(µ̃)− Ĥ(µ̃)| = |C(µ̃)(Q−1(µ̃)B(µ̃)− V Q̂−1(µ̃)B̂(µ̃))|
= |C(µ̃)Q−1(µ̃)(B(µ̃)−Q(µ̃)V Q̂−1(µ̃)B̂(µ̃))︸ ︷︷ ︸

x̂pr(µ̃):=V zpr(µ̃)|
= |C(µ̃)Q−1(µ̃)rpr(µ̃)|
= |xTdu(µ̃)rpr(µ̃)|.

(10)

�

Note that computing xTdu(µ̃) in the last equality of (10) needs to solve the dual system of original large scale
n. If we solve the ROM of the dual system instead, then xTdu(µ̃) can be approximated by xdu(µ̃) ≈ x̂du(µ̃) =

Vduzdu(µ̃) . Consequently, the error of Ĥ(µ̃) can be estimated as

|H(µ̃)− Ĥ(µ̃)| ≈ ∆1(µ̃) := |x̂Tdu(µ̃)rpr(µ̃)|. (11)

Clearly, the error estimator ∆1(µ̃) might underestimate the true error. To reduce the probability of underesti-
mation, a more robust error estimator is proposed in [17], which is based on the following error bound.

Theorem 3.1. [17] The error of the reduced transfer function Ĥ(µ̃) can be bounded as

|H(µ̃)− Ĥ(µ̃)| ≤ ∆1(µ̃) + |xTrdu(µ̃)rpr(µ̃)|, (12)

where xrdu(µ̃) is the solution to the dual-residual system defined as

QT (µ̃)xrdu(µ̃) = rdu(µ̃). (13)

Proof. See [17]. �

Again, computing xrdu(µ̃) in (12) requires solving a large system in (13). Instead, we compute the ROM
of (13),

Q̃(µ̃)zrdu(µ̃) = r̃du(µ̃), (14)

where Q̃(µ̃) = WT
rdu
QT (µ̃)Vrdu , r̃du(µ̃) = WT

rdu
rdu(µ̃). Then xrdu(µ̃) ≈ x̂rdu(µ̃) := Vrduzrdu(µ̃). Finally we

replace xrdu(µ̃) in the error bound (12) with x̂rdu(µ̃), and get the error estimator:

|H(µ̃)− Ĥ(µ̃)| . ∆1(µ̃) + |x̂Trdu(µ̃)rpr(µ̃)| =: ∆2(µ̃).
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Theorem 3.2. The error of the reduced transfer function Ĥ(µ̃) can be bounded as

∆1(µ̃)− ε1 ≤ |H(µ̃)− Ĥ(µ̃)| ≤ ∆1(µ̃) + ε1, (15)

where ε1 := |(xdu(µ̃)− x̂du(µ̃))T rpr(µ̃)| ≥ 0.

Proof. On the one hand, by Proposition 3.1

|H(µ̃)− Ĥ(µ̃)| = |xTdu(µ̃)rpr(µ̃)|+ |x̂Tdu(µ̃)rpr(µ̃)| − |x̂Tdu(µ̃)rpr(µ̃)|
= ∆1µ̃) + |xTdu(µ̃)rpr(µ̃)| − |x̂Tdu(µ̃)rpr(µ̃)|
≤ ∆1(µ̃) + ε1.

(16)

On the other hand,

∆1(µ̃) = |x̂Tdu(µ̃)rpr(µ̃)|+ |xTdu(µ̃)rpr(µ̃)| − |xTdu(µ̃)rpr(µ̃)|
= |H(µ̃)− Ĥ(µ̃)|+ |x̂Tdu(µ̃)rpr(µ̃)| − |xTdu(µ̃)rpr(µ̃)|
≤ |H(µ̃)− Ĥ(µ̃)|+ ε1.

(17)

�

Here, ε1 can be very small if the reduced solution x̂du(µ̃) approximates the solution xdu(µ̃) to the original dual
system well and/or if the primal system solution xpr(µ̃) is well approximated by the reduced primal solution
x̂pr(µ̃), so that ||rpr(µ̃)||2 is small. Both approximations can be made as accurate as possible through a greedy
process using the proposed error estimators, which will be discussed in detail in Section 6. Theorem 3.2 shows
that the true error is both lower bounded and upper bounded by ∆1(µ̃) with the influence of a small-valued ε1.

Theorem 3.3. The error of the reduced transfer function Ĥ(µ̃) can be bounded as

∆2(µ̃)− δ2 − ε1 ≤ |H(µ̃)− Ĥ(µ̃)| ≤ ∆2(µ̃) + ε2 (18)

where ε2 := |(xrdu(µ̃)− x̂rdu(µ̃))T rpr(µ̃)| ≥ 0, δ2 := |x̂rdu(µ̃))T rpr(µ̃)|.
Proof. From (12),

|H(µ̃)− Ĥ(µ̃)| ≤ ∆1(µ̃) + |xTrdu(µ̃)rpr(µ̃)|
= ∆1(µ̃) + |x̂Trdu(µ̃)rpr(µ̃)| − |x̂Trdu(µ̃)rpr(µ̃)|+ |xTrdu(µ̃)rpr(µ̃)|
= ∆2(µ̃) + |xTrdu(µ̃)rpr(µ̃)| − |x̂Trdu(µ̃)rpr(µ̃)|
≤ ∆2(µ̃) + ε2.

(19)

The proof of the lower bound is a direct result from the lower bound of Theorem 3.2 and the relation between
∆1(µ̃) and ∆2(µ̃). �

ε1 and ε2 involve computing the solutions xdu(µ̃) and xrdu(µ̃) to the original dual system and the original
dual-residual system, respectively. Since the original dual system and the original dual-residual system are of
high dimension n, computing the lower bounds and upper bounds in (3.2) and (3.3) is as expensive as computing
the true error. Instead of the lower and upper bounds, the error estimators ∆1(µ̃), ∆2(µ̃) can be computed and
used in practice, as they involve only computations in the reduced r dimensions. Theorem 3.3 shows that the
error estimator ∆2(µ̃) cannot underestimate the true error too much, since ∆2(µ̃) ≥ |H(µ̃) − Ĥ(µ̃)| − ε2 and
ε2 can be made very small by letting x̂rdu(µ̃) approximate xrdu(µ̃) well. On the other hand, when ε2 is small,
Theorem 3.3 implies that ∆2(µ̃) is a tight error estimator from above. Furthermore, Theorem 3.3 also provides
a lower bound for the true error using ∆2(µ̃) and two small valued variables ε2 and δ2. Here, δ2 cannot be large
when both rpr(µ̃) and rdu(µ̃) become small. Note that rdu(µ̃) appears on the right-hand side of the reduced
dual-residual system (14) from which x̂Trdu(µ̃) in δ2 is computed.
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4. Error estimator variants

In the following, we derive some error estimators, which can be seen as variants of the error estimators ∆1(µ̃)
and ∆2(µ̃), respectively. Again, the lower bounds and upper bounds proved in the following theorems are used
to show how close the proposed error estimators are to the true error and are not computed in practice. As
mentioned at the end of the previous section, computing them is as expensive as computing the true error. This
is the main motivation for proposing the error estimators.

4.1. Variant 1

From the error bound in (12) and (13), we get

|H(µ̃)− Ĥ(µ̃)| ≤ ∆1(µ̃) + |rTdu(µ̃)Q−1(µ̃)rpr(µ̃)| (20)

We see that instead of solving the dual-residual system (13), one can also solve the primal-residual system as
below,

Q(µ̃)xrpr (µ̃) = rpr(µ̃). (21)

Replacing Q−1(µ̃)rpr(µ̃) in (20) with xrpr (µ̃) in (21), we obtain

|H(µ̃)− Ĥ(µ̃)| ≤ ∆1(µ̃) + |rTdu(µ̃)xrpr (µ̃)|. (22)

If we construct the ROM of the primal-residual system in (21), i.e.,

WT
rprQ(µ̃)Vrprzrpr (µ̃) = WT

rprrpr(µ̃), (23)

then we obtain a variant of ∆2(µ̃),

|H(µ̃)− Ĥ(µ̃)| . ∆1(µ̃) + |rTdu(µ̃)x̂rpr (µ̃)| =: ∆pr
2 (µ̃),

where x̂rpr (µ̃) = Vrprzrpr is computed from (23), the ROM of the primal-residual system and approximates the
state vector xrpr (µ̃) of the primal-residual system. We obtain a similar sensitivity analysis for ∆pr

2 (µ̃) presented
in Theorem 4.1.

Theorem 4.1. The error of the reduced transfer function Ĥ(µ̃) can be bounded as

∆pr
2 (µ̃)− δpr2 − ε1 ≤ |H(µ̃)− Ĥ(µ̃)| ≤ ∆pr

2 (µ̃) + εpr2 (24)

where εpr2 := |rTdu(µ̃)(xrpr (µ̃)− x̂rpr (µ̃))| ≥ 0 and δpr2 := |rTdu(µ̃)x̂rpr (µ̃)|.

Proof. The result can be obtained by using (22) and following similar steps as in the proof of Theorem 3.3. �

Note that εpr2 will be of small value once the reduced solution x̂rpr (µ̃) approximates xrpr (µ̃), the solution to
the primal-residual system (21), well.

4.2. Variant 2

From (10), we know

|H(µ̃)− Ĥ(µ̃)| = |C(µ̃)Q−1(µ̃)rpr(µ̃)|.
Similarly, if we use the solution to the primal-residual system (21) to replace Q−1(µ̃)rpr(µ̃), then we get

|H(µ̃)− Ĥ(µ̃)| = |C(µ̃)xrpr (µ̃)|. (25)
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If further using the ROM (23) to compute an approximate state, then xrpr (µ̃) in (25) can be approximated by
x̂rpr (µ̃). We obtain the following error estimation

|H(µ̃)− Ĥ(µ̃)| ≈ |C(µ̃)x̂rpr (µ̃)| =: ∆pr
1 (µ̃),

that can be considered as a variant of ∆1(µ̃).

Theorem 4.2. The error of the reduced transfer function Ĥ(µ̃) can be bounded as

∆pr
1 (µ̃)− εpr1 ≤ |H(µ̃)− Ĥ(µ̃)| ≤ ∆pr

1 (µ̃) + εpr1 , (26)

where εpr1 := |C(µ̃)(xrpr (µ̃)− x̂rpr (µ̃))| ≥ 0.

Proof. The proof is similar to that of Theorem 3.2 and therefore not be repeated here. �

4.3. Variant 3

The next theorem presents an error bound based on ∆pr
1 (µ̃), from which we get another variant of ∆2(µ̃).

Theorem 4.3. The error of the reduced transfer function Ĥ(µ̃) can be bounded as

|H(µ̃)− Ĥ(µ̃)| ≤ ∆pr
1 (µ̃) + |xTdu(µ̃)rrpr (µ̃)|,

where rrpr is the residual of the approximate solution x̂rpr (µ̃) to the primal-residual system in (21), i.e., rrpr =
rpr(µ̃)−Qx̂rpr (µ̃).

Proof. From (25), the true error can be presented as

|H(µ̃)− Ĥ(µ̃)| = |C(µ̃)xrpr (µ̃)|. (27)

We check the distance between the true error |C(µ̃)xrpr (µ̃)| and its estimator ∆pr
1 (µ̃) = |C(µ̃)x̂rpr (µ̃)|:

|C(µ̃)xrpr (µ̃)| − |C(µ̃)x̂rpr (µ̃)| ≤ |C(µ̃)Q−1rpr(µ̃)− C(µ̃)x̂rpr (µ̃)|
= |C(µ̃)Q−1[rpr(µ̃)−Qx̂rpr (µ̃)︸ ︷︷ ︸

=:rrpr (µ̃)

]|. (28)

Combining (27) and (28), we get

|H(µ̃)− Ĥ(µ̃)| ≤ |C(µ̃)x̂rpr (µ̃)|+ |C(µ̃)Q−1rrpr (µ̃)|
= ∆pr

1 (µ̃) + |xTdu(µ̃)rrpr (µ̃)|. (29)

�

Similarly, we get the following error estimator by approximating xdu(µ̃) with x̂du(µ̃).

|H(µ̃)− Ĥ(µ̃)| . ∆pr
1 (µ̃) + |x̂Tdu(µ̃)rrpr (µ̃)| =: ∆3(µ̃).

Theorem 4.4. The error of the reduced transfer function Ĥ(µ̃) can be bounded as

∆3(µ̃)− δ3 − εpr1 ≤ |H(µ̃)− Ĥ(µ̃)| ≤ ∆3(µ̃) + ε3 (30)

where ε3 := |(xdu(µ̃)− x̂du(µ̃))T rpr(µ̃)| ≥ 0 and δ3 = |x̂Tdu(µ̃)rrpr (µ̃)|.
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Proof. The result can be obtained by using (29), the relation between ∆3(µ̃) and ∆pr
1 (µ̃), and the lower bound

of Theorem 4.2, then following similar steps as in the proof of Theorem 3.3. �

Analogously, ε3 is also a small number, since x̂du(µ̃) is close enough to xdu(µ̃) if it is a good approximation
computed from the ROM of the dual system.

4.4. Variant 4

In (29), if we consider Q−1rrpr and seek the solution to the primal-residual-residual system,

Q(µ̃)xrrpr (µ̃) = rrpr (µ̃), (31)

then the error bound in (29) becomes

|H(µ̃)− Ĥ(µ̃)| ≤ ∆pr
1 (µ̃) + |C(µ̃)xrrpr (µ̃)|. (32)

Certainly, we can compute the ROM of (31),

WT
rrprQ(µ̃)Vrrprzrrpr (µ̃) = WT

rrprrrpr (µ̃), (33)

and replace xrrpr (µ̃) in (32) with its approximation x̂rrpr (µ̃) = Vrrprzrrpr (µ̃) computed from the ROM. Finally,
we get the error estimator

|H(µ̃)− Ĥ(µ̃)| . |∆pr
1 (µ̃)|+ |C(µ̃)x̂rrpr (µ̃)| =: ∆pr

3 (µ̃).

From (32), we can get the following lower and upper bound using the error estimator ∆pr
3 (µ̃).

Theorem 4.5. The error of the reduced transfer function Ĥ(µ̃) can be bounded as

∆pr
3 (µ̃)− δpr3 − ε

pr
1 ≤ |H(µ̃)− Ĥ(µ̃)| ≤ ∆pr

3 (µ̃) + εpr3 (34)

where εpr3 := |C(µ̃)(xrrpr (µ̃)− x̂rrpr (µ̃))| ≥ 0 and δpr3 := |C(µ̃)x̂rrpr (µ̃)|.

Proof. The result can be obtained by using (32) and following similar steps as in the proof of Theorem 4.4. �

4.5. Relations among the error estimators

In this section we explore relations among the error estimators discussed in the previous two sections and
present the following propositions.

Proposition 4.1. If Wdu = V , and Vdu = W , then ∆1(µ̃) = 0.

Proof.

∆1(µ̃) = |x̂Tdu(µ̃)rpr(µ̃)|
= |x̂Tdu(µ̃)(B(µ̃)−Q(µ̃)V (WTQ(µ̃)V )−1WTB(µ̃)|
= |x̂Tdu(µ̃)B(µ̃)− x̂Tdu(µ̃)Q(µ̃)V (WTQ(µ̃)V )−1WTB(µ̃)|.

(35)

The first part of the last equation in (35) is

x̂Tdu(µ̃)B(µ̃) = [Vdu(WT
duQ

T (µ̃)Vdu)−1WT
duC

T (µ̃)]TB(µ̃)
= C(µ̃)V (WTQ(µ̃)V )−1WTB(µ̃) (if Wdu = V and Vdu = W ).

(36)
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If Wdu = V and Vdu = W , the second part of the last equation in (35) becomes

x̂Tdu(µ̃)V (WTQ(µ̃)V )−1WTB(µ̃) = [Vdu(WT
duQ

T (µ̃)Vdu)−1WT
duC

T (µ̃)]TQ(µ̃)V (WTQ(µ̃)V )−1WTB(µ̃)
= C(µ̃)V (WTQ(µ̃)V )−1WTQ(µ̃)V (WTQ(µ̃)V )−1WTB(µ̃)
= C(µ̃)V (WTQ(µ̃)V )−1WTB(µ̃).

(37)
Comparing (36) and (37), we get the conclusion. �

Remark 4.1. Proposition 4.1 points out that if Wdu = V and Vdu = W , then ∆1(µ̃) is always zero, and
cannot be a good error estimator. This is not the case for most problems. However, if the system is symmetric,
i.e., Q(µ̃) = QT (µ̃), and B(µ̃) = CT (µ̃), this will likely happen, since in this case, the primal system and
the dual system are identical. We will show later that for systems that are almost symmetric, i.e., Q(µ̃) ≈
QT (µ̃) and/or B(µ̃) ≈ CT (µ̃), ∆1(µ̃) also behaves badly. One possibility of avoiding ∆1(µ̃) being zero or
improving the performance of ∆1(µ̃) is to construct (Wdu, Vdu) and (W,V ) from different subspaces of the
solution (state) manifold. More specifically, when using time domain methods, different snapshots should be
chosen for (Wdu, Vdu) and (W,V ), respectively; or different expansion points should be taken if using frequency
domain methods, e.g., moment-matching.

Remark 4.2. Using Galerkin projection, i.e., W = V , Wdu = Vdu, then Vdu = V leads to ∆1(µ̃) = 0.

Proposition 4.2. If Wrdu = Wdu, then the second part of ∆2(µ̃) is always zero, i.e., |x̂Trdu(µ̃)rpr(µ̃)| = 0.

Proof.
x̂Trdu(µ̃)rpr(µ̃) = [VrduQ̃

−1(µ̃)(WT
rdu
rdu(µ̃))]T rpr(µ̃)

= rTdu(µ̃)WduQ̃
−T (µ̃)V Trdurpr(µ̃) (if Wrdu = Wdu).

(38)

Considering the first two terms in the last equation, we get

(rTdu(µ̃)Wdu)T = WT
du(CT (µ̃)−QT (µ̃)Vduzdu(µ̃))

= 0 (due to (7)).
(39)

�

Remark 4.3. Proposition 4.2 points out that if Wrdu = Wdu, then ∆2(µ̃) reduces to ∆1(µ̃), and cannot be
more robust than ∆1(µ̃). Therefore, Wrdu should be carefully constructed to avoid being equal to Wdu. For
example, it could be computed from different snapshots if the reduced basis method is used for MOR; when
(multi-)moment-matching is used for MOR, different expansion points should be chosen for Wrdu and Wdu,
respectively. More details can be found in Section 6. In the case of Galerkin projection, i.e., Wrdu = Vrdu , and
Wdu = Vdu, Vrdu = Vdu leads to the same result in Proposition 4.2.

Proposition 4.3. If Wrpr = W , then x̂rpr (µ̃) = 0.

Proof. From the ROM of the primal-residual system in (23),

x̂rpr (µ̃) = Vrpr (W
T
rprQ(µ̃)Vrpr )

−1(WT
rprrpr(µ̃))

= Vrpr (W
T
rprQ(µ̃)Vrpr )

−1(WT rpr(µ̃)) (if Wrpr = W )

= Vrpr (W
T
rprQ(µ̃)Vrpr )

−1WT (B(µ̃)−Q(µ̃)V zpr(µ̃))

= Vrpr (W
T
rprQ(µ̃)Vrpr )

−1[WTB(µ̃)−WTQ(µ̃)V zpr(µ̃)]

= 0. (due to (5)).

(40)

�

Remark 4.4. Proposition 4.3 implicates that if Wrpr = W , then the second part of ∆pr
2 (µ̃) is always zero, i.e.,

|rTdu(µ̃)x̂rpr (µ̃)| = 0 , and ∆pr
2 (µ̃) equals to ∆1(µ̃). Also, x̂rpr (µ̃) = 0 makes ∆pr

1 (µ̃) zero, meaning the first part
of ∆3(µ̃) and the first part of ∆pr

3 (µ̃) are all zeros. Therefore, Wrpr should also be carefully constructed to avoid
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being equal to W . For Galerkin projection, i.e., Wrpr = Vrpr and W = V , Proposition 4.3 reads: If Vrpr = V ,
then x̂rpr (µ̃) = 0.

Proposition 4.4. If Wrrpr = Wrpr , then x̂rrpr (µ̃) = 0.

Proof. From the ROM of the primal-residual-residual system in (33),

x̂rrpr (µ̃) = Vrrpr (W
T
rrprQ(µ̃)Vrrpr )

−1(WT
rrprrrpr (µ̃)). (41)

The last tow terms of the right-hand side of (41) are

WT
rrprrrpr (µ̃) = WT

rprrrpr (µ̃) (if Wrrpr = Wrpr )

= WT
rpr (rpr(µ̃)−QVrprzrpr (µ̃))

= 0 (due to (23)).

�

Remark 4.5. From Proposition 4.4, we see that if Wrrpr = Wrpr , then the second part of ∆pr
3 (µ̃) is always

zero, i.e., |C(µ̃)x̂rrpr (µ̃)| = 0 , and is no better than ∆pr
1 (µ̃) in underestimating the true error. Similarly, in

case of Galerkin projection, i.e., Wrpr = Vrpr and Wrrpr = Vrrpr , Proposition 4.4 reads: If Vrrpr = Vrpr , then
x̂rrpr (µ̃) = 0.

4.6. Constructing projection matrices for the ROMs

The key components for computing the error estimators are the projection matrix pairs (W,V ), (Wdu, Vdu),
(Wrdu , Vrdu) or (Wrpr , Vrpr ), (Wrrpr , Vrrpr ), which are used to construct the reduced systems in (5), (7), (14)
or in (23), (33), respectively. For simplicity and clarity of analysis, we only use Galerkin projection for all the
reduced systems, so that only one projection matrix V, Vdu, Vrdu or Vrpr , Vrrpr needs to be computed for each
reduced system. The analysis in this subsection can be extended to Petrov-Galerkin projection without many
difficulties and could be addressed in a future work.

By definition of the reduced primal system (5), V is also the projection matrix for constructing the ROM
of the original model. Since the proposed error estimator does not depend on the MOR method, V can
be computed either using time-domain MOR methods, such as the reduced basis (RB) method, the proper
orthogonal decomposition (POD) method [8, 10], which use the snapshots in time domain (trajectories of the
state vector x) to obtain V or using frequency domain methods, such as multi-moment-matching [16].

The dual system (6), the dual-residual system (13), as well as the primal-residual system (21), the primal-
residual-residual system (31) are parametric systems in frequency domain, with µ̃ = s or µ̃ = (µ, s) being
the vector of parameters. Similarly, we can compute the projection matrices for MOR of these systems either
through snapshot based methods, or the multi-moment-matching method. The snapshots do not represent the
trajectory of the solution in time domain, instead, they are the solution vectors at different samples of the
parameter µ̃.

In order to be consistent with the previous work in [15, 17], and to be comparable with existing results, we
apply the frequency domain method, i.e., the multi-moment-matching method [16] to derive the ROMs for all
the systems contributing to the error estimator. To be self-contained, we also review the construction of V, Vdu
and Vrdu , though it is detailed in [17]. It is illustrated in [17] that the reduced basis method can be seen as a
special case of the multi-moment-matching method for systems in frequency domain.

4.6.1. Constructing V using the multi-moment-matching method [16]

When using the multi-moment-matching method proposed in [16] to construct the ROM, then V can be
computed as follows. We first consider the state vector x(t, µ) in frequency domain, i.e., the state vector x(µ̃)
of the primal system. Assume that Q(µ̃) has the following affine decomposition

Q(µ̃) = Q0 + h1(µ̃)Q1 + . . .+ hp(µ̃)Qp,
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where hj(µ̃) : Cm 7→ C, j = 1, . . . , p are scalar functions of µ̃. Q0, . . . , Qp ∈ Rn×n are constant matrices, so are
parameter independent. From the series expansion of x(µ̃),

x(µ̃) = [Q(µ̃)]−1B(µ̃)
= [Q0 + h1(µ̃)Q1 + . . .+ hp(µ̃)Qp]

−1B(µ̃)
= [I − (σ1M1 + . . .+ σpMp)]

−1BM

=
∞∑
k=0

(σ1M1 + . . .+ σpMp)
kBM ,

(42)

where σj = hj(µ̃)−hj(µ̃i), BM = [Q(µ̃i)]−1B(µ̃), Mj = −[Q(µ̃i)]−1Qj , j = 1, 2, . . . , p; h(µ̃i) := (h1(µ̃i), . . . , hp(µ̃
i))

is the expansion point at which the above power series of x(µ̃) is derived. Since h(µ̃i) is uniquely determined by
µ̃i, we call µ̃i the expansion point in the following text, for simplicity. The superscript i fixes the parameter µ̃
to a specific value µ̃i. It corresponds to the ith expansion point used in (45), i = 1, . . . , l. There exist recursions
between the coefficients of the series expansion as below,

R0 = B̃M ,
R1 = [M1R0, . . . ,MpR0],
R2 = [M1R1, . . . ,MpR1],
...

Rq = [M1Rq−1, . . . ,MpRq−1],
...

(43)

Here, B̃M = BM , if B(µ̃) does not depend on µ, i.e., B(µ̃) = B. Otherwise, B̃M = [BM1 , . . . , BMp ], BMj =

[Q(µ̃i)]−1Bj , j = 1, . . . , p, if B(µ̃) can be written in an affine form, e.g., B(µ̃) = B1α1(µ) + . . . + Bpαp(µ),
αi(µ) : Cm 7→ C. Then Vµ̃i is computed as

range(Vµ̃i) = span{R0, R1, . . . , Rq}µ̃i , (44)

where usually we require q ≤ 1 to avoid exponential increase of column dimension. The matrix Vµ̃i depends on

the expansion point µ̃i. Finally, V can be constructed as

V = orth{Vµ̃1 , . . . , Vµ̃l}. (45)

The matrices Rj , j = 0, . . . , in (43) depend on the expansion point µi, so that they can be written as Rj(µ̃
i).

The multi-moments corresponding to the expansion point µi are defined as C(µ̃i)Rj(µ̃
i), j = 0, . . ., where Rj

includes the j-th order multi-moments. Corresponding multi-moments of the ROM (2) can also be defined

using the projected reduced system matrices, i.e., Ĉ(µ̃i)R̂j(µ̃
i), j = 0, . . ., where R̂j = V TRjV . When C(µ̃)

is a constant matrix C, it is proved in [16] that the multi-moments ĈR̂j(µ̃
i), j = 0, . . . q, i = 1, . . . , l, of

the ROM (2) are equal to those of the FOM (1), if the projection matrix V is constructed as in (45). An
analogous proof applies to the case of parameter dependent C(µ̃) to show a similar moment-matching property:

Ĉ(µ̃i)R̂j(µ̃
i) = C(µ̃i)Rj(µ̃

i), j = 0, . . . q, i = 1, . . . , l. In this sense, the multi-moments of the FOM are matched
by the ROM till order q at each expansion point µ̃i, for i = 1, . . . , l.
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4.6.2. Constructing Vdu using multi-moment-matching

If using the multi-moment-matching method, Vdu can also be constructed similarly as V . Considering the
dual system in (6), xdu(µ̃) can be written as

xdu(µ̃) = [Q(µ̃)]−TCT (µ̃)
= [QT0 + h1(µ̃)QT1 + . . .+ hp(µ̃)QTp ]−1CT (µ̃)

= [I − (σ1M̃1 + . . .+ σpM̃p)]
−1CM

=
∞∑
k=0

(σ1M̃1 + . . .+ σpM̃p)
kCM ,

(46)

where CM = [Q(µ̃i)]−TCT (µ̃), M̃j = −[Q(µ̃i)]−TQTj , j = 1, 2, . . . , p. The recursions between the coefficients of
the series expansion in (46) are

R̃0 = C̃M ,

R̃1 = [M̃1R̃0, . . . , M̃pR̃0],

R̃2 = [M̃1R̃1, . . . , M̃pR̃1],
...

R̃q = [M̃1R̃q−1, . . . , M̃pR̃q−1],
...

(47)

Here, C̃M = CM , if C(µ̃) does not depend on µ, i.e., C(µ̃) = C. Otherwise, C̃M = [CM1
, . . . , CMp

], CMi
=

[Q(µ̃i)]−1Cj , j = 1, . . . , p, if C(µ̃) can be written in an affine form, e.g., C(µ̃) = C1β1(µ) + . . .+Cpβp(µ). Then
V duµ̃i is computed as

range(V duµ̃i ) = span{R̃0, R̃1, . . . , R̃q}µ̃i . (48)

Finally, Vdu can be constructed as
Vdu = orth{V duµ̃1 , . . . , V duµ̃l }. (49)

4.6.3. Constructing Vrdu

Vrdu is used to construct the ROM of the dual-residual system and the error estimator ∆2(µ̃). From the state
vector of the dual-residual system (13), we see that

xrdu(µ̃) = Q−T (µ̃)rdu(µ̃)
= Q−T (µ̃)CT (µ̃)− x̂du(µ̃)
= Q−T (µ̃)CT (µ̃)− Vduzdu(µ̃),

(50)

where Q−T (µ̃)CT (µ̃) is nothing but the state vector xdu(µ̃) of the dual system.
Considering the series expansion of xdu(µ̃) in (46), we see that taking the same expansion point as in (46), the

series expansion leads to the subspace range(Vdu). Finally, Q−T (µ̃)CT (µ̃) in the last equality of (50) provides
no new information than Vdu, so that we can use range(Vdu) as the subspace for approximating the trajectory
space of xrdu(µ̃), i.e., Vrdu = Vdu. However, from Proposition 4.2, we know that Vrdu should be different from
Vdu. Therefore, if we use expansion points different from those used for Vdu to obtain a second projection
matrix V 1

rdu
, which is different from Vdu, then the projection matrix Vrdu := orth{V 1

rdu
, Vdu} should represent

the trajectory of xrdu(µ̃) well.
V 1
rdu

can be computed using the multi-moment-matching method as in (48) and (49), by choosing expansion
points that are different from those used there, i.e.,

range(V rduµ̃j ) = span{R̃0, R̃1, . . . , R̃q}µ̃j , j = 1, . . . , l. (51)

Finally,
range(Vrdu) = orth{V rduµ̃1 , . . . , V rdu

µ̃l
, Vdu} (52)
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The µ̃j in (51) can be selected by a greedy algorithm searching the maximum of |x̂Trdu(µ̃)rpr(µ̃)|, the first part

of ∆2(µ̃) associated with x̂rdu , and are usually different from µ̃i used for computing Vdu.

4.6.4. Constructing Vrpr

From the state vector of the primal-residual system (21), we get

xrpr (µ̃) = Q−1(µ̃)rpr(µ̃)
= Q−1(µ̃)B(µ̃)− x̂pr(µ̃)
= Q−1(µ̃)B(µ̃)− V zpr(µ̃),

(53)

where Q−1(µ̃)B(µ̃) is exactly the state vector x(µ̃) of the primal system.
Similarly to constructing Vrdu , we use expansion points different from those used for V to obtain a second

projection matrix V 1
rpr whose columns span a subspace that is different from the one spanned by the columns

of V , then the projection matrix

Vrpr := orth{V 1
rpr , V } (54)

should represent the trajectory of xrpr (µ̃) well.

4.6.5. Constructing Vrrpr

From the state vector of the primal-residual-residual system (31), we see that

xrrpr (µ̃) = Q−1(µ̃)rrpr (µ̃)
= Q−1(µ̃)(rpr(µ̃)−Q(µ̃)Vrprzrpr (µ̃))
= Q−1(µ̃)(rpr(µ̃)− Vrprzrpr (µ̃))
= Q−1(µ̃)(B(µ̃)−QV zpr(µ̃))− Vrprzrpr (µ̃)
= Q−1(µ̃)B(µ̃)− V zpr(µ̃)− Vrprzrpr (µ̃).

(55)

Taking the same expansion point as in (42), the series expansion of Q−1(µ̃)B(µ̃) in the last equation of (55) gives
rise to the projection matrix V . Consequently, the subspace for xrrpr (µ̃) is range(V, Vrpr ), which is equivalent
with range(Vrpr ), since V is already included in Vrpr in (54). This is in contradiction with Proposition 4.4 that

Vrrpr should be different from Vrpr . Therefore, Q−1(µ̃)B(µ̃) in the last equation of (55) cannot be expanded
using the same expansion points as those for both V and Vrpr . Recall that Vrrpr is used to construct the ROM
of the primal-residual-residual system (31) and contributes to the error estimator ∆pr

3 (µ̃). Then the expansion
points for series expansion of Q−1(µ̃)B(µ̃) in the last equation of (55) can be iteratively chosen by searching
the maximum of |C(µ)x̂rrpr (µ̃)|, the second part of ∆pr

3 (µ̃), which purely depends on the ROM built by Vrrpr .
Greedy algorithms computing the projection matrices are presented in Section 6.

5. Comparing the proposed error estimators with the existing ones

In this section, the proposed error estimators are compared with the existing and closely related error
estimators: the randomized error estimator in [29], where some dual residual systems are employed to construct
the error estimator, and the error bound in [15] using the inf-sup constant. We first briefly review the randomized
error estimator in Section 5.1, then compare it with the proposed error estimators in the next subsection, where
the proposed error estimators are also compared with regard to their similarities and differences. The comparison
is only done for error estimators with high relevance or with comparability.

5.1. Review of the error estimator in [29]

State error estimation as well as output error estimation for parametric linear steady systems is proposed
in [29] based on randomized residuals. Given the system has only a single input, the output error estimation
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can be used to estimate the transfer function error in frequency domain. The transfer function error eH(µ̃) :=

H(µ̃)− Ĥ(µ̃) can be measured using the 2-norm ‖eH(µ̃)‖2. The error estimator is given as

‖eH(µ̃)‖2 ≈
1

K

(
K∑
i=1

δ2
i

)1/2

=: ∆r(µ̃), (56)

where δi = (xidu(µ̃))T rpr(µ̃), and xidu(µ̃) solves the ith random dual system,

Q(µ̃)Txidu(µ̃) = zi, i = 1, . . . ,K, (57)

where zi ∼ N (0, CT (µ̃)C(µ̃)) is a random vector following the normal distribution with zero mean and covari-
ance matrix CT (µ̃)C(µ̃) ∈ Rn×n. According to Remark 2.6 in [29], the random dual systems reduce to

Q(µ̃)Txidu(µ̃) = ξiC
T (µ̃), i = 1, . . . ,K, (58)

where ξi ∼ N (0, 1) is a random variable (scalar) with standard normal random distribution. Therefore, xidu(µ̃)
can be obtained by first solving the dual system in (6) to get xdu(µ̃) and then multiplying xdu(µ̃) with ξi, i.e.,
xidu(µ̃) = ξixdu(µ̃).

It is stated in [29] (Corollary 2.5) that under certain conditions, ∆r is an error estimator of the true error
with the probability

P{w−1∆r(µ̃) ≤ ‖eH(µ̃)‖2 ≤ w∆r(µ̃),∀µ̃ ∈ Ξ} ≥ 1− δ, (59)

where w >
√
e, e is the Euler number, and Ξ is a finite set of parameter samples, 0 < δ < 1. Note that the

dual system (6) with large size n needs to be solved at least once for every parameter to obtain xidu, this is
still costly. Therefore, for single output systems, xdu is replaced by x̂du, so that only the reduced dual system
in (7) needs to be solved. For multiple output systems, each of the random dual systems in (57) is first reduced
to a small system and then xidu is approximated by the approximate solutions x̂idu computed from the reduced
random dual systems. Finally, we have

‖e(µ̃)‖2 ≈ 1
K

(
K∑
i=1

δ2
i

)1/2

=: ∆r(µ̃)

≈ 1
K

(
K∑
i=1

δ̃2
i

)1/2

=: ∆̃r(µ̃),

(60)

where δ̃i = (x̂idu(µ̃))T rpr(µ̃).

5.2. Robustness comparison

This subsection gives more insights into the proposed error estimators by comparing them with the existing
ones and by comparing highly relevant ones among them. The comparison mainly focuses on the robustness of
the error estimators in predicting the true error in the following sense: we discuss whether some are more likely
to underestimate or overestimate the true error than others.

• ∆1(µ̃) vs. ∆pr
1 (µ̃): To compute ∆1(µ̃), we need reduce both a primal system and a dual system.

Whereas, the primal system and the primal-residual system are reduced to obtain ∆pr
1 (µ̃). Although it

is not clear which one better estimates the true error theoretically, numerical results nevertheless show
obvious superiority of ∆pr

1 (µ̃) over ∆1(µ̃).

• ∆1(µ̃) vs. ∆2(µ̃): it is clear that ∆2(µ̃) is an upper bound of ∆1(µ̃), though it is not an upper bound
of the true error. This means, ∆1(µ̃) is more likely to underestimate the true error than ∆2(µ̃), if
Wrdu 6= Wdu due to Proposition 4.2.
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• ∆1(µ̃) vs. ∆pr
2 (µ̃): analogously, ∆1(µ̃) is more likely to underestimate the true error than ∆pr

2 (µ̃), if
Wrpr 6= W due to Proposition 4.3.

• ∆pr
1 (µ̃) vs. ∆3(µ̃): ∆pr

1 (µ̃) is more likely to underestimate the true error than ∆3(µ̃).

• ∆pr
1 (µ̃) vs. ∆pr

3 (µ̃): ∆pr
1 (µ̃) is more likely to underestimate the true error than ∆pr

3 (µ̃), if Wrrpr 6= Wrpr

due to Proposition 4.4.

• ∆2(µ̃) vs. ∆pr
2 (µ̃): the only difference between ∆2 and ∆pr

2 (µ̃) is the difference between their second
parts, where the ROM of the dual residual system (x̂du(µ̃)) is used for ∆2(µ̃), whereas the ROM of
the primal-residual system (x̂rpr (µ̃)) is used for ∆pr

2 (µ̃). They also behave similarly in the numerical
experiments.

• ∆2(µ̃) vs. ∆3(µ̃): the first term |x̂Trdu(µ̃)rpr(µ̃)| of ∆2(µ̃) results from the ROM of the primal system and
that of the dual system. The first term |C(µ̃)x̂rpr (µ̃)| of ∆3(µ̃) results from reducing the primal system

and the primal-residual system. As for their second terms: |x̂Tdu(µ̃)rpr(µ̃)| of ∆2(µ̃) and |x̂Tdu(µ̃)rrpr (µ̃)|
of ∆3(µ̃), rpr(µ̃) is the residual from the ROM of the primal system, but rrpr (µ̃) is the residual from
the ROM of the primal-residual system. rrpr (µ̃) is the result of two-step model reduction, whereas rpr
results from one step of MOR. Numerical results show that ∆2(µ̃) is more robust than ∆3(µ̃), when
∆2(µ̃) is computed properly, especially for near symmetric systems.

• ∆3(µ̃) vs. ∆pr
3 (µ̃): The only difference between ∆3(µ̃) and ∆pr

3 (µ̃) is the difference between their sec-
ond parts, where x̂du(µ̃), the quantity computed from the ROM of the dual system is used for ∆3(µ̃),
whereas, x̂rrpr (µ̃), the quantity computed from the ROM of the primal-residual-residual system is used
for ∆pr

3 (µ̃). Numerical results in the next section show little difference between their effectivities.

• ∆0(µ̃) vs. ∆2(µ̃) in [15]: It is shown in [17] that ∆0(µ̃) has motivated the derivation of ∆2(µ̃) and can
be seen as an upper bound of ∆2(µ̃). Although ∆0(µ̃) is an error bound of the transfer function error,
it is much more time consuming to compute as compared with ∆2(µ̃), since the smallest singular value
of a large matrix (of the original model size n) needs to be solved for every parameter value in a given
training set. ∆2(µ̃) avoids this computational issue. Numerical tests on several models in [17] have
shown that ∆2(µ̃) is much tighter than ∆0(µ̃) and behaves as an error bound, except for very small
true errors close to machine precision.

• ∆̃r(µ̃) in [29] vs. ∆1(µ̃): From the proof of Theorem 1, we see that the quantity |xTdu(µ̃)rpr(µ̃)| in (10)
is exactly the true error. Using a similar description as in (59), |xTdu(µ̃)rpr| satisfies

P{w−1|xTdu(µ̃)rpr| ≤ ‖eH(µ̃)‖2 ≤ w|xTdu(µ̃)rpr(µ̃)|,∀µ̃ ∈ Ξ,∀Ξ ∈ D} = 1, (61)

with w = 1, which is an exact estimation of the true error not only for any µ̃ in a given Ξ as in (59),
but also for any µ̃ in D . Here, D is the continuous parameter domain. Comparing (61) with (59), we
know that ∆r(µ̃) in (56) and (59) is an error estimator, whereas |xTdu(µ̃)rpr(µ̃)| in (10) and (61) is the
true error. Furthermore, the error estimator ∆1(µ̃) is derived based on |xTdu(µ̃)rpr(µ̃)| by replacing the

true dual solution xdu(µ̃) in |xTdu(µ̃)rpr(µ̃)| with the approximate dual solution x̂du(µ̃); whereas ∆̃r(µ̃)
is derived based on ∆r(µ̃) in (56) also by replacing xdu(µ̃) in ∆r(µ̃) with x̂du(µ̃). In summary, ∆1(µ̃)

is only a one-step approximation of the true error, whereas, ∆̃r(µ̃) is a two-step approximation of the

true error. It is therefore not difficult to see that ∆1(µ̃) should be tighter than ∆̃r(µ̃). Simulation

results also show that ∆̃r(µ̃) is often not as tight as ∆1(µ̃). From the previous analyses, ∆1(µ̃) is less



16 TITLE WILL BE SET BY THE PUBLISHER

accurate than all the other proposed error estimators, which can also be seen from the numerical results
in Section 7. Therefore, it appears to be unnecessary to compare ∆̃r(µ̃) with the other estimators.

5.3. Computational complexity comparison

Computing any of the error estimators discussed in this work needs to construct a ROM of the primal system.
It is noticed that the projection matrix V used to construct the ROM of the primal system (4) is the same
matrix used to derive the ROM of the original system. Therefore, the ROM of the primal system can be derived
for free in the sense that V is obtained without additional computation. Except for constructing the ROM of
the primal system, we list the following additional costs required by different error estimators.

• Computing ∆0(µ̃) involves constructing the ROM of the dual system (6), and computing the inf-sup
constant at each µ̃ in the training set Ξ.

• Computing ∆1(µ̃) or ∆pr
1 (µ̃) involves constructing the ROM of the dual system or the ROM of the

primal-residual system (21).
• Computing ∆2(µ̃), ∆pr

2 (µ̃) or ∆3(µ̃) involves constructing the ROM of the dual system (6), and addition-
ally the ROM of a corresponding residual system needs to be constructed: the ROM of the dual-residual
system (13) or the ROM of the primal-residual system (21).

• Computing ∆pr
3 (µ̃) involves constructing the ROMs of two residual systems: the primal-residual sys-

tem (21) and the primal-residual-residual system (31).
• Computing ∆r(µ̃) involves constructing the ROM of the dual system if the output matrix C is a vector,

otherwise, K ROMs of the K random dual systems in (57) must be constructed.

From Subsection 4.6, we see that to construct the ROMs of the dual system, or any of the residual systems, one
only has to solve several linear systems to compute the coefficients in the series expansion of the corresponding
solution vector. For interpolatory MOR methods in frequency domain, the cost of constructing the ROM of any
of the above mentioned system is equivalent to the cost of constructing the ROM of the original system. This
means, in order to compute any of the error estimators, one or two additional ROMs need to be constructed at
each iteration of the greedy algorithm. Except for constructing the ROMs, where linear systems of the original
dimension need to be solved at the expansion points, no extra large-scale computations are needed to compute
the error estimators. However, the error bound ∆0(µ̃) has the highest computational cost, since computing the
inf-sup constant means solving a large eigenvalue problem at each µ̃ in Ξ per iteration. Furthermore, from the
proposed greedy algorithms in the next section, the additional ROMs are constructed simultaneously with the
ROM (2) of the original system, no separate greedy algorithms are required as in [28].

6. Greedy algorithms for constructing the projection matrices

The aim of an efficient error estimator is to construct a ROM of the original system with satisfying accuracy
and high reliability. In the following, we show algorithms for constructing the ROM of the original system, where
an error estimator acts as a guidance for greedy constructing the projection matrix V for the ROM. Again, we
use Galerkin projection to compute the ROM of the original systems and the ROMs of the other systems, which
are involved in computing the error estimators. To compute any of the proposed error estimators, corresponding
projection matrices Vdu, Vrdu , Vrpr , Vrrpr need to be constructed simultaneously with V .

As compared with the algorithms in [17], we have included the proposed variants of the error estimator and
computation of their corresponding projection matrices into the algorithms. The performance of the proposed
error estimators as well as the existing ones are compared in the next section.

We first present the greedy scheme for non-parametric systems in Algorithm 1. The standard moment-
matching method [7] is used to compute the projection matrices. The variable εtol is defined as the tolerance
for the error of the reduced transfer function. Once the maximal error estimator over the whole sample set Ξ is
below the tolerance, the greedy algorithm stops. In every iteration, the s sample corresponding to the maximal
error estimator is chosen as the next expansion point si (Step 22). Steps 5, 8, 12, 16 and Step 20 orthogonalize
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the vectors in V (si) and Vdu(si), Vrdu(sαi ), Vrpr (s
α
i ), Vrrpr (s

β
i ) against the existing vectors in V and Vdu, Vrdu ,

Vrpr , Vrrpr , respectively.
In Algorithm 1, some steps are only implemented for certain error estimators, depending on which error

estimator is being used. The expansion point sαi is chosen to iteratively construct Vrdu or Vrpr , while sβi is

chosen to construct Vrrpr . The choice of the expansion points sαi or sβi depends on the part of the error
estimator that is solely decided by the corresponding projection matrices Vrdu , Vrpr , or Vrrpr . As for ∆pr

1 (µ̃),
since si is chosen according to ∆pr

1 , sαi is chosen according to the norm of rrpr to avoid Vrpr being identical with
V due to Proposition 4.3.

Algorithm 2 shows the adaptive scheme for linear parametric systems. Algorithm 2 is similar with Algo-
rithm 1. Its only difference from Algorithm 1 is in computing the projection matrices at a chosen expansion point
in Steps 4, 7, 11, 15 and Step 19, where the multi-moment-matching method instead of the moment-matching
method is used.

In greedy algorithms, large linear systems are solved only at the expansion points selected from a training set
Ξ, to construct the corresponding projection matrices for MOR and for computing the error estimators. For
each projection matrix, only a single expansion point is selected at each iteration step of the greedy algorithm,
requiring a quite limited number of large-scale linear solves. Finally, if the greedy algorithm converges in a few
iterations, large-scale linear solves are performed only at a few samples in the training set Ξ.

We point out in Remark 4.1, Section 4.5 that when a system is almost symmetric, ∆1(µ̃) performs badly,
which will in turn, affect the behavior of ∆2(µ̃) and ∆pr

2 (µ̃). From the simulation results in the next section,
we will see that, except for the CD player model, ∆1(µ̃) is not a good estimator. It is observed that for
the RLCtree model, Q(s) is symmetric, and only two elements are different between the input vector B and
the transpose of the output vector C. For the MIMO example, the matrix E is symmetric and B = CT .
For the parametric example, the mass matrix M(µ) is symmetric. The stiffness matrix is unsymmetric, but
the maximal magnitude of the elements in the matrix TT (µ) − T (µ) is O(10−18) for all the parameters. This
implicates that T (µ) is very likely symmetric in theory, and the small differences between T (µ) and its transpose
are probably caused by numerical errors. The damping matrix is unsymmetric, but the maximal magnitude of
the elements in the damping matrix D(µ) is O(10−11). Whereas, the maximal magnitude of the elements in
T (µ) is O(1). Since the matrix Q(µ̃) is composed of M(µ), T (µ) and D(µ), i.e., Q(µ̃) = s2M(µ)+sD(µ)+T (µ),
and s = 2πf, f ∈ [50, 250], it can be concluded that Q(µ̃) is almost symmetric. All the three examples are close
to the symmetric case indicated in Remark 4.1.

In the following, we propose two algorithms: Algorithms 3-4, aiming at improving the behavior of ∆1(µ̃),
∆2(µ̃) and ∆pr

2 (µ̃) for nearly symmetric systems. Their main difference from Algorithm 1 and 2 is that instead of
using the same expansion point for Vdu and V , different expansion points (sγi or µ̃iγ) are chosen for Vdu according
to a different error criterion that directly depends on Vdu, see Steps 23-28 in Algorithm 3 and Algorithm 4,
respectively.

7. Simulation results

In this section, we show the performance of the proposed error estimators and the existing ones. Detailed
analyses for each of them are presented accordingly. Since the error bound ∆0(µ̃) in [15] has been compared
in detail with the error estimator ∆2(µ̃) in a recent work [17], we do not repeat this comparison. Furthermore,
since ∆0(µ̃) was shown to be less tight than ∆2(µ̃), it will not be compared with other error estimators either,
as it will be clear from the results below that ∆0(µ̃) may not outperform most of the error estimators.

We use the same four models as in [17] to show the robustness of the error estimators. The first two are
non-parametric SISO systems. One is a well-known MOR benchmark example, the model of a CD player (with
order n = 120), the other is a model of an RLC tree circuit with order n = 6, 134. The third example is a
circuit model with n = 980. It has 4 inputs and 4 outputs, and no parameters. Both the CD player model and
the third multi-input multi-output (MIMO) circuit model are from the SLICOT benchmark collection 1. The

1URL: http://www.icm.tu-bs.de/NICONET/benchmodred.html
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Algorithm 1 Greedy ROM construction for non-parametric systems (1)
.

Require: System matrices E,A,B,C, εtol, Ξ: a set of samples of s covering the interesting frequency range.
Ensure: The projection matrix V for constructing the ROM in (2).

1: V = [], Vdu = [],Vrdu = [], Vrpr = [], Vrrpr = [], set ε = εtol + 1, q > 1.

2: Initial expansion point: si ∈ Ξ, for V, Vdu; sαi ∈ Ξ, for Vrdu(or Vrpr ); sβi ∈ Ξ, for Vrrpr , i = 1.
3: while ε > εtol do
4: range(V (si)) = span{B̃(si), . . . , (Ã(si))

q−1B̃(si)}, where Ã(s) = (sE − A)−1E, B̃(s) = (sE − A)−1B,
and q � n

5: V = orth{V, V (si)}.
6: if ∆(s) ∈ {∆1(s),∆2(s),∆pr

2 (s),∆3(s)} then

7: range(Vdu(si)) = span{C̃(si), . . . , (Ãc(si))
q−1C̃(si)}, where Ãc(s) = (sE − A)−TET , C̃(s) = (sE −

A)−TCT .
8: Vdu = orth{Vdu, Vdu(si)}.
9: end if

10: if ∆(s) = ∆2(s) then

11: range(Vrdu(sαi )) = span{C̃(sαi ), . . . , (Ãc(s
α
i )q−1C̃(sαi )}.

12: Vrdu = orth{Vdu, Vrdu , Vrdu(sαi )}.
13: else if ∆(s) ∈ {∆pr

1 (s),∆pr
2 (s),∆3(s),∆pr

3 (s)} then

14: range(Vrpr (s
α
i )) = span{B̃(sαi ), . . . , (Ã(sαi ))q−1B̃(sαi )}.

15: Vrpr = orth{V, Vrpr , Vrpr (sαi )}.
16: end if
17: if ∆(s) = ∆pr

3 (s) then

18: range(Vrrpr (s
β
i )) = span{B̃(sβi ), . . . , (Ã(sβi ))q−1B̃(sβi )}.

19: Vrrpr = orth{V, Vrpr , Vrrpr , Vrrpr (s
β
i )}.

20: end if
21: i = i+ 1, si = arg max

s∈Ξ
∆(s).

22: if ∆(s) = ∆2(s) then
23: sαi = arg max

s∈Ξ
|x̂Trdu(s)rpr(s)|. %second part of ∆2(s)

24: else if ∆(s) = ∆pr
2 (s) then

25: sαi = arg max
s∈Ξ
|rTdu(s)x̂rpr (s)|. %second part of ∆pr

2 (s)

26: else if ∆(s) = ∆pr
1 (s) then

27: sαi = arg max
s∈Ξ
‖rrpr (s)‖2. rrpr(s) is defined in (28).

28: else if ∆(s) = ∆3(s), or ∆pr
3 (s) then

29: sαi = arg max
s∈Ξ

∆pr
1 (s). %first part of ∆3(s) or ∆pr

3 (s)

30: end if
31: if ∆(s) = ∆pr

3 (s) then

32: sβi = arg max
s∈Ξ
|Cx̂rrpr (s)|. %second part of ∆pr

3 (s)

33: end if
34: ε = ∆(si).
35: end while

last one is the model of a butterfly-shaped micro-gyroscope, available from the MOR benchmark collection2. It
is a second-order parametric system with n = 17, 931.

2URL: https://morwiki.mpi-magdeburg.mpg.de/morwiki
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Algorithm 2 Greedy ROM construction for parametric systems (1)
.

Require: System matrices E(µ), A(µ), B(µ), C(µ), εtol, Ξ: a set of samples of µ̃ covering the interesting pa-
rameter domain.

Ensure: The projection matrix V for constructing the ROM in (2).
1: V = [], Vdu = [],Vrdu = [], Vrpr = [], Vrrpr = [], set ε = εtol + 1.

2: Initial expansion point: µ̃i ∈ Ξ for V, Vdu; µ̃iα for Vrdu(or Vrpr ); µ̃iβ for Vrrpr , i = 1.
3: while ε > εtol do
4: compute Vµ̃i following (44).
5: V = orth{V, Vµ̃i)}.
6: if ∆(µ̃) ∈ {∆1(µ̃),∆2(µ̃),∆pr

2 (µ̃),∆3(µ̃)} then
7: compute V duµ̃i following (48).

8: Vdu = orth{Vdu, V duµ̃i }.
9: end if

10: if ∆(µ̃) = ∆2(µ̃) then
11: compute V rduµ̃iα

following (51).

12: Vrdu = orth{Vdu, Vrdu , V
rdu
µ̃iα
}.

13: else if ∆(µ̃) ∈ {∆pr
1 (µ̃),∆pr

2 (µ̃),∆3(µ̃),∆pr
3 (µ̃)} then

14: compute V
rpr
µ̃iα

following (44).

15: Vrpr = orth{V, Vrpr , V
rpr
µ̃iα
}.

16: end if
17: if ∆(µ̃) = ∆pr

3 (µ̃) then
18: compute V

rrpr
µ̃iβ

following (44).

19: Vrrpr = orth{V, Vrpr , Vrrpr , V
rrpr
µ̃iβ
}.

20: end if
21: i = i+ 1, µ̃i = arg max

µ̃∈Ξ
∆(µ̃).

22: if ∆(µ̃) = ∆2(µ̃) then
23: µ̃iα = arg max

µ̃∈Ξ
|x̂Trdu(µ̃)rpr(µ̃)|. %second part of ∆2(µ̃)

24: else if ∆(s) = ∆pr
2 (µ̃) then

25: µ̃iα = arg max
s∈Ξ
|rTdu(µ̃)x̂rpr (µ̃)|. %second part of ∆pr

2 (µ̃)

26: else if ∆(µ̃) = ∆pr
1 (µ̃) then

27: µ̃iα = arg max
µ̃∈Ξ
‖rrpr (µ̃)‖2. % rrpr (µ̃) is defined in (28).

28: else if ∆(µ̃) = ∆3(µ̃), or ∆pr
3 (µ̃) then

29: µ̃iα = arg max
µ̃∈Ξ

∆pr
1 (µ̃).

30: end if
31: if ∆(µ̃) = ∆pr

3 (µ̃) then
32: µ̃iβ = arg max

µ̃∈Ξ
|C(µ)x̂rrpr (µ̃)|. %second part of ∆pr

3 (µ̃)

33: end if
34: ε = ∆(µ̃i).
35: end while

The interesting frequency band for the CD player model is [0, 1 MHz]. The frequency range of interest
for the second and the third models is [0, 3 GHz]. The Gyroscope model is a low frequency problem with
f ∈ [50 Hz, 250 Hz].
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Algorithm 3 Improving ∆1(µ̃), ∆2(µ̃) and ∆pr
2 (µ̃) for nearly symmetric and non-parametric systems (1)

.

Require: System matrices E,A,B,C, εtol, Ξ: a set of samples of s covering the interesting frequency range.
Ensure: The projection matrix V for constructing the ROM in (2).

1: V = [], Vdu = [], Vrdu = [], Vrpr = [] set ε = εtol + 1, q > 1.
2: Initial expansion point: i = 1, si ∈ Ξ for V ; sαi ∈ Ξ for Vrdu(or Vrpr ); sγi ∈ Ξ for Vdu.
3: while ε > εtol do
4: range(V (si)) = span{B̃(si), . . . , (Ã(si))

q−1B̃(si)}.
5: V = orth{V, V (si)}
6: range(Vdu(sγi )) = span{C̃(sγi ), . . . , (Ãc(s

γ
i ))q−1C̃(sγi )}.

7: Vdu = orth{Vdu, Vdu(sγi )}.
8: if ∆(s) = ∆2(s) then

9: range(Vrdu(sαi )) = span{C̃(sαi ), . . . , (Ãc(s
α
i )q−1C̃(sαi )}.

10: Vrdu = orth{Vdu, Vrdu , Vrdu(sαi )}.
11: else if ∆(s) = ∆pr

2 (s) then

12: range(Vrpr (s
α
i )) = span{B̃(sαi ), . . . , (Ã(sαi ))q−1B̃(sαi )}.

13: Vrpr = orth{V, Vrpr , Vrpr (sαi )}.
14: end if
15: i = i+ 1, si = arg max

s∈Ξ
∆(s).

16: if ∆(s) = ∆2(s) then
17: sαi = arg max

s∈Ξ
|x̂Trdu(s)rpr(s)|. %second part of ∆2(s)

18: else if ∆(s) = ∆pr
2 (s) then

19: sαi = arg max
s∈Ξ
|rTdu(s)x̂rpr (s)|. %second part of ∆pr

2 (s)

20: end if
21: if ∆(s) = ∆1(s) then
22: sγi = arg max

s∈Ξ
‖rdu(s)‖2.

23: else if ∆(s) ∈ {∆2(s),∆pr
2 } then

24: sγi = arg max
s∈Ξ

∆1(s). %first part of ∆2(s) or ∆pr
2

25: end if
26: ε = ∆(si).
27: end while

The error tolerance εtol used in the greedy algorithms, i.e., the error tolerance for the error of the ROM of the
original system, is set as 1×10−3 for the first three examples, while for the last example, we set εtol = 1×10−7,
since the transfer function H(µ) has the smallest magnitude of 2.8× 10−7.

For all the non-parametric examples, we use q = 3 (order of moments matched) in Algorithm 1 and Al-

gorithm 3. For the parametric model, we use R0, R1 (R̃0, R̃1) to generate the matrices Vµ̃i , V
du
µ̃i , V rduµ̃iα

, V
rpr
µ̃iα

and V
rrpr
µ̃iβ

in Algorithm 2 and Algorithm 4. At each iteration, the maximal error estimator in Ξ, is computed,

and is used as the error control for the ROM (2) of the original system. Therefore, the maximal true error
εmax = max

µi∈Ξ
ε(µi) is used for comparison, where ε(µi) is the true error of the ROM evaluated at µi, at the

current iteration of the algorithm. Different error estimators produce ROMs with different accuracy at each
iteration of the greedy algorithm. In the tables below, we write εmax(∆) to indicate the maximal true error
corresponding to a specific error estimator ∆. Here, ∆ represents any of the error estimators listed in the tables.

For Algorithms 1-2, the initial expansion point s1 or µ̃1 for computing V, Vdu is taken as the first sample in
Ξ, and the initial expansion point sα1 or µ̃1

α for computing Vrdu , Vrpr is taken as the last sample in Ξ to make

the two expansion points different from each other. The expansion point sβ1 or µ̃1
β is for Vrrpr . It is taken as the
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Algorithm 4 Improving ∆1(µ̃), ∆2(µ̃) and ∆pr
2 (µ̃) for nearly symmetric and parametric systems (1)

.

Require: System matrices E(µ), A(µ), B(µ), C(µ), εtol, Ξ: a set of samples of µ̃ covering the interesting fre-
quency range.

Ensure: The projection matrix V for constructing the ROM in (2).
1: V = [], Vdu = [], Vrdu = [], Vrpr = [], set ε = εtol + 1.

2: Initial expansion point: µ̃i ∈ Ξ for V ; µ̃iα ∈ Ξ for Vrdu(or Vrpr ); µ̃iγ ∈ Ξ for Vdu; i = 1.
3: while ε > εtol do
4: compute Vµ̃i following (44).
5: V = orth{V, Vµ̃i)}.
6: compute V duµ̃iγ

following (48).

7: Vdu = orth{Vdu, V duµ̃iγ }.
8: if ∆(µ̃) = ∆2(µ̃) then
9: compute V rduµ̃iα

following (51).

10: Vrdu = orth{Vdu, Vrdu , V
rdu
µ̃iα
}.

11: else if ∆(µ̃) = ∆pr
2 (µ̃) then

12: compute V
rpr
µ̃iα

following (44).

13: Vrpr = orth{V, Vrpr , V
rpr
µ̃iα
}.

14: end if
15: i = i+ 1, µ̃i = arg max

µ̃∈Ξ
∆(µ̃).

16: if ∆(µ̃) = ∆2(µ̃) then
17: µ̃iα = arg max

µ̃∈Ξ
|x̂Trdu(µ̃)rpr(µ̃)|. %second part of ∆2(µ̃)

18: else if ∆(µ̃) = ∆pr
2 (µ̃) then

19: µ̃iα = arg max
µ̃∈Ξ
|rTdu(µ̃)x̂rpr (µ̃)|. %second part of ∆pr

2 (µ̃)

20: end if
21: if ∆(µ̃) = ∆1(µ̃) then
22: µ̃iγ = arg max

µ̃∈Ξ
‖rdu(µ̃)‖.

23: else if ∆(µ̃) ∈ {∆2(µ̃),∆pr
2 (µ̃)} then

24: µ̃iγ = arg max
µ̃∈Ξ

∆1(µ̃). %first part of ∆2(µ̃) or ∆pr
2 (µ̃)

25: end if
26: ε = ∆(µ̃i).
27: end while

midpoint in Ξ. Algorithms 3-4 are for (nearly) symmetric systems, and the initial expansion points s1, µ̃
1 for

V are different from sγ1 , µ̃
1
γ for Vdu. Therefore, s1 or µ̃1 is taken as the first sample in Ξ and sγ1 or µ̃1

γ is taken

as the midpoint in Ξ. The initial point sα1 or µ̃1
α for Vrdu , Vrpr is taken as the last point in Ξ.

7.1. The CD player model

The training set Ξ for this model contains 60 samples of s, and then the finally obtained ROM in (2) is
validated at 600 samples of s covering the whole interesting frequency range. The samples are taken from the
interval [0, 1 MHz] using the MATLAB function “logspace”. The results of Algorithm 1 using different error
estimators are shown in Tables 1-3, where the error estimators and the corresponding true errors εmax of the
ROMs at each iteration of the Algorithm, are listed. Note that different ROMs are derived by using different
error estimators, therefore the true errors depend on the error estimators and are usually different. This also
applies to analogous results listed in the other tables for other examples.
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In Table 1, we also show the results for ∆̃r(s) from [29], where K in (60) is taken as K = 20, which is shown
to produce better results than K = 10 [29]. In this table and other tables that follow, “—” means the algorithm

terminated at the previous iteration and no further results are given. During the greedy iteration, ∆̃r(s) always
underestimates the maximal true error. ∆pr

1 underestimates the true error at the first 5 iterations, but then

becomes an accurate estimator at the last two iterations. ∆1(s) is better than ∆̃r(s), but is no better than the
other estimators. ∆2(s) and its primal version ∆pr

2 (s) behave like error bounds. ∆pr
1 (s), ∆3(s) and ∆pr

3 (s) have
underestimation only at the first several iterations. In general, once they bound error from above, they are very
tight. We further validate the ROM obtained by the error estimators at samples in Ξver including 600 samples

Table 1. CD player, εtol = 10−3, q = 3, r = 44(∆r), r = 52(∆1), r = 56(∆pr
1 ).

iteration i εmax(∆̃r) ∆̃r(si) εmax(∆1) ∆1(si) εmax(∆pr
1 ) ∆pr

1 (si)
1 61.63 21.88 40.75 34.93 40.75 2.56
2 51.98 18.46 19.34 33.92 19.34 1.07
3 14.49 5.14 0.59 1.47 14.48 0.64
4 0.76 0.27 0.31 0.26 14.45 5.46
5 0.11 0.04 0.06 0.11 0.26 0.26
6 0.0016 5.86× 10−4 0.04 0.04 0.0024 0.0024
7 — — 6.81× 10−4 7.65× 10−4 1.28× 10−5 1.28× 10−5

Table 2. CD player, εtol = 10−3, q = 3, r = 52.

iteration i εmax(∆2) ∆2(si) εmax(∆pr
2 ) ∆pr

2 (si)
1 40.75 51 40.75 46.1
2 30.16 35.75 19.34 52.2
3 0.75 5.41 0.59 1.95
4 0.32 0.4 0.31 0.38
5 0.03 0.03 0.06 0.19
6 0.002 0.002 0.04 0.04
7 8.28× 10−4 8.38× 10−4 6.82× 10−4 8.48× 10−4

Table 3. CD player, εtol = 10−3, q = 3, r = 52.

iteration i εmax(∆3) ∆3(si) εmax(∆pr
3 ) ∆pr

3 (si)
1 40.75 35.45 40.75 34.95
2 19.34 35.19 16.81 51.76
3 0.59 0.84 9.1 9.1
4 0.31 0.4 0.21 0.24
5 0.05 0.05 0.03 0.03
6 0.002 0.002 0.0016 0.0016
7 8.27× 10−4 8.27× 10−4 7.57× 10−4 7.57× 10−4

randomly taken from [0, 1 MHz], the results are presented in Table 4 and plotted in Figures 1-4. In Table 4,
we compare the effectivity defined as eff(s) := ∆(s)/ε(s), the ratio between the given error estimator and its

corresponding true error. ∆̃r(s) still underestimates the true error at most samples. ∆pr
1 (s), ∆2(s), ∆3(s),

∆pr
3 (s) are equally well, whereas ∆1(s) and ∆pr

2 (s) underestimate the true error too much (min(eff) < 0.1) at
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some samples. However, we observe that underestimation happens only at samples with very small true errors
ε(s) being smaller than 10−11, which may be caused by rounding errors. If we check the error estimators only
at true errors larger than 10−11, then we obtain the last two columns in the table, which show that except for
∆̃r(s) the other estimators are tight.

Figure 1 further shows the inaccuracy of ∆̃r(s) validated at the 600 samples in Ξver. ∆1(s) in Figure 1
behaves slightly worse than the other proposed estimators, see Figures 2-4. In the following, we will omit the
results of ∆̃r(µ̃) for the other examples, since it is always worse than the others.

Table 4. CD player, effectivity of the error estimators.

Estimator
For all ε(s) For ε(s) ≥ 10−11

min
s∈Ξver

(eff) max
s∈Ξver

(eff) min
s∈Ξver

(eff) max
s∈Ξver

(eff)

∆̃r 0.09 1.82 0.26 0.26
∆1 0.02 80 0.9211 1.1785
∆pr

1 0.28 20.39 0.9988 1.0046
∆2 0.12 17.32 0.9987 1.1653
∆pr

2 0.02 80 1.0000 1.3643
∆3 0.12 10.97 0.9993 1.0004
∆pr

3 0.1 9.13 0.9998 5.31

Figure 1. CD player: ∆r(s) and ∆1(s) vs. the respective true errors at 600 frequency samples.

7.2. The RLC tree model

We use a training set Ξ with 90 frequency samples covering the whole frequency range [0, 3 GHz]. The
samples si are taken using the function fi = 3 × 10i/10, si = 2π, i = 1, . . . , 90. Here,  is the imaginary unit.
The results of the greedy algorithm using different error estimators are listed in Tables 5-7. ∆1(s) always
underestimates the true error, and finally it makes the greedy algorithm stop before the true error εmax is below
the tolerance. The other estimators behave like tight upper bounds for the true error in this example, especially
∆3(s) and ∆pr

3 (s), which actually measure the true error almost exactly at the last two iterations. The derived
ROMs using different error estimators are validated on a validation set Ξver with 900 samples in the interesting
frequency range. The effectivity of every error estimator is listed in Table 8. If considering the overall effectivity,
then all the estimators underestimate the true error too much except for ∆pr

2 (s). However, if only considering
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Figure 2. CD player:∆pr
1 (s) vs. the true errors at 600 frequency samples.

Figure 3. CD player: ∆2(s) and ∆pr
2 (s) vs. the respective true errors at 600 frequency samples .

Table 5. RLCtree, εtol = 10−3, q = 3, r = 12(∆1), r = 20(∆pr
1 ).

iteration i εmax(∆1) ∆1(si) εmax(∆pr
1 ) ∆pr

1 (si)
1 0.19 0.01 0.19 0.22
2 0.06 0.006 0.02 0.02
3 — — 2.54× 10−6 2.55× 10−6

Table 6. RLCtree, εtol = 10−3, q = 3, r = 20(∆2), r = 19(∆pr
2 ).

iteration i εmax(∆2) ∆2(si) εmax(∆pr
2 ) ∆pr

2 (si)
1 0.19 0.63 0.19 0.22
2 0.02 0.06 0.02 0.05
3 6.13× 10−6 6.45× 10−6 2.25× 10−5 1.05× 10−4

true errors that are bigger than 10−11, then ∆pr
1 (s), ∆3(s) and ∆pr

3 (s) are the best ones, ∆2(s) is also good,
∆pr

2 (s) overestimate the true error more than many others. It is clear that ∆1(s) is not a good error estimator



TITLE WILL BE SET BY THE PUBLISHER 25

Figure 4. CD player: ∆3(s) and ∆pr
3 (s) vs. the respective true errors at 600 frequency samples.

Table 7. RLCtree, εtol = 10−3, q = 3, r = 20.

iteration i εmax(∆3) ∆3(si) εmax(∆pr
3 ) ∆pr

3 (si)
1 0.19 0.22 0.19 0.29
2 0.02 0.02 0.02 0.02
3 2.54× 10−6 2.55× 10−6 2.54× 10−6 2.54× 10−6

any more. Figures 5-7 further show the behaviors of the error estimators over the sample set Ξver including 900
samples, which are in agreement with the above analysis for the data in Table 8.

Table 8. RLCtree, effectivity of the error estimators.

Estimator
For all ε(s) For ε(s) ≥ 10−11

min
s∈Ξver

(eff) max
s∈Ξver

(eff) min
s∈Ξver

(eff) max
s∈Ξver

(eff)

∆1 0.002 285 0.006 132
∆pr

1 0.002 253 0.9001 1.0826
∆2 0.004 244 0.37 51
∆pr

2 0.56 102 0.68 102
∆3 0.008 258 0.9 1.2337
∆pr

3 0.008 258 0.9 1.0894

7.3. MIMO example

This example has the same frequency range as the second example, therefore we use the same Ξ as for the
RLC tree model. The error estimator is the maximal error estimator defined as

∆(s) = max
ij

∆ij(s),

where ∆ij(s) estimates the true error εij(s) = |Hij(s)−Ĥij(s)|. Here Hij(s) and Ĥij(s) are the transfer functions
corresponding to the j-th input port and i-th output port of the original model and the ROM, respectively.
The true error is the maximal true error ε(s) = max

ij
|εij(s)|, and εmax = max

s∈Ξ
ε(s) as defined before.
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Figure 5. RCLtree: ∆1(s) and ∆pr
1 (s) vs. the respective true errors at 900 frequency samples.

Figure 6. RLCtree: ∆2(s) and ∆pr
2 (s) vs. the respective true errors at 900 frequency samples .

The results of Algorithm 1 using different error estimators are listed in Tables 9-11. Algorithm 1 stops before
the true error εmax is below the tolerance when using ∆1(s), whereas ∆pr

1 (s), ∆3(s) and ∆pr
3 (s) exactly estimate

the true error at each iteration step. ∆2(s) and its primal variation ∆pr
2 (s) produce the same results and make

the algorithm converge in 3 iterations. Note that ∆3(s) and ∆pr
3 (s) also yield the same results. The ROMs

Table 9. MIMO example, εtol = 10−3, q = 3, r = 20(∆1), r = 52(∆pr
1 ).

iteration i εmax(∆1) ∆1(si) εmax(∆pr
1 ) ∆pr

1 (si)
1 0.28 3.16× 10−5 0.28 0.28
2 — — 5.91× 10−5 5.91× 10−5

constructed by Algorithm 1 using the error estimators are further validated over a validation set Ξver with 900
samples, respectively. Table 12 lists the effectivity values of the error estimators. Among them, ∆2(s) and its
primal variation ∆pr

2 (s) are the best ones and have the same effectivity values. ∆pr
1 (s), ∆3(s) and ∆pr

3 (s) have
similar results and are still good.

Figures 8-10 plot the error estimators and the corresponding true errors of the ROMs. The waveforms of the
error estimators well reflect the data in Table 12. It is noticed that the maximal true errors over the validation



TITLE WILL BE SET BY THE PUBLISHER 27

Figure 7. RLCtree: ∆3(s) and ∆pr
3 (s) vs. the respective true errors at 900 frequency samples.

Table 10. MIMO example, εtol = 10−3, q = 3, r = 73.

iteration i εmax(∆2) ∆2(si) εmax(∆pr
2 ) ∆pr

2 (si)
1 0.28 0.28 0.28 0.28
2 5.91× 10−5 2.3× 10−3 5.91× 10−5 2.3× 10−3

3 4.72× 10−8 1.43× 10−7 4.72× 10−8 1.43× 10−7

Table 11. MIMO example, εtol = 10−3, q = 3, r = 52.

iteration i εmax(∆3) ∆3(si) εmax(∆pr
3 ) ∆pr

3 (si)
1 0.28 0.28 0.28 0.28
2 5.91× 10−5 5.91× 10−5 5.91× 10−5 5.91× 10−5

sample set Ξver obtained by ∆pr
1 (s), ∆3(s) and ∆pr

3 (s) are still bigger than the error tolerance, though they are
exactly reproduced by the error estimators. Since the error estimators accurately measure the maximal true
error, the ROMs can be further improved by adding one more expansion point from Ξver (rather than Ξ) at
which the error estimators are maximal. This will certainly incur more computational costs. Therefore, ∆2(s)
and ∆pr

2 (s) outperform the other ones for this model.

Table 12. MIMO example, effectivity of the error estimators.

Estimator
For all ε(s) For ε(s) ≥ 10−11

min
s∈Ξver

(eff) max
s∈Ξver

(eff) min
s∈Ξver

(eff) max
s∈Ξver

(eff)

∆1 8.78× 10−8 2.53 8.78× 10−8 1.43
∆pr

1 0.1 40 0.2 26
∆2 0.1 5 0.2 3.5
∆pr

2 0.1 5 0.2 3.5
∆3 0.1 25 0.2 21
∆pr

3 0.1 28 0.2 25
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Figure 8. MIMO example: ∆1(s) and ∆pr
1 (s) vs. the respective true errors at 900 frequency samples.

Figure 9. MIMO example: ∆2(s) and ∆pr
2 (s) vs. the respective true errors at 900 frequency

samples .

7.4. Parametric example

The micro-gyroscope model is a second-order parametric system with four parameters,

M(µ)ẍ(µ, t) +D(µ)ẋ(µ, t) + T (µ)x(µ, t) = Bu(t),
y(µ, t) = Cx(µ, t).

Here, µ = (θ, α, β, d), M(µ) = (M1 + dM2), T (µ) = (T1 + 1
dT2 + dT3), D(µ) = θ(D1 + dD2) +αM(d) + βT (d) ∈

Rn×n, n = 17, 913. The parameters are d, θ, α, β. d ∈ [100%, 200%], the width of the bearing, taken as the
percentage of the base value, and θ ∈ [10−7, 10−5]MHz, the rotation velocity along the x-axis. α, β define to
the proportional damping [27].

After Laplace transform, the system in frequency domain is

s2M(µ)x(µ, s) + sD(µ)x(µ, s) + T (µ)x = BuL(s),
y(µ, s) = Cx(µ, s).



TITLE WILL BE SET BY THE PUBLISHER 29

Figure 10. MIMO example: ∆3(s) and ∆pr
3 (s) vs. the respective true errors at 900 frequency samples.

The above system can be rewritten into the affine form,

Q(µ̃)x(µ̃) = BuL(µ̃),
y(µ̃) = Cx(µ̃),

where Q(µ̃) = T1 + µ̃1M1 + µ̃2M2 + µ̃3D1 + µ̃4D2 + µ̃5M1 + µ̃6M2 + µ̃7T1 + µ̃8T2 + µ̃9T3 + µ̃10T2 + µ̃11T3. Here
µ̃ = (µ̃1, . . . , µ̃11)T includes the newly generated parameters, µ̃1 = s2, µ̃2 = s2d, µ̃3 = sθ, µ̃4 = sθd, µ̃5 = sα,
µ̃6 = sαd, µ̃7 = sβ, µ̃8 = sβ/d, µ̃9 = sβd, µ̃10 = 1/d, µ̃11 = d.

For this example, we use 75 random samples (3 for θ, 5 for s, 5 for d) to set up the training set Ξ with β = 0
and α = 0. Afterwards, the ROMs are validated at a validation set Ξver including 2500 samples (5 for θ, 10 for
s, 5 for d), with β = 10−9 and α = 0.1 being nonzero.

The results of Algorithm 2 using different error estimators are listed in Tables 13-15. Except for ∆1(µ̃), all the
other error estimators tightly estimate the true error at each iteration of the algorithm. The ROMs obtained
via the error estimators are further validated at samples in Ξver, and the effectivity of each is presented in
Table 16. Again, ∆1(µ̃) is the worst. The others perform similarly well. We plot the true error of the ROMs
and the corresponding error estimators in Figures 11-13. ∆1(µ̃) almost always underestimates the true error,
while ∆pr

1 (µ̃), ∆3(µ̃) and ∆pr
3 (µ̃) are almost indistinguishable from the true error.

Table 13. Gyroscope, εtol = 10−3, q = 1, r = 84(∆1), r = 94(∆pr
1 ).

iteration i εmax(∆1) ∆1(µ̃i) εmax(∆pr
1 ) ∆pr

1 (µ̃i)
1 0.028 0.04 0.028 0.025
2 0.006 0.007 0.001 0.006
3 0.004 3.2× 10−4 0.003 0.003
4 4× 10−5 5.18× 10−4 3.85× 10−4 3.78× 10−4

5 3.34× 10−6 2.99× 10−5 1.69× 10−6 1.69× 10−6

6 2.95× 10−7 3.88× 10−7 3.48× 10−7 3.47× 10−7

7 7.91× 10−8 8.03× 10−8 1.39× 10−7 1.45× 10−7

8 — — 8.49× 10−8 8.44× 10−8
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Table 14. Gyroscope, εtol = 10−3, q = 1, r = 86(∆2), r = 80(∆pr
2 ).

iteration i εmax(∆2) ∆2(µ̃i) εmax(∆pr
2 ) ∆pr

2 (µ̃i)
1 4.53× 10−4 0.002 0.002 0.004
2 4.15× 10−4 6.16× 10−4 4.14× 10−4 5.83× 10−4

3 1.71× 10−5 8.53× 10−5 1.61× 10−4 2.69× 10−4

4 8.77× 10−6 8.22× 10−6 9.7× 10−5 1.57× 10−4

5 1.44× 10−6 1.07× 10−6 9.80× 10−7 9.81× 10−7

6 3.09× 10−8 3.41× 10−8 1.89× 10−7 2.06× 10−7

7 — — 7.21× 10−8 8.14× 10−8

Table 15. Gyroscope, εtol = 10−3, q = 1, r = 73(∆3), r = 83(∆pr
3 ).

iteration i εmax(∆3) ∆3(µ̃i) εmax(∆pr
3 ) ∆pr

3 (µ̃i)
1 0.009 0.005 5.42× 10−4 0.002
2 0.009 0.005 5.60× 10−4 5.26× 10−4

3 8.85× 10−5 8.85× 10−5 9.35× 10−5 6.59× 10−4

4 2.20× 10−4 2.20× 10−4 5.36× 10−6 5.36× 10−6

5 1.78× 10−6 1.48× 10−6 1.31× 10−6 1.30× 10−6

6 8.56× 10−8 8.51× 10−8 5.78× 10−7 5.78× 10−7

7 — — 5.60× 10−8 5.59× 10−8

Table 16. Gyroscope, effectivity of the error estimators.

Estimator
For all ε(s) For ε(s) ≥ 10−11

min
s∈Ξver

(eff) max
s∈Ξver

(eff) min
s∈Ξver

(eff) max
s∈Ξver

(eff)

∆1 0.025 8.87 0.025 8.87
∆pr

1 0.2 3.65 0.2 3.65
∆2 0.38 15 0.38 15
∆pr

2 0.2 3.68 0.2 3.68
∆3 0.34 9.34 0.34 9.34
∆pr

3 0.5 2 0.5 2

7.5. Performances of ∆1(µ̃), ∆2(µ̃) and ∆pr
2 (µ̃) using Algorithms 3-4

In this subsection, we show the results of Algorithms 3-4 for symmetric systems, where the expansion points
for Vdu are selected differently from those for V . The results are listed in Tables 17-19. Comparing Ta-

Table 17. Algorithm 3: RLCtree, effectivity of the error estimators.

Estimator
For all ε(s) For ε(s) ≥ 10−11

min
s∈Ξver

(eff) max
s∈Ξver

(eff) min
s∈Ξver

(eff) max
s∈Ξver

(eff)

∆1 3.4488× 10−4 38 0.05 6.5
∆2 0.01 25 0.7 25
∆pr

2 0.004 244 1 25

bles 17, 18, 19 with Tables 8, 12, 16, respectively, we see that the performance of ∆1(µ̃) is improved in general,
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Figure 11. Gyroscope: ∆1(µ̃) and ∆pr
1 (µ̃) vs. the respective true errors at 2500 parameter samples.

Figure 12. Gyroscope: ∆2(µ̃) and ∆pr
2 (µ̃) vs. the respective true errors at 2500 parameter samples.

Table 18. Algorithm 3: MIMO example, effectivity of the error estimators.

Estimator
For all ε(s) For ε(s) ≥ 10−11

min
s∈Ξver

(eff) max
s∈Ξver

(eff) min
s∈Ξver

(eff) max
s∈Ξver

(eff)

∆1 0.14 46 0.14 46
∆2 0.2 15 0.1 9
∆pr

2 0.32 164 0.32 75

those of ∆2(µ̃), and ∆pr
2 (µ̃) are only partially improved. The performance of ∆2(µ̃)) is improved, especially for

the RLC tree example. However, the performance of ∆pr
2 (µ̃) does not become uniformly better, especially for

the MIMO example. Although ∆1(s) behaves better when using Algorithm 3 and 4, it is still worse than its
upper bound ∆2(µ̃) or ∆pr

2 (µ̃).
It is worth pointing out that the order q = 3 is used for all the non-parametric examples and all error

estimators, while q = 1 is used for the parametric system and for all error estimators. Different choices of q
may lead to different performance of the greedy algorithms employing different error estimators. In the next
subsection, we use the MIMO example and the parametric example to show the performance of Algorithm 1
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Figure 13. Gyroscope: ∆3(µ̃) and ∆pr
3 (µ̃) vs. the respective true errors at 2500 parameter samples.

Table 19. Algorithm 4: Gyroscope, effectivity of the error estimators.

Estimator
For all ε(s) For ε(s) ≥ 10−11

min
s∈Ξver

(eff) max
s∈Ξver

(eff) min
s∈Ξver

(eff) max
s∈Ξver

(eff)

∆1 0.096 28 0.096 28
∆2 0.35 11 0.35 11
∆pr

2 0.22 3.68 0.22 3.68

and Algorithm 2 using the proposed error estimators when the order of moments q varies. In particular, we
present the iteration numbers and the wall-clock time of each algorithm for different q, corresponding to each
error estimator.

7.6. Performance of the error estimators when q varies

We list in Tables 20-21 the number of iterations and wall-clock time of Algorithm 1 for the MIMO example as
well as those of Algorithm 2 for the parametric example, when different error estimators are used and q varies.
For the MIMO example, when q increases, the number of iterations may decrease, but the runtime of each error
estimator increases in general. For a fixed q, except for ∆1(s) that uses much less runtime, the other estimators
make the algorithm converge without too much difference in time. Not a single estimator is always the best.
However, ∆1(s) does not lead to a reliable ROM, since it underestimates the true error also for difference values
of q and for both examples. For the parametric example, there is a different phenomenon for q = 0, where
Algorithm 2 actually does not converge when using many of the error estimators. The error estimator as well
as the corresponding true errors, do not go below the tolerance after all the 75 training parameter samples
have been chosen as expansion points. Therefore, in the second column of Table 21, there is 75 for many error
estimators, except for ∆3(µ̃). For q = 1, 2, we have similar observations: not a single estimator is always the
best. However, it can be concluded that matching too few moments (q = 0) or too many moments (q = 2) for the
parametric model lead to no better behavior of the greedy algorithm than using q = 1 in general. Furthermore,
using q = 2 derives a ROM with more than twice the size of the ROM derived using q = 1. Larger ROM
will make the online simulation much slower. Since this work does not focus on discussing the efficiency of the
greedy algorithm combined with the moment-matching method, which is one of the possible ways of showing
the robustness of the proposed estimators, we do not further elaborate on this discussion. Finally, each error
estimator has similar effectivity as shown in the previous tables when q changes. The corresponding effectivities
are not listed here to avoid repetitions.
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Table 20. Performance of Algorithm 1 for the MIMO example when q varies.

Estimator
q = 0 q = 3 q = 5

iter time(s) iter time(s) iter time(s)
∆1 1 1.97 1 4.52 1 7.84
∆pr

1 4 9.48 2 16.68 2 31.63
∆2 5 14.73 3 28.45 2 26.56
∆pr

2 5 14.58 3 27.93 2 26.94
∆3 5 14.78 2 18.31 2 31.27
∆pr

3 4 12.29 2 27.23 2 41.56

Table 21. Performance of Algorithm 2 for the parametric example when q varies.

Estimator
q = 0 q = 1 q = 2

iter time iter time iter time
∆1 75 2075 6 256.8 2 423.6
∆pr

1 75 2121 6 349.9 2 369.4
∆2 75 2454 6 312.3 3 994.8
∆pr

2 75 2824 6 385.4 3 910.7
∆3 17 442.2 6 396.5 3 664.3
∆pr

3 75 2663 6 479.7 2 599.7

8. Conclusions

We propose some a posteriori error estimators for the transfer function error of ROMs that are obtained by any
(Petrov-)Galerkin-type MOR method. Detailed simulation comparison demonstrates the performance of each.
It is clear that neither ∆r(µ̃) nor ∆1(µ̃) are good error estimators and therefore they are not recommended as
reliable error estimators. All others perform similarly, especially the primal version of ∆1(µ̃): ∆pr

1 (µ̃) behaves
unexpectedly well and is almost as good as its bounds ∆3(µ̃) and ∆pr

3 (µ̃) for any of the examples. Among
the robust error estimators ∆2(µ̃), ∆pr

2 (µ̃), ∆pr
1 (µ̃), ∆3(µ̃) and ∆pr

3 (µ̃), the estimator ∆pr
1 needs the least

computational cost, since only two ROMs (constructed by V, Vrpr ) need to be computed. For nearly symmetric
systems, ∆2(µ̃) and its variant ∆pr

2 (µ̃) are not really improved when choosing different expansion points for
V and Vdu, i.e., when using Algorithms 3 and 4. As future work, more theoretical analysis and numerical
simulations might be explored to further explain the numerical behaviors of the proposed error estimators.
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