Complex eikonal methods applied to geodesic acoustic mode dynamics
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Techniques developed in the domain of optical theory are applied to investigate the behavior of Geodesic
Acoustic Modes (GAMs). In this context, we show that this approach represents a powerful basis for the
description of many characteristics of radial propagation and spreading of GAMs. The most attractive feature
of these techniques is represented by their universality and intuitive applicability. We present and apply two
different complex-eikonal methods able to describe the spreading of GAMs in terms of local plane waves.
The methods are the “inhomogeneous wave tracking” and the “paraxial WKB” theory respectively. We
demonstrate their applicability and efficacy to the GAM dynamics problem by means of a comparison with

gyrokinetic simulations.
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I. INTRODUCTION

The achievement of nuclear fusion is strongly related
to the understanding of the non-linear mechanisms by
which the turbulence self-organizes in convective struc-
tures such as streamers and zonal flows'®. The lat-
ter are modulated by, and interact with, a multitude
of other structures, instabilities, waves and so on, reg-
ulating the energy transport properties in tokamak de-
vices. The zonal flow presents an oscillatory counterpart
named geodesic acoustic mode (GAM) that is specific of
the toroidal tokamak geometry'®. This oscillation corre-
sponds to an electrostatic potential perturbation with a
poloidal m = 0, toroidal n = 0 wave number coupled via
tokamak curvature to the pressure m = 1, n = 0 mode;
from which the appellation of “geodesics”. The studies of
GAMs are the most flourishing area in zonal flow experi-
ments. Geodesic acoustic modes (GAMs) are non linearly
driven and play an important role in establishing the sat-
urated level of turbulence in tokamaks''. GAM struc-
tures have been also investigated in neoclassical trans-
port context for tokamak and helical systems'?'3. Many
devices have provided information on the basic features
of GAMs, such as the axisymmetric structure, the dis-
persion relation, the couplings with turbulence and the
accompanying density fluctuations'16. So far, most of
the observations show good agreement with the present
predictions of theory. For example, it has been observed,
the essential dependence of the GAM frequency obeys to
the theoretical expectation!” 9.

However, the experiments of zonal flows and GAMs
are still developing with abundant potentialities, seeing
as how a number of issues remain to be explored. For
example, GAMs interact with turbulence in an environ-
ment in which the plasma shape and profile gradients
strongly affect its local and global properties. Temper-
ature and density gradients influence the amplitude of
GAMs by regulating both drive and damping in a not
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completely understood manner. The temperature pro-
file, in particular, regulates the plasma instabilities in
tokamaks via e.g. the ion temperature gradient (ITG)
modes, trapped electron modes (TEM), electron temper-
ature gradient (ETG) modes and at the same time can
strongly influence the damping of GAMs. In fact, the
local dependence of the GAM frequency on the plasma
parameters generates a continuum spectrum in tokamak
plasmas. This continuum is at the basis of the formation
of fine structures on GAM via the Phase-mixing process
(see Ref. 17). This latter is a conservative process that
per se is not able to generate a damping. However, in
the presence of a temperature gradient, the damping of
GAMs can be strongly amplified by means of the com-
bined action of Phase-mixing and Landau damping via
the Phase-mixing/Landau (PL) mechanism (see Ref. 20
and Ref.s 21-23). A remarkable aspect about GAMs is
that the continuum spectrum not always is present in the
experiments and GAM mode can occur at a constant fre-
quency along the radius. In fact, at a particular radial
location, it is often possible to identify GAMs at two dis-
tinct frequencies, or to observe separate radial intervals
over which the GAM occurs at different but constant
frequencies within each interval (eigenmodes)'. Thus,
GAM often can be approximated with a Gaussian packet.
In more recent works, GAM has been shown to form ra-
dial Airy function-like eigenmodes when finite Larmor
radius effects are included?*. In DIIID it appears that
both continuum and eigenmode GAM structures can be
realized experimentally?®. Moreover, temperature gradi-
ent is correlated with the radial propagation of GAMs
but also in this case, details of phenomena need to be
clarified. The question of the GAM propagation in the
radial direction has been investigated in multiple experi-
ments. The results of these experiments do not give one
single answer, as GAM propagation has been observed
in both radially inward and outward directions with dif-
ferent velocities?62°. In some case a spreading of GAM
has been observed with the separation of the primary
GAM structure in two parts that successively move in
opposite directions®’. The question about the direction
of propagation of GAM has been discussed in Ref. 23



and 31. Moreover, the velocities of GAM observed in
the experiment are larger than that predicted by the lin-
ear theory®3. Recently, it has been shown that GAMs
can accelerate increasing their velocity and reducing the
discrepancy between linear theory and experiments?.
In this puzzling picture, the interaction between GAM
and turbulence strongly increases the complexity of the
problem!”.

In this context, an aspect that has been neglected in
literature, but that could be important in the interac-
tion between turbulence and GAM, is represented by the
spreading of the GAM packet due to dispersion relation.
Although, for typical tokamak values of parameters this
effect appears lower than one of dissipation it could play
an important role in the experiments- for example - in
the case in which the drive is compensated by the dissi-
pation. In front of the complexity of these problems, the
investigation of GAM dynamics, zonal flows and other
structures certainly requires new simulations and new
experiments. However, in parallel to these studies, it
is crucial to develop and to apply new techniques and di-
agnostics able to capture and to distinguish the essential
characteristics of specific mechanisms. For this purpose,
in this work we apply techniques derived from the field of
optics to the GAM oscillations. In this context, we show
that these theories represent a useful instrument for the
description of many characteristics of radial propagation
and spreading of GAMs. The most attractive feature of
these methods is represented by their universality and
intuitive applicability. Moreover, in many cases optical
techniques are the only possible approximation for cal-
culating wave fields in the presence of homogeneous and
inhomogeneous media. Ray tracing technique of geomet-
rical optics is the most powerful and widespread method
of solving wave equation in the short-wavelength limit.
It is used in numerous applications of optics, seismology,
physics of fluids and solids, quantum mechanics, plasma
physics and many other fields. This method makes use
of an asymptotic expansion of the sought solution and
reduces the wave equation to an infinite set of coupled
equations for successive terms of the expansion. The
zero-order term is know as the eikonal equation.

Although refraction is correctly accounted in this
method, typical wave behaviors, like interference and
diffraction, which could be regarded as an interaction
between different rays, cannot be described by the ray
tracing technique. These effects can, however, become
significant, if one is concerned, for instance, with highly
collimated or focused microwave beams, which are of
great importance for the physics of fusion devices. They
are employed for diagnostic purposes, to improve spa-
tial resolution, as well as, in resonant heating and cur-
rent drive experiments, to increase the localization of
the absorbed power. Diffraction effects, not described
by the usual geometric optics, can be included adding a
complex phase allowing to describe in this way several
interesting new characteristics of different phenomena.
By using a complex-eikonal description, in the follow-

ing, we present and apply two different optical meth-
ods able to describe the spreading of GAMs in terms of
local inhomogeneous plane waves. The adopted meth-
ods are the “inhomogeneous wave tracking”3* 3% and the
“paraxial WKB (pWKB) approximation”3®40. Both of
them present several advantages. The former is based
on a set of partial differential equations and in several
cases gives a direct intuitive picture of the physical dy-
namics of the phenomena. The latter method is based
on a Hamiltonian description and deals with a set of or-
dinary differential equations that present an important
advantage from a computational point of view. These
methods have been previously applied to the problem of
heating, current drive and plasma diagnostics with mi-
crowave beams in fusion devices. Due to the different
advantages related to the mentioned methods, in the fol-
lowing we present both of them and apply them to GAM
dynamics and we demonstrate their validity and efficacy
by means of a comparison with gyrokinetic simulations.

The rationale of the work are introduced in Section
2. The optical methods and the analytical results are
described in Section 3 and Section 4. The simulation
results and the comparison with the theory are shown
in Section 5. The conclusions of the work are given in
Section 6.

Il. NUMERICAL MODEL AND PHYSICAL APPROACH
A. Numerical gyrokinetic code ORB5

In this section we briefly describe the equations used in
the code ORB5*14244, This code uses a Monte Carlo La-
grangian Particle-in-Cell method for solving the Vlasov
equation?®. The model solved in the code is constructed
from a gyrokinetic Lagrangian and it is described in de-
tail in reference®®.

The gyrokinetic Lagrangian corresponding to the electro-
magnetic ORB5 model is
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in which the coordinates are the gyrocenter position R,
the adiabatic invariant u, the gyro angle o and the canon-
ical parallel momentum p; = mg,U + (gsp/c)JoA|, where
U is the parallel velocity; dV and dW are the volume ele-
ments in physical and velocity space respectively. In the
last expression B is the equilibrium magnetic field and
¢ is the perturbed electrostatic potential operator. A



is the parallel component of the perturbed vector poten-
tial, Jy is the gyro-average operator, ¢, and mg, are the
charge and the mass of particle species sp respectively
and c is the speed of light. The particle gyrocenter tra-
jectories are derived from the variational principles on
the action and can be written in the following explicit
form:
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where B* = V x A%, A* = A+ (p/qsp)b and b =
B/B. The distribution function is split into a constant
in time background, fy, and a fluctuating part 6 f. Only
the time varying part of the distribution function, d f, is
discretized using Monte Carlo markers and it is evolved
(in the absence of sources and collisions) according to the
gyrokinetic Vlasov equation:
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Energy and momentum conservations can be proved via
gyrokinetic field theory?>. To evolve self-consistently
the perturbed electrostatic and magnetic potentials, the
Vlasov equation should be coupled with equations for the
fields. Those are obtained by taking functional deriva-
tives of the action functional with respect the perturbed
potential, leading to a polarization equation for ¢ and
the Ampére law for Aj. In this work we have used the
electrostatic limit of the model with a single ion species
and adiabatic electrons. The corresponding equations are
obtained by setting A = 0 in the previous equations and
by assuming a fluid like response of the electrons density
to the potential perturbation. The corresponding polar-
ization equation is:
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ng is the equilibrium density, T, is the electron tempera-
ture and ¢ is the flux surface average of the electrostatic
potential. The full derivation and disctretization of the
electrostatic model can be found in Ref. 43. In the code,
a set of straight field line coordinates (s, x,¢) is used,

with s = \/9/%edge, where ¢ is the poloidal magnetic

flux, and x is the magnetic poloidal angle
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where 6 is the geometric poloidal angle, ¢ the toroidal

angle and ¢(s) is the safety factor. The polarization
equation is solved using finite elements (B-splines). The

boundary conditions on the fields are unicity condition
(solution does not depend on magnetic angle) at the
magnetic axis and ¢ = 0 at the plasma boundary. Re-
garding particles, they are reflected with xy = —x when
they exit the plasma boundary. In the code, the time
t is normalized to the inverse of the ion cyclotron fre-
quency €; = ¢; Bg/m; (assuming ¢ = 1), the radial direc-
tion is normalized to ps = \/kpTe 0mi/(q;Bo) with Te o
the electron temperature, and the potential is given in
¢o = kpT. /e units. The quantity By is calculated at
the magnetic axis, while T,  is calculated in the middle
of the radial domain. The ion Larmor radius is defined
as p; = /2 T;0/Te0ps with T; ¢ the ion temperature in
the middle of the radial domain.

B. Rationale and physical motivations

We present the principal aspects of the optical ap-
proach to the problem of the GAM behavior. In par-
ticular, we discuss how it is possible to describe the time
evolution of GAMs starting from a particular combina-
tion of the principal equilibrium parameters. In this way,
we are able to associate a “GAM refraction-index” ng
to the GAM structures related to the equilibrium con-
ditions. To this purpose we write the two dimensional
Helmholtz equation:

0 0

(V2 + kgnd) B = |
where we include the vacuum wave vector kg = w/c in
the definition of the refraction index ng which has here
the dimensions of an inverse length. We observe that
Eq. 6 is valid under the condition that the variations of
the associate index of refraction ng, in the spatial (x, y)-
plane, are not very strong. More specifically, the Lp
scale length characterizing the medium inhomogeneity in
the different = and y directions must be larger than the
typical wavelength A of the waves that propagate in the
medium.

We observe that GAMs are one-dimensional radial
structures that oscillate in an equilibrium that in the
following we assume to be fixed in time. Thus, their
one-dimensional oscillations appear as a wave that prop-
agates in a space-time plane. This wave is characterized
by a “wave length” Ty = 27 /w¢, that in this case is re-
lated to the GAM frequency. In other words, the wave
vector k3n? is here replaced by the GAM frequency wé
that appears in the dispersion relation of GAMs:

w? = wg (L + aikip}) (7)

We recall that Eq. 7 represents the GAM frequency
at the second-order of accuracy in k,.p; where the sign
and the value of the coefficient a; depend on the ratio
7. = T./T;. For the sake of clarity we report the explicit
expression of a; used in the work (see Ref. 17, 23, and
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We observe that the oy parameter becomes negative for
Te 2 5.45.

Thus, we can find a strict correspondence between Eq.
6 and the wave equation describing the temporal evolu-

tion of GAMs (cf. Eq. 14 of Ref. 33):
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We note that Eq. 8 appears as the normalized version
of Eq. 6 where © — wgt and y — r/+/|a1|p; are the nor-
malized time and radial variables respectively and where
the square index of refraction nZ, which should appear
as the last term within the square brachets in Eq. 8,
becomes equal to the unity.

The correspondence between Eq. 6 and Eq. 8 implies
that the temporal variation of GAM can be treated as
a spatial variation. This means that all the GAM time
variations appear frozen in the (z,y)-plane. Therefore,
in this paper we consider a GAM wave with an initial
“wave-vector” wq that propagates along the x (temporal)
direction in a (z, y)-medium characterized by an inhomo-
geneity with a scale length Lt along the y (radial) direc-
tion. We observe that the treatment described hereafter
include also the case in which the equilibrium evolves in
time under the condition that the scale length L asso-
ciated to the temporal variation is larger than 27 /wg.

11l. COMPLEX-EIKONAL THEORY I:
INHOMOGENEOUS WAVE TRACKING

Starting from the previous considerations, we summa-
rize the essential aspects of the complex eikonal theory
developed principally in Ref. 34-36 and we apply it to
the prediction of the time evolution of GAMs. More-
over, we extend the theory to the inhomogeneous case in
which we consider a constant temperature gradient. As
mentioned in the introduction, this theory represents a
very useful development of the classical eikonal theory.
This latter, it is known, well describes the curved spatial
path of ray in weakly inhomogeneous media. Complex
eikonal theory can also describes phenomena associated
with Gaussian beams such as broadening due to diffrac-
tion and interference effects. We emphasize that these
effects act also in the presence of a constant refraction
index. This method is applied here to describe the time
evolution of a one-dimensional Gaussian GAM signal.

In order to introduce this method, we observe that the
common ray approach to the solution of the Helmholtz
equation in the short wave length limit leads to the lowest
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order in ky ' to the eikonal equation, which determines
the eikonal function:

(VS)? =n? 9)

The next-order terms represent the transport equa-
tions for the amplitude E. For the sake of simplicity
and in order to focus attention on the primary idea of
the work (applicability of complex optical methods to
the GAM temporal evolution), the treatment of GAM
dynamics is limited to eikonal term. The evolution of
the wave amplitude, including damping effects, will be
considered in a future publication.

In order to take into account the effects of spreading,
describing in this way not only a plane wave but also a
packet signal, we consider a complex phase (eikonal) S:

S=s+ip (10)
that substituted in Eq. 9 allows us to obtain:

(Vs)? — (V¢)? =n? Vs-Vo=0 (11)

It is important to emphasize that in the eikonal theory
the trajectories on which ¢ is constant (phase paths) are
perpendicular to the trajectories on which s is constant
(equiphase contours). By observing Eq. 7 we have that
the curvature sign of equiphase contour is related to the
sign of «; that, we recall, depends on 7. (see Ref.s 17,
23, and 50). Thus, for ay < 0 the signs of the different
terms in Eq. 8 are in agreement with those in Eq. 6.
For a3 > 0 the signs are different, but by considering
the opposite value of the parameter the second relation
of Eq. 11 continue to be valid. We define the unit vector
T along the direction of Vs and the unit vector z along
the direction of V¢ respectively.

We can write:
R C T

By applying the gradient operator to the previous equa-
tion we obtain:

ds ds do do
20 V() 2% vy =2 1
T V(d’TT) 2 v(dz z) =2nVn (13)
By defining 5 = |Vs| and £ = |V¢| we rewrite Eq. 13
in the following manner:

d d
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We observe that the derivatives dr/dr = Kz and
dz/dz = —T't of the unit vectors 7 and z respectively

introduce two new quantities KX and I'. These parame-
ters are related to the radii 1/K and 1/T of tangent cir-
cumferences (osculating circles) to the phase paths and
equiphase contours respectively.

Thus, we rewrite Eq. 13 in two components:

d d d d
ﬂ2K:n—n+f£§ er =n-n—B-8 (15)

dz



These two equations take into account the gradient of
the index of refraction n and the gradient of the beam
profile . The n gradient must be smaller than the gradi-
ent of the beam packet. It is interesting to observe that
even in the case in which we have a constant refraction
index, the curvatures K and I' can be different from zero.
When ¢ is constant we find the classical eikonal solution.
The previous equations 15 are very useful in order to de-
scribe the radial evolution of an initial beam. In a first
step, we adopt the treatment of the spatial beam prop-
agation in homogeneous medium?3® putting in evidence
the new interpretation and applicability of the method
for time evolution of GAM. Successively, we extend this
description to the case of the GAM oscillations in the
presence of a nonuniform temperature profile.

A. GAM Gaussian beam in homogeneous medium

We consider a GAM represented by the following initial
Gaussian beam signal:

_ (y—y)?

E(y) = Ege ™0 (16)

where Wy is the width of the packet propagating in
the (z,y)-plane, in a medium with a constant “GAM
refraction-index” ng that, in our normalized units, is
equal to one. By using Eq. 15 for K we calculate £d€/dz
and ndn/dz. At x = 0 the directions of Tand z corre-
spond to those of the Cartesian vectors ¢ and 7. There-
fore, d/dz — d/dy. Consequently, because n is constant
along y direction, we conclude that the term ndn/dz is
equal to zero. At the initial time z = 0 we calculate:
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where p is a parameter that indicates the distance of
a point from the center of the packet. In this way we
would like to find the phase path trajectory y(z, p) along
the temporal coordinate = for each initial p points of the
packet. Finally we calculate 82:

4p?
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and by using Eq. 15 for K we obtain:

K = 19)
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where in the last step we have considered small values of
the p parameter. In the previous expressions, we main-
tain the “GAM refraction-index” ng in order to express
through it, the dispersive properties of the plasma when
physical dimensions are reintroduced (see Eq. 25). We
recall that 1/K is the radius of the osculating circle tan-
gent to the phase path along which 7 moves (see Fig.
1). Consequently (1/K)df = dr and K = df/dr. In our

FIG. 1. Trajectories of phase paths along which the vector s
moves. Phase paths are characterized by a parameter p. The
¢ quantity is constant along a generic phase path.

geometry, 6 is the angle between the x direction and the
phase path. Therefore, we have d7 cosf = dxr and we can
write:
dy N dtanf df 1
dx dr  drcos?f
d?y g  d*y 4
29 r_29J 0
iz dr  dx2 °°

For small values of § we have K = d?y/dxz? and by
considering Eq. 19 we write:

tan 6 =

(20)
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that describe the time evolution of each radial point p of
the Gaussian packet. In order to obtain the value of the
constant C' we observe that at the time x = 0 we have
the y(0,p) = p position, hence C' = p.

We observe that for each p value ¢ = constant on a
phase path, and d¢ = £dz between adjacent paths is also
constant. Thus, £(x)/&(xg) represents the cross section
expansion along the flux tubes.

W (z)? _dz  dycosf _dy
Wg T dw  dp  dp
(22)
By considering the derivation of Eq. 21, the width
W (z) of the Gaussian beam evolves in time with the
following expression:

&(wo)dzg = &(x)dz —

41,
-
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We emphasize that Eq. 21 for phase path trajectories has
been obtained by considering the lowest order terms of



the complex eikonal. The wave fronts can be obtained at
the same order by considering Eq. 15 for I'. We observe
that there are several ways to explicit the ng parameter
that, we recall, in our normalized variables is equal to
one. In order to prepare the comparison between theory
and simulations, by considering the previous x, y normal-
izations and also the normalizations used in the code, we
obtain:

2 1 4(£0:)2 a2t w2
W(t2) _ [1_"_7 (t z) alpzw% (24)
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from which:
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In this way we have described what a GAM structure
“see” during its oscillations, or in other words, which are
the important equilibrium parameters that influence in
first approximation the GAM dynamics. We would like
to emphasize that a similar description can be applied
to other structures in tokamaks such as the drift waves
and so on. We note that a treatment of drift-balloning
modes in terms of optical pWKB technique has been done
in Ref. 37.

B. Inhomogeneous case

Identifying the combination of parameters that can be
associated to the like-index of refraction for GAMs al-
lows, as a natural extension of the calculation, the treat-
ment of a nonuniform equilibrium typical of the pedestal
region in which these structures evolve. The simple case
that we can consider is that of a temperature gradient
1/Ly = —(1/T)dT /dy that determines the following we
profile:

dwg 11
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Consequently also our index of refraction will be influ-
enced by the temperature gradient and by considering
the normalization units =,y we have, with kp = 1/Lp:

@ _ % [1 — 0567 (y — yo)} (27)

Then, we calculate the right side of Eq. 15 for K:
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Finally we calculate 32:
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Thus, we can write the inverse of the radius 1/K of the
osculating circle as:
B @ ~0.567(1 — 0.5k7p) 3 + 4p/(nEWY)
Cdx? (1 —0.5k7p)~2 +4p2/(nZ W)

~ (30)
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For the phase path trajectory will have thus the fol-
lowing expression:
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y(z,p) =

where we have considered approximation for small p and
k7 gradient values in agreement with the optical approx-
imation. The p = 0 value in Eq. 31 corresponds to
find the trajectory of the center of Gaussian beam that
corresponds to the ray-trajectory of the classical eikonal
theory:
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where we have added « /|a| in order to recover the sign
of a;. In this way we obtain the following acceleration:

1 1
Gc = 5041&20%3 (33)
Eq. 33 is the same expression obtained in a different
way in Ref. 23. It is very interesting to observe how
the inverse of the osculating circle radius 1/K related to
the bend of the spatial trajectory in the eikonal theory
assumes here the role of an acceleration.
By rewriting Eq. 31 in the usual coordinates r and ¢
we obtain:
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that includes effects related to the inhomogeneity of the
environment and to the shape of the beam via disper-
sion GAM relation. In particular the term within square
brackets is a generalized acceleration associated to a
generic p point of the GAM signal.

IV. COMPLEX-EIKONAL THEORY II: PARAXIAL WKB
METHOD

As mentioned above, an equivalent description of the
dynamics of a packet can be obtained by using a different
method based on the paraxial WKB (pWKB) approach.
An extensive treatment of the paraxial WKB method can
be found in Ref.s 38-40. Here, we introduce the essential
aspects of the method and the principal equations useful
to investigate GAM dynamics.

As in standard ray tracing, the calculation of the beam
evolution according to the pWKB method relies on the



Hamiltonian of geometric optics. In the simple one-
dimensional case under consideration, the Hamiltonian
takes the very simple form:

H = wi(1 +a1k?p?) —w? =0. (35)

T

As in the inhomogeneous wave tracking discussed above,
the phase is supposed to be complex, with the imaginary
part describing the beam envelop. The properties of the
medium are supposed not to vary significantly across the
beam, so that the phase can be expanded around a ref-
erence curve representing the center of the packet. This
curve corresponds to the ray-trajectory obtained with the
classical eikonal approach. In one dimension, the (parax-
ial) expansion reads

S(T):SO(T)+7€0(T)[T*T0('T)]+ (36)
S5l = (D + 590l — ro(r)?

When this ansatz is substituted in the relevant wave
equation (in our case Eq. 8) it leads to the standard ray
tracing equation for the center of the packet :
dTO oOH dk‘o oOH
—_— = —_— = 37
dr Ok, dr or (37)
The evolution of the beam envelop is calculated along this
trajectory as the solution of a complex Riccati equation
for the quantity s(7) = s(7) + i¢(7):
ds 0’H 9 0°H _  9°H_,
dr oz “orok," okz’

(38)

Also here, we neglect the evolution of the amplitude of
the wave packet. In any case, the strength and elegance
of the pWKB approach results from the simplification of
the problem to a set of ordinary differential equations,
for which we are going to discuss some analytic solutions
in the remaining part of this section.

A. GAM beam in homogeneous medium

We apply the pWKB method to the GAM problem and
we find a direct correspondence with the results discussed
in Section III. In the homogeneous case the equation for
the evolution of the (complex) beam envelope § in the
frame of the paraxial WKB method can be written in
the form:

ds 0*H _,
dr oKz’ (39)

According to paraxial theory, the coefficient 9 H/9k? has
to be evaluated at the center of the wave packet. More-
over, in the homogeneous case the position of the center
of the packet and the wave vector do not evolve in time
and for a symmetric initial spectrum it is k,. = 0. There-
fore, we can write:

.
ﬁ = 20 wi 5t (40)

which can be solved by separation of variables with the
following result:

So(7)
1+ 2a1wép§§07

1
s

= 2a1wép?7' — §= (41)

50
Physically, it is clear that the behavior of the wave beam
width, or, in other words, the beam convergence or di-
vergence, is coupled with the curvature of the wave front.
The complex solution § = s(7) + i¢(7) describes the ra-
dius of curvature of the phase front R and the width of
the packet W through:

w/e 2
(=g =y 4
thus, we have from Eq. 41 the following expression:
B 2a1wép37 . )
s(r) = 1+ 4dodwi ptp3r? ¢(r) = 1+ 403wl ptddr?

(43)
The quantities s(7) and ¢(7) are related to the s and ¢
quantities respectively described in the previous section.
The parameter 7 is related to the time ¢ through:

dt  O0H

dr  Ow
which at the center of the wave packet yields 7 =
t/(2wg). We assume no initial “focusing” so that the
initial condition is sp = 0 and ¢g = 2/WZ. Then, the
solution for the evolving width of the packet is:

2w (44)

2 42
o wep; oot Po
O =1 zatiee W= Tragaige Y

The explicit expression for the width of the packet is

2wGa1p§t)2}

w2 = w1+ ( i

(46)
We observe that Eq. 23 and Eq. 46 are the same and
we can associate a GAM refraction-index ng to the equi-
librium conditions for the GAM evolution. Practically,
we know which are the principal properties and charac-
teristics of the equilibrium that influence the behavior of
GAMs. We note that the curvature s(t) of the wave front
depends on the sign of a;. In Fig. 2 we show an example
of the solution obtained as:

u(r,t) = exp {%[zs(t)(r —0.5)% 4+ ¢(t)(r — 0.5)] — iwgt}
(47)
We observe a convex (top panel) and a concave (bot-
tom panel) wave front of the beam for a negative and a
positive value respectively of the oy parameter. For an
aq value equal to zero the wave front assumes a straight
shape (not shown). It is worth to note that a similar
anomalous lens effect has been described in Ref. 51 for a
beam that propagates in homogeneous magnetoplasmas.
We emphasize that in our case the GAM beam propa-
gates in a space-time plane.
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FIG. 2. Ezample of time evolution of GAM electric field from
Eq. 47 with initial Gaussian profile oscillating in a homo-
geneous equilibrium for a negative (top panel) and a positive
(bottom panel) value of .

B. Inhomogeneous case

The paraxial WKB method can be easily extended to
the inhomogeneous one-dimensional case. To this pur-
pose we consider a temperature gradient 1/Ly different
from zero. The relevant Hamiltonian is still given by Eq.
35

T—"T0

H=wg(1-"2) (L4 ankpl) — o (48)

T
The trajectory of the center of the Gaussian packet is
identical to the ray corresponding to p = 0 in the treat-
ment presented in Sec. III. From Eq. 37 and Eq. 38, the
following derivatives are needed in order to solve explic-
itly the paraxial equations:

0?H 0?H 5 o r—1ro

a7 =0 G T eawen (1-7) @
PH g 2y, O G (1 + ark2pd)
orok, ST Tor T Ly 18r i

(50)

OH

g 2 2(p_I—To
S = 20whs (1 - 2 (51)

T

It can be noticed that the assumption of a linear tem-
perature profile, leading to a vanishing second derivative
with respect to r, implies that the Riccati equation for s
takes the form of a Bernoulli differential equation, which
can be readily solved for its inverse u = 1/5. Eq. 38 can
be written in this case:

du 0*H  9°H

i Coron " T o (52)
T 9°H ,
— o F() N,—F(1") 3.1
u(t) =e (uo + N (e dT) (53)
with
T 92H

In the homogeneous limit considered in the previous sec-
tion, F' = 0 and Eq. 53 reproduces Eq. 41.

V. SIMULATION RESULTS AND COMPARISON WITH
OPTICAL THEORY

In order to verify the applicability of the optical meth-
ods to the GAM dynamics, we performed several simu-
lations with the gyrokinetic code ORB5. In all the simu-
lations we assume flat density and safety factor profiles.
We note that without a drive source, the dissipation ef-
fects can be very strong, overtaking the dispersion effects.
We recall that Landau damping is the principal reason of
GAM dissipation and moreover it can be strongly ampli-
fied in the presence of a temperature gradient?® 23, Here,
we will neglect the dissipation effects. In other words, we
consider the dispersion relation of GAMs w + iy, with:

v =—f(vr,,q. 7) + kig(vr, . ¢, 7e) (55)

where f(vr,,q,7.) and g(vr,,q, 7.) are functions describ-
ing finite Larmor radius and finite orbit width effects
respectively'®19 and we choose a range of values for
which both |f| and |g| are very small. In Fig. 3 we
show the two | f| and |g| expressions (with |g| normalized
to the minor radius) as a function of the safety factor ¢
and of the ratio between electron and ion temperatures
T.. We observe that increasing the value of 7, and of the
safety factor the dissipation drastically decreases. Conse-
quently, we first consider simulations with a safety factor
value ¢ = 3 and with 7. > 17 in order to emphasize the
dispersive effects described by the theory. Moreover we
assume homogeneous density and safety factor, an in-
verse aspect ratio e = 0.1, a diameter L, = 2/p* = 320
with p* = ps/a. All the simulations utilize the electro-
static version of the gyrokinetic model and consider a
hydrogen plasma with adiabatic electrons.
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FIG. 3. |f| and |g| functions appearing in the damping rate
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FIG. 4. Absolute value of the GAM electric field as a function
of time and radial coordinate. The signal is initialized as
E(r) = cos(rwk,r) with k. = 10. Overlapped, the considered
temperature profile and the r(t) trajectories of different radial
nodes are shown.

First, we consider the time evolution of a single mode
for a GAM that evolves in an equilibrium with the fol-
lowing temperature profile:

T(r) = exp {—kpltanh[(r — r9)/l]}

with [ = 0.225, kp = 1.0 and 7o = 0.5 (the temperature
profile is taken identical for ions and electrons in order
to keep 7. constant across the radius). Thus we choose
a radial signal initialized as E(r) = cos(wk,r) with a
radial k. = 10 value. Because we have no beam signal in
this case, the spreading term in Eq. 34 is not relevant. In
other words, the problem is reduced to find the dynamics
of nodes or peaks of the cosine signal. Therefore, by
imposing p = 0 in Eq. 34 we obtain the trajectories of

(56)

[S]

nodes that correspond to the ray path:
1 1

r(t) =5 [+ goplud ] (57)
with rp initial position of the N-node. We recall that,
for large 7., the parameter «; in the GAM dispersion
relation is negative and the corresponding radial propa-
gation is directed inwards. Moreover, we note that Eq.
57 has been validated also in more realistic conditions
with 7. ~ 1 relevant for experiments?®. For these real-
istic values of 7., Eq. 57 shows that the GAM propaga-
tion is also important and directed outwards. In Fig. 4
we find the time evolution of the signal and overlapped
the temperature profile and the trajectories r(¢). In the
calculation of the trajectories the local effect of the tem-
perature value is taken into account. It is interesting to
observe that as in a magnifying-glass the rays converge
where the concavity of the temperature is positive and
diverge where the concavity is negative. Thus, in a drive-
less system in which the GAM can be only damped we
can increase locally the amplitude of the oscillations by
focusing the GAM energy. We observe also a small dis-
crepancy between theoretical and numerical trajectories
at large time. This could reflect a small difference in the
a value related to the analytical and numerical calcula-
tion.

In order to study dispersive effects, we choose a Gaus-
sian packet for GAM that, on the basis of the previous
considerations, evolves in time as a Gaussian beam that
propagates in two space dimensions. For this case we con-
sider a flat temperature profile. The results are shown in
Fig. 5 in which we present the time evolution of two
GAM Gaussian profiles with two different width values
Wy = 0.04 (top panel) and Wy = 0.02 (bottom panel).
Hereafter, unless noted otherwise, with respect to the ori-
entation of the axis of Fig. 4 we plot the absolute value
of the GAM electric field in the (¢, r) plane. Overlapped,
we plot the phase path predicted by Eq. 34 (white lines).
We observe that the theory well reproduces the spreading
of the GAM packet. In particular the spreading increases
by decreasing the value of Wy. Moreover, the spreading
increases in time in agreement with the value of the re-
fraction index associated to the equilibrium conditions.
Thus, the spreading of GAM in time can be predicted
and interpreted as a diffraction effect. It is interesting
to observe that the beam first spreads with a parabolic
shape and after increases in a hyperbolic way. By con-
tinuing the parallel with light beam we can associate to
the GAM evolution a “Rayleigh time”:

W

tp= —O—
2|aiwap?

(58)
We recall that in optics the Rayleigh length is a colli-
mation distance that characterizes the divergent nature
of the optical beam. The Rayleigh length (or Rayleigh
range) of a laser beam is the distance from the beam
waist (in the propagation direction) where the beam ra-
dius increases by a factor of the square root of two.
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FIG. 5. Time evolution of the absolute value of the GAM elec-
tric field profiles oscillating in a homogeneous equilibrium for
two different values of Wy. The overlapped phase-path trajec-
tories (white lines), predicted analytically, well reproduce the
spreading of GAMs.

For the two cases of Fig. 5 with Wy = 0.04 and
Wo = 0.02 we find tg = 5-10*Q; " and tp = 1.25-10%Q; "
respectively. Moreover, for both simulations we adopt
7. = 40 with the associated a; = —8.89. We can continue
the correspondence between the time evolution of GAM
oscillations and a spatial light beam propagation, by ob-
serving that the latter involves a not obvious and impor-
tant additional phase shift named Gouy phase. Thus,
in addition to the fixed wave phase in e~ *(*c) there is
also a temporal cumulative axially phase shift ¥(t) re-
lated to the curvature of the wave front of GAMs in the
space-time plane:

P(t) = %@—1' arctan (ti) (59)

R
The coefficient 1/2 in Eq. 59 is due to the fact that in
our problem there is only one transverse direction®?. In
order to put in evidence this phase shift, in the top panel
of Fig. 6 we plot the time evolution of the GAM electric
field at r» = 0.5 for the case with Wy = 0.02 (red color)
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FIG. 6. (Top panel) Time evolution of GAM electric field

for the Gaussian radial profile with Wo = 0.02 (red line)
and GAM signal that oscillates with we frequency (blue line).
(Bottom panel) Time evolution of GAM electric field for the
Gaussian radial profile with Wo = 0.02 (red line) and the-
oretical GAM signal oscillation (blue line) that includes the
absolute value of the Gouy phase shift (black line).

and the time evolution of a GAM signal that oscillates at
the frequency weg (blue color). The comparison between
the two signals emphasizes the effect of the Gouy shift
that change in time the GAM phase related to the simu-
lation result. In the bottom panel we compare the same
previous GAM signal obtained by simulation and the an-
alytical signal (blue line) predicted by considering the
Gouys effect of Eq. 59 in GAM oscillation e~ #twa+v(®)]
The Gouy phase [1)(t)| is also plotted in the same fig-
ure (black line). The comparison between the two signal
suggests a new method to enhance the accuracy of the
value determination of «; by simulation results. In fact,
the Gouy phase is directly related to the dispersion re-
lation and in particular to the «; value via the Rayleigh
time tp. We emphasize that in our case the Gouy phase
shift corresponds to a temporal shift on the oscillation
frequency. This Gouy effect can be responsible for the
slightly different resonance frequencies and mode beats
and can play a role during the interaction of GAMs with
turbulence. This latter aspect will be object of a future
work.

An important test for the applicability of optical theo-
ries to GAM dynamics is represented by the energy con-
servation. In particular the energy must be conserved



FIG. 7. Three oscillations of GAM in the (r, t)-plane selected
by a Mask calculated analytically by considering the phase
paths and the wave fronts. The mask can be adapted in or-
der to select the energy evolution contained in a flux tube
characterized by two phase paths p;, pi+;.

in a flux tube between two generic phase-paths p; and
po. In order to investigate the conservation of energy, we
have developed a diagnostic that by means of a mask in
the (t,r)-plane can find the GAM wave fronts evolution
(see Fig. 7). This mask has been calculated by con-
sidering the phase paths given by Eq. 34 and the wave
front shape given by Eq. 45. In this way it is even pos-
sible to find the transport of the energy inside a specific
flux tube. In particular the figure shows three oscillation
in time of an initial gaussian packet whose “wave-front”
evolves in the (r,t) plane. We apply this diagnostic to the
previous case with Wy = 0.02 and 7. = 40 in which only
dispersive effects are retained. For this case we consider
the beam contained between the phase-paths character-
ized by p; = 0.035r and p_; = —0.035r. We recall that
p is the parameter that identifies a phase-path by mean
of the distance from the center of the packet. Thus, we
consider the 98% of the surface of the beam and we find
in time the associated energy related to the wave front of
three oscillations of the beam. In Fig. 8 we plot the time
evolution of this energy normalized to the initial energy
I of three oscillations and we observe that it is conserved
with a good approximation (black continuous line).

We consider also the time evolution of the energy al-
ways related to three waves but contained between the
flux tube inner ps and pg phase path (three dotted dash
line) and between p; and py (see bottom panel of Fig.
5) with po = 0 center of the packet. In this way we
estimate that the energy contained inside the flux tube
P4 — po is two time the energy inside p; — pg and in both
of cases the energy is conserved (dash dotted line). We
make emphasis again on the fact that our wave front
develops in a space-time plane. Because we live in a
universe in which we can observe single spatial surfaces
(foliations), it is important to verify the energy conser-
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FIG. 8. Time evolution of energy calculated by following in
time the average of energy of three GAM oscillations (see Fig.
7 and bottom panel of Fig. 5)

vation also between two temporal steps. Therefore, we
consider the temporal interval between three oscillations
with At, = 3-27Tw51 = 207009;1. The energy integrated
in the radial range 0 < r < 1 and between two temporal
steps t; — (t; + At,) is conserved (orange dashed line).
We note that the energy quantity between a time range
At, is more or less the same that one of the wave front
of three waves that evolve in the (r,t)-plane. The ac-
curacy of the calculation of energy conservation depends
principally on the code for the orange line and depends
both on the code and on the precision of the analyti-
cal phase-path trajectories for the black continuous line.
This justifies the small difference between the two lines
and at the same time shows the reliability of the optical
methods.

Due to the fact that we adopt an optical beam anal-
ysis we expect a spreading behavior similar to that of
a Gaussian beam also for different beam shapes. In
fact Gaussian beam is only the lowest-order solution
in an infinite family of higher-order beam-like solution
of the Helmholtz equation. Very interesting are solu-
tions with non-Gaussian distributions but that share the
paraboloidal wave fronts of the Gaussian beam. These
functions are known as the Hermite-Gaussian function
whose zero-order corresponds to the Gaussian shape.
Thus, we investigate the behavior of functions different
from the Gaussian packet and we consider a GAM sig-
nal initialized with a first-order Hermite-Gaussian beam
E ~ zexp(—2?/W¢) with Wy = 0.02. This signal oscil-
lates in an equilibrium with flat temperature profile. In
agreement with the theory we obtain a spreading similar
to the corresponding Gaussian case. The time evolution
of this signal is shown in Fig. 9.

As a further verification of the optical theory applied
to GAM structures we consider the time evolution for the
Gaussian beam in an equilibrium with flat temperature
profile and in which we switch-off the dispersive effects.
To this purpose we recall that dispersive effects are re-
lated to the a; value. This parameter assumes values
around zero for 7, = 6 (see Ref.s 17, 23, and 50). By
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FIG. 9. Absolute value of the GAM electric field as a function
of time and radial coordinate. The signal is initialized with a
first-order Hermite-Gaussian function in the (¢,7) plane.

assuming this 7. value, in Fig. 10 we show the evolution
of two packet with Wy = 0.04 and Wy = 0.02 respec-
tively. The wave fronts are straight lines in agreement
with the expected results by considering oy = 0 in the
GAM dispersion relation and in Eq. 45. We observe
an eigenmode oscillation for the considered GAM signal.
Despite the fact that the same structure evolution is ob-
served for both cases of Fig. 10, the GAM amplitude in
the bottom panel decreases faster than that one of the
GAM in the top panel. Because dispersion effects are
zero, this behavior of GAMs is due to the dissipation.
For 7, = 6 the dissipation effects are important and en-
ergy is efficiently dissipated with the increase of k, values
(see Eq. 55). The Fourier transform of the signal with
Wy = 0.02 shows that the energy is distributed on a
larger spectrum than one of the signal with W, = 0.04.
Consequently, in the presence of a strong dissipation for
higher k, mode the narrow packet is damped faster than
the broad packet. A detailed analysis of the dissipative
behavior of GAMs is in preparation.

As last case we would like to verify the validity of Eq.
34 by considering dispersion effects in the presence of a
temperature gradient. Thus, we perform a simulation
in which a GAM, initialized with a first-order Hermite-
Gaussian signal with W, = 0.02, propagates in a medium
with the temperature profile of Eq. 56 characterized by
1 =0.09, kp = —10.0 and r¢y = 0.5. Moreover, we con-
sider a value 7. = 40 and we choose a beam with a first-
order Hermite-Gaussian function in order to better find
the time evolution of the node of the packet that is sim-
pler to identify with respect to the peak of the Gaus-
sian signal. In this way, we recall that we find the time
evolution of the ray tracing trajectory. The results are
shown in Fig. 11 in which we have the electric field evo-
lution of the GAM beam and overlapped the phase path
predicted by the theory for the ray tracing and for the
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FIG. 10. Absolute value of the GAM electric field as a func-
tion of time and radial coordinate. The signals in top and
bottom panels present two different width Wy respectively.
In order to quench the dispersive effects (a1 = 0 condition)
we have considered 7. = 6.

spreading of GAM. In this simulation we can appreci-
ate the power and efficiency of the geometrical optical
methods in the description of radial-temporal evolution
of GAM packet. We emphasize the parallel between the
trajectory in the space time of a GAM signal that evolves
in the presence of a nonuniform tokamak equilibrium and
the trajectory of a light beam that propagates in a space
plane in a medium with an inhomogeneous index of re-
fraction. In light of the obtained results by observing
Fig. 11 we can give an elegant and new interpretation of
the Phase-mixing. In fact, this phenomenon appears as
the projection along the radial plane at a fixed time of
the wave front that evolves in a space-time plane. At the
same time, the evolution of GAM frequency can be see
as the projection at a fixed radial position of the wave
front along the temporal direction. We observe that the
effects of diffraction related to the value of equilibrium
parameters and the effects of propagation related to the
parameter gradients are enclosed in the radial evolution
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FIG. 11. Absolute value of the GAM electric field as a func-
tion of time and radial coordinate. The signal, initialized with
a first-order Hermite-Gaussian function, evolves in the pres-
ence of a temperature gradient in the (¢, r) plane. Overlapped
we plot the central and the boundary trajectories of the beam.

of the GAM signal.

VI. CONCLUSIONS

The dynamics of GAMs has been investigated by
means of optical methods. In particular we used com-
plex eikonal techniques to investigate in an original way
the time evolution of a GAM represented by means of
an Hermite-Gaussian packet. The applicability of meth-
ods and their efficacy have been tested by means of a
comparison with gyrokinetic simulations that has con-
firmed all the aspects predicted by the theory. In par-
ticular we showed how it is possible to associate a GAM
refraction-index ng for the GAM structures to the equi-
librium conditions. In other words we have indicated by
means of a ng quantity the combination of parameters
that influences the radial propagation and shape evolu-
tion of GAMs in the tokamak devices. In this work we
have continued previous investigations®® arriving to ob-
tain a more and more detailed description of the GAM
dynamics. In this way we have reached a high under-
standing level through which the nonlinear effects linked
to the turbulence-drive are more and more isolated. We
can predict with an elevate precision the propagation
of the energy related to the GAMs simplifying in this
way the interpretation of GAM/turbulence interaction in
nonlinear simulations and in the experiments. We have
demonstrated the applicability of optical techniques to
the GAM dynamics prediction also for complicated pro-
files of these structures that can be, thus, described by
means of high-order Hermite-Gaussian functions.

We observe that from the mathematical point of view,
solving the quasi-optical equations in the presence of a
source can be addressed employing a Wigner function
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formalism, which will be subject of a subsequent paper.
The physical picture given in the paper for the dynam-
ics of a spreading packet should remain valid also in this
case. Moreover, this paper introduces new instruments
to describe GAM evolution, such as Rayleigh time and
Gouy phase, wave-front and phase-path in space-time
plane. These instruments allowed us to give a very el-
egant interpretation of the Phase-mixing and frequency
evolution of GAM oscillations. In particular, these meth-
ods establish a correlation between the time evolution of
the shape and of the frequency of GAMs helping in this
way to understand and to predict the interaction of these
structures with modes and turbulence perturbations. We
emphasize that a similar geometrical description of GAM
properties can be applied to other structures in tokamak
devices such as drift waves and so on. Thus, we find
a very efficient and intuitive manner to describe multi-
faceted phenomena. In fact in this way different struc-
tures can interact between them, via specific like-index of
refraction associated to the environment in which these
structures evolve.
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