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Abstract. The confinement of α-particles is vital for any future fusion reactor.

Unfortunately, the inevitable appearance of inhomogeneities in the magnetic field

activates the non-collisional transport by virtue of ripple trapping and ripple induced

stochastization. While a large and growing body of literature is devoted to the

mitigation of these channels of losses for future reactor designs, far too little attention

has been paid to characterize the statistical nature of the underlying stochastic process,

which is generally assumed to be diffusive. Here the effect of breaking the toroidal

symmetry on collisionless α-particle transport is analyzed numerically with a guiding

center orbit following code MOCA for several configurations: a perfectly toroidally

symmetric ITER-like tokamak and four stellarators with different levels of quasi-

toroidal symmetry. Statistical characterization of banana widths, bouncing times and

banana center evolution put into question the classical convection/diffusion approach

to adequately describe collisionless α-particle transport as the magnetic configuration

departs from toroidal symmetry.
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1. Introduction

The success of magnetically controlled thermonuclear fusion relies, among other things,

on the confinement of α-particles that are not only essential for sustaining fusion

conditions, but whose unanticipated losses could compromise the efficiency and, more

importantly, put at risk the plasma-facing components. The confinement of α-particles

is a complex subject involving the equilibrium magnetic field, plasma and α-particle

birth profiles, accompanied by resonant and non-resonant MHD instabilities, turbulence,

etc. [1, 2, 3, 4].

Improved particle confinement of reasonably high energetic particles could be

achieved by endowing the magnetic field either with a certain type of symmetry, with

isodynamicity, which imposes the cross-field drift to vanish at every point, or with the

less stringent omnigeneity, that ensures zero time-averaged radial drifts [5, 6, 7]. While

for particles that circulate in the plasma with the same direction of motion the absence of

net radial drifts is fulfilled per se, for trapped or reflected particles that bounce between

the reflection points placed at zones of higher field strength rather than being automatic

becomes the optimization goal. In any realistic device, due to field corrugations (caused

by the discrete number of coils, as in tokamaks and stellarators or by various ripples,

as in stellarators) some of these particles are lost. Two main collisionless mechanisms

are described relating reflected particle losses with the inhomogeneities of the confining

magnetic field: ripple trapping [8], in which particles falling into local ripples result in

super-bananas orbits, and ripple induced stochastic processes that make particles change

their orbit type close to the bouncing points [9, 10, 11]. While a body of literature was

devoted to the mitigation of these losses for future reactor designs [11, 12, 13, 14, 15], not

so much attention has been paid to characterize the statistical nature of the stochastic

process, which is generally assumed to be diffusive [1, 2, 3, 4, 8, 9, 10, 11].

The goal of this work is to study the effect of breaking the toroidal symmetry on the

confinement of collisionless trapped α-particles. To this end, several configurations are

examined, starting with an ideal, perfectly toroidally symmetric, ITER configuration

that will serve as a reference followed by four stellarator configurations with different

levels of quasi-toroidal symmetry. The statistical characterization of trapped particle

behavior is done numerically with the guiding center orbit following code MOCA [16]

supplemented with other techniques to determine trapped particle parameters such as

their bouncing times, orbit widths and the radial movement of those orbits. Probability

density functions of these basic parameters were obtained as a function of the level

of toroidal symmetry. These results are compared with analytical calculations as well

as with some newly developed estimations assuming that particles approximately move

along the field lines. The diffusive nature of the stochastic transport process is examined

with different statistical analyses for the five magnetic configurations.

The remainder of the paper is organized as follows. In Section 2 the basic

approximations, the guiding center orbit following code and the magnetic configurations

are presented along with a new figure of merit to quantify the degree of quasi-toroidal
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symmetry. Then the impact of the magnetic configurations together with the initial

conditions on the orbit types and the fraction of confined and lost reflected particles

are discussed. A new technique is presented at the end of Section 2 allowing to obtain

banana centers, widths and bouncing times from particle trajectories the results of which

are summarized in Section 3. The fraction of reflected particles and the most probable

banana bouncing times obtained from particle trajectories are compared with bounce

averaging estimations along field lines, an approximation that is justified based on a

new method for calculating connection lengths for arbitrary magnetic configurations.

The end of Section 3 is devoted to examine if the statistical properties of α-particle

transport agree with the diffusive paradigm. Finally, Section 4 summarizes the results

and presents a brief discussion.

2. Configurations and Methods

In trying to establish the basic relation between the confinement of α-particles and

the symmetry of the underlying magnetic field three main approximations were made

through this work, namely: i) the small gyroradius ordering, or drift ordering, ii)

neglecting the effect of the electric field and iii) ignoring the collisions with other particle

species. The small gyroradius approximation requires ρα/L ∼ ω/ωc ∼ VE/vα << 1,

where ρα is the α-particle Larmor radius, L a characteristic plasma spatial scale length

(either relevant to profile scales, magnetic field corrugations or banana orbit widths),

ω is a characteristic frequency (circulating or bounce α-particles frequency), ωc is the

cyclotron frequency and VE and vα are the ~E× ~B drift and α-particle speeds respectively.

Anticipating some of the results of next sections, it is possible to justify that these

conditions are fulfilled for α-particles in reactor relevant plasmas. The value of ρα ≈ 5 cm

has to be compared with the spatial scales of the orbit widths, L ∼ 0.1−0.2 a ∼ 0.3−0.6

m (see Figure 7 left), the magnetic field corrugations L ∼ 1 m (see Figure 9) and is

reasonably valid except perhaps in the pedestal region. The characteristic circulating

τc ∼ 2πR/vα ∼ 3 − 10µs, bouncing τ ∼ 10 − 25µs (Figure 7 right) and collisional

slowing-down times τslow ∼ 1 s are also much slower than the cyclotron time. The

disparity between vα and VE = ~E× ~B/B2 also justifies neglecting the effect of the radial

electric field. A rough estimation of the electric field required for the VE ∼ Er/B to be

comparable with the guiding center drift speed Vd = mv2(1+p2) ~B×∇B/2qB3 ∼ Ek/qBL
implies an unrealistically large Er ∼ Ek/qL ∼ 3.5× 106/L ∼ 106− 107 V/m. Neglecting

collisions requires some explanation because despite their initial high speed, α-particles

eventually thermalize with the bulk plasma. In reactor conditions α-particle collisional

slowing-down time, τslow ∼ 1 s, is faster than the collisional scattering time, τscatt ∼ 5

s [1, 17]. Therefore, depending on the time scales of α-particle confinement it may

or may not be justified to include or neglect collisions. Here, to establish a clearer

relationship between α-particle confinement and the level of symmetry of the magnetic

configuration collisions will be neglected throughout this work.
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2.1. Equations of motion

Under these approximations, the motion of α-particles is described by a reduced set of

guiding-center equations. One for the velocity of the guiding center,

~vg = pv
~B

B
+

mv2

2qB3
(1 + p2) ~B × ~∇B (1)

where the two terms account for the fast streaming along the field line and the slow

curvature and ∇B drifts across it. The other equation accounts for the variation of the

pitch p = v‖/v

dp

dt
= − v

2B2
(1− p2) ~B · ~∇B (2)

that arises from the conservation of kinetic energy, E = mv2/2, and magnetic field

moment, µ = mv2⊥/2B, which is responsible for the bouncing of some particles at

regions with high magnetic fields. Note that neglecting the radial electric field effect

and the collisions eliminates the need of an equation for the evolution of the α-particles

speed, which is conserved.

When written in Boozer coordinates [18], the equations of motion reduce to 4

ordinary differential equations depending only on the magnetic field strength B and its

derivatives with respect to the spatial coordinates (ψ, θ, ϕ). Where ψ is a normalized

toroidal magnetic flux and θ and ϕ are the poloidal and toroidal angles respectively.

2.2. Configurations

From the infinite number of possible three-dimensional magnetic configurations, two

strategies lead to improved particle confinement by endowing the magnetic field either

with a certain type of symmetry or with isodynamicity. Here the study will be focused

on the effect of breaking the toroidal symmetry of the magnetic field (the most common

symmetry). Five configurations will be considered: a purely toroidally symmetry ideal

tokamak, that will be used as a reference case, and four stellarators with different levels

of quasi-toroidal symmetry (QTS).

For the toroidally symmetric configuration the natural decision was to consider a

ripple-less ITER [19] tokamak with the following parameters: B ∼ 5.3 T, a = 2.67 m

, R = 6.2 m and V ∼ 900 m3. The four quasi-toroidally symmetric configurations are

loosely based on the NCSX [20, 21] stellarator scaled up to have the same ITER nominal

magnetic field and volume, which results in a minor and major radius of a = 2.15 m

and R = 9.8 m respectively.

The detailed structure of the magnetic field has been obtained solving the three-

dimensional ideal magnetohydrodynamic (MHD) equations with the VMEC code [22].

VMEC finds three-dimensional equilibrium solutions through a variational procedure

that minimizes an energy functional with a spectral/finite differences method. VMEC

provides the shapes of a given set of nested flux surfaces and the corresponding magnetic

field B as a Fourier series constructed in its own internal flux coordinates with a double
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periodicity in the poloidal and toroidal angles. The VMEC output is transformed to

Boozer flux coordinates (ψ, θ, ϕ), where the general expression for the magnetic field is

also given as a Fourier series for each flux surface:

Bψ(ϕ, θ)/B0 = 1 +
∞∑
n=1

(
cBψ

0n cos(nNpϕ)− sBψ
0n sin(nNpϕ)

)
+
∞∑
m=1

∞∑
n=−∞

(
cBψ

mn cos(mθ − nNpϕ) + sBψ
mn sin(mθ − nNpϕ)

)
(3)

where Np is the number of periods of the configuration, ψ = (r/a)2 the normalized

toroidal flux, r being the flux surface radius and a the minor radius.

The description of the magnetic field for ITER requires both sine and cosine terms

because its D-shape cross-section is not up-and-down symmetric. The expansion for

the stellarator only contains cosine terms due to the stellarator symmetry. Despite

the full Fourier series has more that 1000 harmonics for each magnetic surface, not

all of them are relevant to accurately describe α-particle transport. Here, only modes

above a threshold of |cBψ
mn| or |sBψ

mn| > 10−4 were considered for ITER, which results

in including just 7 modes of the expansion (all of them being of the form Bψ
m0). The

four quasi-toroidal configurations were generated from the same stellarator equilibrium

keeping fixed the few largest modes and adding on top different number of smaller

harmonics by setting four thresholds. This method is different to what is done in

[23], where configuration’s long mean free path transport is modified through the main

modes in the quasi-isodynamic stellarator W7-X. The one with higher quasi-toroidal

symmetry, called QTS4 throughout this work, was obtained with a larger threshold of

|cBψ
mn| > 10−2 and comprises just four cBmn modes; three with n = 0 and the smallest

one with n = Np, which is responsible for the small toroidal-symmetry breaking. Setting

the thresholds to |cBψ
mn| > 1/150 and 1/180 results in configurations QTS5 and QTS6,

described with five and six modes respectively. Finally, the configuration QTS72 is

obtained using the same threshold as for ITER (|cBψ
mn| > 10−4) which results in a much

broader magnetic field spectrum with seventy-two modes. The ultimate reason for

considering these four configurations will become clear in next sections, for the moment

it suffices to say that they describe different degrees of departure from quasi-toroidal

symmetry. QTS72 configuration looks much more like the configuration one can get

with a set of real coils and is further away from the toroidal symmetry. To quantify

the degree of quasi-toroidal symmetry of these configurations we followed Alcuson and

coworkers and define a figure of merit, σqt, in a similar way to the one they used for the

degree of quasi-poloidal symmetry [24], extending the sums just to the Fourier modes

larger than the threshold:

σqt(ψ) =

∑M
m=1 |B

ψ
m0|∑N

n=1 |B
ψ
0n|+

∑M
m=1

∑N
n=−N |B

ψ
mn|
≤ 1 (4)
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Table 1. Values of the quasi-toroidal symmetry ratio σqt for ITER and the four

quasi-toroidal stellarators as a function of radial coordinate.

r/a ITER QTS4 QTS5 QTS6 QTS72

0.1 1 0.97 0.96 0.86 0.70

0.5 1 0.94 0.93 0.85 0.62

0.9 1 0.89 0.86 0.83 0.56

where σqt=1 stands for perfect quasi-toroidal symmetry, as in a tokamak. Table 1 lists

σqt for the five configurations and three radial positions.

According to the guiding center equations of motion in Boozer coordinates, the

radial speed is determined by the variation of the magnetic field with the poloidal

and toroidal angles, which for toroidally symmetric and quasi-symmetric configurations

approximately reduces to just the poloidal dependence ∂B/∂θ. The poloidal dependence

of the normalized magnetic field, B/B0, along the field line passing through θ = ϕ = 0

over two poloidal turns around the torus is shown in Figure 1 for three radial positions

r/a = 0.1, 0.5 and 0.9 of some of the configurations under study. All three configurations

display the basic variation due to toroidicity with lower/higher magnetic fields at the

outboard/inboard of the equatorial plane and with magnetic field excursions increasing

from the axis to the last closed flux surface. The larger poloidal ripple of ITER, due to

its tighter aspect ratio, results in larger radial speeds than for the stellarators. However,

faster radial drifts do not necessarily mean poorer confinement since particle transport

depends on radial speed averages. Here is where the ideal symmetry, σqt = 1, comes into

play guaranteeing that radial drifts are averaged out. Unfortunately, when the symmetry

is broken, σqt < 1, there are no such conservation laws that assure the confinement nor

guidelines to establish a relation between the level of quasi-symmetry and the average

radial drifts. The actual transport of charged particles is the result of ensemble averaging

over all possible particle trajectories subjected to all possible realistic physical processes.

To show the relation between the magnetic configuration and the confinement in the

clearest possible way collisions were not included in this work. Given the number of

modes needed to describe the magnetic field, this could only be achieved numerically.

2.3. Numerical Method

The transport properties of the five magnetic configurations are estimated by ensemble

averaging α-particle trajectories, that in turn fully depend on the initial conditions

in the absence of collisions. An efficient way to calculate guiding center trajectories

consists in solving the equations of motion in Boozer coordinates. This was done with

the Monte Carlo code MOCA [16]. This code has been thoroughly and successfully

benchmarked [25] for an extensive range of stellarator configurations in the past. MOCA

is a parallel Fortran code, in which, to speed up the calculations, the magnetic field and

its derivatives are pre-stored in a 3D gridNψ×Nθ×Nϕ. The high speed of the α-particles,
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Figure 1. Normalized magnetic field strength along the field line passing through

θ = ϕ =0 as a function of poloidal angle θ for three radial positions r/a = 0.1, 0.5 and

0.9 at ITER (left) and the quasi-toroidal stellarators QTS4 and QTS72.

with vα = 1.3× 107 m/s, and the characteristic spatial magnetic field variation require

a short integration time step, ∆t ≈ 10−8 s, and a fine grid containing ∼ 100× 360× 360

cells per period for numerical accuracy. The computational domain is bounded from one

side by the magnetic axis and from the other by the last closed flux surface (particles

which cross it are considered lost). A pseudo-Cartesian coordinate system [26] is used

to overcome the numerical singularity in the vicinity of the magnetic axis. To describe

the initial conditions for the monoenergetic α-particles, it is sufficient to specify their

spatial positions and pitch (ψ0, θ0, ϕ0, p0).

To obtain statistically significant ensamble averages, the initial conditions have to

be representative of the α-particle birth profiles under reactor conditions. Assuming

that deuterium and tritium density and temperature profiles are constant on flux

surfaces (at least to first order), all particles are initialized radially at half radius,

around the mean α-particle birth radius [27], and uniformly distributed over the flux

surface. To account for the non homogeneous volume element associated with curvilinear

coordinates, particles are initialized uniformly in pitch and randomly in the toroidal

and poloidal Boozer angles with a distribution inversely proportional to the Jacobian

of the transformation 1/J(ψ, θ, ϕ) = (B(ψ, θ, ϕ)/B0)
2, thus starting more particles in

regions of higher magnetic field strength. Here, the Rejection Method[28] has been used

to generate a random sequence in the poloidal (ITER) and poloidal-toroidal (QTS)

domains with the prescribed 1/J distribution function. The results for ITER were

obtained using a set of 65536 particles distributed over 256 poloidal angles with 256

pitch values each, while for the stellarators 262144 particles were used with 4096 initial

poloidal-toroidal angles with, again, 64 pitch values each. The simulation time is of the

same order of the slowing-down time, which for α-particles in reactor conditions ranges

between 0.1-1 s.

Finally, it is worth noting that all the results in this work were checked to be

independent of the grid size, the grid interpolation scheme, the integration time step

and the number of particles used. Furthermore, the relative energy conservation error

has been checked to be below ∼ 10−5% for all particles throughout their lifetimes.



Statistical description of Collisionless α-particle transport 8

10-5 10-4 10-3 10-2 10-1 1 
0

10

20

30

lo
ss

 fr
ac

tio
n 

[%
]

time [s]

QTS72

QTS4

QTS5

QTS6

Figure 2. Loss fraction of α-particles over time for the four quasi-toroidal stellarators.

2.4. Impact of the magnetic configuration and the initial conditions on the losses

As a first test of the numerical procedure a set of 65536 α-particles, initially at r/a = 0.5

and distributed in poloidal angle and pitch, is followed for 1 s in the idealized and

perfectly toroidally symmetric ITER configuration finding that, as expected, none of

them get lost. Within this set, there are particles circulating the full plasma with

fixed direction of motion, never changing the sign of their pitch and which stayed

perfectly confined, the so-called passing particles (71%, see Table 2). The other 29%

do change the sign of their pitch and are bounded to stay in plasma regions with low

magnetic fields, that is why they are called trapped or reflected particles and which

follow trajectories whose poloidal projection resembles a banana, the so-called banana

orbits. The fractions of passing and reflected particles presented in Table 2 should not

be confused with the effective circulating and trapped particle fractions appearing in

neoclassical theory [29, 30, 31] in connection with the dynamics parallel to the magnetic

field. In ITER both types have zero average radial drifts, passing particles have it per

se and reflected particles have it because perfect toroidal symmetry grants well behaved

banana orbits. In more realistic ripple tokamaks and quasi-toroidal stellarators trapped

particles are expected to experience drifts and precession. This simple picture can easily

get blurred when one considers magnetic configurations without symmetry in which

new magnetic field ripples give rise to new families of trapped particles with net radial

drifts, and even particles that can transit between being passing and being trapped, the

so-called transition particles. Needless to say, that, even for purely symmetric fields,

collisions with background bulk particles may transform passing into trapped particles

and vice versa and, moreover, contribute to the net transport by interrupting zero radial
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Table 2. Classification and percentage of α-particle types for particles starting at

r/a = 0.5 for ITER and the four quasi-symmetric stellarators. The simulation time is

1 s.

Passing Reflected

Confined Confined Lost

ITER 71% 29% 0%

QTS4 81% 15% 4%

QTS5 80% 9% 11%

QTS6 79% 2% 19%

QTS72 79% 1% 20%

average drift orbits.

The next step was to repeat the same calculations for the other quasi-symmetric

configurations, but now distributing particles in the poloidal and toroidal directions and

in pitch (64×64×64). We found that despite having a larger fraction of passing particles,

∼ 10% more than ITER (notice the larger ripples in Figure 1), some of the reflected

particles get lost. The detailed fractions are given in Table 2. Despite all stellarator

configurations have roughly the same fraction of reflected particles, their losses vary from

a 4% for QTS4 to a 20% for QTS72. In the absence of collisions, the fate of α-particles

only depends on the underlying magnetic field and the initial conditions. Moreover,

all lost particles are trapped but not all trapped particles are lost. Figure 2 shows the

cumulative loss fraction of α-particles up to 1s for the four stellarator configurations.

As expected, the higher the symmetry the longer it takes particles to start leaving, the

lower the loss rate, the longer it takes to saturate and the smaller the loss fraction.
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Figure 3. Left: Contours of constant magnetic field strength for one field period.

Right: Contours of pitch averaged escaping times as a function of the initial poloidal,

θ, and toroidal, ϕ, positions. Both plots correspond to r/a = 0.5 and one period of

the QTS72 configuration.

To better understand the relation between α-particle confinement, the magnetic
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configuration and the initial conditions in the absence of collisions, Figure 3 (left)

shows the contour levels of the magnetic field magnitude at half radius for the QTS72

configuration. The mild toroidal dependence seen is a signature of the approximate

toroidal symmetry, where the magnetic field is higher in the inboard (θ ∼ π) and lower

in the outboard (θ ∼ 0) sides. The pitch averaged escaping times, calculated with a set

of 262144 particles distributed over toroidal, poloidal angles and in pitch, see Figure 3

(right), confirm the weak toroidal dependence and show higher confinement times for

particles born in regions of higher magnetic field. Vice versa, particles born in regions

with lower magnetic field strength have larger fractions of reflected particles and shorter

escaping times.

To further clarify this relation, the escaping times are presented in Figure 4 versus

the pitch, averaged over the initial toroidal (left) and poloidal (right) angles. Once

again, the results show the feeble toroidal dependence due to the underlying quasi-

toroidal symmetry and that only reflected particles with initial pitch |p| . 0.35 are

lost. This range of pitch values is consistent with the ripple strength calculated from√
1−Bmin/Bmax (see Figure 3 left) for the flux surface under consideration, r/a = 0.5.

The small pitch asymmetry observed is also compatible with the inward/outward

excursion of trapped particles traveling in the co/counter magnetic field direction. The

level contours of the toroidal average outline that more/less particles are lost from the

outer/inner sides because of the ∼ 1/R dependence of the magnetic field with the major

radius R. Furthermore, a comparison of both plots shows that the region originating

faster losses corresponds to particles with near zero pitch located in the outer part of

the stellarator where |θ| . π/4. Particles born in the boundary between the trapped

and passing regions (barely-trapped or barely-passing particles) are the ones surviving

the longest.
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Figure 4. Contours of escaping times as a function of the initial pitch and poloidal

angle, θ, averaged over the toroidal angle, ϕ, (left) and pitch and toroidal angle, ϕ,

averaged over the poloidal angle, θ, (right). Both plots correspond to r/a = 0.5 and

one period of the QTS72 configuration. White color means no losses.
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2.5. Trapped Particle classification

The analysis presented for each configuration shows the relation between where particles

were born and their final fate without describing the details about their trajectories. In

symmetric configurations, most orbits can be classified into two types: those followed by

passing particles, enclosing the magnetic axis and never changing the sign of their pitch,

and the ones of reflected particles, bouncing back-and-forth and describing banana-

shaped trajectories never enclosing the axis. Alongside with these two basic types of

orbits, the literature describes many other orbits which are usually special cases of these

two. One limiting case is the potato shaped orbits that appears when the banana radial

position is comparable to its width. As with bananas, these orbits change the sign of

their pitch, but contrary to bananas encircle the axis. Another case is the stagnation

orbits, which appears in the phase space boundary between passing and trapped regions

where the guiding center speed vg (see Equation 1) vanishes. In general, these orbits do

not encircle the axis nor change the pitch sign, though a general classification, see [32],

is out of the scope of this work. The classification is not so simple when the symmetry

is broken, even slightly. Along with the passing particles, whose confinement is always

guaranteed in the collisionless limit, the lack of symmetry brings new families of orbits,

whose radial drifts can lead to the loss of particles or transform trapped into passing

particles and vice versa. Therefore, the key element in understanding the confinement of

the quasi-symmetric configurations requires characterizing also the new trapped orbits.

The characterization includes the determination of its radial extension, the speed

of their radial drift and the frequency of their bouncing. This is done by first selecting

those parts of the trajectory of each particle in which it is trapped (this implies that no

passing nor stagnation orbits are considered). These sections are then analysed with a

newly developed numerical procedure that classifies the orbits into four different types:

bananas, ripple trapped, potatoes and others, and estimates, for the bananas, its center,

width and bouncing time based on the pitch variation, particularly, the times at which

the pitch changes sign.

The classification of trapped orbits uses the poloidal angles at which particles cross

the equatorial plane between three consecutive reflection points. Banana orbits, that do

not encircle the magnetic axis, are indicated when they only cross the equatorial plane

once between reflection points at an angle θ = 0. Potato orbits, that do encircle the

magnetic axis, are recognised by the sequence θ = 0 on one orbit side and θ = π on

the other, or vice versa. Ripple trapped particles, are distinguished because they do

not cross the equatorial plane between consecutive bounces. Obviously, there are orbits

that cannot be classified with this method like e.g. those that cross the equatorial plane

many times. This is not a severe restriction since reflected orbits are classified for ITER

as being ∼ 97.3% bananas, ∼ 0.2% potatoes and ∼ 2.5% unclassified, while for the QTS

configurations approximately 90% are bananas, between 2% (QTS4) and 6% (QTS72)

ripple trapped, ∼ 1% potatoes and ∼ 5% unidentified. No effort was made in further

classifying this 5%, though methods for including more types of orbits are advisable by
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Figure 5. Left: poloidal projection of a trapped α-particle trajectory in Boozer

coordinates for the QTS72 configuration from its initial position at r/a = 0.5 till

its lost at r/a =1. Right: time evolution of the radial position r/a (top) and pitch

(bottom) of the same trajectory. The centers of all the banana orbits are indicated

by the blue circles (top), ∆r ∼ 0.06. The single banana orbit marked in red with

reflection points labeled from 1 to 3 has a bouncing time τ ∼30 µ s and a normalized

orbit width of ∆w ∼ 0.22.

using more than three consecutive reflection points and more complex criteria.

As an example of this method, the trajectory of one trapped α-particle for the

QTS72 stellarator is shown in Figure 5 in poloidal cross-section (left) together with the

time evolution of its radial position (right top) and corresponding pitch (right bottom).

The key in the analysis is to notice that every banana orbit is defined by three reflection

points, see Figure 5. In the figure one individual banana orbit is drawn in red and

labeled with points from 1 to 3. The obvious definition of the bouncing time, τ , is

the time that a particle spends between two reflection points. From the mid radial

position between two consecutive orbit sides, e.g. r12 between r1 and r2 or r23 between

r2 and r3 (see Figure 5), it is possible to define the normalized banana orbit center as the

midpoint, rb = (r12+r23)/2a, and the banana width as the difference, ∆w = |r12−r23|/a.

Three different procedures were tried to estimate the mid radial positions between two

consecutive reflection points using: i) the average radial position, ii) the radial position

corresponding to the mid-time and iii) the radial position corresponding to the fastest

parallel motion (the maximum absolute pitch). Finally, the second method was used

because it is less computationally intensive, though all three procedures give almost the

same results.

Every reflected particle trajectory is split into a series of banana orbits and the

above method is applied to obtain a reduced banana trajectory consisting in the time

evolution of its width, ∆w, bouncing time, τ , and center, rb(t), shown as blue dots in

the right upper plot of Figure 5. For the orbit of the figure, the bouncing time between

points 1-2 and 2-3 is of the order of τ ∼ 30 µ s and the normalized orbit width, indicated
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on the right top plot with a bracket, is ∆w = 0.22. This test particle executes twelve

banana orbits in approximately 600 µs and slowly drifts radially from rb/a = 0.53 to

rb/a = 0.6 before entering in what looks like a toroidal ripple to quickly drift out of the

plasma.

In next section this analysis tool is used to statistically estimate the evolution of

the banana centers, banana bouncing times and banana widths for the five magnetic

configurations with the idea of evaluating convective velocities and diffusion coefficients.

3. Results

In the collisionless limit, there is a deterministic relation between the initial conditions

and the destination of every charged particle for a given magnetic configuration. For

the monoenergetic α-particles, the initial conditions comprise a four dimensional phase-

space with the three spatial dimensions and the pitch (ψ, θ, ϕ, p). Probability density

functions of the bounce times and banana widths or the time dependence of the radial

distribution of particles are the result of ensemble averaging over the myriad of possible

trajectories. Instead of starting directly with the complete problem, we will first examine

a simpler case for ITER configuration (where the toroidal angle ϕ is irrelevant) fixing

the initial radial position at ψ0, thus reducing the dimensionality of the problem from

four to two dimensions (θ, p).

3.1. ITER bouncing times and banana widths

With the idea of scanning regions with different well depths, see Figure 1, the

methodology described in Section 2.5 was applied to the trajectories of four sets of

4096 α-particles born with initial poloidal angles θ = {0, π/4, π/2, 3π/4}, r/a = 0.5

(ψ0 = 0.25) and uniformly distributed in pitch between −0.6 < p < 0.6 (i.e. in the

approximate region where there are trapped particles). The uniform distribution in

pitch guarantees that all trapped populations are considered equally. The fraction of

reflected particles monotonically decreases with the initial poloidal angle from ∼ 50%

at θ = 0, where the magnetic field is the weakest, to ∼ 18% at θ = 3π/4, where the

magnetic field is stronger. The 1 ms time averaged bounce time 〈τ〉 and banana width

〈∆w〉 of each particle are shown in Figure 6 as a function of the initial pitch and poloidal

angle. The absence of collisions along with the perfect toroidal symmetry explains why

in ITER the curves align nicely depending on its initial poloidal angle. Note that within

the guiding center approach no relevant information can be drawn below the Larmor

radius ρα.

In accordance with [32], the observed dependence of the banana width on the initial

poloidal angle and pitch shows that: i) ∆w increases with the absolute pitch |p|, ii)

there is a small pitch asymmetry due to the different inward(co) and outward (counter)

banana orbits and to a lesser extent, to the a rotational transform profile, iii) there is a

minimum width ∆w for reflected particles depending on their initial poloidal position
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Figure 6. Orbit widths (upper left) and bouncing times (upper right) of reflected α-

particles as a function of the initial pitch for ITER configuration. Toroidal projection

of banana trajectories for p = 0 (lower left) and for initial conditions close to the

passing-trapped boundary (lower right). Particles are started from r/a = 0.5 and

distributed at four poloidal angles θ = 0 (red), π/4 (green), π/2 (magenta) and 3π/4

(blue). Each point corresponds to a 1 ms time average of a particle. The α-particle

Larmor radius is shown for comparison with a dashed line in the upper left plot.

see the lower left plot of Figure 6 (the higher the field the narrower the pitch range), iv)

there is maximum width that does not depend on the initial poloidal position and v) at

half radius, the widest bananas extend radially over 10% of the minor radius (∼ 30 cm).

Regarding the bouncing time it is found that except for the barely trapped particles

(the ones initially started at magnetic field Bi and with pitch |p| .
√

1−Bi/Bmax)

the bouncing time of most particles is relatively constant, between 6 and 10 µs for

our conditions. These values are between 2 to 5 times larger than those traditionally

used [33] for the bouncing time, τ ≈ R/ι
√
εvα ≈ 1.5 µs and the banana orbit width,

∆w ≈ ρα/ιa
√
ε ≈ 0.06, where R is the major radius, ε = a/R the inverse aspect ratio,
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ι the rotational transform, ρα the Larmor radius and vα the speed. This is not very

severe since these expressions are only valid for ideal tokamaks, vary across different

authors up to a numerical coefficient [34, 35, 36], or describe specific particle behaviors

or conditions [37, 38, 39].

The fact that bouncing times remain almost constant for a wide range of pitch

values (parallel speeds) and initial poloidal positions is especially surprising for particles

started at the outboard side because of the disparity of banana widths, compared with

the curves corresponding to θ = 0 in both upper plots of Figure 6. This occurs because

larger widths are compensated by faster parallel motion (larger absolute pitch) in the

same way as the product of the particle parallel speed with the distance along the particle

trajectory leads to the conservation of the longitudinal adiabatic invariant J =
∮
v‖ dl.

Figure 6 also shows that the compensation breaks down for barely trapped particles

that spend much longer times close to the bounce points, formally the bouncing time

becomes infinite τ →∞ [7] since the parallel speed v‖ → 0. See the two lower plots of

Figure 6. The lack of gyro-phase correlation between consecutive bounces along with the

inhomogeneity of the magnetic field is the ultimate reason for the stochastic transport

processes described in the literature [8, 9, 10, 11].

We leave for the next section showing the probability density function of orbit

widths and bouncing times when particles are distributed over the flux surface for all

five configurations.

3.2. Probability density function of bouncing time, orbit width and radial orbit

displacement

Using the algorithm presented in Section 2.5, which only applies to reflected particles,

the ensemble average orbit widths and bouncing times are calculated for a set of 3.5

MeV α-particles started at r/a = 0.5 using the same initial distribution of Section 2.3

(i.e. uniformly distributed in pitch and randomly in the toroidal and poloidal Boozer

angles with a distribution inversely proportional to the Jacobian of the transformation).

In the case of the toroidally symmetric version of ITER, with a reflected fraction of

30%, this means that from a set of 65536 α-particle trajectories approximately 20,000

are used for the calculation. Since none of these particles get lost, the ensemble average

is quite accurate. As for the stellarator configurations, with roughly the same reflected

fraction of 20%, from the 262144 α-particle trajectories around 52,000 trajectories are

used, though the ensemble average is not as accurate because trajectories are shorter

due to the losses (see Figure 1 and Table 1).

To speedup the calculation particles that have not changed their pitch sign during

the first 500µs of integration are stopped and eliminated. The precise cutoff was

estimated from the escaping time contours of Figures 3 and 4 and the PDF of bouncing

times of Figure 7 as a compromise between reducing computer time and taking into

account transition particles in the calculation. The probability density functions (PDF)

of the normalized banana widths and bouncing times obtained during the lifetime of
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the simulated particles are presented in Figure 7 for all five configurations. The PDFs

were constructed using the constant bin content method [40] where in all cases each

distribution contains more than 108 data inputs.
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Figure 7. Left: Probability density functions of orbit widths, ∆w, of trapped α-

particles for ITER and the four quasi-toroidal stellarators. Right: Probability density

function of bouncing times, τ , in linear and logarithmic scales.

The probability density function of the normalized orbit widths ∆w of reflected

α-particles for ITER shows an approximately linear growth that ends abruptly at

∆w = 0.11, in accordance with the negligible number of very small bananas and the

maximum orbit width of the left plot in Figure 6. The PDFs of the normalized banana

orbit widths for the QTS stellarators are much broader than for ITER, extending up

to ∆w ∼ 0.3. This clearly indicates the appearance of new wide banana populations

and severely puts into question any local approach to transport. There are two main

differences compared to ITER: the most probable orbit width is almost twice as large

∆w = 0.18 and that there are other side peaks in the PDF. The extra peaks are probably

due to the high order small modular ripples and wider helically trapped bananas.

The right plot of Figure 7 shows the probability density function of the bouncing

times τ of trapped α-particles in linear and logarithmic scales. The PDF for ITER

has a sharp rise, peaking around τ = 8 µs, followed by a very fast decay (see the

log-log scale) ending a bit earlier than τ = 16 µs, which is in perfect agreement with

the right plot in Figure 6. The results for the four stellarators are also much broader

with the most probable values between τ = 20 and 25 µs. Unfortunately, there is no

simple way to compare these results with any analytical expression since little is known

about the characteristic scales of motion of trapped particles in stellarators [41, 42, 43]

(or even non-ideal tokamaks) and it is unclear to what extent they differ from ideal

tokamaks. This is because of the high order field modes, which are virtually impossible

to consider analytically and whose effect might be insignificant for trapped particles in

general but may be substantial for α-particles. The only available results were carried

out numerically for specific configurations considering only the main components of the

magnetic field neglecting the rest of the spectrum [32, 44, 45, 46].
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The logarithmic scale reveals another difference between the configurations.

Whereas an exponential decay in the PDF of ITER starts around τ = 10 µs and lasts

till τ = 50 µs, the decay for the stellarators not only starts much later τ = 50 µs but also

continues much longer τ = 200 µs. These long tails imply that there are much longer

characteristic bouncing times, though their impact into PDFs is of minor relevance -

five to nine orders of magnitudes smaller compared to the peak values.

The last piece of information collected from reflected particle trajectories is the

evolution of the center of the orbits, rb(t), and more specifically, the displacements of

orbit centers ∆r(ti) = rb(ti+1)−rb(ti). In the stochastic view [8, 9, 10, 11] of collisionless

transport, it is precisely the random-walk displacement of the orbits which gives rise to

diffusion. In Figure 8 the probability density function of the orbit center displacements

is presented for the five configurations under study. The displacement of ITER trapped

orbits is negligible because of its pure toroidal symmetry. On the other hand, the broken

symmetry configurations display large and inward/outward asymmetric displacements,

which become narrower with higher toroidal symmetry. Note that the most probable

orbit widths for these configurations is around ∆w ≈ 0.2, and there is a significant

probability of having quite large displacements ∆r, e.g. the cumulative probabilities

P (|∆r| ≥ 0.05) ∼ 0.25 and P (|∆r| ≥ 0.1) = 0.05. Moreover, the PDFs clearly show a

complex structure with several slopes corresponding to different spatial scales, possibly

due to different orbit types, that put into question the local and diffusive nature of the

underlying process.
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Figure 8. Probability density functions of orbit center displacements ∆r (see

right upper plot of Figure 5) of trapped α-particles for ITER and the four stellarator

configurations.

The behavior of reflected particles, rebounding at regions of high magnetic field,

together with the structure of the magnetic field along the field lines, shown in Figure 1,

suggest other procedures to characterize the configurations and estimate the bouncing

times, which offers the possibility to confirm the results of this Section 3.2.
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3.3. Bouncing times and connection lengths

So far, the bouncing time was calculated integrating the guiding center trajectories and

explicitly measuring how long does it take particles to reverse their parallel motion.

A possible way to validate the results of Section 3.2 is to assume that particles where

simply streaming along the field lines. In this approach the time of going along the field

line from l1 to the next consecutive bounce point l2 would just be τ(B) =
∫ l2
l1
dl/v‖ where

v‖(l) = vα
√

1−B(l)/B and vα = 1.3× 107 m/s. However, to use this approximation it

is necessary to justify that the distance travelled along the field line between bounces

is approximately the same as the guiding center trajectory. The fact that the most

probable banana widths are 0.1 a (∼ 30 cm) for ITER and 0.2 a (∼ 60 cm) for the

stellarators (see Figure 7) is an encouraging first step, but is not enough until the average

distance between bounce points along the field line 〈|l2− l1|〉 is known. Estimating this

distance for an ideal circular tokamak is not very difficult but the same calculation

for a D-shape tokamak or a general stellarator has to be done numerically integrating

the actual distance along the field line and using the 3D geometric properties of the

equilibrium field. Fortunately, this can be done using the toroidal coordinates, (R,Z, ϕ),

of a flux surface ψ, which are given by a series expansion in Boozer coordinates, (θ, ϕ),

similar to Equation 1:

Rψ(ϕ, θ) =
∑
m,n 6=0

cRψ
mn cos(mθ − nNϕ) + sRψ

mn sin(mθ − nNϕ) (5)

Zψ(ϕ, θ) =
∑
m,n 6=0

sZψ
mn sin(mθ − nNϕ) + cZψ

mn cos(mθ − nNϕ) (6)

Exploiting that in Boozer coordinates the magnetic field lines are described

simply by θ = ιϕ, the arc length along the field line and the magnetic field

magnitude can be both parametrized as a function the toroidal angle using dl(ϕ) =√
(dR/dϕ)2 +R2 + (dZ/dϕ)2dϕ and the expansions of equations 5 and 6. Note that

l(ϕ) contains the dependence of the flux surface geometry and the local rotational

transform (which is constant in Boozer coordinates) and makes B(l), see Figure 9,

different from B(θ) shown in Figure 1, though they look similar.

If particles were just streaming along field lines, without drifting radially, reflected

particles would be bouncing between consecutive points with the same magnetic field.

There is a neat way to obtain the characteristic lengths, i.e. the connection lengths,

of a configuration for a given flux surface by applying the discrete Fourier transform

to B(l), see Figure 10. The main spatial periodicities of the magnetic field, giving rise

to the banana orbits, appear as peaks in the Fourier transform, from which the main

connection lengths can be calculated for every magnetic configuration and magnetic

surface. To accurately capture all the details of the configurations is necessary to follow

the field line over a sufficient number of turns around the device. While there is only

one significant connection length for ITER of the order of 40 m ≈ 2πR (R = 6.2 m), the

stellarator configurations clearly show two of them. The longer connection lengths found
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Figure 9. Normalized magnetic field strength along the field line passing through

θ = ϕ =0 as a function of the distance along the field line for three radial positions

r/a = 0.1, 0.5 and 0.9 at ITER (left) and the quasi-toroidal stellarators QTS4 (center)

and QTS72 (right).

for the stellarator configurations, ≈ 140 m, are due to their larger aspect ratio and helical

magnetic field components. The largest modes for these stellarators are basically equal

because they correspond to the same underlying configuration described by different

number of Boozer modes. Moving away from quasi-symmetry, as in QTS72, lead to the

appearance of shorter connection lengths with amplitudes larger than 10% of the largest

mode. The leading connection lengths obtained using the Fourier transform for ITER,

QTS4 and QTS72 are summarized in Table 3 at three radial positions, r/a = 0.1, 0.5 and

0.9. The small radial dependence found for ITER is due to the compensation between

the field line pitch and the radius, which changes from almost circular close to the axis to

a D-shape at outer radii. For the stellarators, the observed smaller connection lengths at

outer radius are probably due to the increased importance of the toroidal components,

which corresponds to the second most important harmonic (R = 9.8 m; 2πR ≈ 60 m).
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Figure 10. Fourier mode magnitude of the magnetic field along a field line versus

2π/k at r/a = 0.5 for ITER, QTS4 and QTS72.
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Table 3. Connection lengths, bouncing times and fraction of reflected particles, fr,

for ITER and the quasi-toroidal stellarators QTS4 and QTS72 at three radial positions.

Only connection lengths with Fourier mode amplitudes larger than 10% of the largest

mode are shown in decreasing order of magnitude.

ITER QTS4 QTS72

r/a l [m] τ [µs] fr l [m] τ [µs] fr l [m] τ [µs] fr

0.1 41 14 15% 142 56 13% 146 - 71 - 17 11 16%

0.5 41 - 20 6 31% 137 - 69 28 18% 139 - 69 - 16 13 22%

0.9 39 - 20 4 38% 76 - 38 10 25% 76 - 40 8 29%

The smooth radial dependence of the connection lengths together with their

magnitude, much larger than that of the most probable radial extension of the orbits (see

Figure 7), justifies the assumption that the particles approximately stream along the

field lines. Therefore, using the dependence of the magnetic field on the distance along

the field line for several turns around the device, it is possible to estimate the average

bouncing times for the trapped α-particles using the conservation of energy, E = mv2/2,

and magnetic moment, µ = mv2⊥/2B. For a connected region along the field line with

magnetic field smaller than a given value B(li < l < li+1) < Bj for i = 1, ..., Nj, the

time taken between bounces in that well is obtained as the integral τi(Bj) =
∫ li+1

li
dl/v‖.

The procedure is repeated for all connected regions Nj along the field line to get a

mean bouncing time for a given magnetic field value 〈τ(Bj)〉 =
∑

i τi(B)/Nj. Finally,

the method is replicated in a regular pitch grid which corresponds to the magnetic

field values Bmin < Bj < Bmax for j = 1, ..., N to get the mean bouncing time

τ =
∑

j〈τ(Bj)〉/N . A sketch of the procedure is outlined in Figure 11. Likewise,

the fraction of reflected particles can be calculated averaging the pitch range over which

particles are trapped depending on the depth of the magnetic wells along the field line

〈fr〉 =
∫ √

1−B(l)/Bmaxdl/
∫
dl.

The results of this analysis show a decrease of the bouncing time for increasing

radius, independently of the configuration. In case of ITER, τ ranges from 14 µs in

the center to 4 µs at the edge. The explanation for the longer bouncing times (56 µs

to 10 µs) for the QTS4 stellarator is their longer connection lengths. This effect is

compensated by the appearance of shorter connection lengths related to the new ripples

in the QTS72 stellarator (12 µs to 8 µs). It is important to notice, that whereas the

connection length l is a property of the equilibrium magnetic field, the bouncing time

τ is an approximation of the real α-particle motion assuming that particles move along

the field lines. The remarkable agreement found in all cases between the bouncing times

obtained for r/a = 0.5, see Table 3, and the most probable values obtained from the

banana orbits of the α-particles, shown in Figure 7, support both the Monte Carlo

calculations and the procedure just described along with its approximations. Moreover,

the fraction of reflected particles 〈fr〉 at r/a = 0.5 of Table 3 is also in accordance with



Statistical description of Collisionless α-particle transport 21

!
! "⁄

l	[m]

li+2 li+3li li+1

Bj

Figure 11. Magnetic field strength versus the length along a field line passing

through θ = ϕ =0 for r/a =0.5 of the QTS72 configuration.

the values of Table 2.

The connection lengths found are between 40 and 150 m, the average banana radial

scale length ranges from 0.1a ∼ 0.3 m at ITER to 0.3a ∼ 0.6 m for the four stellarators,

which barely supports the local approximation when the minor radii are a = 2.62 m and

a = 2.90 m respectively. On the positive side, both results support the small gyroradius

approximation ρα ∼ 5 cm and the gyroaveraged guiding center equations of motion used

in this work. The average bouncing times found range from 10 to 30 µs, which are far

from α-particle collisional slowing-down τslow ∼ 1 s and scattering τscatt ∼ 5 s times

and the expected confinement timescales τE ∼ 5 s [17], thus partly justifying neglecting

collisions in the simulations.

3.4. Transport dynamics

The traditional approach to estimate radial transport consists in assuming that it can

be described by a continuous-time stochastic Wiener [47] process, usually referred to

as Brownian motion [48] or random walk. A convective velocity V and a diffusion

coefficient D are traditionally defined from the time evolution of the radial distribution

of a set of particles initialized at the same radial position and randomly distributed in

the poloidal and toroidal angles and in pitch by using the running moments method [49].

This method, based on [50] estimates both V and D from the slopes of the first

and second moments of the radial distribution dependence on time: 〈r̃b〉 ∼ V t and

〈(r̃b−〈r̃b〉)2〉 ∼ 2Dt at very long times, and where r̃b is the radial distance travelled by the

center of the banana. Thus, in principle one can evaluate the collisionless convection and

diffusion due to a magnetic field inhomogeneity from the time dependence of ensemble
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averages, 〈 〉, of the radial particle distribution.

What is often forgotten is that this method and the underlying assumptions can only

be applied when the number of particles is conserved, i.e. when the zero-order moment

of the distribution does not depend on time, and for unbound systems (or systems where

particles never approach the limits of the system). A condition that only applies when

the process is sufficiently slow or when particles do not depart significantly (local ansatz)

from their initial locations r0. Unfortunately, the probability density functions of orbit

displacements, ∆r, and banana width, ∆w, shows that this condition is not fulfilled

and moreover a considerable fraction of reflected particles can leave the plasma in the

quasi-symmetric configurations.

So, the question is to what extent α-particle transport can be described by a Wiener

process in toroidally symmetric and quasi-symmetric configurations. The easiest way

is to calculate the time dependence of the radial probability density function of α-

particle banana orbit centers and check if it has a gaussian shape and/or if it radially

drifts. This was done from the simulations of Section 3.2 where the escaping times and

radial position of the banana orbit centers were stored at fixed times using the method

described in Section 2.5. The escaping time is needed to discard lost reflected particles

from the calculation to preserve the conservation of probability.
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Figure 12. Probability density functions of normalized orbit centers, r̃b/a, for

confined reflected α-particles for ITER (left), QTS4 (center) and QTS72 (right) at

t = 0.01, 0.1 and 1 s.

The radial probability density function of orbit centers of confined reflected α-

particles is presented in Figure 12 for ITER (left), QTS4 (center) and QTS72 (right)

configurations at three instants: t = 0.01, 0.1 and 1 s. The centers of the banana

orbits at ITER, as expected, do not broaden nor drift radially neither inwards nor

outwards. The observed width of the distribution, ∆r = 0.02a ∼ 5 cm ≈ ρα serves

as an indication of the accuracy of the algorithm determining the banana orbit centers

(see Section 2.5). The results for the QTS72 configuration (Figure 12 right) are a bit

surprising at first since they resemble those of ITER, although with a much broader

radial distribution, which suggests a similarity between the orbit types that survive

until 1 s. The difference being that they are a 31% of the particles in ITER and a

minuscule 1% in QTS72 (see Table 2). The only confined reflected particles in QTS72

are radially frozen because otherwise they would have been lost. The central plot of
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Figure 12 shows a substantial and asymmetric broadening together with a slow outward

radial drift for QTS4 configuration. Some particles will be inevitably lost soon after 1s;

something that can be anticipated seeing the positive slope of the loss fraction for QTS4

in Figure 2.
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Figure 13. Time dependence of the first (left) and second (right) moments of the

probability density function of confined reflected α-particles for ITER and the four

QTS configurations.

Applying the running moments method to these radial distributions confirms

numerically the visual result of Figure 12. There are almost no convection nor diffusion

for ITER, QTS6 and QTS72, D ∼ V ∼ 0, see Figure 13. This is consistent with

the collisionless approximation for all ITER reflected particles and the very few QTS6

and QTS72 reflected particles that are not lost in 1 s and also demonstrates that

numerical diffusion was kept under control in the simulations. For the QTS4 and

QTS5 configurations, the values obtained for the convective velocity and the diffusion

coefficient from the slope of the first and second moments of the radial distribution are

V = 0.04 m/s and D = 0.012 m2/s and V = 0.01 m/s and D = 0.01 m2/s respectively.

The source of diffusion for the configurations with broken symmetry is the so-called

stochastic diffusion, which is due to the magnetic field inhomogeneity [9, 10, 11, 51].

Even for conditions of mildly breaking the toroidal symmetry like in the QTS4

configuration with σqt ≈ 0.9 at r/a = 0.9 and where the fraction of losses is small

< 4%, one may be tempted to conclude that these are the transport coefficients of α-

particles. However, these values should be put into question when one considers the clear

asymmetry of the distribution, its non-gaussian shape and that part of the left side of the

distribution remains the same for almost one second, see Figure 12. A remainder that

within the 15% of confined reflected particles a certain fraction has no radial drifts, like

in ITER and QTS72, though its identification and separation does not seem possible

at the moment. Farther away from symmetry, like in the QTS72 configuration with

σqt ≈ 0.6 at r/a = 0.9, there is a ∼ 20% of losses and the only confined reflected

particles are the ones that do not suffer stochastic diffusion, thus giving the same result
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as for ITER. An analysis based on ignoring the warnings and using all trapped particles

will result in a time varying PDF normalization (because of the loss of particles) from

which no relevant statistical conclusions can be drawn.

Throughout this work, collisions have been intentionally neglected to highlight the

link between the magnetic field and the dynamics of α-particles. Collisions mix different

types of orbits causing passing particles to become trapped and vice versa, producing

diffusion both in real and momentum spaces. For reactor conditions, the characteristic

spatial and temporal scales are the banana width and the collisional time. In the case

of ITER, where collisionless banana orbits are not drifting radially, see Figure 13, the

convective velocity will remain negligible, but the expected diffusion coefficient instead

of being zero will depend on the most probable banana width, ∆w ∼ 0.1, and the

inverse collision time [52], 1/νcoll ∼ 0.1 s, thus giving D ∼ a2∆w2 νcoll ∼ 10−2 m2/s.

The situation is different for the stellarator configurations since the effect of collisions

is barely noticeable below ∼ 10−2 s [14], i.e. well before losses in QTS4 have started

and after most of the QTS72 losses took place, see Figure 2. This time scale is too slow

compared to the bouncing times of QTS4, τ ∼ 20 µs, and results in a diffusion coefficient,

D ∼ a2∆w2/τ ∼ 2× 104 m2/s, inconsistent with the running moments method. As for

QTS72, one can expect that some confined orbits are scattered by collisions into regions

that further increase the losses, thus supporting the conclusion that the process is not

diffusive.

4. Summary and Conclusions

The original goal of this work was to study the effect of breaking the toroidal symmetry

of the magnetic field on the transport of collisionless α-particles. To that end, five

magnetic configurations were considered with different quasi-toroidal symmetry ratios

σqt: a purely toroidal case with σqt = 1 and the parameters of ITER, that serves

as a reference, and four stellarator examples, with σqt(r/a = 0.5) ranging from 0.94

(QTS4) to 0.62 (QTS72) derived from a configuration inspired in the NCSX project.

The behavior of α-particles was studied with the guiding center orbit following code

MOCA.

The analysis of averaging escaping times of an ensemble of particles allowed to

estimate the losses of every configuration and its dependence on the birth position. In the

symmetric configuration only two types of confined particles, passing and reflected, were

found. When toroidal symmetry is broken, apart from passing particles only trapped

and transition particles born close to the magnetic field maximum remain confined. Two

different methods were used to obtain the fraction of reflected particles fr, one based

on particle trajectories and the other on the magnetic well depth.

A novel algorithm was introduced to define the trapped orbit center, width, and

bouncing times based on particle trajectories. It was confirmed that banana width and

bouncing times increase as the configuration departs from symmetry. New bouncing

times appear as a result of the new field ripples of the quasi-toroidally symmetric
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configurations. These results were corroborated by independent numerical procedures

for calculating the average bouncing times and connection lengths along the field lines.

The statistical analysis of the orbit center displacements, responsible of the stochastic

collisionless transport, points to the existence of several entangled spatial scales.

Transport coefficients were estimated by using the calculated most probable banana

width and bouncing times (∆w ∼ 0.2 and τ ∼ 30 µs) and by fitting the time dependence

the moments of the radial probability density functions. For the QTS4 configuration,

for which both methods can be compared, the first procedure, returns results for the

diffusion coefficient D ∼ 2× 104 m2/s which is inconsistent with those obtained by the

second method, D ∼ 10−2 m2/s.

The results obtained here put into question the classical convection/diffusion

approach to adequately describe collisionless trapped α-particles transport as the

magnetic configuration departs from toroidal symmetry, a result that can probably

be applied to other symmetries. A description based on the use of fractional transport

equations [53] for collisionless α-particle transport is underway.
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